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Abstract

Deep State Space Models (SSM) demonstrate state-of-the-art performance on
long-range sequence modeling tasks. While the recurrent structure of SSMs can
be efficiently implemented as a convolution or as a parallel scan during training,
recurrent token-by-token processing cannot currently be implemented efficiently
on GPUs. Here, we demonstrate efficient token-by-token inference of the SSM
S4D on Intel’s Loihi 2 state-of-the-art neuromorphic processor. We compare this
first-ever neuromorphic-hardware implementation of an SSM on sSMNIST, psM-
NIST, and sCIFAR to a recurrent and a convolutional implementation of S4D on
Jetson Orin Nano (Jetson). While we find Jetson to perform better in an offline
sample-by-sample based batched processing mode, Loihi 2 outperforms during
token-by-token based processing, where it consumes 1000 times less energy with
a 75 times lower latency and a 75 times higher throughput compared to the re-
current implementation of S4D on Jetson. This opens up new avenues towards
efficient real-time streaming applications of SSMs.

1 Introduction

The attention mechanism has been pervasive in enabling the incredible Al capabilities of today, such
as intelligent chatbots [1], object detection [2], and multimodal video understanding [3]. While it
excels at associating context at different points in time and building a higher level understanding, the
computational cost of the attention mechanism increases quadratically with the context length [4],
making it infeasible for very long sequences. Different techniques realize more efficient computa-
tion of attention [5, 6, 7] but the fundamental limitation of increased cost for higher context length
remains.

Recurrent networks, on the other hand, increase the compute cost only linearly with context length;
they are, however, difficult to train. Recently, a family of linear recurrent architectures, SSMs, based
on the memory property of state-space dynamics [8, 9, 10, 11, 12] have emerged as an alternative
to the attention mechanism. With their recurrent formulation, they offer linearly increasing com-
putational cost, while also being easily trainable using the convolution view of the same model [8].
They have shown superior performance compared to attention-based models on very long-range con-
text [9, 12, 13], while also maintaining competitive performance on language modeling tasks [12].

The recurrent formulation of SSMs with their local stateful computation aligns well with the ar-
chitecture of neuromorphic processors, in which compute and memory are co-located [14]. This
is in contrast to GPUs, where the separation of compute and memory makes them efficient only
when processing highly structured compute and memory reads [15] (e.g., batching, convolution)
and therefore inefficient when computing the recurrent formulation of SSMs. Previous simulated
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Figure 1: Loihi 2 systems of different form factors.

implementations of neuromorphic SSMs have demonstrated a reduction in the number of operations
but focus on biologically plausible spiking neurons rather than leveraging performance-optimized
neuron models available in modern neuromorphic processors [16, 17, 18].

In this paper, we demonstrate the first implementation of an SSM, S4D, on a neuromorphic proces-
sor, Intel’s Loihi 2. We compare its accuracy on sequential processing datasets to state-of-the-art
methods and benchmark its computational costs against implementations on an edge GPU.

2 Background

2.1 Deep State Space Models

Deep SSMs have been increasingly used to overcome the challenges of transformers in modeling
long sequences [19], starting with the structured SSM, S4, developed by Gu et al. [8]. S4 models
can perform their computations using one of three representations, which can be transformed into
each other and serve different functional purposes [8, 12]:

@(t) = Az (t) + Bu(t), y(t) = Cx(t) (1)
xp = Axy_1 + Buy, yr = Czy, 2)
K=(CB,CAB, - . CA" 'B), (- .y y) =K+ up,2) (3

The continuous recurrent representation in Equation (1) processes continuous 1-D signals u(t) to
output signals y(¢) via an N-dimensional latent space z(t): u(t) € R — =(t) € RN — y(t) € R.
The discrete recurrent representation in Equation (2) assumes constant step sizes A to transform the
matrices A, B, and C into discrete matrices A, B, and C and enables fast autoregressive infer-
ence when inputs uy are presented sequentially. The convolutional representation in Equation (3)
transforms the linear time-invariant SSM in Equation (1) into a global convolution, which enables
efficient, parallelized training when L data points are available in a batch.

Long-range sequence modeling has seen algorithmic advancements, including Liquid S4 [10],
S5 [9], and the S6 layers in Mamba [12]. These models have achieved state-of-the-art accuracy in
sequence modeling on tasks including speech commands [10], the Path-X version of the Pathfinder
challenge [9], autoregressive language modeling, audio waveforms, and DNA sequences [12].

Several hardware-aware adjustments have been applied to SSMs to make them more efficient on
GPUs. Most notably, it has been shown that A can be diagonalized with little to no detrimental
effect on the algorithmic performance [20], leading to the S4 variant S4D [11] used in the present

paper.
2.2 Intel’s Neuromorphic Processor Loihi 2

Intel’s Loihi 2 neuromorphic processor (Figure 1) is a fully asynchronous, digital, scalable, event-
driven architecture, designed for efficient sparse signal processing. Each Loihi 2 chip features an
interconnect of compute and memory co-located computational units, neurocores, that communicate
using spiking events and support up to 8192 independent, programmable neurons. The neurons can
be stateful, enabling an efficient implementation of self-recurrent dynamics, such as those of S4D.
Neurons can output graded spike events that carry an integer value. Synaptic connectivity between



Hxl H HNxH HN HxNH H HH H 10H 10

. Reduc- - Bias +
Iil s S4D tion ReLU || Mixing | | ggiy D

Figure 2: S4D model architecture as implemented on Loihi 2. Light blue layers refer to connections
and dark blue layers to programmable neurons on Loihi 2. Variables above each layer denote the
dimensionality of the layer.

neurons supports memory-efficient representations of sparse weight matrices to take advantage of
unstructured connectivity sparsity.

While the cores and chips of Loihi 2 system execute their computations asynchronously, they syn-
chronize via messages to adhere to a global, algorithmic time-step. At each time-step, the output of
a layer of neurons is sent only to its neighboring layer, not through the entire network. For feed-
forward networks, input can be injected into the network pipelined, at every time-step, for maximum
throughput. To avoid generating too much traffic in the network, input can be injected less often;
minimum latency is often achieved by fall-through processing, where input is injected only once
the previous input has traveled through the entire network. The distinction between pipelined and
fall-through execution becomes most significant for networks with multiple layers of processing.

The merit of the Loihi 2 architecture has been demonstrated in a variety of domains, including
optimization [21, 22], depth estimation [23], and efficient video and audio processing [24].

3 Neuromorphic Diagonal Deep State-Space Model

3.1 Model architecture on Loihi 2

Figure 2 shows the model architecture of S4D as implemented on Loihi 2. It consists of an encoder
layer that expands the input to a higher dimensionality, four S4D blocks, and a decoder layer that
reduces the dimensionality to the number of classes. At the top of the figure, the dimensionality
of each layer of the model is listed, where I represents the input dimensionality, H is the model
dimension, and N is the number of hidden states per model dimension; the output dimensionality
is 10. We evaluate two model sizes with 67k parameters (H = 64, N = 32) and 265k parameters
(H =128, N = 64) for different datasets (see Section 4 for details).

Each S4D block consists of a simplified variant of the S4D model, computing the SSM dynamics
as a recurrent neural network (Equation (2)). In contrast to the original S4D model, we only use
ReLU activations instead of GLUs and GeLUs to increase activation sparsity. To further simplify
the model, we also leave out normalization layers and residual connections. After each S4D layer,
the dimensions are mixed using a linear projection followed by another ReLU activation.

All S4D layers, RelLU activations, and biases (depicted in dark blue in Figure 2), are implemented
as programmable neurons on Loihi 2. As the matrices A, B, and C' of the S4D dynamics are fully
diagonal, all hidden states in the S4D layers compute their dynamics fully independently without
interactions with other states. Therefore, the state-space dynamics can be computed within the
programmable neurons, and without using self-recurrent connections or connections between them.

All projections (depicted in light blue in Figure 2), up-projection, expansion, reduction, mixing, and
down-projection, are implemented in Loihi 2 using linear synapses in the neurocore alongside their
respective neuron instances.

We optimize how each layer is distributed across neurocores to achieve uniform compute load. We
place subsequent layers onto neighboring neurocores to reduce message passing time, leading to a
usage of 31 and 111 neurocores of a single Loihi 2 chip for the small and large model, respectively.



Table 1: Comparison against leading reported test accuracies from prior works (Transformer, CNN,
RNN, SSM) on the SsMNIST, psMNIST, and sCIFAR datasets.

Model SMNIST psMNIST sCIFAR
(Input length) (784) (784) (1024)
Transformer [4, 26] 98.9 97.9 62.2
CCNN [27] 99.72 98.84 93.08
LipschitzZRNN [28] 99.4 96.3 64.2
LSSL [29] 99.53 98.76 84.65
S48, 11] 99.63 98.70 91.80
S4D [11] - - 90.69
Liquid-S4 [10] - - 92.02
S5 [9] 99.65 98.67 90.10
AHP SNN on Loihi 1 [9] 96.00 - -
S4D, full precision (Ours) 99.51 97.53 86.53
S4D, after PTQ (Ours) 99.20 92.45 71.74
S4D, on Loihi 2 after QAFT (Ours) 99.20 96.16 84.13

3.2 Post Training Quantization and Quantization Aware Fine Tuning

The S4D models are first trained in full precision in convolution mode. Since Loihi 2 only supports
fixed precision computation, fake quantization is applied after the initial training. In this post-
training quantization (PTQ) step, we use 8-bit weights, 24-bit spike messages, and 24-bit neuron
states (including the A, B, and C representation). Subsequently, we perform quantization aware
fine tuning (QAFT) in recurrent mode to recover any loss in accuracy due to PTQ.

In the fake quantization scheme with b-bit representation, we quantize the tensor X as X = | X s] %
with the scaling factor s = gb—1 /X max- The bound Xy, is selected analytically for state space pa-
rameters like A, while for weights and biases it is computed as | X |ax to maximize the dynamic
representation of the integer representation. To be fully accurate to Loihi 2’s fixed precision arith-
metic, we also quantize the descaling factor 1/s with a precision of 16-bit. To allow gradient flow
in the backward computation, we use a straight-through estimator [25].

3.3 Reference evaluation on Jetson Orin Nano

As areference, we implement both the convolution and the recurrent formulation of our S4D variant
on Jetson. Due to lack of complex tensor support in TensorRT, the evaluations are performed using a
PyTorch just-in-time compiled model using fp32 precision. The power measurement reported by the
jtop APl is used for characterization. For runtime, only the time spent to input the data and compute
the output was considered. The primary point of comparison for Loihi 2 vs Jetson implementation
is the streaming (batch=1) mode of inference. In addition to the streaming mode of inference, the
peak-performing batched mode of inference is included for a representative optimum performance
on Jetson.

4 Results

We evaluate our S4D model running on Intel Loihi 2 and Nvidia’s Jetson on the datasets sequential
MNIST (sMNIST), permuted sequential MNIST (psMNIST), and sequential CIFAR10 (sCIFAR).

4.1 Accuracy and parameter count

Table 1 shows the accuracy on sSMNIST, psMNIST, and sCIFAR of our S4D model in full precision,
after quantization, and on Loihi 2 in comparison to other models.

Although we use a simplified version of the S4D model, by only using ReLU activations and no
normalization (see Section 3.1), the performance in full precision meets that of the original and



Table 2: Performance comparison.

HW Exec mode | Prec Acg [©) Token-by-Token Processing Sample-by-Sample Processing
R e < N
52|32 2. | 5| 2% | 22 | iz !
55 |82 | 82| &2 53 g3 g g o @
SE|JE|ES| B2 || 8 | 38 |E2| Az
Loihi 2* | Rec (ft) gint | 99.20 || 0.003 | 0.068 | 14,705 | 0.0002 2.678 53.314 19 141.59
_E:Z: Loihi 2* | Rec (pipe) gint | 99.20 || 0.002 | 0.168 | 83,343 | 0.0004 1.828 9.575 106 17.502
E Jetson” | Rec (b=1) fp32 | 99.51 || 15.725 | 4.976 201 | 79.252 || 12328.652 | 3901.313 | 0.256 48.097x 108
% | Jetson® | Conv (b=1) fp32 | 99.51 || 23.000 | 6.366 157 | 146.418 23.000 6.366 157 | 146.418
Jetson™ | Conv (b=256) | fp32 | 99.51 - - - - 0.217 8.872 | 28,853 1.921
¢ | Loihi 2* | Rec (ft) gint | 96.16 || 0.003 | 0.068 | 14,720 | 0.0002 2.678 53.262 19| 142.639
2 | Loihi 2* | Rec (pipe) gint | 96.16 || 0.002 | 0.168 | 83,349 | 0.0004 1.920 9.574 106 15.200
é JetsonT | Rec (b=1) fp32 | 97.53|| 15.851 | 5.012 200 | 70.449 || 12426.807 | 3929.739 | 0.254 48.834x 108
& | Jetson® | Conv (b=1) fp32 | 97.53 || 23.183 | 6.306 158 | 146.187 23.183 6.306 158 | 146.187
Jetson® | Conv (b=256) | fp32 | 97.53 - - - - 0.218 8.837 | 28,969 1.924
Loihi 2* | Rec (ft) gint | 84.13 || 0.016 | 0.066 | 15,259 | 0.0010 16.284 65.534 15 | 1092.808
°<‘ Loihi 2* | Rec (pipe) gint | 84.13 || 0.010 | 0.172 | 81,508 | 0.0017 10.355 12.735 80| 131.869
% Jetson' | Rec (b=1) fp32 | 86.53 || 16.106 | 4.978 201 | 80.173 || 16492.163 | 5097.42 | 0.194 84.067x10°
% | Jetsont | Conv (b=1) fp32 | 86.53 || 26.887 | 6.325 158 | 170.053 26.887 6.325 158 | 170.053
Jetson' | Conv (b=64) | p32 | 86.53 - - - - 0.961 8.476 | 17,550 8.142
* Loihi 2 workloads were characterized on an Oheo Gulch system with N3C2-revision Loihi 2 chips running on NxCore 2.5.8 and

alpha version of the NxKernel API with on-chip IO unthrottled sequencing of input tokens.
T GPU workloads were characterized on an NVIDIA Jetson Orin Nano 8GB 15W TDP running Jetpack 5.1.2, TensorRT 8.6.1,
Torch-TensorRT 1.3.0. Energy values include CPU_GPU_CV and SOC components as reported by jtop.

¥ Performance results are based on testing as of September 2024 and may not reflect all publicly available security updates. Results
may vary.

more complex S4 and S4D model; only on the sCIFAR dataset, the accuracy of our model is lower
with 86.53 %, compared to the original 90.69 %. When we quantize the model after training (PTQ),
the accuracy only drops substantially on the psMNIST (97.53 % to 92.45 %) and sCIFAR (86.53 %
to 71.74 %) datasets. This loss in accuracy can be recovered to nearly the level of the full precision
model by applying quantization-aware fine tuning (QAFT) (psMNIST: 96.16 %, sCIFAR: 84.13 %).

Previous neuromorphic solutions such as the AHP-based model on Loihi 1 [30] reach a substantially
lower accuracy, demonstrating the maturing of models and hardware in the neuromorphic domain.
Overall, the CCNN model exhibits the highest accuracy on all tasks, while using 2M parameters [27].
Our model shows competitive performance with less than 265k parameters for sCIFAR and 67k
parameters for the SMNIST datasets.

4.2 Computational cost

Table 2 reports computational cost of inference on Loihi 2 and Jetson on the three datasets. In
addition to energy, latency, and throughput, the energy-delay product (EDP) [24] is reported to
compare systems running at different speed. For these measurements on Loihi 2, we store a sequence
of input values on a neurocore and inject them to the S4D network at peak capacity without IO
constraints to obtain stable power measurements; this is repeated for 10 representative samples. The
energy of the neurocore used to store input values is included in the results for Loihi 2, while the IO
power of Jetson is excluded.

Sample-by-sample processing The right side of Table 2 shows results from sample-by-sample
processing, which assumes that all tokens of a sample are available to the system at the beginning of
processing and only a single classification is required for the whole sample. Recurrent formulations
of the model have to process each token sequentially, while convolutional formulations can process
the entire sample with a single convolution.

In the online processing regime of batch=1, it is evident that Loihi 2 is very efficient compared
to the recurrent mode on Jetson and shows better energy per sample of 1.8 mJ compared to 23 mJ
for Jetson in the convolutional mode that is favorable for GPU architectures. The throughput and
latency between Loihi 2 and Jetson in convolutional mode are also competitive. Jetson, however,
achieves peak performance in higher batch mode with substantially reduced energy per sample of



0.22mJ and 0.96 mJ for sMNIST and sCIFAR along with orders of magnitude higher throughput,
which is expected for GPU architectures.

Token-by-token processing The middle columns of Table 2 show results of token-by-token pro-
cessing. This assumes streaming input that requires a classification for every token. For these types
of tasks, both Loihi 2 and the recurrent mode on Jetson process all tokens sequentially. The convo-
lution mode on Jetson, however, has to perform a convolution over the entire sequence with every
new token. Its latency, energy, throughput, and EDP are therefore the same for processing one to-
ken in token-by-token processing as they are for processing one sample in the sample-by-sample
processing mode when using the convolutional implementation.

For token-by-token processing, Loihi 2 outperforms Jetson in all metrics on all datasets. Latency and
energy are two to three orders of magnitude lower for Loihi 2. This is reflected in EDP: For MNIST
workloads, EDP for Loihi 2 is 0.0002 uJ s and 0.001 pJ s for sCIFAR. In contrast, the recurrent
processing on Jetson incurs EDP of 70 uJ s and 80 uJ s on the respective datasets, demonstrating the
efficiency of Loihi 2 in token-by-token processing.

Fall-through vs. pipelined processing Table 2 shows the tradeoff between latency and throughput
when executing the model on Loihi 2 in fall-through or pipelined processing (see Section 2.2). With
fall-through processing, we see a latency of 68 us per token on the SMNIST dataset, compared
to 168 us in pipelined processing. This comes at the cost of throughput of only 14.705 token/s,
compared to 83.343 token/s in pipelined processing. The lower throughput per token in fall-through
mode results in a higher latency per sample of 53.314 ms compared to the pipelined mode with
9.57 ms. Results on the other datasets highlight the same tradeoff.

5 Discussion

The results in Section 4 show that the performance of S4D on Loihi 2 in comparison to edge GPU
systems such as the Jetson depends on the specific use-case.

The S4D model on Loihi 2 excels particularly in use-cases in which an incoming data stream must be
processed on a token-by-token basis as quickly as possible. In those use-cases, Loihi 2 can leverage
its compute and memory co-located architecture to outperform Jetson. On sCIFAR, the largest
workload we measured, Loihi 2 consumes 1000 times less energy with a 75 times lower latency and
a 75 times higher throughput compared to the recurrent implementation of S4D on Jetson.

Running S4D on Loihi 2 is not competitive with GPU systems for use-cases that involve the offline
processing of large amounts of data in parallel. With offline processing, the data is readily available
and multiple batches can be processed in parallel. In these cases, the Jetson can fully realize its
potential by executing S4D in convolutional mode and outperform Loihi 2 in throughput, energy,
and latency.

It should be noted that our implementation of S4D on Jetson is not completely optimized for speed
and efficiency due to the lack of support in TensorRT for complex numbers (see Section 3.3). This
will be addressed in future work. We do not expect it to change the qualitative findings presented in
this paper.

The accuracy of S4D on Loihi 2 could be improved further by applying QAFT for more than one
epoch. Direct extensions of S4 (e.g., Liquid-S4 [10], S5 [9]) have shown state-of-the-art perfor-
mance on sequence modeling tasks; they are compatible with Loihi 2 and could be evaluated in
future work.

The balance of latency, energy, and throughput can be further optimized on Loihi 2 for specific
use cases. There is a continuum between fall-through and pipelined processing, not explored here.
It enables balancing latency and throughput by introducing just enough pipelining such that the
throughput matches the sampling rate of the input sequence.

Ultimately, this work and possible optimizations should now be applied and tested in real-world
streaming use-cases, such as keyword-spotting, audio denoising, drone control, and other latency or
energy constrained domains.
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