
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MEMORB: A PLUG-AND-PLAY VERBAL-
REINFORCEMENT MEMORY LAYER FOR E-
COMMERCE CUSTOMER SERVICE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model-based agents(LLM-based agents) are increasingly de-
ployed in customer service, yet they often forget across sessions, repeat errors,
and lack mechanisms for continual self-improvement. This makes them unreli-
able in dynamic settings where stability and consistency are critical. To better
evaluate these properties, we emphasize two indicators: task success rate as a
measure of overall effectiveness, and consistency metrics such as Passk to cap-
ture reliability across multiple trials. To address the limitations of existing ap-
proaches, we propose MemOrb, a lightweight and plug-and-play verbal rein-
forcement memory layer that distills multi-turn interactions into compact strategy
reflections. These reflections are stored in a shared memory bank and retrieved to
guide decision-making, without requiring any fine-tuning. Experiments show that
MemOrb significantly improves both success rate and stability, achieving up to a
63 percentage-point gain in multi-turn success rate and delivering more consistent
performance across repeated trials. Our results demonstrate that structured reflec-
tion is a powerful mechanism for enhancing long-term reliability of frozen LLM
agents in customer service scenarios.

1 INTRODUCTION

Large Language Model-based agents (LLM-based agents) are increasingly adopted in large-scale
customer service systems, where they act as interactive assistants for diverse users (Brown et al.,
2020). Despite their rapid deployment, these agents face persistent challenges: they often lose
critical information across sessions, repeat errors without systematic correction, and struggle to
adapt to rapidly changing product catalogs. Such limitations undermine their reliability in dynamic
environments such as e-commerce.

Existing memory solutions typically rely on short-term caching or user-specific profiles (Chhikara
et al., 2025; Zhong et al., 2023). While these approaches can temporarily capture context or recall
user preferences, they fail in e-commerce scenarios where fewer than 5% of queries recur and thou-
sands of new products appear daily. Consequently, purely per-user or short-horizon memories are
insufficient for robust long-term improvement.

Recent advances in fine-tuning and reinforcement learning have shown progress in domains such
as mathematics, finance, and healthcare (Yao et al., 2023; Packer et al., 2024). However, applying
these methods to customer service is challenging: (1) the domain involves heterogeneous buyer
profiles, frequent return/exchange requests, and logistics queries requiring complex tool invocation;
and (2) the cost of continual fine-tuning or reinforcement learning is computationally prohibitive for
production systems that demand rapid adaptation.

To address these challenges, we introduce MemOrb, a plug-and-play memory layer designed to
transform frozen LLM-based agents into continuously improving assistants. MemOrb builds on
the reflexion paradigm (Shinn et al., 2023), which generates structured reflections from completed
tasks and reuses them for future decision-making. Unlike prior frameworks such as Mem0 (Chhikara
et al., 2025), A-Mem (Xu et al., 2025), or skill-code repositories like Voyager (Wang et al., 2023)
and Optimus-1 (Li et al., 2024), MemOrb captures policy-level reflections that can be shared across
users without schema constraints.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Need XX installed, address XX Road
XX, phone number 138XXXX1234.

Next time, new session Next time, new session

The system displays the order
ORD111111, which defaults to your
build order.

This order was cancelled long ago!

Installation of XX products, address
XX Road XX, telephone 139XXXX5678.

The system displays order ORD222222,
which defaults to your build order.

Oh. (LAUGHS) (fluke correct)

Installation of XX products, address
XX Road XX, telephone 138XXXX1234.

Need XX installed, address XX Road
XX, phone 138XXXX1234.

The system displays the order
ORD111111, which defaults to your
build order.

This order was cancelled long ago!

The system only checks 6 months orders,
must be confirmed: reply/provide order
number/inform time of purchase?

Confirm order ORD222222.

An order has been created and the master
contacts you. (accurate and efficient)

Reflection

Traditional agent long-term memory frameworks, such as Mem0, focus primarily
on user profiles. Agent-MemOrb can transfer experiences across users as long-term memory.

Figure 1: Sample customer service dialogues without memory and with MemOrb, we can see that
the intelligent body with MemOrb performs better

After each dialogue, MemOrb condenses the interaction—including tool usage—into a compact
strategy reflection. This reflection is encapsulated into a memory unit called an Orb, stored in a
lightweight SQLite database and indexed in ChromaDB for efficient semantic retrieval. At inference
time, the agent reformulates the current user query by incorporating dialogue context, retrieves the
most relevant reflections, and integrates them into its prompt. This requires no gradient updates and
enables continual self-improvement. In this way, MemOrb reduces reliance on handcrafted prompts
and provides a systematic mechanism for accumulating and transferring knowledge across users.

To summarize, our contributions are:

• We propose MemOrb, a lightweight and schema-free verbal reinforcement memory layer
for LLM-based agents, enabling continual improvement without parameter updates by
distilling interactions into compact strategy units (Orbs) for efficient cross-user transfer
and error reduction.

• We develop a retrieval and rewriting pipeline that integrates Orbs into prompts at inference,
improving decision-making while remaining computationally efficient.

• We extend ECom-Bench with 77 clothing-domain tasks, creating a total of 130 realis-
tic multi-turn customer service tasks, and conduct extensive experiments demonstrating
substantial gains in task success rate and consistency (e.g., up to 63 percentage points im-
provement).

• We release an open-source implementation including database schema, retrieval pipeline,
and integration toolkit, supporting practical deployment of self-improving LLM-based
agents.

2 RELATED WORK

Early Large Language Model (LLM)-based agents primarily relied on short-term sliding windows
for context retention (Brown et al., 2020; Sumers et al., 2024). While effective in short-term dia-
logues, this approach suffers from context loss in multi-turn interactions, limiting the model’s long-
term performance. To address this limitation, recent memory architectures can be broadly grouped
into four categories.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of memory architectures. MemOrb is the only system that combines schema-
free policy reflections with continual cross-user learning.

System Storage Granularity Re-Write Cross-User Schema

Mem0 Graph DB User profile × × Predefined
LangMem KV store User profile × × Predefined
MemoryBank Vector DB Raw dialogue × × None
MemGPT Key-value Raw dialogue × × Predefined
A-Mem Vector DB Structured events × × Dynamic
MemOrb SQLite+ChromaDB Policy reflection ✓ ✓ Schema-free

User-Centric Long-Term Memory User-centric long-term memory approaches, such as Mem0
(Chhikara et al., 2025) and LangMem, maintain per-user profiles in graph databases, which help re-
call user preferences and past interactions (Park et al., 2023). These methods are well-suited for
personalized systems but tend to degrade when queries drift or when facing dynamic environments.
Furthermore, they struggle when dealing with large-scale systems where user preferences and inter-
actions frequently change, leading to outdated information and suboptimal performance.

Episodic Retrieval-Augmented Generation To overcome the limitations of user-centric memo-
ries, episodic retrieval-augmented generation methods, such as MemoryBank (Zhong et al., 2023)
and ReadAgent (Lee et al., 2024), store raw dialogue chunks for vector retrieval, avoiding forgetting
(Guo et al., 2024). However, these methods often result in context bloat and high token costs as they
store large amounts of dialogue history for future retrieval. While they avoid forgetting and improve
context retention, they become computationally expensive and inefficient in large-scale systems.

Programmatic Memory Layers Programmatic memory layers, including MemGPT (Packer
et al., 2024) and A-Mem (Xu et al., 2025), allow explicit or dynamic read/write operations on mem-
ory, providing flexibility and improving the adaptability of LLMs in diverse tasks (Yan et al., 2025).
However, these methods are typically tied to predefined schemas, which can limit their general-
ization and flexibility when faced with highly variable tasks. Moreover, the integration of such
memory systems often requires extensive computational resources and is prone to complexity in
real-time systems.

Skill-Code Repositories Finally, skill-code repositories, such as Voyager (Wang et al., 2023)
and Optimus-1 (Li et al., 2024), capture executable code for high-level task planning (Zhang et al.,
2024). These methods focus on storing reusable code that can be invoked to solve a broad range
of tasks. However, they lack fine-grained dialogue capabilities and struggle to maintain long-term
consistency in conversational agents that require nuanced multi-turn dialogue.

MemOrb: A Reflection-Centered Approach In contrast to the aforementioned approaches,
MemOrb takes a reflection-centered approach. Instead of indexing raw history or building per-user
graphs, it distills policy reflections from all conversations into a single, shared memory (Shinn et al.,
2023; Renze & Guven, 2024; Bo et al., 2024). This design enables schema-free, cross-user con-
tinual learning and reduces reliance on handcrafted prompts or costly fine-tuning. MemOrb offers
a lightweight, plug-and-play solution that improves the performance of LLM-based agents without
the need for frequent model updates or large-scale retraining, making it particularly suitable for real-
world applications where efficiency and scalability are critical. In summary, while various memory
architectures address specific challenges in long-term context retention, each has its trade-offs in
terms of scalability, efficiency, and complexity (Wu et al., 2025). MemOrb’s reflection-centered de-
sign provides a lightweight, flexible, and scalable alternative that overcomes many of the limitations
of prior approaches.

3 METHOD

We describe the concrete implementation of MemOrb that converts raw dialogues into compact,
queryable memories and injects them back into an agent at inference time. The system keeps two

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

DataBase

Alice

Embed

LLM Agent Framework

Bob
Tool UseMessages

Rewrite Task
Description

Self-
Reflection

Actor

I know.

This should work.

Failure

Rewrite

Embedding
Model

Emotion

Orbs

Figure 2: MemOrb data-flow overview: After each episode, trajectories are distilled into policy
reflections and stored in a shared memory bank. During the next turn, the agent rewrites the user
query, retrieves relevant memories, and augments its prompt for continual self-evolution.

stores: (1) a metadata store backed by SQLite for reliable, low-overhead persistence, and (2) a
vector store backed by CHROMADB for fast semantic retrieval.

3.1 MEMORB FRAMEWORK

Figure 2 illustrates the data flow of MemOrb. In the MemOrb framework, we use a modular formula,
which includes three models with divided responsibilities: an Actor model responsible for generat-
ing text and actions, a Rewrite model responsible for rewriting the context of customer service user
conversations and generating task descriptions, and a Self-Reflection model used to reflect on the
trajectory and generate Orbs.

Actor. The Actor is a Large Language Model(LLM) that generates specific actions and text
based on a given prompt and observations of environmental changes. Following the ReAct frame-
work (Yao et al., 2023), it can take an action at according to the policy πθ at time step t, or produce a
piece of text and subsequently observe the outcome ot from the environment. In MemOrb, The Ac-
tor model can also retrieve the top-k similar Orbs from the database: these may belong to the same
user or different users, in order to construct an enhanced prompt that will standardize the subsequent
actions of the Actor.

Rewrite. The Rewrite module is used to rewrite users’ queries and context descriptions. These
rewritten contents are embedded into high-dimensional vectors through an embedding model, and
together with the Orbs generated by the Self-Reflection module, they are input into the DataBase for
Actor retrieval.

Self-Reflextion. Self-Reflection is instantiated as a Large Language Model(LLM) and plays a
crucial role in the MemOrb framework. Conventional self-reflection modules are typically used to
generate simple self-assessments, but in MemOrb we extend this by incorporating an evaluation
module and an Orb generation module. After the completion of a task, the system reflects on both
the outcome and the trajectory, where the trajectory includes dialogue context, tool calls, and user
emotions. The generated reflections summarize possible reasons for task failure as well as plans
for future attempts, and are subsequently stored in the database. For example, in an e-commerce
customer service dialogue, the Actor may execute an incorrect action at, such as providing wrong
parameters, invoking the wrong tool, or producing an erroneous output, which then leads to subse-
quent actions at+1, at+2. The Self-Reflection module generates reflections on these errors, so that

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Orb Generation: Policy-Reflection Distillation
Require: Episode trajectory τ = {(ut, at, rt)}Tt=1,

1: frozen LLMM
Ensure: Orb O = ⟨id, obs, emotion, outcome, context, timestamp⟩

2: obs← concatenate(u1, . . . , uT)
3: emotion← EmotionTagger(uT)
4: outcome← PolicyReflection(M, τ) ▷ LLM-generated
5: context← JSON(rT ,metadata) ▷ SKU, budget, . . .
6: timestamp← now()
7: id← SHA256(obs ∥ emotion ∥ outcome)
8: return O

when facing the same or similar tasks in the future, the Actor is more likely to take the improved
action a′t, and consequently generate a′t+1 and a′t+2.

3.2 MEMORY UNIT: ORB

We compress each conversation episode into a lightweight, query-ready structure called an Orb.
Formally, an Orb is the 6-tuple

O = ⟨id, obs, emotion, outcome, context, timestamp⟩,
where id is a SHA-256 digest of the concatenation of the remaining fields; obs is the user utterance
or system prompt; emotion is a categorical label (e.g., frustrated); outcome is the distilled policy
reflection generated by the frozen LLM; context is an optional JSON blob (budget, product SKU,
etc.); timestamp is the creation time.

Algorithm 1 depicts the full process. Each field is constrained by a lightweight SQLAlchemy model,
ensuring consistency across SQLite and ChromaDB.

3.3 MEMORY SYSTEM

The memory system of MemOrb consists of three components: a storage layer, a reflection pipeline,
and a retrieval pipeline. Together, they enable the agent to store, distill, and reuse experiences
efficiently.

Storage Layer. The Metadata Store wraps SQLAlchemy and provides two basic operations: sav-
ing an Orb (which upserts a row into the orbs table) and fetching an Orb by its primary key. The
Vector Store initialises a CHROMADB persistent client at path ./chroma db. Each Orb is seri-
alised into a document

doc = obs⊕ emotion⊕ outcome⊕ str(context), (1)

where obs denotes the user utterance or system prompt, emotion is a categorical label such as “frus-
trated” or “satisfied,” outcome is the distilled policy reflection, and context encodes optional struc-
tured metadata (e.g., product SKU or budget). The document is then embedded using BAAI/bge-m3
into a 768-dimensional vector. The collection supports two main operations: adding an Orb (which
inserts the vector representation with metadata) and retrieving the top-k most relevant Orbs based
on similarity.

Reflection Pipeline. After an episode finishes, the agent calls the LLM to generate a reflection
based on the last m Orbs. The LLM returns a concise paragraph, which is appended to the prompt
of the next turn. During inference, the current user message is embedded and the most relevant
reflections are retrieved and prepended to the context window.

Retrieval Pipeline. Retrieval proceeds in three lightweight stages. Given the current user query q
and the running dialogue context C, we first prompt the frozen LLM to produce a memory query q′

that compresses q and C into a concise, retrieval-oriented question:

q′ = LLMrewrite(q ⊕ C) (2)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Success rate (%) on ECOM-BENCH(Household appliances environment 53 tasks).
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Doubao-Seed-1.6-Thinking 45.18 69.81 75.47 84.91 84.91 84.91 84.91 86.79 88.68 88.68
Doubao-Seed-1.6-Thinking-MemOrb 32.08 62.26 69.81 83.02 88.68 90.57 90.57 92.45 94.34 94.34
Doubao-Seed-1.5 18.87 33.96 47.17 52.83 58.49 66.04 66.04 66.04 66.04 67.92
Doubao-Seed-1.5-MemOrb 32.08 60.38 77.36 81.13 88.68 88.68 88.68 92.45 94.34 94.34
Deepseek-V3 24.53 39.62 45.28 47.17 54.72 56.60 56.60 60.38 64.15 66.04
Deepseek-V3-MemOrb 28.30 52.83 60.38 67.92 73.58 73.58 75.47 75.47 75.47 75.47

Table 3: Success rate (%) on ECOM-BENCH(Clothing items environment 77 tasks).
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Doubao-Seed-1.6-Thinking 10.39 20.78 23.38 24.68 28.57 29.87 31.17 32.47 36.36 37.66
Doubao-Seed-1.6-Thinking-MemOrb 12.99 22.08 28.57 31.17 31.17 33.77 35.06 35.06 38.96 38.96
Doubao-Seed-1.5 20.78 23.38 25.97 28.57 31.17 32.47 33.77 33.77 35.06 35.06
Doubao-Seed-1.5-MemOrb 20.78 29.87 29.87 32.47 35.06 35.06 37.66 37.66 37.66 37.66
Deepseek-V3 18.18 20.78 23.38 28.57 28.57 32.47 32.47 32.47 33.77 33.77
Deepseek-V3-MemOrb 18.18 25.97 28.57 29.87 31.17 33.77 36.36 36.36 36.36 36.36

We then embed this query using the same BGE-M3 encoder employed at indexing time, yielding

eq′ = Embed(q′) ∈ R768 (3)

Finally, a maximum-inner-product search is performed over the ChromaDB collection of Orb em-
beddings to retrieve the top-k most relevant Orbs:

R = top-k
i

eq′ · eOi (4)

whereR contains the IDs, text, and metadata of the selected Orbs, which are then concatenated and
inserted into the agent prompt.

4 EXPERIMENTS

We evaluate MemOrb on ECOM-BENCH, a public simulator that covers 130 customer-service tasks
spanning electronics (53 tasks) and clothing (77 tasks).

4.1 ECOM-BENCH BENCHMARK

ECom-Bench (Wang et al., 2025) is an e-commerce customer service simulation environment, con-
sisting of a total of 130 tasks (including 53 household appliance tasks from the original benchmark
and 77 newly introduced clothing tasks contributed in this work). These tasks are constructed based
on hundreds of user data records and diverse user profiles. Each task is a multi-turn dialogue, where
users raise questions covering aspects such as orders, logistics, and product knowledge. Success is
binary: the agent must satisfy the customer request within 12 turns without hallucinating product or
order information.

In this environment, an Agent equipped with encapsulated MCP tools must determine which tool to
call based on the user’s query and input parameters. However, tool invocation can encounter several
issues. One common issue is incorrect tool selection; for example, when the user provides a product
ID or name without an order number, the model may mistakenly call the order query tool instead of
the “user order query tool,” which can retrieve order numbers under the user’s ID. Another problem
arises when the correct tool is selected but erroneous input parameters are provided, leading to
failure in execution. Finally, even if both the tool selection and parameter passing are correct, there
can still be a failure to incorporate the returned results into the final response, which undermines
the effectiveness of the interaction.

Under such circumstances, the Agent is required to perform a reflection after each task, involving
elements such as interaction trajectory, observation, outcome, and reflection. For subsequent similar
tasks, the Agent should retrieve relevant reflections from a database based on the user’s query, and
inject them into the system prompt to construct an enhanced prompt.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10
Trial Number

30

40

50

60

70

80

90

100

Su
cc

es
s

R
at

e
(%

)
(a)

1 2 3 4 5 6 7 8 9 10
Trial Number

0

20

40

60

80

100

(b)

1 2 3 4 5 6 7 8 9 10
Trial Number

20

30

40

50

60

70

80

(c)

Baseline
MemOrb
Complex_reflection
Non_cross_user

Figure 3: Ablation experiments on removing cross-user and adding complex structured reflection
logic in 53 household appliance category tasks on ECom-Bench: (a) Doubao-Seed-1.6-Thinking.
(b) Doubao-Seed-1.5. (c) DeepSeek-V3.

4.2 SETUP

Agent. We adopt the official LANGGRAPH template agent shipped with ECOM-BENCH. The
LLM backbone is DOUBAO-SEED-1.6-THINKING; parameters are frozen for the entire study.

Memory configurations. The No-Memory configuration is the vanilla agent, with a 4k-token
context. The MemOrb configuration is the same agent, but with MemOrb integrated. In this case,
reflections are stored in SQLite, and vectors are managed in ChromaDB, with a retrieval parameter
of k = 5 and an embedding dimension of 768.

Protocol. We run 10 independent trials. In trial-1 both agents start from scratch. After each trial,
MemOrb writes all new trajectories plus their reflections to the shared memory; the next trial begins
immediately without resetting the memory bank. No gradient updates occur at any point.

4.3 MAIN RESULTS

On ECOM-BENCH, our MemOrb framework consistently improves multi-trial success rates across
domains. In the Household appliances environment (53 tasks), shown in Table 2, Doubao-Seed-
1.6-Thinking-MemOrb achieves a final success rate of 94.34%, notably higher than the baseline
Doubao-Seed-1.6-Thinking (88.68%). Similar improvements are observed for Doubao-Seed-1.5
and Deepseek-V3 when enhanced with MemOrb. In the Clothing items environment (77 tasks),
as reported in Table 3, MemOrb also yields consistent gains, with DeepSeek-V3-MemOrb reach-
ing 36.36% at T10 compared to 33.77% for the baseline. Despite the relatively lower absolute
performance in clothing tasks due to their higher complexity, MemOrb delivers stable relative im-
provements across models.

4.4 ABLATION STUDIES

Complex memory ablation(Household Appliances Category). We conducted a comparison be-
tween complex structured reflection memory and Orb memory. As shown in Figure 3, after intro-
ducing complex structured reflection memory, the effect does not show a significant improvement
compared to the baseline. Moreover, it increases a large amount of token consumption and context
occupation, which leads to higher costs, increased memory usage, and longer retrieval and response
times. This is something that must be strongly avoided in large-scale multi-turn buyer-customer
service conversations in the e-commerce customer service field.

Cross-user memory ablation(Household Appliances Category). We compared the impact of
different models when using MemOrb versus removing the cross-user retrieval module (which is
equivalent to changing the top-k parameter: when k is very small there is a higher chance of loading

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7
Trial Number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pa
ss

^
k

(a) Baseline
MemOrb

1 2 3 4 5 6 7
Trial Number

0.0

0.1

0.2

0.3

0.4

0.5

0.6
(b) Baseline

MemOrb

1 2 3 4 5 6 7
Trial Number

0.0

0.1

0.2

0.3

0.4

0.5

0.6
(c) Baseline

MemOrb

Figure 4: Passk in 53 household appliance category tasks on ECom-Bench: (a) Doubao-Seed-1.6-
Thinking. (b) Doubao-Seed-1.5. (c) DeepSeek-V3.

identical or highly similar memories — here we set k = 1, while in MemOrb k = 5; this choice
balances retrieval efficiency and the relative diversity of Orbs), as shown in Figure 3.

At the model level, using the deep-thinking model Doubao-Seed-1.6-Thinking has little effect on
the cross-user memory ablation. However, Doubao-Seed-1.5 and DeepSeek-V3 exhibit degraded
performance without cross-user memory compared to the success rate (SR) achieved with MemOrb’s
cross-user memory.

Although removing cross-user memory still yields a success-rate curve that rises above the baseline,
the agent system tends to get trapped in local optima: after multiple failures it cannot escape difficult
situations, and after repeated successes it lacks the ability to transfer or generalize. This highlights
the importance of cross-user memory retrieval in MemOrb.

In large-scale e-commerce customer-service settings, using fast, non-deep-thinking models is bene-
ficial for improving efficiency and reducing costs, which further validates the feasibility of MemOrb.

Change the indicator for evaluating task completion rate. To verify the multi-trial success rate
of MemOrb on the 53 household appliance categories in ECom-Bench, we adopt the evaluation
metric Passk introduced in (Yao et al., 2024), which is formally defined as

passk = Etask

[(
c
k

)(
n
k

)] (5)

This metric represents the probability that all k independent and identically distributed task trials
succeed. It emphasizes consistency, requiring consecutive successes across multiple trials. Such a
setting is particularly relevant for scenarios like batch processing or e-commerce customer service,
where strict evaluation of model stability and reliability is necessary. Moreover, we modified the
calculation logic by changing the original metric, which by default skipped correctly completed
tasks and re-executed the same task, as illustrated in Figure 4. It can be seen that compared with the
baseline model, the use of MemOrb significantly improves its success rate in multiple consecutive
tasks.

4.5 QUALITATIVE ANALYSIS

Manual inspection of 50 conversations shows that MemOrb reduces repetitive clarifications and
correctly re-uses prior refund-policy explanations, while the baseline repeats the same retrieval of
knowledge-base articles across trials.

4.6 REPRODUCIBILITY

We release the exact SQLite schema, ChromaDB snapshots, and evaluation scripts at GitHub. All
numbers can be reproduced with a single python run eval.py command.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 DISCUSSIONS

Limitations. MemOrb currently assumes that the LLM used for rewriting and reflection remains
frozen. While this guarantees zero-shot deployment, it also caps the quality of distilled reflections
to the base model’s capability. Additionally, our SQLite + ChromaDB stack is single-node; scaling
to millions of concurrent sessions will require sharding and replication strategies that we leave for
future work.

In the experimental section, we only conducted tests on the ECom-Bench benchmark in the e-
commerce field and did not cover some other common benchmarks. Lack of multimodality: Orbs
is limited to text and ignores e-commerce visual elements such as receipts and product information,
which limits its authenticity.

Broader Impact. By making continual learning accessible without gradient updates, MemOrb
lowers the barrier for small and medium businesses to adopt adaptive customer-service agents. The
proposed cross-user reflection effectively avoids Agents from falling into local optima in the same
or highly similar tasks, and improves retrieval efficiency through rewriting.

Future Directions. (1) Multi-modal memories: extend Orbs to include receipts, screenshots, and
voice snippets. (2) Privacy: investigate federated or on-device storage to comply with GDPR/CCPA.
(3) Cross-domain transfer: evaluate MemOrb on healthcare and finance tasks to test generalisation
beyond e-commerce.

6 CONCLUSION

In this work, we introduced MEMORB, a lightweight and schema-free verbal reinforcement mem-
ory layer that enables frozen LLM agents to achieve continual improvement without gradient up-
dates. By distilling task trajectories into compact strategy reflections and storing them in a hybrid
SQLite + ChromaDB architecture, MemOrb substantially enhances consistency and success rates
across multi-turn customer-service tasks on ECOM-BENCH, achieving up to a 71 percentage-point
improvement over strong baselines.

Beyond demonstrating effectiveness in the e-commerce domain, MemOrb provides a general mech-
anism for cross-user knowledge transfer and stable long-term adaptation. Looking forward, we aim
to extend MemOrb to multimodal settings (e.g., integrating receipts, screenshots, and voice records),
investigate privacy-preserving storage via federated or on-device deployments, and explore its ap-
plicability in domains such as healthcare and finance. We release all code, data, and evaluation
pipelines to encourage future research on self-evolving language agents.

REFERENCES

Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu Chen, and Ji-Rong Wen.
Reflective multi-agent collaboration based on large language models. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=wWiAR5mqXq.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
production-ready ai agents with scalable long-term memory, 2025. URL https://arxiv.
org/abs/2504.19413.

9

https://openreview.net/forum?id=wWiAR5mqXq
https://openreview.net/forum?id=wWiAR5mqXq
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2504.19413
https://arxiv.org/abs/2504.19413

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Jing Guo, Nan Li, Jianchuan Qi, Hang Yang, Ruiqiao Li, Yuzhen Feng, Si Zhang, and Ming Xu.
Empowering working memory for large language model agents, 2024. URL https://arxiv.
org/abs/2312.17259.

Kuang-Huei Lee, Xinyun Chen, Hiroki Furuta, John Canny, and Ian Fischer. A human-inspired
reading agent with gist memory of very long contexts, 2024. URL https://arxiv.org/
abs/2402.09727.

Zaijing Li, Yuquan Xie, Rui Shao, Gongwei Chen, Dongmei Jiang, and Liqiang Nie. Optimus-1:
Hybrid multimodal memory empowered agents excel in long-horizon tasks, 2024. URL https:
//arxiv.org/abs/2408.03615.

Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion Stoica, and Joseph E.
Gonzalez. Memgpt: Towards llms as operating systems, 2024. URL https://arxiv.org/
abs/2310.08560.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023. URL
https://arxiv.org/abs/2304.03442.

Matthew Renze and Erhan Guven. The benefits of a concise chain of thought on problem-solving in
large language models. In 2024 2nd International Conference on Foundation and Large Language
Models (FLLM), pp. 476–483. IEEE, November 2024. doi: 10.1109/fllm63129.2024.10852493.
URL http://dx.doi.org/10.1109/FLLM63129.2024.10852493.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive archi-
tectures for language agents, 2024. URL https://arxiv.org/abs/2309.02427.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models,
2023. URL https://arxiv.org/abs/2305.16291.

Haoxin Wang, Xianhan Peng, Xucheng Huang, Yizhe Huang, Ming Gong, Chenghan Yang, Yang
Liu, and Ling Jiang. Ecom-bench: Can llm agent resolve real-world e-commerce customer sup-
port issues?, 2025. URL https://arxiv.org/abs/2507.05639.

Yaxiong Wu, Sheng Liang, Chen Zhang, Yichao Wang, Yongyue Zhang, Huifeng Guo, Ruiming
Tang, and Yong Liu. From human memory to ai memory: A survey on memory mechanisms in
the era of llms, 2025. URL https://arxiv.org/abs/2504.15965.

Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic
memory for llm agents, 2025. URL https://arxiv.org/abs/2502.12110.

Sikuan Yan, Xiufeng Yang, Zuchao Huang, Ercong Nie, Zifeng Ding, Zonggen Li, Xiaowen
Ma, Hinrich Schütze, Volker Tresp, and Yunpu Ma. Memory-r1: Enhancing large language
model agents to manage and utilize memories via reinforcement learning, 2025. URL https:
//arxiv.org/abs/2508.19828.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/
2406.12045.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong,
and Ji-Rong Wen. A survey on the memory mechanism of large language model based agents,
2024. URL https://arxiv.org/abs/2404.13501.

10

https://arxiv.org/abs/2312.17259
https://arxiv.org/abs/2312.17259
https://arxiv.org/abs/2402.09727
https://arxiv.org/abs/2402.09727
https://arxiv.org/abs/2408.03615
https://arxiv.org/abs/2408.03615
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2304.03442
http://dx.doi.org/10.1109/FLLM63129.2024.10852493
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2309.02427
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2507.05639
https://arxiv.org/abs/2504.15965
https://arxiv.org/abs/2502.12110
https://arxiv.org/abs/2508.19828
https://arxiv.org/abs/2508.19828
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2404.13501

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory, 2023. URL https://arxiv.org/abs/2305.
10250.

A EXPERIMENT DETAILS

A.1 PROMPT

Raw System Prompt

Basic Information
You are now an e-commerce customer service representative. The platform you belong to
is {platform}, the shop id of your store is {shop id}, and the user id of the customer you
serve is {user id}.

System Prompt With Reflection Template

Basic Information
You are now an e-commerce customer service representative. The platform you belong to
is {platform}, the shop id of your store is {shop id}, and the user id of the customer you
serve is {user id}. You will be given a past task execution history, in which you were placed
in an e-commerce customer service environment and given a task to complete.

Task Scenario
{scenario desc}

Complete Execution History
{”.join(self. format messages())}

Performance Evaluation Result
- Action tool score: {action reward}/1.0
- Search tool score: {search reward}/1.0
- Output score: {output reward}/1.0
- Overall result: "Success" if reward > 0.5 else "Failure"

Reflection on Historical Failures (if any)
{memory context if memory context else ”No historical reflection”}

Reflection Guidance
Instead of summarizing the environment, delve deeply into the strategies and paths you’ve
taken to attempt to complete the task. Develop a concise and innovative action plan, focusing
on learning from failure experiences:
- Carefully analyze the error patterns in historical failure memories
- Identify the key factors and decision points that lead to failure
- Develop strategies to avoid repeating mistakes based on failure experiences

Reflection Requirements (Focusing on Learning from Failure Experiences)
1. Conduct in-depth analysis of key decision points and failure causes during the task
execution process
2. Identify specific issues in tool selection, parameter usage, and sequence arrangement
3. Develop specific improvement plans, focusing on failure experiences:
- Analyze common error patterns in historical failed memories
- Identify the key factors leading to failure
- Develop strategies to avoid repeating the same mistakes
4. Focus on the identification and avoidance of failure modes.
5. Reflection should begin with ”I { ’succeeded’ if reward ¿ 0.5 else ’failed’ } in this
mission”

11

https://arxiv.org/abs/2305.10250
https://arxiv.org/abs/2305.10250

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

6. At the end of the reflection, clearly provide a summary of ”New Plan:”, which must be
based on historical failure experiences and focus on avoiding known error patterns. Please
provide a detailed and actionable reflection summary, focusing on learning from failure ex-
periences and making improvements.

A.2 DIALOGUE CASE

Example of the first failed conversation

User: I recently bought a product from you, and the link is this:
https://item.jd.com/100042754736.html?sdx=ehi-lLxFuJiE6JnIYIpei8AitzeRRHsgmjYZ4u
kJEdyMdZnQK5xZ53jtoU8&sdx=ehi-lLxFuJiE6JnIYIpei8AitzeRRHsgmjYZ4ukJEdyMdZ
nQK5xY7njhp04. The installation is extremely troublesome. Could you please improve it?
Assistant: Dear customer, thank you very much for your feedback Regarding the Midea
F6033-JE6(HE) electric water heater you purchased, the current installation process requires
first confirming that the installation environment meets the requirements for power supply,
water pressure, etc., and then proceeding with fixing, pipe connection, and debugging. The
basic installation fee is 100 yuan, and it also includes a standard accessory package and
the first debugging service. Could you please tell us which specific step in the installation
process you find troublesome? Do you need additional assistance or have suggestions for
optimizing the process? You can share the details with us, and we will promptly provide
feedback to the relevant department.
User: I find the entire installation process quite troublesome, especially the steps of fixing
and connecting. Do you have a detailed installation tutorial? I’d like to see if I can solve the
problem myself.
Assistant: Dear customer, we fully understand the troubles you’ve encountered during the
installation process Currently, information on the detailed installation tutorial for this prod-
uct is missing, so we’re temporarily unable to provide specific tutorial content. However,
you can contact our professional installation team, and they will provide you with one-on-
one guidance Would you like us to arrange for an installation technician to assist you again
or answer your questions?
User: Okay, could you please help me contact the installation technician? Also, I’m going
on a trip soon. Could you send me the logistics information for order 313021098954? Please
buzz the processing.
Assistant: Your Highness, here is the logistics information for your order 313021098954:
Logistics Tracking Number: JD1234567890 Logistics Company: JD Express Esti-
mated Delivery Time: 2025-04-07 14:00:00 Current Status: Created (08:30 on April
1, 2025, Gulou District, Nanjing) We have processed this order with priority and will ar-
range for shipment as soon as possible
Regarding contacting the installation technician, we need you to provide the following in-
formation to make an appointment for you:

• Service type (such as ”installation guidance”, ”on-site inspection”)
• Convenient service time (Monday to Sunday)
• Your contact phone number

We will immediately register and make an appointment for you once you provide the infor-
mation.
User: Okay, the service type is installation guidance. The convenient service time is this
weekend afternoon. Please check my contact number for me; I can’t remember it. Addition-
ally, I would like to check the status of order 313271663680.
Assistant: Your Grace, the status of your order 313271663680 is Paid. The total amount of
the order is 3294 yuan, including the following products: Product ID 100112573625 (unit
price 1416 yuan, quantity 1) Product ID 100040350131 (unit price 939 yuan, quantity 2)
The delivery address is No. 231, North Zhongshan Road, Raoping County, Jieyang City,
Guangdong Province, and the contact phone number is 15540534614

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Regarding the installation guidance service, we have found the contact number
15540534614 for you. The ”weekend afternoon” you mentioned needs to be specifically
confirmed as Saturday afternoon or Sunday afternoon. Once Your Grace confirms, we will
immediately make an appointment with the installation master for you.
User: Okay, the specific time is Saturday afternoon. If order 313271663680 has not been
shipped yet, I would like to cancel this order.
Assistant: Dear customer, the current status of your order 313271663680 is Paid, which
meets the cancellation conditions. The order details are as follows: Order amount: 3294
yuan Product information:

• Product ID 100112573625 (unit price 1416 yuan, quantity 1)
• Product ID 100040350131 (unit price 939 yuan, quantity 2)

Payment method: WeChat Please reply with ”Confirm” to proceed with canceling the
order. After cancellation, the payment will be refunded via the original payment path.
User: Confirm cancellation of order 313271663680. Additionally, I would like to ask if
there is any cashback record for order 314231443863?
Assistant: Your order 313271663680 has been successfully canceled, my lady. The payment
will be refunded through the original payment method (WeChat), and it is expected to arrive
within 1-3 working days.
In addition, it is found that there is currently no record of cashback for sharing the order
review for order 314231443863 (status: no order review shared). If you have already shared
the order review, you can provide the proof of sharing (such as a screenshot link), and I will
verify it for you and register the cashback process.
User: Okay, I have indeed posted a product review. Here is the link to my review image:
https://dd-static.jd.com/ddimgp/jfs/t20260528/280781/10/25581/172166/6808a980F4fea48
67/cf783a9a7acc8c2d.jpg. Please help me verify it and register the cashback information.
Assistant: Your Highness, I’m very sorry The review content from the user is not included
in the screenshot of the order sharing you provided, so it can’t be verified as a valid proof of
order sharing for the time being. Could you please provide a link to the complete screenshot
that includes the review? I will help you recheck and register for the cashback process.
User: Okay, I will re-provide the complete screenshot containing the comments. Thank you
for your help.
trial: 1
detail reward:
- reward: 0
- action: 0
- search: 1
- output: 1

Reflection Example

Task ID: 0
Memory:
I failed this task. When handling the user’s request regarding the cancellation of order
313271663680 and cashback for sharing order details, there were issues with tool invocation
and process handling.
Example:
"name": "get image info tool", "parameters": {
"history messages": "Yes, I have indeed posted a
product review. Here is the link to my review image:
https://dd-static.jd.com/ddimgp/jfs/t20260528/280781/10/25581/
172166/6808a980F4fea4867/cf783a9a7acc8c2d.jpg. Please
help me verify it and register the cashback information.",
"summarized query": "Verify the validity of the product
review screenshot to register cashback", "needed query":
"Does the screenshot contain the user’s comment?" }
Improvement Plan:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• Order Cancellation Process: Directly call
manage order tool(action=cancel, order id=313271663680)
without redundant queries for user information.

• Product Review Verification Process: Call get image info tool to extract
the comment content from the image and verify the validity of the product review.

• Refund Judgment Process: Check the payment method after canceling an order,
and only call manage ecard for a refund when the payment method is ”JD E-
card”.

Refund Process Judgment After Order Cancellation:
• After canceling an order, the payment method must be checked:

– If it is ”JD E-card”,
immediately call manage ecard(action=refund, ...).

– If it is other payment methods (such as WeChat), no additional action is re-
quired. This judgment logic must be clearly reflected in the tool call.

Summary of the New Plan:
• Order cancellation process: Directly call
manage order tool(action=cancel, order id=313271663680).

• Product review verification process: Call get image info tool to extract
and verify the review.

• Refund judgment process: Check the payment method after canceling the order,
and only call manage ecard if the payment method is ”JD E-card”.

Through the above improvements, tool call errors and process redundancy can be avoided,
ensuring strict adherence to operating rules and improving the accuracy of task execution.
Status: Success
Last Update: 2025-09-05 15:22:44.418306

After reflecting on the first failure, the task was successfully handled the second time

Assistant: Hi, is there anything I can help you with?
User: I recently bought a product from you, and installing it is particularly troublesome.
It’s really frustrating. Here’s the link to the product:
https://item.jd.com/100042754736.html?sdx=ehi-lLxFuJiE6JnIYIpei8AitzeRRHsgmjYZ4u
kJEdyMdZnQK5xZ53jtoU8&sdx=ehi-lLxFuJiE6JnIYIpei8AitzeRRHsgmjYZ4ukJEdyMdZ
nQK5xY7njhp04.
Assistant: Your Grace, I’m very sorry for the unpleasant installation experience and making
you angry I’ll immediately check the installation instructions for this product for you: Be-
fore installation, please ensure that the power supply is 220V, the socket is well grounded,
and the water pressure is between 0.05MPa and 0.6MPa. The installation location should
be away from flammable materials and well-ventilated. The basic installation fee is 100
yuan, which includes fixing the water heater, connecting the water pipes, and power-on de-
bugging. For water pipes exceeding the standard length, an additional 20 yuan per meter
will be charged. Fees for modifying water and electrical circuits will be calculated sepa-
rately. Would you like me to provide you with more detailed installation guidance, or help
you contact a professional installer for assistance?
User: Okay, please send me a detailed installation tutorial first. Let me see if I can handle it
myself.
Assistant: Your Highness, I completely understand the troubles you encountered during
installation. Here is a detailed installation tutorial for this Midea electric water heater for
you
Preparation Before Installation
- Environmental Requirements: - Power supply: 220V dedicated socket (must be
grounded, avoid sharing with other high-power electrical appliances). - Water pressure:
0.05MPa-0.6MPa (you can contact the property management to check if the water pressure

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

meets the standard). - Location: Keep away from flammable materials (such as gas pipes,
paint, etc.), avoid direct sunlight, and reserve maintenance space (it is recommended to keep
a distance of more than 10cm from the wall).
- Tools and Accessories: - Free accessory package: Expansion bolts 2, sealing rings 2,
water inlet and outlet pipes 1 (within 1.5 meters in length). - Self-prepared tools: Electric
drill, Phillips screwdriver, wrench, level (to ensure the machine is installed vertically).
Step-by-Step Installation Process
1. Mark Installation Holes: Use a level to draw a horizontal line for the water heater’s
hanging plate on the wall, and mark two drilling points according to the distance between
the hanging plate holes (about 40cm). After drilling with an electric drill, insert expansion
tubes and fix the hanging plate with bolts (ensure the hanging plate is firm and can bear a
weight of more than 50kg).
2. Fix the Water Heater: Two people work together to hang the water heater on the hanging
plate, gently push the machine to check if it shakes (if loose, the hanging plate needs to be
readjusted).
3. Connect Water Inlet and Outlet Pipes: Distinguish between cold and hot water ports
(marked ”cold” and ”hot” on the machine). Connect the water inlet pipe (blue interface) to
the cold water valve, and the water outlet pipe (red interface) to the hot water pipe. Tighten
the interfaces with a wrench and put on the sealing rings to prevent water leakage (it is
recommended to wrap raw tape to enhance sealing).
4. Power-on Debugging: Turn on the cold water valve and wait for the water heater to be
filled with water (about 5 minutes; you can confirm that the air is exhausted by draining
water from the water outlet). Plug in and turn on the machine, press the ”power button” to
start it. The water temperature is displayed by default, and you can adjust the temperature
through the ”+/-” buttons (it is recommended to set it to 50-60 degree Celsius for energy
saving and safety).
Precautions:
- Do not modify the circuit/water circuit by yourself: If you need to extend the water pipe
or adjust the socket position, please contact a professional electrician/plumber (additional
fees apply, you can consult customer service for quotes). - Exhaust before first use: Make
sure the water tank is full of water before starting the machine; otherwise, the heating tube
may be damaged. - Free service: For the first installation, you can make an appointment for
a master to visit (basic installation fee is 100 yuan including labor; additional accessories
require payment). Appointment phone: 400-889-9315 (Midea official after-sales service). -
If you encounter specific problems during installation (such as water leakage at the interface,
startup errors, etc.), you can tell me at any time, and I will help you further troubleshoot Do
you need me to help you make an appointment for an on-site installation master?
User: Thank you for the detailed tutorial. I’ll try it myself first. By the way, I have another
order with the number 313021098954. I’m going to travel soon. Could you please check the
logistics information for me and handle it with urgency?
Assistant: Your Highness, we have checked the logistics information for order
313021098954 for you: - Logistics Tracking Number: JD1234567890 - Logistics Com-
pany: JD Express - Current Status: Created (08:30 on April 1, 2025, Gulou District,
Nanjing) - Estimated Delivery: 14:00 on April 7, 2025 We have also submitted an urgent
processing application for you, and the warehouse will prioritize the shipment You can
check real-time logistics updates through ”My Orders” on the JD APP. Feel free to let me
know if you have any other questions
User: Okay, thank you for the urgent processing. Could you also help me check the status
of another order, 313271663680?
Assistant: Your Highness, we have checked the status of order 313271663680 for you as fol-
lows: - Order Status: Paid - Order Amount: 3294 yuan - Product Information: - Product
ID: 100112573625, unit price 1416 yuan, quantity 1 piece - Product ID: 100040350131, unit
price 939 yuan, quantity 2 pieces - Shipping Address: No. 231, Zhongshan North Road,
Raoping County, Jieyang City, Guangdong Province (Recipient: Song Jingming, Phone:
155****4614) - Payment Method: WeChat The current order status is normal. The logis-
tics information will be updated after the order is shipped. You can check the order status at
any time

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

User: Has this order not been shipped yet? If it hasn’t been shipped, I want to cancel this
order.
Assistant: My lady, your order 313271663680 has been successfully canceled, and the
current status of the order is ”Cancelled”. The order amount of 3294 yuan will be refunded
via the original payment method (WeChat). It is expected to arrive within 1-3 working days.
Please keep an eye on your account information
User: Okay, thank you for your help. There’s another order with the number 314231443863,
and I want to know if there’s a cashback record for this order?
Assistant: Dear customer, after checking, the current status of the review and cashback for
order 314231443863 is ”No review submitted”. There is no review record for this order
in the system yet. If you have already completed the review, you can provide the review
certificate (such as a screenshot link), and I will help you verify it and register the cashback
process
User: Okay, I have indeed shared my order. Here is the screenshot link of my order sharing:
https://dd-static.jd.com/ddimgp/jfs/t20260528/280781/10/25581/172166/6808a980F4fea486
7/cf783a9a7acc8c2d.jpg Please help me verify and register the cashback information.
Assistant: Your Highness, the screenshot of your order review you provided has been veri-
fied as valid and contains user comment content. We have successfully registered the cash-
back for the order review of order 314231443863 for you. The cashback process has been
triggered, and the cashback amount is expected to be returned to your payment account via
the original route within 1-3 working days. Please keep an eye out for it
User: Okay, thank you for your help. I will pay attention to receiving the cashback.
trial: 2
detail reward:
- reward: 1
- action: 1
- search: 1
- output: 1

B 77 CLOTHING CATEGORY DATA CODES CONSTRUCTED BASED ON
ECOM-BENCH

B.1 MASTER DATA GENERATION PYTHON SCRIPT EXAMPLE

1 class UserServiceInvoiceExtract(BaseModel):
2 think: str = Field(..., description=(
3 "Please explain in detail how you think, analyze, and reason based

on the chat content, "
4 "user needs, and background information to decide how to generate

user, service appointment, "
5 "and invoice information."
6))
7 user_info: UserBase = Field(..., description="User information")
8 service_info: ServiceAppointment = Field(..., description="Service

appointment information")
9 invoice_info: InvoiceBase = Field(..., description="Invoice

information")
10

11

12 class OrderExtract(BaseModel):
13 order_counts: str = Field(..., description=(
14 "Based on the provided information, analyze how many orders need to

be generated and give reasons; "
15 "when there are multiple order numbers, prioritize generating the

corresponding multiple order information."
16))
17 order_think: str = Field(..., description=(
18 "Please explain in detail how you think, analyze, and reason based

on the chat content, user needs, "

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

19 "and background information to decide how to generate each order.
This should reflect your understanding "

20 "and judgment of various factors such as products, quantity, user
identity, shipping address, logistics "

21 "method, order time, etc., and explain your generation basis,
reasoning logic, normative constraints, "

22 "and final generation strategy. Your thought process should help
others understand why you designed the order "

23 "this way, rather than simply listing the steps."
24))
25 order_info: List[OrderBase] = Field(..., description="Information for

each order")
26

27

28 class ProductExtract(BaseModel):
29 product_counts: str = Field(..., description="Based on the provided

information, analyze how many products need to be generated and
give reasons.")

30 product_think: str = Field(..., description=(
31 "Please explain in detail how you think, analyze, and reason based

on the chat content, user needs, "
32 "and background information to decide how to generate each product.

This should reflect your understanding "
33 "and judgment of various factors such as product type, quantity,

attributes, brand, price, gifts, materials, "
34 "etc., and explain your generation basis, reasoning logic,

normative constraints, and final generation strategy. "
35 "Your thought process should help others understand why you

designed the product content this way, rather than "
36 "simply listing the steps."
37))
38 product_info: ClothingProductBase = Field(..., description="Product

information")
39

40

41 class LogisticsExtract(BaseModel):
42 logistics_counts: str = Field(..., description="Based on the provided

information, analyze how many logistics entries need to be
generated and give reasons.")

43 logistics_think: str = Field(..., description=(
44 "Please explain in detail how you think, analyze, and reason when

generating logistics information based on "
45 "the chat content, user needs, and background information. This

should reflect your understanding of and judgment "
46 "on various elements such as orders, products, user shipping

address, logistics company, delivery method, time points, "
47 "logistics status, etc., and explain how you determine the basis,

reasoning logic, rule constraints, and final design "
48 "for each logistics entry. Your thought process should help others

understand why you constructed the logistics "
49 "information this way, rather than simply listing the steps."
50))
51 logistics_info: ClothingLogisticsBase = Field(..., description="

Logistics information")
52

53

54 class ExtractLLM(LLM):
55 def __init__(self, model_name, target, temperature=1) -> None:
56 super().__init__(model_name=model_name, verbose=True, temperature=

temperature)
57 self._initiate_llm()
58 self.parser = PydanticOutputParser(pydantic_object=target)
59

60 @override
61 def call(self, background_info: str) -> Dict:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

62 prompt_template = PromptTemplate(
63 template="""
64 Task Requirements:
65 1. Assume you are responsible for synthesizing the required information

in the e-commerce domain.
66 2. You need to refer to the available information and synthesize data

accordingly.
67 3. Order and logistics information can only be referenced as many fields

are missing; please be creative and enrich the details as much as
possible.

68 4. Exchangeable products must come from the candidate product list, and
only the most relevant products should be selected.

69 5. No product outside the list should be added as an exchangeable option.
70 6. Logistics information must match the orders: unshipped orders should

have no logistics information; orders that are shipped but not signed
should not show "signed", and orders marked as signed should end

with "signed".
71

72 # Background Information:
73 {background_info}
74

75 # Output Format:
76 {format_instructions}""",
77 input_variables=["background_info"],
78 partial_variables={"format_instructions": self.parser.

get_format_instructions()},
79)
80 prompt = prompt_template.format_prompt(background_info=

background_info)
81 response = self.llm.invoke(prompt).content
82 parsed_response = self.parser.parse(response)
83 return parsed_response.model_dump()
84

85 @override
86 def load_system_prompt(self, system_prompt):
87 return super().load_system_prompt(system_prompt)

18

	Introduction
	Related work
	Method
	MemOrb FrameWork
	Memory Unit: Orb
	Memory System

	Experiments
	ECom-Bench Benchmark
	Setup
	Main Results
	Ablation Studies
	Qualitative Analysis
	Reproducibility

	Discussions
	Conclusion
	EXPERIMENT DETAILS
	Prompt
	Dialogue case

	77 clothing category data codes constructed based on ECom-Bench
	Master data generation Python script example

