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Abstract
Modern neural-network-based Image Quality As-
sessment (IQA) metrics are vulnerable to adver-
sarial attacks, which can be exploited to manip-
ulate search engine rankings, benchmark results,
and content quality assessments, raising concerns
about the reliability of IQA metrics in critical
applications. This paper presents the first com-
prehensive study of IQA defense mechanisms in
response to adversarial attacks on these metrics
to pave the way for safer use of IQA metrics. We
systematically evaluated 30 defense strategies, in-
cluding purification, training-based, and certified
methods — and applied 14 adversarial attacks
in adaptive and non-adaptive settings to compare
these defenses on 9 no-reference IQA metrics.
Our proposed benchmark aims to guide the de-
velopment of IQA defense methods and is open
to submissions; the latest results and code are
at https://msu-video-group.github.io/adversarial-
defenses-for-iqa/.

1. Introduction
Image quality assessment (IQA) metrics are essential to de-
velop and evaluate image and video processing algorithms.
Modern IQA metrics based on neural networks are highly
correlated with subjective assessments. However, neural
networks are proven to be vulnerable to adversarial pertur-
bations(Kurakin et al., 2018), which have led to exploration
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of such vulnerabilities of IQA models (Antsiferova et al.,
2024; Meftah et al., 2023; Zhang et al., 2024; Ghildyal &
Liu, 2023). Adversarial attacks on IQA metrics are per-
turbations that mislead the metric’s score, making quality
assessment invalid. Such attacks can manipulate image
search results, as search engines (e.g., Microsoft’s Bing)
rely on IQA metrics to rank results (Bing, 2013). Further-
more, since IQA metrics serve in public benchmarks and
comparisons (Huang et al. 2024; Wu et al. 2024, etc.) to eval-
uate image/video processing and compression algorithms,
competitors can exploit the vulnerabilities of the metric to
artificially inflate the quality of their algorithm. Several
works showed that optimizing image restoration for modern
vulnerable IQA metrics can reduce actual image quality
(Ding et al., 2021) or generate visual artifacts (Kashkarov
et al., 2024). For these reasons, it becomes necessary to
study and design methods to improve the robustness of IQA
models.

Although researchers have proposed various defense meth-
ods to enhance the robustness of neural networks in different
applications, few defenses have been developed explicitly
for IQA metrics, and there are currently no comprehensive
benchmarks for this task. Defending IQA metrics poses
unique challenges compared to object classification: de-
fenses must restore the original IQA scores and their cor-
relation with subjective evaluations while preserving the
perceptual quality of attacked images.

This paper introduces the first benchmark that systemati-
cally evaluates defenses against adversarial attacks on IQA
metrics. The evaluation scheme is presented in Figure 1.
Our contributions include a novel methodology for measur-
ing and comparing defenses for the IQA tasks, addressing
a critical gap in the field, comprehensive experiments, an
extensive subjective study with 60,000+ responses, an in-
depth analysis of the results, and an online leaderboard. We
also publish a novel dataset of adversarial images, which
can be used for adversarial training, evaluating non-adaptive
defenses, and training methods for attack detection. Our
methodology is the first to systematize defenses for IQA
metrics, analyzing 30 defense algorithms (both empirical
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Figure 1. Evaluation scheme. The benchmark consists of four parts: datasets, IQA models, adversarial attacks, and adversarial defenses
of three types: Adversatial Training, Purification and Cerified methods.

and certified) and evaluating their effectiveness against 14
adversarial attacks. We address both adaptive and non-
adaptive attack scenarios, depending on the attacker’s aware-
ness of the defense. The benchmark is available online
at https://videoprocessing.ai/benchmarks/iqa-defenses.html
along with the code for the proposed methodology, IQA
models, adversarial attacks, and defense methods in the
GitHub repository. This unified framework enables re-
searchers to measure and compare defense performance,
and we welcome submissions of new methods.

2. Related work
Existing comparisons of defense methods mostly focus on
object classification (Croce et al., 2021; Dong et al., 2020),
leaving a significant gap in evaluating defenses for image
quality assessment (IQA) metrics. While (Antsiferova et al.,
2024) investigates IQA robustness under adversarial attacks,
it does not explore defense strategies. Current trends in
IQA metrics development emphasize creating task-specific
metrics to achieve better correlations, as different IQA tasks
(e.g., user- or AI-generated content, artificial distortions
caused by image-processing algorithms, etc.) require a
slightly different approach. This makes the development of
a universally efficient and robust IQA metric impractical.
To address this, we present a systematic comparison of
defense methods for IQA tasks, enabling researchers to
enhance existing models. Our benchmark advances prior
work by incorporating attack parameter selection, diverse
datasets, and large-scale subjective evaluations, offering a
comprehensive framework for assessing defense efficacy.

Adversarial attacks fall into two main categories depending
on the attacker’s knowledge of the model: “white box” or
“black box” (Huang et al., 2017). White-box attacks em-
ploy intrinsic characteristics of the attacked models (e.g.
gradients); however, in some situations, it is unavailable,

and black-box attacks remain applicable. Several white-box
adversarial attacks (Shumitskaya et al., 2024; Zhang et al.,
2022b; Wang & Simoncelli, 2008; Shumitskaya et al., 2023)
and at least two black-box attacks (Ran et al., 2024; Yang
et al., 2024) are designed specifically for IQA metrics.

Defense methods for neural networks come in certified and
empirical types. Certified methods provide deterministic
or probabilistic robustness guarantees for particular pertur-
bations, datasets, or model architectures. However, these
methods are usually computationally complex and reduce
the model’s general accuracy. One of the most well-known
certified methods is randomized smoothing (Cohen et al.,
2019). Later variations appeared in (Salman et al., 2020;
Chen et al., 2022b), and included a denoiser to improve the
defended model’s performance. Empirical methods lack
robustness guarantees but require fewer computational re-
sources. A widely used empirical defense method is ad-
versarial training (AT) (Wong et al., 2020; Singh et al.,
2023), which additionally trains the model on adversar-
ial examples. Vanilla adversarial training, however, may
decrease model performance. Adjusting subjective scores
during training has been suggested to prevent performance
degradation (Chistyakova et al., 2024). In another study,
l1-regularization of the gradient norm (NT) was used to
improve the robustness of NR IQA models against adver-
sarial attacks (Liu et al., 2024). Adversarial purification is
an empirical method that removes adversarial perturbations
by processing input data. Although adversarial purifica-
tion is model-agnostic and computationally efficient, it may
fail to eliminate advanced adversarial perturbations and can
degrade image quality. Examples of such methods range
from compression and spatial transformations to specialized
methods (e.g. DiffPure (Nie et al., 2022)).
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3. Methodology
3.1. Problem definition

Adversarial attacks. This work evaluates adversarial de-
fenses for no-reference (NR) IQA metrics because they
have a more comprehensive range of applications and are
more vulnerable to attacks (Ghildyal & Liu, 2023). In this
setting, an attacked model, represented by an NR IQA
metric, takes a single image as input and estimates im-
age quality. Formally, the NR IQA metric is the mapping
fω : X → R, parameterized by the vector of weights ω.
Here, X ∈ [0, 1]3×H×W is the input image. An adversarial
attack A : X → X is the perturbation of the input image
defined as

A(x) = argmax
x′:ρ(x′,x)≤ε

L(fω(x
′)), (1)

where L is a loss function that represents the model’s out-
puts for perturbed images and ρ(·, ·) is the distance function
defined on X × X . We increase IQA scores during the
attack to reflect real-life applications (decreasing scores
is nearly identical task (Antsiferova et al., 2024)). For
IQA metric attacks, we define L(fω(x′)) = fω(x′)

diam(fω) , where
diam(fω) = sup

x,z∈X
{|fω(x)− fω(z)|} represents the range

of IQA metric values.

Adversarial defenses.

Adversarial purification is an algorithm P : X → X that
aims to transform the input image according to the following
optimization problem:

min |fω(P (x′))− fω(x)|+ λρ(P (x′), x), (2)

where x′ is the adversarial image, λ controls regularization.

Adversarial training is formulated as the following problem:

min
ω

E(x,y)∼D

[
max

∥δ∥p≤ε
L(fω(x+ δ), y)

]
, (3)

where D is the distribution of training data, L is a training
loss function, ε is the attack magnitude, y is image quality
of x. In practice, adversarial training uses an adversarial
attack rather than internal maximization.

Certified methods used in our paper are based on random-
ized smoothing (Cohen et al., 2019), denoised randomized
smoothing (Salman et al., 2020), diffusion-based random-
ized smoothing (Carlini et al., 2022; Chen et al., 2022b)
and median smoothing (Chiang et al., 2020). Randomized
smoothing replaces the original IQA metric fω(x) with a
smoothed version g(x), adding Gaussian noise ϵ:

g(x) = E
ϵ∼N (0,σ2)

fω(x+ ϵ) (4)

3.2. Adversarial attacks

Accurately evaluating defense mechanisms requires testing
under conditions that closely reflect real-world applications.
To address this, we consider both adversarial attack scenar-
ios: non-adaptive and adaptive. In the first case, the attack
method targets only the IQA model itself and does not take
into account defense. In the second, we incorporate dif-
ferentiable defense into the attacked IQA metric, enabling
adaptive attacks to leverage gradients from both the metric
and the defense mechanism. We selected 14 white- and
black-box attacks of diverse types, including methods tai-
lored specifically for IQA task. Table 7 in the Appendix
describes these attacks.

Attacks hyperparameters. Recent work (Dong et al., 2020)
reveals that defense rankings are sensitive to attack parame-
ters. This instability underscores the necessity of evaluating
defenses across diverse attack configurations. To account
for this, we execute each attack method with three hyper-
parameter sets corresponding to “weak”, “medium”, and
“strong” perturbation budget. Parameter selection was per-
formed by linear approximation for the target attack budgets
on a small subset. We chose a subset of 50 images used
for attack alignment via clustering the KonIQ-10k dataset
by spatial complexity (SI), colorfulness, and ground-truth
quality (MOS). Appendix A.3.2 contains a list of chosen
parameter sets, alongside the procedure scheme in Fig.7.

3.3. Adversarial defenses

To thoroughly investigate the effectiveness of IQA metric
defenses, we explored three method types: adversarial pu-
rification, adversarial training, and certified robustness.

Adversarial purification mitigates threats by preprocess-
ing input images before IQA calculation. These methods
are efficient and offer a flexible trade-off between attack
mitigation and image quality. The top part of Table 1 de-
scribes the selected adversarial purification techniques. We
used five parameter sets to vary the defense strength, e.g.,
scaling ratio, blurring kernel size, and number of diffusion
steps. The Appendix A.3.5 provides a list of used defense
parameters and their selection methodology.

Adversarial training fine-tunes a model on adversarial ex-
amples to enhance its robustness. IQA presents additional
challenges in applying adversarial training since adversarial
examples don’t preserve ground truth labels (MOS). Man-
ually assigning such images with subjective scores is im-
practical, and using ground-truth labels from clean images
is inaccurate, as attacks could alter perceived quality. We
evaluate the method from (Chistyakova et al., 2024) with
different parameters and NT method (Liu et al., 2024) that
employ gradient normalization during training. Both these
methods are specifically designed for IQA task.

3



Guardians of Image Quality: Benchmarking Defenses Against Adversarial Attacks on Image Quality Metrics

Table 1. Evaluated defense methods in our benchmark by types (purification, adversarial training, certified methods).

Defense method Short description Defense method Short description

A
dv

er
sa

ri
al

pu
ri

fic
at

io
n

Gaussian blur Smooth with a Gaussian filter

A
dv

er
sa

ri
al

tr
ai

ni
ngMedian blur Smooth with a median filter

JPEG (Guo et al., 2018) JPEG compression algorithm
Color quantization (Xu et al., 2018) Reduce the number of colors Classic adv. training (Chistyakova et al., 2024) Model fine-tuning on adv. img.
DiffJPEG (Reich et al., 2024) Differentiable JPEG Gradient Norm optimization (Liu et al., 2024) Perform gradient normalisation during training
Unsharp masking Unsharp mask
FCN (Gushchin et al., 2024) Neural filter to counter color attack
Flip Mirror the image
Bilinear Upscale Resize and upscale to original size
Resize (Guo et al., 2018) Change the image size

C
er

tifi
ed

Random Rotate Image rotation Random. Smoothing (RS) (Cohen et al., 2019) Noisy samp. →clf.→voting
Random Crop (Guo et al., 2018) Crop the image Denoised RS (DRS) (Salman et al., 2020) Noisy samp.→denoiser→ clf.→voting
Random noise Add random noise Diffusion DRS (DDRS) (Carlini et al., 2022) Noisy samp.→1-step diffus.→clf.→voting
MPRNet (Zamir et al., 2021) 3-stage CNN for denoising DensePure (DP) (Chen et al., 2022b) Noisy samp.→N-step diffus.→clf.→voting
Real-ESRGAN (Wang et al., 2021) GAN-based super-res. denoising Median Smoothing (MS) (Chiang et al., 2020) Noisy samp.→reg.→median
DISCO (Ho & Vasconcelos, 2022) Enc.+loc. implicit module denoising Denoised MS (DMS) (Chiang et al., 2020) Noisy samp.→denoiser→reg.→ median
DiffPure (Nie et al., 2022) Diffusion denoising

Certified defenses provide theoretical guarantees for the
attacked model. The most common certified defenses are
based on randomized smoothing. They can be applied to
any IQA metric without restricting the model architecture.
Certified defense methods generate noisy variations of the
input images, which then pass through the model. Before
passing them through the model, some methods apply de-
noising to boost accuracy. Table 1 provides further details.
For each certified defense method, we generated 1000 noisy
images as input for the metric. Currently, most smoothing
methods are developed for classification, and one study (Chi-
ang et al., 2020) investigated smoothing for regression. To
apply the classification-based smoothing for IQA metrics,
we are converting the IQA metric into a multiclass classifi-
cation model with ordered classes (Hammoudeh & Lowd,
2023). Despite the challenge of IQA metrics discretization,
classifier-based smoothing methods can yield impressive
results for our task since they are more extensively studied.
For a classification-based certified method, the output is a
quality class and certified radius R; for a regression-based
method, it’s a metric score and certified delta. For more
details refer to Sections 3.5 and A.3.5.

3.4. Experimental setup

Datasets. To thoroughly evaluate adversarial defenses we
use four datasets. KonIQ-10k (10,073 images) (Hosu et al.,
2020) and KADID-10k (10,125 images) (Lin et al., 2019)
contain various natural images with multiple distortions.
NIPS 2017: Adversarial Learning Development Set (2017,
Competition Page, 1,000 images) is designed for evaluating
adversarial attacks against image classifiers. AGIQA-3K
dataset (Li et al., 2024) contains 2,982 AI-generated images
for different quality levels. We randomly sampled 1,000 im-
ages from KonIQ-10k and KADID-10k datasets to balance
computational efficiency and dataset diversity. We included
each distortion type and strength and sampled 8 out of 81
original images from KADID, resulting in 1000 distorted

images. Due to high computational complexity, we used 50
images from each dataset for black-box attacks and certified
defenses. Appendix A.3.1 presents statistical tests verifying
that our sampling procedure is valid and representative of
the entire dataset.

IQA metrics. Based on the results of the IQA adversarial
robustness benchmark (Antsiferova et al., 2024), we chose
9 NR IQA metrics: Meta-IQA (Zhu et al., 2020), MANIQA
(Yang et al., 2022), CLIP-IQA+ (Wang et al., 2023), TOPIQ
(Chen et al., 2024), Koncept (Hosu et al., 2020), SPAQ
(Fang et al., 2020), PAQ2PIQ (Ying et al., 2020), Linearity
(Li et al., 2020), and FPR (Chen et al., 2022a). These met-
rics employ different convolutional and transformer-based
architectures and have a wide robustness Rscore range. The
Appendix A.3.5 provides a more detailed description. Be-
cause of adversarial training’s computational complexity, we
selected only two NR IQA metrics, Linearity and Koncept,
for their high correlation with subjective scores.

3.5. Evaluation metrics

Robustness scores. Rscore (Zhang et al., 2022a) and
R

(D)
score aim to assess model robustness by measuring rel-

ative score changes before and after attacks on a dataset of
N images. Rscore takes into consideration the maximum
allowable quality-prediction change:

Rscore =
1

N

N∑
i=1

log

(
max{β1 − fω(xi), fω(xi)− β2}

|fω(xi)− fω(P (x′
i))|

)
,

(5)
where xi is the source image, x′

i is the attacked version of xi.
fω(·) is the IQA model, and β1 and β2 are the maximum
and minimum of IQA scores in the dataset. In addition,
we propose a variation of this metric called R

(D)
score, which

differs only in applying purification P (·) to xi and x′
i. A

larger value means better robustness.
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Figure 2. Adversarial defenses efficiency for IQA metrics in terms of SROCCadv (left) and D
(D)
score (right). Bars and dots are for adaptive

and non-adaptive attacks, respectively. Each dot represents the result for each preset of defense. Red dots represent a selected preset for
the adaptive case. Results are averaged across 9 IQA metrics and 14 attacks.

We propose Dscore and D
(D)
score to measure adversarial pu-

rification’s ability to reduce the discrepancy between the
IQA scores of the original and purified images:

Dscore =
100

n

n∑
i=1

|fω(P (x′
i))− fω(xi)|

diam(fω)
; (6)

D(D)
score =

100

n

n∑
i=1

|fω(P (x′
i))− fω(P (xi))|
diam(fω)

, (7)

where scores denoted with the superscript D are for purified
source images, P represents the purification method. Lower
scores indicate better defense effectiveness, as they reflect
smaller disparities between the IQA metrics of defended and
original images. The metrics quantify how well a defense
can restore the IQA scores of adversarial images to match
their original values.

For certified defense methods, we additionally measured the
certified radius (Cert.R ↑), which indicates how much the
input image can undergo alteration without changing the
class prediction; the percentage of abstentions (Abst. ↓),
reported by classification-based methods when their pre-
dictions are highly uncertain; and certified relative delta
(Cert.RD ↑), which is the certified delta, produced by the
defense method, divided by diam(fω). This parameter char-
acterizes how much a metric score can change in a fixed l2
ball of norm ϵ around a given image x.

Quality scores. We use PSNR, SSIM (Wang et al., 2004),
MSE and L∞ to measure the perceptual similarity between
purified images and their original images, reflecting the
preservation of visual quality post-defense. The underly-

ing principle is that the defense mechanism should restore
the IQA score and preserve the image’s perceptual quality.
More complex IQA metrics (such as LPIPS) cannot be used
in this environment due to possible transferabilities of ad-
versarial attacks. We also conducted a subjective survey to
better evaluate the quality of defended images.

Performance scores. We use SROCC with MOS values
#»y to assess an IQA metric’s performance in the presence of
adversarial defense. PLCC results are similar to SROCC
and are provided in the Appendix A.6.

SROCCclear = SROCC( #»y , fω(P ( #»x ))); (8)
SROCCadv = SROCC( #»y , fω(P ( #»x ′))) (9)

3.6. Implementation details

We used a sophisticated end-to-end automated training and
evaluation pipeline using GitLab CI/CD tools to ensure all
our results are reproducible. All calculations required ap-
proximately 25,000 GPU-hours. Timing benchmarks were
performed on a dedicated server with NVIDIA Tesla A100
80 Gb GPU, Intel Xeon Processor (Ice Lake) 32-Core Pro-
cessor @ 2.60 GHz.

When available, we used original open-source implementa-
tions for all adversarial attacks, defenses, and IQA metrics.
For each attack and defense, we varied one main parameter
— commonly associated with the attack strength — while
keeping the remaining parameters consistent with their orig-
inal implementations (see Table 1). The Appendix A.3.3,
A.3.5 provides a list of parameters for attacks and defenses
and links to the original repositories.
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Table 2. Comparison of purification defenses. Results are averaged for all images, attacks, IQA models for non-adaptive/adaptive cases.
Time
(ms)↓ SROCCclear ↑ SROCCadv ↑ Dscore

(D) ↓ Rscore ↑ PSNRadv ↑ SSIMadv ↑ MSE ↓,×10−3 Linf ↓

W/o Defense — 0.511/0.511 0.413/0.413 66.68/66.68 0.56/0.56 44.61/44.61 0.94/0.94 2.51/2.51 0.09/0.09

Flip 0.05 0.593/0.587 0.555/0.420 7.91/67.41 1.17/0.45 10.76/10.76 0.28/0.29 110.47/109.80 0.95/0.95
Color Quantization 0.07 0.587/— 0.532/— 27.38/— 0.83/— 32.54/— 0.86/— 2.84/— 0.11/—

Median Blur 0.11 0.551/0.531 0.431/0.424 15.14/49.95 0.92/0.50 31.38/31.80 0.86/0.87 4.48/3.17 0.51/0.51
Bilinear Upscale 0.15 0.569/0.479 0.452/0.355 18.13/40.93 0.86/0.58 32.82/28.68 0.91/0.83 3.50/4.23 0.35/0.48

Crop 0.16 0.587/0.431 0.508/0.385 11.68/6.49 0.92/0.78 11.53/11.00 0.33/0.37 89.94/105.34 0.94/0.93
Resize 0.19 0.597/0.511 0.549/0.353 10.56/54.31 1.02/0.42 32.11/29.38 0.90/0.85 3.83/3.90 0.37/0.45
FCN 0.52 0.571/0.562 0.478/0.310 23.89/64.32 0.80/0.41 20.89/20.78 0.78/0.77 13.24/13.35 0.54/0.55

Unsharp 0.78 0.611/0.595 0.427/0.370 43.22/80.24 0.52/0.32 30.34/29.77 0.87/0.86 3.81/3.03 0.33/0.35
Gaussian Blur 0.99 0.552/0.522 0.423/0.376 15.75/45.67 0.84/0.53 32.22/32.30 0.90/0.90 3.83/2.72 0.34/0.35

Rotate 2.14 0.560/0.585 0.501/0.469 6.64/16.24 1.09/0.89 11.56/14.65 0.31/0.42 96.44/54.03 0.97/0.96
Real-ESRGAN 5.89 0.552/0.501 0.503/0.436 9.47/30.13 0.66/0.58 30.32/30.47 0.89/0.88 3.97/2.98 0.43/0.44

DiffJPEG 8.11 0.625/0.610 0.608/0.549 12.94/29.81 1.07/0.71 34.33/31.33 0.91/0.87 3.04/2.61 0.26/0.33
Random Noise 8.29 0.556/0.594 0.539/0.508 10.14/44.84 0.87/0.59 25.42/35.87 0.54/0.90 4.78/1.79 0.30/0.13

MPRNet 65.79 0.565/0.565 0.535/0.488 12.14/45.00 0.97/0.53 32.21/32.32 0.88/0.89 4.23/2.91 0.37/0.36
DISCO 139.60 0.585/0.562 0.581/0.476 3.51/47.91 1.14/0.50 29.12/29.08 0.86/0.86 4.34/3.31 0.43/0.43
JPEG 227.34 0.622/— 0.605/— 13.07/— 1.07/— 34.25/— 0.90/— 3.03/— 0.26/—

DiffPure 691.42 0.496/0.487 0.485/0.470 2.01/22.96 0.79/0.75 27.59/30.11 0.79/0.86 5.34/3.44 0.48/0.43

4. Results
In all tables and figures, for non-adaptive cases, we report
the results of defenses with a hyperparameter set that pro-
vides the best SROCCadv. Table 2 shows overall results
for adversarial purification defenses, and Table 3 — for
adversarial training and certified methods.

Adversarial perturbations generally consist of high-
frequency noise, making compression-based defenses partic-
ularly effective. DiffJPEG leads in terms of several evalua-
tion metrics among purifications with the best SROCCadv ,
Dscore, and Rscore. JPEG and DiffJPEG remove high-
frequency noise alongside adversarial perturbations while
preserving the structural information of a clean image, as
the perturbation has a far more complex and unnatural rep-
resentation than the natural high-frequency components.
Thus, the developers of purification methods should analyze
how the high-frequency components of an image and per-
turbations differ. DISCO, which uses an encoder-decoder
architecture similar to compression, leverages learned fea-
tures of clean images to project images back onto the nat-
ural manifold. Denoising methods, such as MPRNet and
Real-ESRGAN, show average performance, as they were
trained on noise of a more uncomplicated nature. At the
same time, adversarial perturbations possess more complex
high-frequency structures. Fine-tuning these methods on
adversarial perturbations is a promising direction for future
research. Diffusion-based models offer high variability in
strength, allowing precise tuning for specific adversarial
attack budgets. On the other hand, DiffPure introduces its
own processing artifacts, causing the worst correlations and
lower image quality of defended images. This highlights a
key difference between applying diffusion-based defenses
in classification tasks (where they are state-of-the-art meth-
ods) and IQA tasks, underscoring the need for task-specific
adaptations.

Compared to purification methods, adversarial training pro-
vides superior correlations but shows worse Dscore and
doesn’t purify images. Certified methods deliver the best
overall combination of correlations, Dscore and Rscore, but
are highly impractical due to computational overhead.

Parameter Variations for Defenses and Attacks. Figure 3
(a) illustrates how the parameters of adversarial purification
methods impact the trade-off between robustness and perfor-
mance in non-adaptive scenario. Strong defenses, located
in the lower-left corner of the scatter plot, nearly restore
IQA metric scores to their pre-attack values but significantly
reduce correlations with subjective quality, making them
impractical for real-world applications. The red line high-
lights the Pareto-optimal front, which includes strong JPEG
compression, weak DiffPure, Gaussian blur, and DISCO.

The comparison results for different attack parameters, as
presented in Appendix A.6 (Table 11), show that increasing
attack strength leads to decreased defense success. Notably,
defenses in non-adaptive case remain stable across differ-
ent attack strengths, while in adaptive case they are highly
sensitive to attack intensity. Strong attacks cause significant
correlation decrease, making most defenses impractical in
real-world applications, with DiffPure and DiffJPEG be-
ing notable exceptions. Importantly, the relative ranking of
defenses remains mostly consistent across attack strengths.

Inference computational complexity. Tables 2 and 3
present time costs across defenses. Certified methods excel
in defense efficiency but are computationally intensive, with
the fastest certified method being 4× slower than the slowest
purification one. Adversarial training requires no inference
overhead. For purification-based defenses, computational
demands vary. Basic preprocessing (blurring and rotation)
has minimal overhead, while diffusion-based methods (e.g.,
DiffPure), are much slower due to multiple denoising steps.
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(a) (b)

Bilinear Upscale
Color Quantization

DiffJPEG
DiffPure
FCN
Flip

Gaussian Blur
JPEG

Defense

MPRNet

Median Blur
Random Noise
Resize

Rotate
Unsharp
W/o Defense

DISCO
Crop

Figure 3. (a) Scatter plot of purification defense parameter configurations in the non-adaptive case, with the red line indicating Pareto-
optimal defenses. (b) Performance across test datasets in terms of D(D)

score (left) and SROCCadv (right).

Table 3. Comparison of adversarial training (AT) (left) and certified defenses (right). C: classification-based methods, R: regression-based.
For AT methods, APGD is an attack used for fine-tuning; 2/4/8 is perturbation budget. LPIPS/SSIM are FR metrics for MOS adjustment.

Adaptive attacks, 1000 images KonIQ-10k, Koncept+Linearity Non-adaptive attacks, 10 images from KonIQ-10k, 9 IQA metrics

AT Defense SROCCclear ↑ SROCCadv ↑ D
(D)
score↓ Rscore ↑ Cert Defense Time(ms)↓ SROCCclear ↑ SROCCadv ↑ D

(D)
score↓ Rscore ↑ Cert.R ↑ / Cert.RD ↓

APGD-LPIPS-2 0.840 0.651 20.70 1.10 RS (C) 11080 0.747 0.706 2.70 5.61 0.183 / ∞
APGD-LPIPS-4 0.866 0.576 36.59 0.77 DRS (C) 15320 0.882 0.712 16.57 2.01 0.175 / ∞
APGD-LPIPS-8 0.867 0.547 45.61 0.69 DDRS (C) 39800 0.819 0.792 1.20 6.21 0.174 / ∞
APGD-SSIM-2 0.830 0.763 17.11 1.23 DP (C) 82130 0.823 0.815 1.09 6.20 0.162 / ∞
APGD-SSIM-4 0.852 0.625 39.53 0.80 MS (R) 2830 0.753 0.694 3.80 1.92 0 / 1.707
APGD-SSIM-8 0.873 0.582 45.38 0.64 DMS (R) 5970 0.875 0.822 4.70 1.89 0 / 1.440

NT (Liu et al., 2024) 0.815 0.649 35.42 0.81

Defenses against adaptive and non-adaptive attacks.
Figure 2 and Table 2 compare defense performance against
non-adaptive and adaptive attacks. Adversarial training was
measured only in adaptive setting, while certified defenses
were only for non-adaptive scenario. By design, adaptive
attacks are significantly more successful, so D

(D)
score robust-

ness bars are higher than markers on Figure 2. Furthermore,
the SROCCadv of defended IQA metrics is lower, due to
the more unpredictable behavior of adaptive attacks. Simple
spatial transformations (Flip, Resize) and frequency filter-
ing (Gaussian Blur, Median Blur) are effective in the non-
adaptive case but insufficient for adaptive one. In adaptive
case, Crop, Rotate and DiffPure excel in D

(D)
score and Rscore,

suggesting high randomness is crucial for effective defense.
The combination of randomness and geometric transforma-
tions particularly mitigates perturbations. Flip and Random
Rotate are great examples: the first lacks randomness, and
adaptive attacks easily surpass it, while Random Rotate re-
duces attack effectiveness since the angle differs between
attack calculation and inference. Specialized defenses can
demonstrate high effectiveness in the non-adaptive case but
exhibit unpredictable performance against adaptive attacks.
For instance, DISCO ranks top-3 by Rscore in the non-
adaptive case but plummets under adaptive attacks, whereas
DiffPure maintains its top position in both scenarios.

Defenses for regular/AI-gen image content Figure 3 (b)
compares Dscore and SROCCadv on different datasets,
including three natural scene images datasets and the AI-
generated images from AGIQA-3K. There is no significant
difference in defense efficiency for most methods between
datasets, but some advanced defenses based on neural net-
works (Real-ESRGAN, DISCO) have larger discrepancies.
This highlights the critical importance of dataset coverage of
the target data domain during training. As shown in Figure
3 (b, right), correlations depend highly on the dataset. On
average, SROCCadv on KonIQ-1k is significantly higher
than on KADID and AGIQA-3K, similar to results in Table
19 in the Appendix regarding SROCCclear. This can be
due to two factors: a) Several IQA models (e.g., TOPIQ and
CLIP-IQA+) were trained on the KonIQ-10k dataset or its
subsets, giving them a natural advantage. b) Certain IQA
models, such as MetaIQA and PAQ2PIQ, generally achieve
higher correlation values on KonIQ-10k, as reported in their
respective studies, suggesting an inherent dataset bias.

Guarantees of the defenses. Among all the methods com-
pared, only certified methods provide theoretically reliable
predictions. Table 3 presents the results for the certified
defenses. Compared to more sophisticated methods, sim-
ple randomized smoothing showed the highest certified ra-
dius. Among regression-based methods, Denoised Median
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(a) (b)

Figure 4. R score (a) and SROCCclear (b) on different IQA met-
rics of some purification defenses.

Smoothing showed the lowest certified relative delta. Al-
though there are no theoretical restrictions on using certified
defenses without denoising, our experiments indicate that
the denoising step is crucial to obtain a defended model that
produces high SROCC for the IQA task. Another finding is
that, despite the questionable applicability of randomized
smoothing-based defenses to IQA, they remain effective, as
the certified radii are sufficiently high and the number of
abstentions is relatively low.

Defenses for different IQA metrics’ architectures. The
chosen IQA metrics fall into categories by their back-
bones: CNN-based (Meta-IQA, Koncept, SPAQ, PAQ2PIQ,
Linearity), transformer-based (MANIQA, CLIP-IQA+,
TOPIQ), and custom (FPR). Figure 4 shows Rscore and
SROCCclear for these metrics in a non-adaptive scenario.

Transformer-based metrics have greater Rscore robustness
even without defense. Their self-attention mechanisms en-
able comprehensive global contextual analysis, capturing
image-wide dependencies beyond local features. This ar-
chitectural feature provides an intrinsic resilience to sub-
tle adversary perturbations, resulting in a lower robustness
increase when defenses are applied. For other architec-
tures, most defenses increased the robustness. DISCO im-
proved the robustness of all metrics, but the effect was much
stronger on CNN-based metrics. Defended transformer-
based metrics showed a higher correlation decrease than
metrics of other architectures. Note that custom architec-
tures can be highly vulnerable (FPR model shows the worst
Rscore). This vulnerability is likely caused by its atypical
architecture with a Siamese network and an attempt to ”hal-
lucinate” the features of the pseudo-reference image from a
distorted one. These results correlate with previous research
(Antsiferova et al., 2024). In general, all tested defenses do
not impose restrictions on the architecture of the models;
however, some defenses perform better for specific metrics.

Perceptual quality of defended images. Most presented
purification defenses aim to restore the original content
of the image, but inevitably introduce artifacts. The most
noticeable ones include loss of details (DISCO, MPR-
Net), altering the image content (Real-ESRGAN, Diff-
Pure), blurring (DiffPure, blur), and compression artifacts
(JPEG/DiffJPEG, Color Quantization). Figures 9 and 8
in the Appendix A.5 show examples of images with such
artifacts. Table 2 shows quantitative results of perceptual
quality. Attacked images turned out to be closer to clean im-
ages than purified ones. PSNR and SSIM cannot account
for geometric transformations and, thus, are meaningless
for Flip, Rotate, and Crop.

To assess perceptual quality of defended images we con-
ducted a large-scale crowd-source subjective study with
2,700+ participants who provided 60,000+ responses (de-
tails in Appendix A.2). The results highlight Real-ESRGAN
as the top method, achieving perceptual quality that sur-
passes even the ”W/o defense” case in quality. This method
treats adversarial perturbations as degradations, effectively
removing them while preserving natural image content.
Real-ESRGAN has architecture and training objective that
naturally suppress high-frequency noise, a common feature
of adversarial attacks, and demonstrate a unique ability to
mitigate unrestricted attack perturbations — an area where
traditional denoising methods falter. The model’s relatively
lower performance on objective metrics can be attributed
to aliasing artifacts introduced during downsampling opera-
tions, residual noise, and subtle change in contrast. Subjec-
tive evaluation reveals that Gaussian blur and DiffJPEG per-
form significantly worse than their objective metrics suggest.
While Gaussian blur fails to suppress both high-frequency
noise and unrestricted attack artifacts, DiffJPEG introduces
strong blocking artifacts and texture loss. DiffPure not only
fails to suppress high-frequency noise, but also distorts tex-
tures and blurs image, resulting in low subjective scores.
These findings highlight the importance of subjective eval-
uations: objective metrics such as SSIM and PSNR can
misrepresent perceived quality and thus lead to misleading
leaderboard rankings.

Statistical tests: A one-sided Wilcoxon signed-rank test
with Bonferroni correction (see Appendix A.4) further
proves the statistical significance of the results obtained
in our comparison and confirm that DISCO, DiffPure and
DiffJPEG defenses significantly outperform all others in
both D

(D)
score and Rscore with consistently high pairwise

win-rate percentages across datasets. In the adaptive setting,
APGD-SSIM-2 adversarial training also demonstrates a sta-
tistically significant robustness advantage over competing
defenses.
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5. Conclusion
This paper introduces the first comprehensive benchmark
for evaluating defenses against adversarial attacks on neural
network-based Image Quality Assessment (IQA) metrics,
addressing a critical gap in the field. By systematically
analyzing 30 defense strategies across 14 attack methods
and 9 IQA metrics, we provide a framework to guide the
development of secure and reliable IQA models.

Our results highlight superiority of compression-based de-
fenses due to their ability to remove high-frequency adver-
sarial perturbations while preserving the structural details.
This suggests that future defenses should focus on better
distinguishing genuine high-frequency details from adver-
sarial noise. Diffusion-based defenses, such as DiffPure,
demonstrate strong performance in classification tasks but
struggle in IQA tasks, emphasizing the need for task-specific
adaptations of defenses and the importance of diverse and
representative training datasets. Furthermore, the results
highlight the critical role of randomness in mitigating at-
tacks in adaptive case.

We conducted a large-scale subjective study with 60,000+
responses to evaluate the perceptual quality of purification
defenses and collect Mean Opinion Score values for a new
dataset, which serves as a valuable resource for adversarial
training and detection of adversarial perturbations.

Robust IQA metrics are essential for applications such as
search engine optimization, video processing, and bench-
marking, where adversarial vulnerabilities threaten trust and
fairness. By publishing a dataset, detailed results, and an
online leaderboard, we establish transparent and practical
foundation to the research community and industry, enabling
the development of more secure IQA models.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Economic De-
velopment of the Russian Federation (code 25-139-66879-
1-0003).

The research was carried out using the MSU-270 supercom-
puter of Lomonosov Moscow State University. We also
would like to express our gratitude to Mikhail Pautov for
discussing the results of this research.

References
Agustsson, E. and Timofte, R. Ntire 2017 challenge on

single image super-resolution: Dataset and study. In
The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, July 2017.

Andriushchenko, M., Croce, F., Flammarion, N., and Hein,
M. Square attack: a query-efficient black-box adversarial
attack via random search. In European Conference on
Computer Vision, pp. 484–501. Springer, 2020.

Antsiferova, A., Abud, K., Gushchin, A., Shumitskaya, E.,
Lavrushkin, S., and Vatolin, D. Comparing the robustness
of modern no-reference image-and video-quality metrics
to adversarial attacks. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 38, pp. 700–708,
2024.

Bhattad, A., Chong, M. J., Liang, K., Li, B., and Forsyth,
D. A. Unrestricted adversarial examples via semantic
manipulation. arXiv preprint arXiv:1904.06347, 2019.

Bing, M. A behind the scenes look at how bing is improving
image search quality. https://blogs.bing.com/search-
quality-insights/2013/08/23/a-behind-the-scenes-look-
at-how-bing-is-improving-image-search-quality, 2013.

Carlini, N., Tramer, F., Dvijotham, K. D., Rice, L., Sun,
M., and Kolter, J. Z. (certified!!) adversarial robustness
for free! In The Eleventh International Conference on
Learning Representations, 2022.

Chen, B., Zhu, L., Kong, C., Zhu, H., Wang, S., and Li, Z.
No-reference image quality assessment by hallucinating
pristine features. IEEE Transactions on Image Processing,
31:6139–6151, 2022a.

Chen, C., Mo, J., Hou, J., Wu, H., Liao, L., Sun, W., Yan,
Q., and Lin, W. Topiq: A top-down approach from se-
mantics to distortions for image quality assessment. IEEE
Transactions on Image Processing, 2024.

Chen, Z., Jin, K., Wang, J., Nie, W., Liu, M., Anandku-
mar, A., Li, B., and Song, D. Densepure: Understanding
diffusion models towards adversarial robustness. In Work-
shop on Trustworthy and Socially Responsible Machine
Learning, NeurIPS 2022, 2022b.

Chiang, P.-y., Curry, M., Abdelkader, A., Kumar, A., Dick-
erson, J., and Goldstein, T. Detection as regression: Certi-
fied object detection with median smoothing. Advances in
Neural Information Processing Systems, 33:1275–1286,
2020.

Chistyakova, A., Antsiferova, A., Khrebtov, M., Lavrushkin,
S., Arkhipenko, K., Vatolin, D., and Turdakov, D. Increas-
ing the robustness of image quality assessment models

9

https://blogs.bing.com/search-quality-insights/2013/08/23/a-behind-the-scenes-look-at-how-bing-is-improving-image-search-quality 
https://blogs.bing.com/search-quality-insights/2013/08/23/a-behind-the-scenes-look-at-how-bing-is-improving-image-search-quality 
https://blogs.bing.com/search-quality-insights/2013/08/23/a-behind-the-scenes-look-at-how-bing-is-improving-image-search-quality 


Guardians of Image Quality: Benchmarking Defenses Against Adversarial Attacks on Image Quality Metrics

through adversarial training. Technologies, 12:220, 11
2024. doi: 10.3390/technologies12110220.

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adver-
sarial robustness via randomized smoothing. In Interna-
tional Conference on Machine Learning, pp. 1310–1320.
PMLR, 2019.

Competition Page. Nips 2017: Adversarial learning develop-
ment set. https://www.kaggle.com/datasets/google-brain/
nips-2017-adversarial-learning-development-set, 2017.

Croce, F. and Hein, M. Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free
attacks, 2020.

Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti,
E., Flammarion, N., Chiang, M., Mittal, P., and Hein,
M. Robustbench: a standardized adversarial robustness
benchmark. In Thirty-fifth Conference on Neural Infor-
mation Processing Systems Datasets and Benchmarks
Track, 2021. URL https://openreview.net/forum?id=
SSKZPJCt7B.

Croce, F., Andriushchenko, M., Singh, N. D., Flammarion,
N., and Hein, M. Sparse-rs: a versatile framework for
query-efficient sparse black-box adversarial attacks. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 6437–6445, 2022.

Ding, K., Ma, K., Wang, S., and Simoncelli, E. P. Compari-
son of full-reference image quality models for optimiza-
tion of image processing systems. International Journal
of Computer Vision, 129(4):1258–1281, 2021.

Dong, Y., Fu, Q.-A., Yang, X., Pang, T., Su, H., Xiao, Z.,
and Zhu, J. Benchmarking adversarial robustness on
image classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 321–331, 2020.

Fang, Y., Zhu, H., Zeng, Y., Ma, K., and Wang, Z. Percep-
tual quality assessment of smartphone photography. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3677–3686, 2020.

Ghildyal, A. and Liu, F. Attacking perceptual simi-
larity metrics. pre-print, 05 2023. doi: 10.48550/
arXiv.2305.08840.

Guo, C., Rana, M., Cisse, M., and van der Maaten, L. Coun-
tering adversarial images using input transformations,
2018.

Gushchin, A., Chistyakova, A., Minashkin, V., Antsifer-
ova, A., and Vatolin, D. Adversarial purification for
no-reference image-quality metrics: applicability study
and new methods, 2024.

Hammoudeh, Z. and Lowd, D. Reducing certified regression
to certified classification for general poisoning attacks.
In 2023 IEEE Conference on Secure and Trustworthy
Machine Learning (SaTML), pp. 484–523, 2023. doi:
10.1109/SaTML54575.2023.00040.

Ho, C.-H. and Vasconcelos, N. Disco: Adversarial defense
with local implicit functions. Advances in Neural Infor-
mation Processing Systems, 35:23818–23837, 2022.

Hosu, V., Lin, H., Sziranyi, T., and Saupe, D. Koniq-10k:
An ecologically valid database for deep learning of blind
image quality assessment. IEEE Transactions on Image
Processing, 29:4041–4056, 2020.

Huang, S., Papernot, N., Goodfellow, I., Duan, Y., and
Abbeel, P. Adversarial attacks on neural network policies.
arXiv preprint arXiv:1702.02284, 2017.

Huang, Z., He, Y., Yu, J., Zhang, F., Si, C., Jiang, Y., Zhang,
Y., Wu, T., Jin, Q., Chanpaisit, N., et al. Vbench: Compre-
hensive benchmark suite for video generative models. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 21807–21818, 2024.

Ilyas, A., Engstrom, L., Athalye, A., and Lin, J. Black-box
adversarial attacks with limited queries and information.
In International Conference on Machine Learning, pp.
2137–2146. PMLR, 2018.

Kashkarov, E., Chistov, E., Molodetskikh, I., and Vatolin,
D. Can no-reference quality-assessment methods serve
as perceptual losses for super-resolution?, 2024.

Korhonen, J. and You, J. Adversarial attacks against blind
image quality assessment models. In Proceedings of
the 2nd Workshop on Quality of Experience in Visual
Multimedia Applications, pp. 3–11, 2022.

Kruskal, W. H. and Wallis, W. A. Use of ranks in
one-criterion variance analysis. Journal of the
American Statistical Association, 47(260):583–621,
1952. doi: 10.1080/01621459.1952.10483441.
URL https://www.tandfonline.com/doi/abs/10.1080/
01621459.1952.10483441.

Kurakin, A., Goodfellow, I. J., and Bengio, S. Adversarial
examples in the physical world. In Artificial Intelligence
Safety and Security, pp. 99–112. Chapman and Hall/CRC,
2018.

Li, C., Zhang, Z., Wu, H., Sun, W., Min, X., Liu, X., Zhai,
G., and Lin, W. Agiqa-3k: An open database for ai-
generated image quality assessment. IEEE Transactions
on Circuits and Systems for Video Technology, 34(8):
6833–6846, 2024. doi: 10.1109/TCSVT.2023.3319020.

10

https://www.kaggle.com/datasets/google-brain/nips-2017-adversarial-learning-development-set
https://www.kaggle.com/datasets/google-brain/nips-2017-adversarial-learning-development-set
https://openreview.net/forum?id=SSKZPJCt7B
https://openreview.net/forum?id=SSKZPJCt7B
https://www.tandfonline.com/doi/abs/10.1080/01621459.1952.10483441
https://www.tandfonline.com/doi/abs/10.1080/01621459.1952.10483441


Guardians of Image Quality: Benchmarking Defenses Against Adversarial Attacks on Image Quality Metrics

Li, D., Jiang, T., and Jiang, M. Norm-in-norm loss with
faster convergence and better performance for image qual-
ity assessment. In Proceedings of the 28th ACM Interna-
tional Conference on Multimedia, pp. 789–797, 2020.

Lin, H., Hosu, V., and Saupe, D. Kadid-10k: A large-scale
artificially distorted iqa database. In 2019 Tenth Interna-
tional Conference on Quality of Multimedia Experience
(QoMEX), pp. 1–3. IEEE, 2019.

Liu, Y., Yang, C., Li, D., Ding, J., and Jiang, T. De-
fense against adversarial attacks on no-reference image
quality models with gradient norm regularization. In
2024 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 25554–25563, 2024. doi:
10.1109/CVPR52733.2024.02414.

Lloyd, S. Least squares quantization in pcm. IEEE Trans-
actions on Information Theory, 28(2):129–137, 1982.

Luo, C., Lin, Q., Xie, W., Wu, B., Xie, J., and Shen, L.
Frequency-driven imperceptible adversarial attack on se-
mantic similarity. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
15315–15324, 2022.

Meftah, H. F. B., Fezza, S. A., Hamidouche, W., and
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A. Appendix
A.1. Limitations

While the proposed framework for benchmarking defenses against adversarial attacks on IQA metrics offers significant
contributions, we acknowledge the existence of the following limitations to be addressed in future work:

1. Handling Multiple Parameter Attacks: The current framework deals mainly with attacks that have a single parameter.
However, Some attacks might have multiple parameters to control their strength, complicating the evaluation process.
Moreover, a group of Boundary Attacks adapts their parameters according to the response of the attacked model, which
poses an additional challenge in a fixed-parameter setting. Future versions will include methods for dealing with
different types of evolving attacks, possibly through dynamic parameter optimization techniques

2. Transferability of Adversarial Attacks: There might be defenses that better generalize to attacks produced on other
defenses. Currently, the framework does not evaluate the transferability of adversarial attacks among different defenses.
Future versions should provide insights into the generalizability and robustness of the defense.

3. Simplified Ranking Methodology: The current framework employs a straightforward ranking methodology that
may not fully capture the complexity and the existence of different evaluation metrics with varying importance levels
depending on the attack used for testing. Different evaluation measures can be assigned different weights based on their
importance and relevance to the attack. This system allows for a composite score that reflects the overall performance
of a defense mechanism. To provide a nuanced assessment of metric robustness, a more rigorous statistical framework
for ranking metrics will be employed in future versions.

Addressing these limitations in future work will ensure the framework’s robustness and adaptability in diverse and realistic
scenarios.

A.2. Subjective study

To assess the perceptual quality of defended images we have conducted a large-scale crowd-sourced subjective study on
the Subjectify.us, a platform that employs the Bradley-Terry model to convert pairwise comparisons into numerical scores.
We selected 5 attack methods in adaptive setting (Zhang et. al.-DISTS, IFGSM, Korhonen et. al., UAP), 4 IQA models
(Linearity, MANIQA, TOPIQ, CLIP-IQA+), and 12 purification defenses. Non-differentiable methods (Color quantization,
JPEG) and defenses with obvious perceptual differences (FCN, Crop, Flip, Rotate) were excluded from the study. The
attacks were applied in an adaptive setting to 20 randomly selected source images, resulting in 5,200 images to compare (4
IQA model * 5 attacks * (12 defenses + 1 W/o defense) * 20 source images = 5200).

Each participant was given this instruction: “You will be shown one original image and two modified ones. For each pair of
selected images, select the one that seems to you to be of higher quality, more realistic, and closer to the original image“.

Because the number of pairwise comparisons grows quadratically with the number of images to compare, we divided the
dataset into 400 subjective evaluations, each focusing on a single source image, attack, and IQA model combination. Each
pair received at least 10 votes, with responses from participants failing verification questions being discarded. Bradley-Terry
scores were computed for each defense method per evaluation and averaged across across 400 subjective evaluations to
determine the final rankings.

Figure 5 illustrates the results of this experiment. Subjective scores are along X-axis, Rscore are across Y-axis.

A.3. Details of methodology

A.3.1. DATASETS

In Table 4 we provide information about the datasets used in our study.

We employ 4 datasets: KonIQ-10k (10,073 images) (Hosu et al., 2020) and KADID (10,125 images) (Lin et al., 2019),
NIPS 2017: Adversarial Learning Development Set (1000 images) (2017, (Competition Page)), AGIQA-3K (2982 images)
(Li et al., 2024). KonIQ-10k, KADID and AGIQA-3K contain MOS scores that is used in evaluating correlations with
ground-truth labels. The datasets were chosen to represent different distortion and generation types.
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Figure 5. Results of subjective evaluation. Subjective scores are along X-axis, Rscore are across Y-axis.

Table 4. List of datasets used in our benchmark. These dataset consists of clean images. Based on them, we constructed a new dataset of
adversarial images with MOSes, that consists of 5,200 images.

Dataset Size Resolution Subjective ratings Short description
KonIQ-10k 1,000 (out of 10,073) 512× 384 120,000 Provides wide range of real-world photos with authentic distortions
KADID-10k 8 out of 81 original images 512× 384 30,000 Large-scale dataset with wide variety of content and artificial distortions
NIPS 2017 1,000 299× 299 — Competition on adversarial examples and defenses in the NIPS 2017
AGIQA-3K 2,982 512× 512 125,244 AGIs from GAN-/auto-regression-/diffusion-based model with subjective scores

We use subsets of KonIQ-10K (Hosu et al., 2020) and KADID (Lin et al., 2019) to evaluate adversarial defense methods.
Both subsets of KonIQ-10K and KADID contain 1000 images at 512×384 resolution. KADID subset contains all distortions
from 8 images, resulting in 1000 total images, that contains all distortions and do not decrease its diversity. Original KonIQ-
10K dataset was partitioned into 10 clusters using K-Means (Lloyd, 1982) based on 3 parameters: Spatial Information (SI),
Colorfulness (CF), and Mean Opinion Scores (MOS). We selected 100 random images from each cluster, resulting in a
diverse set of 1000 test images regarding quality and content. Due to significantly higher computational complexity, we
used a smaller set of 50 images for black-box attacks. They were sampled 5 images from each out of 10 clusters using
K-Means (Lloyd, 1982) based on 3 parameters: Spatial Information (SI), Colorfulness (CF), and Mean Opinion Scores
(MOS) where possible. For the same reason, we used a smaller set of 10 images for certified defenses to generate attacks.
To evaluate the impact of sampling this procedure was repeated 10 times, focusing on purification methods and black-box
attacks to accelerate calculations. We used default parameters for defense methods and 3 presets from the main paper for
attacks. For each IQA model, attack and defense method, we calculated four scores per sample: Dscore, SROCCclear,
SROCCadv , and SSIM .

Figure 6 illustrates the distribution of these scores for each sample for KonIQ-10k dataset. The results show that the
distributions are nearly identical across all samples and metrics, with consistent mean values. To assess the differences
between the means of distributions, we computed the mean for each distribution and score, yielding a list of 10 mean values
per score. Then, we calculated the mean and variance of these values across the 10 samples. These values can be found in
Table 5. To verify these findings statistically, we performed a Kruskal-Wallis test (Kruskal & Wallis, 1952) for each metric
across the 10 samples. The p-values are shown in Table 5. These p-values indicate no significant differences between the
samples, confirming that the sampling procedure does not introduce variability into the evaluation results. This consistency
strengthens our conclusions and ensures that the findings are robust across different random subsets of the dataset.

A.3.2. IQA METRICS

We define metric range as diam(fω) = sup
x,z∈X

{|fω(x)− fω(z)|} = upper − lower, where upper is called the upper metric

bound and lower - lower metric bound. To calculate these bounds, we used the DIV2K valid HR subset from the DIV2K
dataset (Agustsson & Timofte, 2017). The upper bound is set to the highest metric value across the chosen subset, while the
lower bound is set to the minimum value between the lowest metric value on subset images compressed with JPEG with
quality of 10 and sampled random noise of the image subset size.
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Figure 6. The effect of sampling 50 images on results. Each box represents one experiment.

Table 5. Validity of sampling methodology. To validate our sampling strategy we compare results of defenses on 10 different samplings
of 50 images. Results of the Kruskal-Wallis test suggests that samplings have no significant differences.

Score Mean
Variance of means
for each sample

p-value after
Kruskal-Wallis test

Dscore 0.1533 0.000044 0.5425
SROCCadv 0.4681 0.00043 0.1449
SROCCclear 0.7343 0.00066 0.1958
SSIM 0.7953 0.000034 0.1138

Table 6. List of NR IQA metrics used in our benchmark.
Metric Rscore ↑ Backbone Number of parameters Input transformations Bounds Code

Meta-IQA (Zhu et al., 2020) 1.168 ResNet-18 13.2M ImageNet Normalization 0.00/1.00 Github
MANIQA (Yang et al., 2022) 0.986 ViT-B/8 135.62M 224× 224 crop 0.00/1.00 Github
Koncept (Hosu et al., 2020) 0.584 InceptionResNetV2 59.82M Normalization (0.5, 0.5) 26.40/66.87 Github
SPAQ (Fang et al., 2020) 0.493 ResNet-50 23.5M 224× 224 crop 21.75/77.75 Github
PAQ2PIQ (Ying et al., 2020) 0.449 ResNet-18 11M — 58.38/84.17 Github
Linearity (Li et al., 2020) 0.267 ResNeXt-101 90M ImageNet Normalization 25.78/83.23 Github

FPR (Chen et al., 2022a) -0.229 Custom 16.6M
Splitting into

fixed-sized patches 47.22/77.05 Github

CLIP-IQA+ (Wang et al., 2023) 0.713 CLIP 244M — 0.00/1.00 Github
TOPIQ (Chen et al., 2024) 0.865 Transformer 45M — 0.22/0.82 Github

We report metric ranges and parameters in Table 6. The Rscore is taken from (Antsiferova et al., 2024).

A.3.3. USED ADVERSARIAL ATTACKS

Early methods for attacking IQA metrics aimed to stress-test performance. (Wang & Simoncelli, 2008) introduced the
MADC method, which uses gradient projection onto a proxy FR metric to compare accuracy. Later, (Kurakin et al., 2018)
proposed I-FGSM, iteratively adding gradients to the image, but this caused visible distortions. (Korhonen & You, 2022)
addressed this by targeting high-textured regions using Sobel-filter-based weighting (Korhonen et al.), while (Zhang et al.,
2022b) incorporated FR IQA metrics like DISTS and LPIPS into loss functions (Zhang et al.). SSAH by (Luo et al., 2022)
limited attacks to high frequencies, and (Bhattad et al., 2019) introduced cAdv, operating in LAB color space. Efficient
universal perturbation methods, such as UAP and FACPA, eliminate backpropagation during inference, with FACPA further
optimizing for high-resolution data.
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Table 7. List of adversarial attacks used in our benchmark. WB and BB are white-box and black-box attack types. We adjust varied
parameters to align attacks’ strengths.

Adversarial attack Type Restriction Varied parameter Short description
I-FGSM (Kurakin et al., 2018) WB l∞ lr Grad. descent to increase IQA metric
Optimised-UAP (Shumitskaya et al., 2024) WB l∞ amplitude Universal perturb. via grad. descent
Korhonen et al. (Korhonen & You, 2022) WB l∞ lr Sobel-filter-masked gradient descent
Zhang et al. (Zhang et al., 2022b) WB l∞ lr Grad. descent with saving DISTS
MADC (Wang & Simoncelli, 2008) WB l∞ lr Grad. project. onto MSE
cAdv (Bhattad et al., 2019) WB SSIM lr Grad. descent with recolorization
SSAH (Luo et al., 2022) WB l∞ lr Grad. descent with high-freq. min.

FACPA (Shumitskaya et al., 2023) WB l∞ amplitude Perturb. generated using U-Net
NES (Ilyas et al., 2018) BB l∞ ϵ Grad. descent with approx. gradient
Parsimonious (Moon et al., 2019) BB PSNR ϵ Perturbs using discrete optimization
One Pixel (Su et al., 2019) BB l0 pixel count Perturbs pixels with diff. evolution
Square (Andriushchenko et al., 2020) BB l∞ ϵ Square-like perturb. via rand. search
Patch-RS (Croce et al., 2022) BB PSNR ϵ Finds adv. patch via random search

For black-box attacks, we adopted efficient methods originally designed for image classifiers. NES ((Ilyas et al., 2018))
estimates gradients using natural evolutionary strategies, while the Parsimonious attack ((Moon et al., 2019)) identifies
sparse pixel-level perturbations through hierarchical updates. Square attack ((Andriushchenko et al., 2020)) applies square
patches in a random search algorithm. Representing sparse attacks, Patch-RS ((Croce et al., 2022)) uses random search to
place patches. Finally, One Pixel ((Su et al., 2019)) uses the Differential Evolution algorithm to alter minimal pixels.

Descriptions of these methods and varied parameters are detailed in Table 7.

A.3.4. CHOOSING PARAMETERS FOR ATTACKS

To align attacks by strength across different metrics and defenses, we developed the methodology illustrated in Figure 7.
For each attack, a restriction metric was selected: PSNR, SSIM or L∞. While L∞ is suitable for most attacks, SSIM is
more appropriate for color-based attacks. For unresricted attacks, such as Parsimonious and One Pixel, PSNR is the most
suitable. For these restriction metrics we defined three sets of target values corresponding to “weak“, “medium“ and “strong“
attacks. Specifically:

• For L∞, the values 2
255 ,

4
255 and 8

255 were chosen to be consistent with previous studies

• For SSIM , 0.75, 0.8 and 0.9 were chosen

• For PSNR, the values 25, 30 and 35 were used

For each attack, a single parameter corresponding to attack strength was varied (see Table 7). We computed the mean attack
strength on the KonIQ-10k dataset for 10 values of this parameter and performed a linear approximation to match the target
strength values.

A.3.5. EVALUATED DEFENSES

Purification

According to (Guo et al., 2018), several standard image preprocessing techniques can be used as defenses against additive
adversarial noise. These methods include compression (JPEG, DiffJPEG (Reich et al., 2024) color quantization (Xu
et al., 2018)), spatial transformations (Resize, Rotate, Crop, Flip), blurring (Median blur, Gaussian blur, etc.), Unsharp
masking, and others. Although not originally designed for adversarial defense, studies have demonstrated that these methods
can be effective.

Since adversarial perturbations often consist of high-frequency noise, denoising techniques can be particularly useful. The
Multi-Stage Progressive Image Restoration Network (MPRNet (Zamir et al., 2021)) is a three-stage convolutional neural
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Figure 7. Procedure for selecting adversarial attack parameters.

Table 8. List of compared adversarial Purification methods.

Defense method Type Varied parameter Varied parameter values Fixed parameters Code
JPEG (Guo et al., 2018) Compression q 10, 30, 50, 70, 90 — —
DiffJPEG (Reich et al., 2024) Compression q 10, 30, 50, 70, 90 — Github
Color quantization (Xu et al., 2018) Compression npp 2, 5, 16, 20, 25 — —
Resize (Guo et al., 2018) Spat. transform. scale 0.1, 0.25, 0.5, 0.75, 0.9 — —
Bilinear Upscale Spat. transform. scale 0.1, 0.25, 0.5, 0.75, 0.9 — —
Rotate Spat. transform. angle lim. 10, 15, 20, 30, 50 — —
Crop (Guo et al., 2018) Spat. transform. size 32, 64, 128, 256, 288 — —
Flip Spat. transform. — — — —
Gaussian blur Blurring kernel size 3, 5, 7, 9, 11 sigma=0.15*kernel size+ 0.35 —
Median blur Blurring kernel size 3, 5, 7, 9, 11 — —
Unsharp masking Preprocessing kernel size 3, 5, 7, 9, 11 sigma=1, amount=1 —
MPRNet (Zamir et al., 2021) Denoising — — — Github

Real-ESRGAN (Wang et al., 2021) Denoising — —
denoise strength=0.2, outscale=1,
tile=0, tile pad=10, pre pad=0 Github

DiffPure (Nie et al., 2022) Defense t 5, 10, 20, 30, 50 t delta=15, diffusion type=ddpm, sample step=1 Github
DISCO (Ho & Vasconcelos, 2022) Defense — — — Github
FCN (Gushchin et al., 2024) Defense — — — Github
Random noise Adding noise — — — —

network for image deblurring, deraining, and denoising. The first two stages use an encoder-decoder architecture for
multi-scale contextual information, while the final stage operates at the original resolution to preserve details. MPRNet
features supervised attention modules and cross-stage feature fusion for effective information transfer. Real-ESRGAN
(Wang et al., 2021), a GAN-based model with several residual dense blocks for super-resolution, is trained with synthetic
data and can be used for adversarial denoising.

We also included methods designed specifically as adversarial defenses for image classifiers or IQA models. DiffPure
(Nie et al., 2022) employs diffusion models to purify adversarial images by introducing a small amount of noise through
forward diffusion, and then reversing the process to recover a clean image. DISCO (Ho & Vasconcelos, 2022) is an
image purification method aimed at enhancing classification robustness. It employs local implicit functions to ensure small
perturbations do not significantly alter local data representations. By maintaining these robust local representations, DISCO
effectively resists adversarial perturbations that do not align with the data’s local structure. Some adversarial attacks, such as
color-based modifications, are not bounded. Standard denoising approaches are ineffective against these. (Gushchin et al.,
2024) proposed neural filter FCN, to counter color attack cAdv on image quality metrics. FCN features a compact, fully
convolutional architecture with three hidden layers of 64, 32, and 3 filters

We report the list of parameters for defenses and fixed values for non-varied parameters in Table 8.

Adversarial training We applied the method proposed in (Chistyakova et al., 2024). More specifically, we fine-tuned
Linearity and Koncept IQA models using the original images and attacked images in a 1:1 ratio from the original KonIQ-10K
training dataset for 30 epochs. During the training process, we used a 2-step APGD attack (Croce & Hein, 2020) to generate
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the attacked images. This method uses an adaptive step that allows a small number of iterations to achieve strong adversarial
examples and reduce computational time. The goal of the attack during the training process is to increase model loss. We
adjusted the MOS values based on the FR metric scores. For a given original image x with MOS y, we obtain the adjusted
MOS for the attacked image x′ as follows:

y′ = y −M(x, x′) (10)

We have considered LPIPS and 1 - SSIM as M. To evaluate the impact of attack magnitude during training we chose 3
different attack magnitudes ε = {2, 4, 8}/255.

We also evaluated method proposed in (Liu et al., 2024). Specifically, the approach introduces a gradient norm regularization
term into the training objective to enhance the robustness of NR IQA models. The regularization term penalizes the L1 norm
of the gradient of the model’s quality predictions with respect to the input image, thereby encouraging smoother model
behavior and reducing vulnerability to adversarial perturbations. Formally, the loss function is modified as follows:

Ltotal = LIQA(f, x) + λ∥∇xf(x)∥21, (11)

where f denotes the NR IQA model, x is the input image, LIQA(f, x) represents the original IQA loss, and λ is a
hyperparameter balancing the trade-off between task performance and robustness. For our experiments, we set λ = 0.0005,
as suggested in the original paper. The remaining training hyperparameters were aligned with those used for adversarial
training.

Both these methods are tailored for IQA task.

Certified methods

Description. (Cohen et al., 2019) proposed the Randomized Smoothing (RS) method to transform any classifier that
performs well under Gaussian noise into a new classifier that is certifiably robust to adversarial perturbations under the l2
norm. The overall process of this defense can be described as follows: given an input image, the algorithm samples N
noisy variations of this image using a Gaussian noise model with a certain σ. These images are then passed through the
backbone classification model, and the most frequently predicted class is given as the final answer. This approach results in
an algorithm that provides a provable answer for the model within a l2 ball. The radius of this ball is calculated based on
the difference between the most popular and the second most popular classes across the sampled images used for answer
selection. The main disadvantage of the previous approach is that running the classifier on noisy data causes a drop in
model accuracy, as it was not trained to handle such data. To address this issue, (Salman et al., 2020) extended randomized
smoothing to Denoised Randomized Smoothing (DRS) by denoising the noisy image before passing it to the model. Since
the noise model is known, training an effective denoiser for a given σ is relatively straightforward. (Carlini et al., 2022)
extended the approach of (Salman et al., 2020) by replacing the denoiser with a pre-trained denoising diffusion probabilistic
model (Diffusion Denoised Randomized Smoothing (DDRS)). They used only one diffusion step because it demonstrated
high speed and relatively good quality. (Chen et al., 2022b) proposed the DensePure (DP) method that involves multiple
runs of denoising via the reverse process of the diffusion model (using different random seeds) to generate multiple samples.
These samples are then passed through the classifier, and the final prediction is made using majority voting.

(Chiang et al., 2020) proposed a method to certify regression models. Instead of using the most popular class within the l2
ball, they utilize the median of function values. They also theoretically demonstrated that using the median is better than
the mean. We denote this method as Median Smoothing (MS). They further extended the method to Denoised Median
Smoothing (DMS) by adding a denoising step before model prediction to improve accuracy.

Parameters selection. Given an input image, the results of the classification-based certified method are the metric score
and the certified radius R. The method guarantees that the class remains unchanged for the input image within a l2 ball of
radius R. All classification-based certified methods were run with the following parameters: σ = 0.12, N0 = 100, N =
1000, α = 0.001. Here, σ is the standard deviation of the Gaussian noise used for sampling, N0 is the number of samples
for class selection, N is the number for class certification, and alpha is the probability of class change within the l2 ball of
the predicted certified radius R.

Given an input image, the results of a regression-based certified method are the metric score and the certified delta. The
method guarantees that, within a l2 ball of radius ϵ, the metric score changes by no more than delta. To make this value
comparable across metrics, we define the certified relative delta by dividing the certified delta by the metric range. All
regression-based certified methods were run with the following parameters: σ = 0.12, ϵ = 0.05, N = 1000, α = 0.001.

Scripts for running all these methods are available on GitHub.
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Table 9. Experiment to determine the optimal number of classes N for regression metric discretization.

N
SROCCclear ↑

(no Monte-Carlo sampling)
Cert.R ↑

(with Monte-Carlo sampling)

3 0.49 0.249
5 0.53 0.248

10 0.56 0.206
15 0.56 0.160
20 0.56 0.142
∞ 0.56 0

Table 10. Wilcoxon tests in nonadaptive use case of purification defenses on KonIQ dataset for D(D)
score. Each cell value represents

the percentage of experiments in which defense denoted in row statistically performs better in terms of D(D)
score than the defense in

corresponding column with pvalue=0.05.
Defense DiffJPEG Bilinear

Upscale Unsharp Resize Rotate Crop Median
Blur JPEG Gaussian

Blur
Color

Quantization DiffPure Random
Noise Flip MPRNet FCN Real-

ESRGAN DISCO W/o
Defense

DiffJPEG — 65.24% 76.92% 25.36% 8.55% 33.05% 38.46% 9.69% 39.32% 58.12% 0.85% 3.70% 15.95% 31.05% 45.87% 27.07% 1.42% 88.03%
Bilinear Upscale 6.84% — 62.39% 13.39% 6.27% 9.97% 5.70% 4.84% 0.00% 28.77% 0.00% 1.99% 8.26% 21.08% 16.81% 7.12% 0.00% 83.48%

Unsharp 0.00% 1.71% — 5.13% 0.28% 0.85% 0.85% 0.00% 1.14% 2.28% 0.00% 0.00% 0.00% 8.83% 0.00% 0.00% 0.00% 48.15%
Resize 41.88% 54.42% 79.20% — 5.70% 40.17% 50.43% 40.17% 45.87% 57.83% 8.26% 20.23% 11.68% 42.74% 47.58% 35.33% 0.00% 81.20%
Rotate 56.41% 70.94% 90.60% 46.15% — 49.29% 63.53% 63.53% 62.68% 72.36% 13.96% 38.75% 27.92% 49.00% 62.11% 51.00% 10.26% 89.17%
Crop 33.05% 60.40% 80.91% 17.38% 8.55% — 44.44% 36.18% 42.17% 58.97% 10.83% 29.34% 11.68% 37.04% 49.00% 41.60% 10.26% 86.32%

Median Blur 22.79% 58.69% 79.49% 26.78% 15.38% 29.34% — 19.09% 36.18% 60.97% 7.98% 15.10% 15.95% 27.35% 47.29% 36.18% 8.83% 90.03%
JPEG 0.00% 58.12% 79.77% 21.94% 8.83% 31.91% 33.33% — 34.47% 59.54% 0.85% 3.99% 15.10% 23.65% 45.58% 25.64% 0.85% 88.89%

Gaussian Blur 19.66% 79.20% 75.50% 25.93% 11.97% 23.08% 26.78% 16.81% — 55.56% 1.14% 8.55% 12.25% 24.22% 41.03% 28.77% 0.85% 87.46%
Color Quantization 2.28% 23.65% 66.10% 14.25% 2.85% 6.55% 9.12% 1.99% 6.84% — 0.28% 0.00% 5.41% 1.14% 7.69% 5.70% 0.57% 74.64%

DiffPure 80.91% 85.75% 92.59% 68.38% 47.86% 60.97% 80.91% 84.33% 75.50% 86.61% — 58.40% 44.73% 66.67% 75.21% 67.52% 39.89% 95.16%
Random Noise 61.54% 72.93% 80.06% 49.29% 26.50% 44.16% 65.53% 62.39% 64.67% 73.22% 7.98% — 28.49% 52.99% 60.68% 46.72% 9.12% 82.91%

Flip 35.61% 51.57% 66.10% 34.76% 8.55% 36.18% 45.58% 34.19% 43.87% 54.42% 9.69% 22.79% — 43.30% 47.58% 33.90% 5.41% 65.24%
MPRNet 28.49% 53.28% 54.13% 23.93% 10.26% 27.64% 39.89% 27.07% 34.47% 44.16% 2.85% 10.26% 15.38% — 39.60% 25.93% 2.28% 62.68%

FCN 9.97% 42.45% 82.91% 18.23% 4.27% 7.69% 21.94% 9.97% 24.22% 39.32% 1.42% 5.41% 4.56% 24.79% — 15.38% 2.85% 80.34%
Real-ESRGAN 29.91% 59.54% 85.19% 42.17% 25.93% 33.05% 37.61% 32.48% 36.75% 62.39% 10.26% 21.94% 19.37% 42.17% 51.00% — 18.80% 83.19%

DISCO 78.92% 82.91% 87.75% 70.37% 51.28% 59.54% 78.63% 79.49% 76.35% 81.48% 23.36% 60.40% 43.02% 65.53% 72.08% 54.42% — 94.59%
W/o Defense 0.00% 0.00% 13.68% 0.00% 0.28% 2.85% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.28% 1.99% 0.00% 0.00% 0.00% —

Classifier-based methods application. To discretize a regression quality metric for classification-based methods, we
divided the metric range into N segments, each corresponding to a specific class. We also added additional classes for
metric values that fall below or above the calculated range, ensuring that every metric value is assigned to a class. This
resulted in a (N + 2)-class metric-classifier. Note that these classes are ordered, with higher class values indicating better
quality. Thus, we can measure the quality of the classifier metric in the same way as the regression metric – using relative
gain and correlations with subjective scores.

We conducted additional experiments to determine the optimal value of N on PAQ2PIQ NR metric. The main challenge
is balancing the trade-off between SROCCclear and Cert.R. As the number of classes increases, SROCCclear also
increases, but Cert.R decreases. This occurs because a higher number of classes makes it easier to cross class borders
during Monte Carlo sampling. Table 9 presents the results of our experiment, indicating that when the number of classes
is set to ten, SROCCclear on the discrete metric without Monte Carlo sampling is optimal. Additionally, we measured
Cert.R for this number of classes and discovered that Cert.R does not significantly decrease for N = 10. Therefore, we
chose N = 10 to discretize NR metric values in the main experiments of this paper.

A.4. Statistical tests

We applied the one-sided Wilcoxon Signed Rank Test to assess the statistical significance of defense comparisons, as it is
non-parametric and suited for paired samples without assuming normality (which is often the case for attacked IQA models’
values) — ideal for adversarial robustness analysis. This test evaluates whether one defense consistently outperforms another
in terms of Dscore and other relevant metrics. Results for different datasets are provided in Tables 10, 15 (non-adaptive) and
16, 17 (adaptive).

Pairwise comparisons yield percentages indicating how often a defense statistically outperforms another under similar
adversarial conditions. Stronger defenses (i.e. those yielding high percentages across multiple pairwise comparisons), such
as DiffPure and DISCO, show higher effectiveness due to their sophisticated adversarial mitigation techniques, while simpler
transformations like blurring or resizing often struggle against stronger attacks.

To ensure reliability, we applied the Bonferroni correction, which controls the family-wise error rate across thousands of
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comparisons (17+7 empirical defences, 14 attacks, 3 intensity scales, and 9 IQA models). This conservative adjustment
minimizes false positives, reinforcing the significance of the results.

A.5. Examples of attacks and defenses

We show examples of attacks and defenses with corresponding metric values in Figure 8. We chose the PAQ2PIQ metric
and several types of defenses. The central part of the image is zoomed to show the effects of the defenses and attacks.

We show image artifacts of presented defenses in Figure 9. The attacks were performed on MANIQA metric. We demonstrate
that most defenses have artifacts. Most of them include: removing details of the original image (DISCO, MPRNet), altering
the image content (Real-ESRGAN, DiffPure), reducing the image clarity (DiffPure, blur defenses), changing image color
(FCN), and compression artifacts (JPEG/DiffJPEG, Color Quantization).

A.6. Additional results

We show performances for evaluated defenses in tables below. Confidence intervals in some table are large due to the fact
that we calculate average score across large pool of IQA metrics/attacks/datasets. To statistically check what defense is
better we provide results of statistical tests A.4.

We analyse how much does SROCC and PLCC correlations are differ in table 20. It reports that ranks in both cases are
identical. Thus, in other tables we report only SROCC.

Table 11 shows how well defenses can respond to attack of different strength. In summary, results do not change much
across strength.

Tables 12 and 13 present results of purification defenses on different IQA metrics. We can see that correlations are highly
dependent on IQA metric, while top methods in terms of robustness (Dscore, Rscore) are similar accross different IQA
models.

Table 14 shows scores for different attacks types. The experiment showed that undefended images are more close to the
original than defended by any defense. The results are the same as on all attack types. JPEG and DiffJPEG show greater
SROCCadv , while Color Quantization has better PSNR with the original images.

Table 18 reports results for grouped purification defenses. The results demonstrate that compression is one of the best in all
metrics except R(D)

score.

Table 21 report some score for certified methods. It shows that RS has bigger Cert.R and Abst. among all classification-
based defenses, while MS is the best among regression-based defenses.

Figure 10 pictures tradeoffs for Purification-based defenses. It shows the importance of tuning defense parameters for
defenses with different parameters.

Figure 11 illustrates difference between Dscore D
(D)
score (left) and Rscore and R

(D)
score (right). The main finding is that there is

high correlation within these pairs of scores with rare exceptions like Random Crop.

20



Guardians of Image Quality: Benchmarking Defenses Against Adversarial Attacks on Image Quality Metrics

No
 d

ef
en

se

PAQ2PIQ:66.348 PAQ2PIQ:72.663 PAQ2PIQ:70.262 PAQ2PIQ:81.249 PAQ2PIQ:77.373

Cr
op

pe
d 

at
ta

ck
ed

PAQ2PIQ:66.348 PAQ2PIQ:72.663 PAQ2PIQ:70.262 PAQ2PIQ:81.249 PAQ2PIQ:77.373

Fl
ip

PAQ2PIQ:68.602 PAQ2PIQ:73.194 PAQ2PIQ:68.071 PAQ2PIQ:69.148 PAQ2PIQ:69.312

JP
EG

PAQ2PIQ:64.932 PAQ2PIQ:71.012 PAQ2PIQ:67.619 PAQ2PIQ:75.683 PAQ2PIQ:73.738

Bi
lin

ea
r U

ps
ca

le

PAQ2PIQ:61.685 PAQ2PIQ:66.22 PAQ2PIQ:64.052 PAQ2PIQ:68.225 PAQ2PIQ:66.499

DI
SC

O

PAQ2PIQ:64.956 PAQ2PIQ:71.005 PAQ2PIQ:66.764 PAQ2PIQ:70.465 PAQ2PIQ:69.185

Co
lo

r Q
ua

nt
iza

tio
n

PAQ2PIQ:65.911 PAQ2PIQ:71.7 PAQ2PIQ:68.308 PAQ2PIQ:77.334 PAQ2PIQ:74.36

M
PR

Ne
t

PAQ2PIQ:64.771 PAQ2PIQ:70.318 PAQ2PIQ:67.69 PAQ2PIQ:74.771 PAQ2PIQ:72.658

Clean

Ro
ta

te

PAQ2PIQ:66.284

CAdv

PAQ2PIQ:70.291

Parsimonious

PAQ2PIQ:65.765

I-FGSM

PAQ2PIQ:80.819

Korhonen et al.

PAQ2PIQ:69.096

Figure 8. Examples of attacks and defenses on PAQ2PIQ metric. The central part of the image is zoomed to show defense effects.
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Parsimonious:DiffPure CAdv:Resize CNN-attack:JPEG SSAH:Real-ESRGAN SSAH:Rotate

SSAH:MPRNet CNN-attack:Random noise MADC:Real-ESRGAN CAdv:DiffPure Korhonen et al.:Gaussian Blur

Korhonen et al.:DiffPure CNN-attack:Color Quantization UAP:DiffPure CAdv:DISCO CAdv:Bilinear Upscale

I-FGSM:DiffPure CNN-attack:MPRNet MADC:DISCO Korhonen et al.:FCN Korhonen et al.:Real-ESRGAN

Korhonen et al.:Color Quantization CNN-attack:Median Blur CAdv:FCN Korhonen et al.:Unsharp SSAH:DiffJPEG

Figure 9. Examples of artifacts caused by various defenses when MANIQA metric is attacked. We selectively zoom in on key parts of the
images to highlight the details.
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Figure 10. D(D)
score(↓)/PSNR(↑) (left) and D

(D)
score(↓)/SSIM(↑) tradeoffs for Purification-based defenses in non-adaptive scenario

averaged across KonIQ-10k, KADID and AGIQA-3K datasets. Red line denotes the Pareto Optimal front.

Table 11. Comparison of purification defenses by different attack strength. Evaluated metrics are averaged across all images, attacks and
quality metrics on KonIQ and KADID dataset.

Weak Medium Strong
Dscore ↓ Rscore ↑ SROCCadv ↑ Dscore ↓ Rscore ↑ SROCCadv ↑ Dscore ↓ Rscore ↑ SROCCadv ↑

W/o Defense 33.11 / — 0.822 / — 0.522 / — 45.88 / — 0.639 / — 0.470 / — 66.83 / — 0.502 / — 0.401 / —

Bilinear Upscale 14.51 / 28.97 0.909 / 0.674 0.499 / 0.385 18.44 / 38.96 0.822 / 0.556 0.463 / 0.354 24.16 / 53.77 0.748 / 0.461 0.411 / 0.311
Gaussian Blur 15.10 / 27.56 0.878 / 0.655 0.465 / 0.421 16.52 / 38.85 0.836 / 0.518 0.437 / 0.371 20.13 / 58.06 0.761 / 0.361 0.400 / 0.256

Resize 9.99 / 43.42 1.118 / 0.525 0.594 / 0.411 11.78 / 58.27 1.053 / 0.404 0.582 / 0.347 14.15 / 81.16 0.995 / 0.270 0.561 / 0.247
MPRNet 12.67 / 30.77 0.993 / 0.602 0.561 / 0.530 14.13 / 42.40 0.946 / 0.490 0.556 / 0.513 16.87 / 60.60 0.885 / 0.360 0.546 / 0.432
DiffJPEG 9.71 / 20.72 1.138 / 0.774 0.634 / 0.573 11.96 / 27.29 1.057 / 0.660 0.632 / 0.555 16.89 / 37.29 0.967 / 0.547 0.619 / 0.491

JPEG 9.72 / — 1.139 / — 0.631 / — 11.99 / — 1.054 / — 0.629 / — 16.97 / — 0.963 / — 0.616 / —
Unsharp 30.91 / 59.45 0.652 / 0.388 0.484 / 0.403 42.38 / 83.78 0.530 / 0.232 0.419 / 0.304 60.27 / 122.51 0.439 / 0.097 0.376 / 0.248

Median Blur 13.02 / 34.98 0.981 / 0.574 0.462 / 0.468 15.05 / 47.84 0.915 / 0.427 0.434 / 0.424 18.09 / 67.41 0.856 / 0.282 0.404 / 0.322
Real-ESRGAN 21.48 / 26.51 0.689 / 0.621 0.564 / 0.476 23.15 / 31.73 0.665 / 0.566 0.548 / 0.461 26.67 / 41.73 0.627 / 0.467 0.509 / 0.380

Color Quantization 15.46 / — 1.016 / — 0.586 / — 21.08 / — 0.897 / — 0.568 / — 36.81 / — 0.726 / — 0.499 / —
DISCO 8.72 / 40.31 1.176 / 0.514 0.607 / 0.479 8.30 / 52.05 1.193 / 0.438 0.612 / 0.453 8.29 / 64.85 1.190 / 0.406 0.613 / 0.429
DiffPure 17.92 / 15.97 0.780 / 0.869 0.501 / 0.502 17.33 / 20.49 0.800 / 0.766 0.515 / 0.492 17.57 / 32.05 0.797 / 0.593 0.521 / 0.467

FCN 15.38 / 47.23 0.973 / 0.471 0.566 / 0.344 20.74 / 67.76 0.885 / 0.318 0.529 / 0.248 30.85 / 100.34 0.771 / 0.194 0.463 / 0.182
Random Noise 14.72 / 26.84 0.907 / 0.688 0.576 / 0.578 14.58 / 42.29 0.921 / 0.490 0.572 / 0.517 17.43 / 72.84 0.869 / 0.272 0.566 / 0.382

Crop 11.51 / 18.44 1.045 / 0.788 0.557 / 0.435 13.47 / 18.26 0.982 / 0.791 0.529 / 0.403 16.93 / 19.89 0.899 / 0.762 0.468 / 0.330
Rotate 9.20 / 10.65 1.153 / 1.066 0.533 / 0.543 9.98 / 15.27 1.110 / 0.886 0.520 / 0.477 11.21 / 23.80 1.072 / 0.683 0.485 / 0.355
Flip 6.38 / 47.67 1.318 / 0.508 0.557 / 0.480 7.62 / 67.31 1.255 / 0.347 0.553 / 0.395 9.81 / 99.51 1.166 / 0.182 0.520 / 0.300

Table 12. Per-metric comparison of purification defenses in adaptive use case (SROCCclear/SROCCadv). Evaluated metrics are
averaged across all images and attacks on KonIQ and KADID dataset.

Defense Linearity KonCept PAQ2PIQ MANIQA Meta-IQA SPAQ FPR TOPIQ(NR) CLIP-IQA+

W/o Defense 0.526 / 0.436 0.477 / 0.405 0.449 / 0.349 0.497 / 0.465 0.617 / 0.456 0.355 / 0.251 -0.133 / 0.070 0.494 / 0.440 0.653 / 0.464

Crop 0.611 / 0.501 0.236 / 0.178 0.404 / 0.376 0.522 / 0.461 0.458 / 0.386 — / — 0.173 / 0.154 0.611 / 0.540 0.592 / 0.518
Real-ESRGAN 0.613 / 0.461 0.708 / 0.544 0.510 / 0.414 0.786 / 0.616 0.278 / 0.303 0.438 / 0.343 0.295 / 0.265 0.576 / 0.506 0.681 / 0.495

Unsharp 0.631 / 0.274 0.706 / 0.501 0.510 / 0.261 0.783 / 0.549 0.624 / 0.247 0.558 / 0.298 0.230 / -0.087 0.717 / 0.443 0.693 / 0.381
DISCO 0.662 / 0.554 0.519 / 0.486 0.555 / 0.423 0.630 / 0.583 0.643 / 0.523 0.571 / 0.407 0.108 / -0.075 0.719 / 0.655 0.653 / 0.530
Resize 0.676 / 0.372 0.481 / 0.328 0.510 / 0.314 0.565 / 0.490 0.575 / 0.331 — / — 0.209 / -0.109 0.738 / 0.563 0.555 / 0.390

Bilinear Upscale 0.677 / 0.522 0.433 / 0.289 0.540 / 0.414 0.481 / 0.407 0.429 / 0.280 0.569 / 0.304 0.193 / -0.044 0.644 / 0.561 0.607 / 0.417
DiffPure 0.680 / 0.643 0.515 / 0.499 0.564 / 0.483 0.558 / 0.584 0.424 / 0.404 0.577 / 0.467 0.061 / 0.149 0.611 / 0.577 0.685 / 0.576

FCN 0.700 / 0.306 0.624 / 0.376 0.546 / 0.207 0.684 / 0.450 0.595 / 0.167 0.515 / 0.222 0.190 / -0.141 0.675 / 0.396 0.693 / 0.340
Gaussian Blur 0.706 / 0.439 0.534 / 0.379 0.593 / 0.415 0.586 / 0.508 0.485 / 0.228 0.582 / 0.297 0.040 / -0.085 0.663 / 0.496 0.695 / 0.466

Rotate 0.713 / 0.484 0.674 / 0.546 0.557 / 0.420 0.731 / 0.710 0.506 / 0.268 0.582 / 0.406 0.274 / 0.228 0.734 / 0.594 0.700 / 0.470
Median Blur 0.722 / 0.535 0.548 / 0.480 0.549 / 0.425 0.598 / 0.570 0.460 / 0.302 0.572 / 0.365 0.174 / -0.036 0.668 / 0.580 0.652 / 0.421

Flip 0.743 / 0.424 0.678 / 0.546 0.515 / 0.348 0.743 / 0.607 0.550 / 0.312 0.570 / 0.330 0.220 / -0.086 0.731 / 0.564 0.776 / 0.481
Random Noise 0.745 / 0.580 0.683 / 0.592 0.572 / 0.429 0.732 / 0.654 0.611 / 0.444 0.574 / 0.432 0.238 / 0.172 0.707 / 0.601 0.712 / 0.531

DiffJPEG 0.748 / 0.664 0.673 / 0.608 0.586 / 0.467 0.747 / 0.712 0.583 / 0.490 0.593 / 0.473 0.307 / 0.186 0.738 / 0.649 0.734 / 0.608
MPRNet 0.755 / 0.619 0.665 / 0.600 0.589 / 0.456 0.653 / 0.621 0.574 / 0.455 0.569 / 0.394 0.157 / 0.089 0.751 / 0.667 0.712 / 0.525
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Figure 11. Comparison of Dscore and D
(D)
score (left) and Rscore/R

(D)
score (right) for Purification-based and Adversarial Training defenses

in adaptive scenario. Results are averaged across KonIQ-10k, KADID and AGIQA-3K datasets.

Table 13. Per-metric comparison of purification defenses in adaptive use case (Dscore/Rscore). Evaluated metrics are averaged across all
images and attacks on KonIQ, KADID and NIPS datasets.

Defense Linearity KonCept PAQ2PIQ MANIQA Meta-IQA SPAQ FPR TOPIQ(NR) CLIP-IQA+

W/o Defense 63.66 / 0.31 41.80 / 0.47 41.61 / 0.49 25.61 / 0.62 42.62 / 0.39 60.63 / 0.46 281.18 / -0.28 21.57 / 0.70 21.91 / 0.68

Unsharp 71.57 / 0.21 60.29 / 0.23 56.56 / 0.26 36.70 / 0.41 48.48 / 0.26 84.57 / 0.20 376.46 / -0.45 26.08 / 0.56 24.13 / 0.60
Resize 66.23 / 0.25 21.52 / 0.67 26.15 / 0.64 19.13 / 0.68 45.11 / 0.29 — / — 223.38 / -0.20 21.74 / 0.64 21.28 / 0.65

Flip 62.20 / 0.31 45.41 / 0.38 42.11 / 0.44 28.26 / 0.57 40.12 / 0.43 66.02 / 0.36 264.75 / -0.15 22.44 / 0.67 22.63 / 0.65
FCN 61.60 / 0.29 44.00 / 0.41 43.61 / 0.41 26.67 / 0.54 43.05 / 0.37 62.42 / 0.37 256.72 / -0.27 23.11 / 0.63 23.31 / 0.60

DISCO 56.08 / 0.40 30.57 / 0.53 33.90 / 0.57 24.56 / 0.63 36.75 / 0.55 57.28 / 0.43 151.53 / 0.10 20.22 / 0.73 20.72 / 0.72
Median Blur 49.19 / 0.36 28.51 / 0.51 34.85 / 0.49 21.77 / 0.58 33.52 / 0.50 48.64 / 0.42 174.94 / -0.12 19.21 / 0.67 22.31 / 0.63

MPRNet 43.85 / 0.42 27.66 / 0.54 32.94 / 0.52 21.32 / 0.61 33.94 / 0.52 41.87 / 0.49 151.72 / -0.04 16.67 / 0.73 20.77 / 0.66
Random Noise 42.43 / 0.46 34.61 / 0.52 37.16 / 0.51 24.32 / 0.60 35.74 / 0.50 45.79 / 0.52 165.95 / -0.10 17.36 / 0.76 18.95 / 0.74
Gaussian Blur 32.26 / 0.56 23.82 / 0.62 30.48 / 0.53 20.24 / 0.64 27.93 / 0.59 36.96 / 0.55 149.81 / -0.12 14.57 / 0.84 21.51 / 0.65

Bilinear Upscale 31.03 / 0.57 20.91 / 0.68 22.89 / 0.68 17.66 / 0.73 22.14 / 0.71 34.90 / 0.58 135.84 / 0.03 17.10 / 0.77 20.30 / 0.66
Real-ESRGAN 21.71 / 0.73 66.37 / 0.08 39.43 / 0.44 36.74 / 0.32 19.19 / 0.76 22.89 / 0.75 67.99 / 0.20 13.21 / 0.89 17.36 / 0.72

Rotate 21.39 / 0.78 23.80 / 0.64 13.23 / 0.98 9.10 / 1.01 14.16 / 0.95 26.92 / 0.70 12.24 / 0.98 10.20 / 1.03 10.42 / 1.02
DiffJPEG 20.07 / 0.74 22.80 / 0.64 22.70 / 0.66 18.04 / 0.71 17.54 / 0.79 25.02 / 0.70 84.61 / 0.15 10.94 / 0.95 15.59 / 0.81
DiffPure 19.63 / 0.79 17.53 / 0.76 19.73 / 0.74 14.65 / 0.82 14.74 / 0.90 21.66 / 0.79 66.03 / 0.27 13.12 / 0.87 13.17 / 0.88

Crop 16.87 / 0.89 31.32 / 0.45 20.08 / 0.71 15.68 / 0.77 19.38 / 0.78 — / — 17.24 / 0.85 8.17 / 1.14 10.96 / 0.96
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Table 14. Comparison of purification defenses by attack type. Evaluated metrics are averaged across all images, attacks and quality
metrics for nonadaptive use case on KonIQ and KADID datasets.

Defense Restricted WB Unrestricted WB Black-Box
Rscore ↑ SROCCadv ↑ PSNR ↑ Rscore ↑ SROCCadv ↑ PSNR ↑ Rscore ↑ SROCCadv ↑ PSNR ↑

W/o Defense 0.36±0.65 0.387±0.29 42.12±5.69 2.06±1.67 0.535±0.26 52.31±32.77 1.19±0.76 0.590±0.31 38.87±7.00

Unsharp 0.30±0.47 0.329±0.28 30.64±2.20 0.89±0.43 0.525±0.25 26.39±7.31 0.87±0.37 0.578±0.27 28.37±3.96
Real-ESRGAN 0.62±0.34 0.474±0.23 31.62±1.37 0.70±0.29 0.494±0.24 25.64±6.49 0.75±0.28 0.658±0.17 28.31±3.86

FCN 0.62±0.44 0.455±0.21 20.49±0.33 1.07±0.32 0.532±0.25 18.83±1.87 1.21±0.28 0.632±0.22 21.20±0.46
Color Quantization 0.63±0.49 0.500±0.25 33.62±1.63 1.08±0.40 0.533±0.25 27.30±7.77 1.21±0.51 0.632±0.24 32.38±2.45

Bilinear Upscale 0.68±0.33 0.389±0.27 33.69±1.94 0.92±0.25 0.493±0.24 27.30±7.99 1.01±0.24 0.555±0.26 29.92±4.70
Gaussian Blur 0.78±0.24 0.374±0.26 32.70±1.78 0.85±0.22 0.443±0.24 26.53±7.37 0.87±0.27 0.522±0.27 29.00±4.75

DiffPure 0.81±0.25 0.514±0.19 29.46±1.32 0.78±0.21 0.424±0.22 24.39±5.58 0.78±0.24 0.529±0.22 26.26±4.20
Random Noise 0.82±0.27 0.533±0.24 26.00±0.69 0.83±0.24 0.523±0.23 22.44±4.03 0.99±0.32 0.633±0.19 25.74±0.65

Crop 0.83±0.30 0.476±0.22 11.83±0.13 1.05±0.33 0.540±0.24 11.44±0.50 1.19±0.34 0.588±0.23 11.04±0.74
Median Blur 0.84±0.28 0.385±0.25 31.70±1.92 0.99±0.31 0.455±0.23 26.07±7.12 1.03±0.28 0.503±0.24 27.83±5.42

JPEG 0.91±0.42 0.612±0.20 33.23±1.72 1.14±0.37 0.572±0.23 26.99±7.34 1.23±0.34 0.655±0.23 30.02±3.37
DiffJPEG 0.91±0.42 0.614±0.20 33.29±1.72 1.14±0.37 0.575±0.23 27.02±7.36 1.22±0.33 0.660±0.22 30.03±3.39
MPRNet 0.94±0.28 0.557±0.16 32.36±1.61 0.98±0.26 0.511±0.20 26.14±7.20 0.99±0.26 0.629±0.18 27.93±4.92
Resize 0.94±0.35 0.545±0.21 32.65±1.78 1.08±0.33 0.555±0.22 26.55±7.39 1.23±0.27 0.639±0.21 28.96±4.73
Rotate 1.08±0.20 0.486±0.20 11.41±0.38 1.11±0.24 0.513±0.23 11.09±0.70 1.18±0.21 0.558±0.24 10.87±1.26
Flip 1.11±0.28 0.564±0.23 10.85±0.21 1.29±0.27 0.553±0.27 10.53±0.41 1.43±0.25 0.655±0.21 10.21±0.52

DISCO 1.20±0.22 0.594±0.22 29.62±1.29 1.07±0.27 0.544±0.22 24.21±5.35 1.20±0.25 0.651±0.20 26.64±3.57

Table 15. Wilcoxon tests in nonadaptive use case of purification defenses on NIPS dataset for SSIM scores.
Defense DiffJPEG Bilinear

Upscale Unsharp Resize Rotate Crop Median
Blur JPEG Gaussian

Blur
Color

Quantization DiffPure Random
Noise Flip MPRNet FCN Real-

ESRGAN DISCO W/o
Defense

DiffJPEG — 7.12% 39.03% 7.41% 100.00% 100.00% 63.25% 33.33% 7.69% 62.11% 65.53% 100.00% 100.00% 0.00% 17.66% 2.28% 3.13% 1.99%
Bilinear Upscale 52.71% — 44.16% 37.04% 100.00% 100.00% 79.77% 53.28% 43.59% 62.11% 82.05% 100.00% 100.00% 0.00% 53.85% 1.42% 0.00% 4.84%

Unsharp 29.91% 10.54% — 16.24% 100.00% 100.00% 54.99% 32.76% 19.37% 45.58% 60.68% 98.58% 100.00% 2.28% 24.22% 3.42% 5.41% 0.00%
Resize 19.66% 0.00% 35.04% — 88.89% 88.89% 63.53% 35.04% 21.94% 49.29% 53.56% 88.89% 88.89% 0.00% 45.30% 0.57% 0.00% 3.99%
Rotate 0.00% 0.00% 0.00% 0.00% — 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 62.39% 0.00% 0.00% 0.00% 0.00% 0.00%
Crop 0.00% 0.00% 0.00% 0.00% 86.32% — 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Median Blur 0.00% 0.00% 21.94% 0.00% 100.00% 100.00% — 0.00% 0.00% 2.28% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%
JPEG 0.00% 6.27% 36.18% 7.12% 100.00% 100.00% 62.68% — 7.69% 60.40% 62.39% 100.00% 100.00% 0.00% 11.40% 0.85% 1.99% 1.71%

Gaussian Blur 18.80% 0.00% 37.89% 8.83% 100.00% 100.00% 65.81% 27.64% — 55.84% 63.53% 100.00% 100.00% 0.00% 45.01% 0.57% 0.00% 4.56%
Color Quantization 0.00% 0.00% 21.08% 0.00% 100.00% 100.00% 14.25% 0.00% 0.00% — 16.52% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%

DiffPure 0.57% 0.00% 23.93% 0.00% 100.00% 100.00% 17.66% 0.85% 0.00% 17.09% — 100.00% 100.00% 0.00% 1.71% 0.00% 0.00% 1.14%
Random Noise 0.00% 0.00% 0.00% 0.00% 99.43% 84.62% 0.00% 0.00% 0.00% 0.00% 0.00% — 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Flip 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% — 0.00% 0.00% 0.00% 0.00% 0.00%
MPRNet 52.71% 16.24% 42.74% 41.31% 100.00% 100.00% 63.53% 54.13% 45.87% 61.54% 62.96% 100.00% 100.00% — 54.13% 9.40% 2.85% 5.41%

FCN 1.14% 4.56% 29.06% 4.84% 100.00% 100.00% 51.28% 1.42% 5.98% 36.18% 42.45% 100.00% 100.00% 0.85% — 2.28% 1.42% 0.85%
Real-ESRGAN 72.08% 9.97% 47.86% 51.00% 100.00% 100.00% 74.93% 61.54% 59.83% 64.67% 81.20% 100.00% 100.00% 1.99% 53.85% — 1.14% 4.27%

DISCO 71.23% 54.70% 62.96% 63.25% 100.00% 100.00% 81.20% 72.36% 72.36% 88.03% 95.73% 100.00% 100.00% 45.87% 67.24% 48.72% — 18.52%
W/o Defense 90.03% 88.03% 100.00% 81.48% 100.00% 100.00% 97.44% 90.03% 91.17% 95.44% 92.88% 100.00% 100.00% 85.19% 87.75% 86.04% 65.81% —

Table 16. Wilcoxon tests in adaptive use case of purification-based and Adversarial Training defenses on AGIQA dataset and Linearity,
Koncept IQA metrics for Rscore values.

FCN MPRNet Median
Blur DISCO Bilinear

Upscale Flip DiffPure Crop DiffJPEG Real-
ESRGAN

Gaussian
Blur Resize Unsharp Rotate Random

Noise
W/o

Defense
APGD-
LPIPS-2

APGD-
LPIPS-4

APGD-
LPIPS-8

APGD-
SSIM-2

APGD-
SSIM-4

APGD-
SSIM-8

FCN — 10.42% 12.50% 50.00% 16.67% 39.58% 18.75% 22.92% 4.17% 16.67% 14.58% 47.92% 87.50% 6.25% 10.42% 39.58% 2.08% 4.17% 41.67% 0.00% 10.42% 25.00%
MPRNet 87.50% — 77.08% 58.33% 27.08% 89.58% 25.00% 39.58% 27.08% 45.83% 22.92% 64.58% 87.50% 14.58% 50.00% 83.33% 6.25% 41.67% 52.08% 4.17% 43.75% 54.17%

Median Blur 83.33% 16.67% — 62.50% 25.00% 83.33% 22.92% 39.58% 22.92% 43.75% 27.08% 62.50% 87.50% 16.67% 45.83% 83.33% 8.33% 31.25% 47.92% 4.17% 39.58% 45.83%
DISCO 43.75% 39.58% 35.42% — 25.00% 43.75% 31.25% 45.83% 33.33% 47.92% 20.83% 37.50% 50.00% 18.75% 41.67% 43.75% 12.50% 41.67% 45.83% 6.25% 41.67% 45.83%

Bilinear Upscale 81.25% 62.50% 68.75% 68.75% — 79.17% 14.58% 56.25% 39.58% 47.92% 37.50% 58.33% 81.25% 35.42% 47.92% 81.25% 33.33% 37.50% 50.00% 10.42% 37.50% 54.17%
Flip 39.58% 8.33% 12.50% 54.17% 18.75% — 18.75% 25.00% 4.17% 16.67% 18.75% 47.92% 87.50% 4.17% 2.08% 68.75% 2.08% 4.17% 41.67% 0.00% 10.42% 31.25%

DiffPure 79.17% 72.92% 75.00% 66.67% 77.08% 79.17% — 64.58% 66.67% 66.67% 64.58% 72.92% 83.33% 72.92% 75.00% 81.25% 66.67% 72.92% 77.08% 37.50% 72.92% 77.08%
Crop 72.92% 52.08% 58.33% 47.92% 37.50% 70.83% 16.67% — 47.92% 60.42% 43.75% 45.83% 77.08% 47.92% 58.33% 72.92% 33.33% 58.33% 72.92% 18.75% 60.42% 68.75%

DiffJPEG 89.58% 62.50% 68.75% 60.42% 58.33% 93.75% 33.33% 41.67% — 60.42% 62.50% 66.67% 89.58% 29.17% 66.67% 87.50% 18.75% 58.33% 83.33% 10.42% 62.50% 81.25%
Real-ESRGAN 70.83% 47.92% 47.92% 43.75% 43.75% 66.67% 14.58% 18.75% 31.25% — 43.75% 50.00% 83.33% 37.50% 43.75% 72.92% 27.08% 39.58% 79.17% 2.08% 54.17% 68.75%
Gaussian Blur 81.25% 75.00% 68.75% 68.75% 56.25% 81.25% 33.33% 43.75% 35.42% 45.83% — 68.75% 83.33% 29.17% 64.58% 81.25% 20.83% 43.75% 77.08% 8.33% 43.75% 79.17%

Resize 47.92% 35.42% 37.50% 54.17% 35.42% 50.00% 16.67% 45.83% 33.33% 39.58% 27.08% — 66.67% 31.25% 37.50% 52.08% 29.17% 35.42% 37.50% 6.25% 35.42% 37.50%
Unsharp 4.17% 12.50% 12.50% 31.25% 12.50% 12.50% 16.67% 22.92% 4.17% 10.42% 14.58% 27.08% — 6.25% 10.42% 0.00% 2.08% 4.17% 31.25% 0.00% 4.17% 10.42%
Rotate 89.58% 83.33% 79.17% 75.00% 58.33% 93.75% 22.92% 43.75% 60.42% 50.00% 68.75% 62.50% 91.67% — 79.17% 83.33% 20.83% 75.00% 81.25% 4.17% 75.00% 81.25%

Random Noise 85.42% 43.75% 54.17% 58.33% 41.67% 97.92% 22.92% 37.50% 29.17% 43.75% 29.17% 60.42% 89.58% 12.50% — 83.33% 6.25% 16.67% 64.58% 4.17% 43.75% 70.83%
W/o Defense 41.67% 16.67% 16.67% 52.08% 18.75% 20.83% 18.75% 22.92% 10.42% 18.75% 16.67% 47.92% 93.75% 16.67% 12.50% — 6.25% 8.33% 41.67% 0.00% 14.58% 31.25%

APGD-LPIPS-2 93.75% 81.25% 85.42% 70.83% 60.42% 93.75% 27.08% 54.17% 81.25% 58.33% 66.67% 64.58% 95.83% 62.50% 89.58% 89.58% — 87.50% 89.58% 0.00% 85.42% 87.50%
APGD-LPIPS-4 87.50% 56.25% 58.33% 56.25% 52.08% 89.58% 25.00% 37.50% 33.33% 50.00% 50.00% 64.58% 93.75% 16.67% 58.33% 83.33% 6.25% — 81.25% 4.17% 41.67% 81.25%
APGD-LPIPS-8 54.17% 41.67% 47.92% 50.00% 22.92% 58.33% 18.75% 22.92% 14.58% 10.42% 12.50% 56.25% 64.58% 14.58% 20.83% 52.08% 4.17% 8.33% — 0.00% 4.17% 14.58%
APGD-SSIM-2 100.00% 91.67% 93.75% 93.75% 79.17% 100.00% 54.17% 68.75% 83.33% 75.00% 89.58% 81.25% 100.00% 93.75% 95.83% 100.00% 89.58% 93.75% 95.83% — 91.67% 93.75%
APGD-SSIM-4 75.00% 52.08% 56.25% 56.25% 50.00% 72.92% 25.00% 33.33% 27.08% 27.08% 50.00% 64.58% 91.67% 16.67% 50.00% 68.75% 8.33% 18.75% 81.25% 6.25% — 79.17%
APGD-SSIM-8 62.50% 41.67% 41.67% 52.08% 22.92% 58.33% 18.75% 27.08% 12.50% 16.67% 14.58% 60.42% 87.50% 14.58% 18.75% 54.17% 6.25% 14.58% 45.83% 0.00% 6.25% —
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Table 17. Wilcoxon tests in adaptive use case of purification-based and Adversarial Training defenses on NIPS dataset and Linearity,
Koncept IQA metrics for PSNR values.

FCN MPRNet Median
Blur DISCO Bilinear

Upscale Flip DiffPure Crop DiffJPEG Real-
ESRGAN

Gaussian
Blur Resize Unsharp Rotate Random

Noise
W/o

Defense
APGD-
LPIPS-2

APGD-
LPIPS-4

APGD-
LPIPS-8

APGD-
SSIM-2

APGD-
SSIM-4

APGD-
SSIM-8

FCN — 0.00% 0.00% 0.00% 2.08% 100.00% 0.00% 100.00% 0.00% 0.00% 0.00% 2.08% 0.00% 100.00% 0.00% 0.00% 2.08% 0.00% 0.00% 4.17% 0.00% 0.00%
MPRNet 97.92% — 93.75% 0.00% 100.00% 100.00% 95.83% 100.00% 89.58% 0.00% 91.67% 100.00% 100.00% 100.00% 0.00% 0.00% 4.17% 2.08% 2.08% 6.25% 2.08% 2.08%

Median Blur 97.92% 0.00% — 0.00% 100.00% 100.00% 2.08% 100.00% 2.08% 0.00% 0.00% 100.00% 100.00% 100.00% 0.00% 0.00% 4.17% 2.08% 2.08% 4.17% 2.08% 2.08%
DISCO 100.00% 100.00% 100.00% — 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 100.00% 100.00% 100.00% 100.00% 25.00% 14.58% 20.83% 16.67% 16.67% 22.92% 20.83% 16.67%

Bilinear Upscale 93.75% 0.00% 0.00% 0.00% — 100.00% 0.00% 100.00% 2.08% 0.00% 0.00% 39.58% 4.17% 100.00% 0.00% 0.00% 2.08% 2.08% 0.00% 2.08% 0.00% 0.00%
Flip 0.00% 0.00% 0.00% 0.00% 0.00% — 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

DiffPure 97.92% 0.00% 93.75% 0.00% 100.00% 100.00% — 100.00% 89.58% 0.00% 91.67% 100.00% 97.92% 100.00% 0.00% 0.00% 4.17% 2.08% 2.08% 6.25% 2.08% 2.08%
Crop 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% — 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

DiffJPEG 95.83% 2.08% 91.67% 0.00% 97.92% 100.00% 6.25% 100.00% — 0.00% 6.25% 97.92% 95.83% 100.00% 0.00% 0.00% 4.17% 0.00% 0.00% 8.33% 0.00% 0.00%
Real-ESRGAN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% — 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Gaussian Blur 97.92% 0.00% 95.83% 0.00% 100.00% 100.00% 4.17% 100.00% 22.92% 0.00% — 100.00% 100.00% 100.00% 0.00% 0.00% 4.17% 2.08% 2.08% 6.25% 2.08% 2.08%

Resize 91.67% 0.00% 0.00% 0.00% 45.83% 100.00% 0.00% 100.00% 0.00% 0.00% 0.00% — 6.25% 100.00% 0.00% 0.00% 2.08% 0.00% 0.00% 2.08% 0.00% 0.00%
Unsharp 93.75% 0.00% 0.00% 0.00% 91.67% 100.00% 0.00% 100.00% 2.08% 0.00% 0.00% 91.67% — 100.00% 0.00% 0.00% 2.08% 2.08% 0.00% 4.17% 2.08% 0.00%
Rotate 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% — 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Random Noise 97.92% 97.92% 100.00% 75.00% 100.00% 100.00% 100.00% 100.00% 97.92% 0.00% 97.92% 100.00% 100.00% 100.00% — 0.00% 6.25% 6.25% 2.08% 12.50% 4.17% 2.08%
W/o Defense 100.00% 100.00% 100.00% 81.25% 100.00% 100.00% 100.00% 100.00% 97.92% 0.00% 100.00% 100.00% 100.00% 100.00% 97.92% — 35.42% 35.42% 41.67% 50.00% 37.50% 41.67%

APGD-LPIPS-2 95.83% 87.50% 91.67% 72.92% 95.83% 100.00% 89.58% 100.00% 87.50% 0.00% 89.58% 95.83% 93.75% 100.00% 85.42% 47.92% — 50.00% 31.25% 35.42% 50.00% 50.00%
APGD-LPIPS-4 95.83% 89.58% 93.75% 75.00% 97.92% 100.00% 89.58% 100.00% 87.50% 0.00% 89.58% 97.92% 93.75% 100.00% 87.50% 27.08% 39.58% — 31.25% 35.42% 20.83% 25.00%
APGD-LPIPS-8 97.92% 87.50% 93.75% 72.92% 97.92% 100.00% 89.58% 100.00% 89.58% 0.00% 89.58% 97.92% 97.92% 100.00% 87.50% 47.92% 43.75% 47.92% — 66.67% 50.00% 43.75%
APGD-SSIM-2 95.83% 87.50% 89.58% 70.83% 91.67% 100.00% 87.50% 100.00% 87.50% 0.00% 89.58% 91.67% 91.67% 100.00% 85.42% 45.83% 29.17% 50.00% 20.83% — 41.67% 43.75%
APGD-SSIM-4 95.83% 87.50% 91.67% 75.00% 95.83% 100.00% 89.58% 100.00% 87.50% 0.00% 89.58% 97.92% 93.75% 100.00% 87.50% 29.17% 29.17% 18.75% 25.00% 41.67% — 31.25%
APGD-SSIM-8 97.92% 89.58% 93.75% 72.92% 97.92% 100.00% 91.67% 100.00% 89.58% 0.00% 91.67% 97.92% 97.92% 100.00% 87.50% 22.92% 39.58% 33.33% 8.33% 45.83% 22.92% —

Table 18. Comparison of defenses by defense type. Evaluated metrics are averaged across all images, attacks and quality metrics for
nonadaptive/adaptive use cases on KonIQ and KADID datasets.

Defense Dscore
(D) ↓ Dscore ↓ R

(D)
score ↑ Rscore ↑ SROCCadv ↑ SROCCclear ↑ PSNR ↑

Filtering 21.13 / 27.17 20.39 / 22.34 0.63 / 0.49 0.72 / 0.68 0.499 / 0.545 0.631 / 0.628 19.53 / 20.14
Compression 21.86 / 15.60 18.20 / 11.29 0.65 / 0.75 0.81 / 0.99 0.561 / 0.635 0.687 / 0.697 19.96 / 20.46

Spatial Transforms 21.20 / 29.95 20.27 / 26.53 0.64 / 0.46 0.69 / 0.62 0.578 / 0.508 0.684 / 0.604 19.62 / 16.57
Denoising 17.26 / 19.90 26.05 / 25.95 0.80 / 0.71 0.59 / 0.60 0.533 / 0.569 0.664 / 0.672 19.66 / 20.09

With Randomness 14.93 / 16.71 19.17 / 22.29 0.83 / 0.84 0.77 / 0.69 0.523 / 0.528 0.634 / 0.596 18.81 / 14.81
Adv. Defenses 8.15 / 26.86 23.14 / 22.35 1.11 / 0.50 0.63 / 0.69 0.474 / 0.538 0.583 / 0.626 19.09 / 19.16
Adv. Training — / 22.41 — / 22.41 — / 0.68 — / 0.68 — / 0.552 — / 0.667 — / —

Table 19. Comparison of purification defenses by dataset. Evaluated metrics are averaged across all images, attacks and quality metrics
for nonadaptive/adaptive use cases.

KonIQA1K KADID1K AGIQA-3K NIPS
Dscore ↓ Rscore ↑ SROCCclear ↑ Dscore ↓ Rscore ↑ SROCCclear ↑ Dscore ↓ Rscore ↑ SROCCclear ↑ Dscore ↓ Rscore ↑

W/o Defense 51.32 / — 0.57 / — 0.778 / — 45.90 / — 0.74 / — 0.487 / — 55.89 / — 0.57 / — 0.586 / — 47.73 / — 0.60 / —

Unsharp 47.09 / 92.16 0.48 / 0.21 0.767 / 0.766 41.96 / 84.67 0.60 / 0.27 0.462 / 0.423 38.49 / 102.72 0.55 / 0.16 0.625 / 0.596 45.11 / 85.18 0.50 / 0.28
Color Quantization 24.43 / — 0.83 / — 0.760 / — 24.47 / — 0.93 / — 0.475 / — 24.67 / — 0.86 / — 0.546 / — 25.36 / — 0.85 / —

Bilinear Upscale 19.66 / 45.22 0.82 / 0.52 0.679 / 0.587 18.42 / 36.11 0.84 / 0.61 0.512 / 0.420 12.59 / 47.36 1.02 / 0.50 0.542 / 0.432 20.83 / 26.88 0.68 / 0.68
FCN 22.93 / 73.59 0.84 / 0.31 0.733 / 0.746 21.72 / 70.03 0.92 / 0.34 0.465 / 0.391 26.29 / 74.13 0.79 / 0.26 0.541 / 0.548 18.38 / 50.78 0.91 / 0.46

Gaussian Blur 16.80 / 42.72 0.83 / 0.49 0.607 / 0.615 17.70 / 40.12 0.82 / 0.53 0.512 / 0.461 16.45 / 50.24 0.90 / 0.42 0.568 / 0.490 15.83 / 36.36 0.82 / 0.60
Median Blur 15.17 / 51.43 0.93 / 0.41 0.668 / 0.678 15.60 / 48.65 0.90 / 0.45 0.440 / 0.402 15.98 / 57.85 0.95 / 0.36 0.571 / 0.512 11.82 / 44.05 0.98 / 0.49

Real-ESRGAN 26.36 / 33.41 0.59 / 0.54 0.719 / 0.682 21.18 / 33.15 0.73 / 0.57 0.484 / 0.385 18.49 / 30.48 0.61 / 0.57 0.464 / 0.457 25.38 / 35.13 0.61 / 0.53
JPEG 13.34 / — 1.02 / — 0.767 / — 12.45 / — 1.08 / — 0.530 / — 12.97 / — 1.08 / — 0.593 / — 10.35 / — 1.06 / —

DiffJPEG 13.27 / 28.33 1.02 / 0.65 0.770 / 0.765 12.43 / 28.46 1.09 / 0.67 0.532 / 0.484 12.96 / 34.54 1.08 / 0.57 0.593 / 0.579 10.33 / 22.22 1.06 / 0.73
Resize 12.35 / 67.49 1.04 / 0.35 0.722 / 0.628 11.60 / 54.19 1.07 / 0.45 0.536 / 0.439 13.03 / 66.14 1.00 / 0.31 0.561 / 0.478 9.73 / 44.73 1.10 / 0.55

MPRNet 11.35 / 46.26 1.02 / 0.47 0.697 / 0.699 15.64 / 42.56 0.91 / 0.51 0.569 / 0.499 14.68 / 51.79 1.00 / 0.41 0.504 / 0.501 12.43 / 41.16 0.98 / 0.52
Crop 14.38 / 19.30 0.93 / 0.77 0.740 / 0.575 13.56 / 18.29 1.02 / 0.79 0.452 / 0.310 17.05 / 21.35 0.90 / 0.76 0.576 / 0.409 15.06 / 14.44 0.97 / 0.90

Random Noise 16.43 / 47.75 0.83 / 0.46 0.727 / 0.781 14.73 / 46.72 0.97 / 0.51 0.473 / 0.435 14.89 / 52.67 0.90 / 0.40 0.498 / 0.566 16.26 / 46.33 0.84 / 0.54
Flip 8.89 / 74.64 1.16 / 0.31 0.762 / 0.774 7.41 / 67.97 1.28 / 0.38 0.477 / 0.431 9.46 / 81.95 1.16 / 0.26 0.556 / 0.558 7.64 / 54.15 1.20 / 0.53

Rotate 10.29 / 17.72 1.09 / 0.84 0.696 / 0.749 9.97 / 15.34 1.13 / 0.91 0.452 / 0.447 12.08 / 22.70 1.05 / 0.74 0.549 / 0.560 9.37 / 13.97 1.10 / 0.94
DISCO 7.77 / 54.65 1.20 / 0.38 0.720 / 0.735 9.10 / 52.58 1.17 / 0.45 0.522 / 0.459 11.26 / 61.65 1.05 / 0.36 0.543 / 0.542 11.28 / 41.30 1.15 / 0.61
DiffPure 17.53 / 23.15 0.76 / 0.73 0.550 / 0.554 19.29 / 22.54 0.77 / 0.77 0.522 / 0.477 17.67 / 21.91 0.83 / 0.76 0.463 / 0.436 12.35 / 20.82 0.89 / 0.78
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Table 20. Comparison of SROCC and PLCC scores averaged across KonIQ, KADID and AGIQA-3K datasets for purification-based
and adversarial training defenses.

Defense Common Non-adaptive case Adaptive case
SROCCclear ↑ PLCCclear ↑ PLCCadv ↑ SROCCadv ↑ SROCCadv ↑ PLCCadv ↑

W/o Defense 0.617±0.01 0.648±0.02 0.484±0.13 0.464±0.12 0.402±0.08 0.432±0.08

Unsharp 0.604±0.02 0.631±0.02 0.452±0.14 0.433±0.14 0.345±0.12 0.366±0.12
Color Quantization 0.594±0.02 0.616±0.02 0.574±0.09 0.542±0.09 — —

FCN 0.580±0.02 0.591±0.01 0.522±0.10 0.498±0.10 0.282±0.13 0.299±0.12
Bilinear Upscale 0.577±0.02 0.614±0.03 0.499±0.12 0.468±0.11 0.347±0.09 0.376±0.09
Gaussian Blur 0.543±0.03 0.572±0.03 0.450±0.13 0.426±0.12 0.360±0.11 0.390±0.10
Median Blur 0.546±0.02 0.579±0.02 0.458±0.11 0.430±0.11 0.412±0.11 0.444±0.11

JPEG 0.630±0.02 0.655±0.02 0.637±0.05 0.610±0.04 — —
DiffJPEG 0.632±0.02 0.658±0.02 0.639±0.04 0.613±0.04 0.548±0.07 0.584±0.06
MPRNet 0.560±0.03 0.595±0.04 0.570±0.06 0.533±0.05 0.483±0.08 0.513±0.08

Crop 0.589±0.01 0.624±0.02 0.553±0.08 0.518±0.07 0.381±0.10 0.389±0.09
Random Noise 0.566±0.03 0.593±0.04 0.573±0.05 0.547±0.05 0.501±0.12 0.534±0.11

Resize 0.606±0.02 0.640±0.03 0.588±0.07 0.561±0.06 0.335±0.10 0.370±0.10
Real-ESRGAN 0.570±0.05 0.585±0.04 0.537±0.08 0.523±0.09 0.435±0.08 0.467±0.07

Flip 0.598±0.01 0.631±0.02 0.597±0.05 0.564±0.05 0.403±0.12 0.423±0.11
Rotate 0.566±0.01 0.595±0.02 0.530±0.07 0.511±0.06 0.459±0.10 0.488±0.09
DISCO 0.595±0.02 0.626±0.03 0.617±0.05 0.589±0.03 0.466±0.05 0.494±0.05
DiffPure 0.512±0.04 0.547±0.04 0.531±0.06 0.497±0.06 0.472±0.04 0.511±0.04

APGD-LPIPS-2 0.642±0.00 — — — 0.510±0.09 0.449±0.12
APGD-LPIPS-4 0.669±0.00 — — — 0.485±0.14 0.475±0.16
APGD-LPIPS-8 0.663±0.00 — — — 0.461±0.11 0.420±0.12
APGD-SSIM-2 0.620±0.00 — — — 0.586±0.02 0.504±0.07
APGD-SSIM-4 0.670±0.00 — — — 0.445±0.14 0.428±0.17
APGD-SSIM-8 0.675±0.00 — — — 0.504±0.10 0.509±0.12

Table 21. Comparison of guarantees and computational complexity of certified defenses. For classification-based methods (C) we
measured certified radius and number of abstains, for regression-based methods (R) – certified relative delta.

Defense Cert.R ↑ for C
Cert.RD ↑ for R Abst. ↓,% T ime. ↓, sec

Random. Smoothing (RS) (C) 0.20±0.03 / 0.16±0.04 4.68±2.85 / 10.61±5.51 36.70±18.68
Denoised RS (C) 0.19±0.03 / 0.16±0.04 6.30±3.42 / 7.43±4.51 44.43±20.97
Diffusion DRS (C) 0.18±0.02 / 0.17±0.03 10.55±5.50 / 8.33±5.47 71.85±18.94
DensePure (C) 0.17±0.02 / 0.16±0.02 7.91±3.95 / 9.21±6.81 116.37±19.04

Median Smoothing (MS) (R) 1.47±0.42 / 2.25±0.79 - 26.08±17.05
Denoised MS (R) 1.41±0.34 / 1.88±0.49 - 29.35±17.06
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