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ABSTRACT

Time series pattern discovery is one of the most fundamental tasks in data mining.
Existing literature addressing this task often follows a generic paradigm in which
a similarity metric is defined a priori and an extensive pattern-matching search is
executed to find similar subsequences based on the metric. Algorithms developed
under this paradigm therefore risk missing important patterns that do not meet the
implicit biases within such pre-defined metrics. To mitigate this risk, we propose
a new information-theoretic discovery paradigm that aims to find the most infor-
mative patterns on an embedding space that can learn to encode representative
statistical variation trends in the time series. This paradigm is achieved by a prob-
abilistic time-to-pattern mining algorithm, T2P, based on a biophysically-inspired
adaptation of a variational auto-encoder (VAE). The adapted VAE incorporates a
specific design for its latent space that learns to surface the most recurring and in-
formative patterns without the need to run costly pattern-matching searches. Em-
pirically, we demonstrate that our method is more scalable than existing works.
Furthermore, T2P can find multiple diverse patterns that more effectively com-
press and represent the time series without relying on prior knowledge of the data.

1 INTRODUCTION

Finding informative and recurring patterns that summarize time series data effectively is a critical
task in data-intensive applications (e.g., health monitoring, stock prediction) that require evidence-
based decision-making and optimization. This is in fact one of the most fundamental tasks in a
long-standing field of data mining with a vast and growing literature, reporting many successful
findings that acquiring such temporal patterns often provides significant predictive and actionable
data insights (Ali et al., 2019) for downstream data analytics. However, in spite of such findings,
pattern discovery in time series still remains a notoriously difficult task due to:

C1. The explosive growth in the scale of data enabled by recent advances in IoT sensors which are
capable of collecting data at high frequencies and creating very large time series that are voluminous,
complex and unintuitive; and

C2. The lack of a robust notion or criteria that accurately and holistically incorporate both aspects
of pattern informativeness and recurrence in the existing literature: whether a definition of pattern
recurrence also implies pattern informativeness.

Both of these concerns severely hamper the scalability and robustness of most previous work in
this field. To elaborate, existing literature (Dau & Keogh, 2017; Alaee et al., 2021) addressing this
pattern mining task often follows a generic paradigm in which a similarity metric is defined a priori
and an extensive pattern-matching search is executed to find similar subsequences based on the
metric. Under such a paradigm, a pattern is associated with the occurrences of subsequences which
are deemed sufficiently similar by a pre-defined metric.

However, without a carefully handcrafted metric, the occurrence frequencies of such patterns might
not be a correct measurement of their encoded information. Algorithms developed under this view
therefore risk missing important patterns that do not meet the implicit biases encoded by a pre-
selected metric. For example, Euclidean distance (ED) (Dau & Keogh, 2017) biases towards min-
imal oscillation but depending on the specific nature of the data, patterns with minimal oscillation
might not be most informative. Likewise, Dynamic Time Warping (DTW) distance (Alaee et al.,
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2021) biases more towards warped patterns, which might also not be the most informative for some
applications.

Furthermore, the definition of a pattern and its representativeness in terms of recurring subsequences
deemed sufficiently similar by some distance function naturally leads to an extensive pattern-
matching search to find all such subsequences. Despite substantial work to improve the scalability
of the current methods by improving the computational complexity of the similarity function or rep-
resenting the input in a compressed format, the performance on large-scale data remains a challenge:
As the length of the time series increases, the number of distances needed to be calculated between
each pair of subsequences inevitably increases quadratically. Alternatively, some methods instead
propose to compress data in a pre-processing step (Keogh et al., 2005) to reduce the search space,
but the compression is lossy and may cause important patterns to be undetected.

Motivated by the above shortcomings of previous works in light of challenges C1 and C2, we de-
velop and investigate a new approach, named time-to-pattern (T2P), to discover informative patterns
in time series data that addresses both challenges via an information-theoretic framework. In partic-
ular, unlike previous works that use the frequencies of (artificial) similar occurrences as a heuristic
measure of information, T2P rigorously learns an embedding or encoding of the time series in a la-
tent space, which can be decoded back into the original space with minimized loss. The embedding
loss is in fact structured in the spirit of the Minimum Description Length (MDL) principle (Wallace
& Boulton, 1968), which formalizes Occam’s razor and states that the best data model is the one
that represents the data in the smallest number of bits.

The latent space is further devised to induce factorized encoding, which implicitly decomposes the
time series into a diverse set of disengtangled patterns in the latent space spanning its information
spectrum, which can be decoded back (with minimized loss) to the original space. We achieve
this by adopting the seminal variational auto-encoder (VAE) framework (Honkela & Valpola, 2004;
Rezaabad & Vishwanath, 2020; Higgins et al., 2017; Kirschbaum et al., 2019; Guo et al., 2021)
which has been established as an effective probabilistic approach to unsupervised data embedding.

Furthermore, the design of the latent space for our adopted VAE is biophysically inspired by neu-
ronal assemblies theory by (Hebb, 2005), which identifies subsets of neurons firing in a temporally
coordinated way that gives rise to repeated patterns underlying neural representation and informa-
tion processing. This corroborates a prior neuroscience work which has shown that neurons are able
to learn a specific representation for each smell (e.g., a rose or a fertilizer) by capturing the neural
spikes (Laurent, 1996). We implement this via imposing a Bernoulli prior on the latent space to
creating stochastic nodes representing recurring spatio-temporally coordinated activation patterns.

To summarize, our technical contributions include:

1. We formulate time-to-pattern (T2P), a new information-theoretic approach to pattern discovery
in time series data which defines a pattern as an optimized MDL encoding of the original time
series data in an embedding space. This provides a coherent, unified view of both aspects of pattern
recurrence and informativeness which is lacking in the existing literature.

2. We implement T2P via a learnable VAE with a Bernoulli prior implementing the principle of
neuronal assemblies theory (Hebb, 2005) which help decomposes the latent encoding of time series
into disentangled patterns spanning more effectively its information spectrum. This demonstrates
an advantage of T2P in comparison to previous work: it does not depend on any specific distance
function and is able to discover a set of diverse, informative patterns that summarize the time series
better. Its incurred complexity (of learning a VAE) is also significantly better than that of a state-of-
the-art pattern-matching approach (Imani et al., 2018).

3. We show experimentally that the running time of T2P remains almost constant as the size of
the data increases. We also show that T2P outperforms previous work in discovering the most
informative patterns in several real-life benchmark datasets.
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Figure 1: Plots of (top) synthetic data; and ex-
amples of (bottom left) the most similar pattern;
and (bottom right) the most frequent pattern.

Figure 2: Plots of (top) real data from a
hip-worn gyroscope Dau et al. (2018); (bot-
tom left) top-1 Euclidean-distance subsequence
pair; (bottom right) top-1 DTW-distance subse-
quence pair.

2 RELATED WORK

2.1 PATTERN MINING FOR TIME SERIES

Prior work on discovering time series patterns can be broadly categorized into (1) similarity-based
and (2) frequency-based methods. We review them below.

Similarity-based Methods (Zhu et al., 2016; Alaee et al., 2021). The main aim of these approaches
is to find a pair of subsequences of fixed length that are most similar according to a pre-defined metric
distance (e.g., Euclidean). The subsequences are usually referred to as motifs or patterns.

Formally, let x ≜ (x1, x2, . . . , xn) denote a time series of length n and let xτ
t ≜ (xt, . . . , xt+τ )

denote a sub-sequence from timestep t to t+ τ . The most similar pattern of length τ is defined as a
pair of sub-sequences pτ = (xτ

a,x
τ
b ) such that ℓ(xτ

a,x
τ
b ) ≤ ℓ(xτ

u,x
τ
v) ∀(u, v) where u, v ∈ [n− τ ]

and ℓ denotes a distance measure (e.g., Euclidean) which is set depending on particular applications.

Frequency-based Methods (Imani et al., 2018). Unlike similarity-based methods, the aim of
frequency-based methods is to find the largest set of sub-sequences (of fixed length) such that any
two sub-sequences are sufficiently close according to a distance measure.

Formally, a frequent pattern is defined as pτ,ϵ = (xτ
a1
, . . . ,xτ

ak
) such that (1) ℓ(xτ

a,x
τ
a′) ≤ ϵ for all

pairs of a, a′ ∈ {a1, a2, . . . , ak} and (2) if a′ /∈ {a1, a2, . . . , ak}, then ℓ(xa′ ,xai) > ϵ for i ∈ [k].
That is, the pattern pτ,ϵ is a maximal set of all sub-sequences with length τ whose pairwise distance
is within a pre-defined similarity threshold ϵ. Its frequency is therefore denoted by the size of |pτ,ϵ|.
The most frequent pattern is the pattern with the largest size.

Discussion. The difference between these two pattern definitions is illustrated above in Figure
1, which shows examples of most-similar and most-frequent patterns in a synthetic time series.
Both approaches are restricted in terms of the informativeness of the discovered patterns (i.e., how
much information of the original time series that is encoded within the discovered patterns) and the
incurred computation cost to find them, as further discussed below. In addition, relying on a specific
distance function produces biased results. As illustrated in Figure 2, the most-similar pair is different
when using z-normalized ED versus DTW.

Pattern Informativeness. Characterizing a time series in terms of its patterns induces a compressed
representation, which can be used for a wide range of downstream applications, including data
interpretation and predictive analytics. For such a representation to be effective, it must be able
to encode the most salient information of the time series, which can be formalized either in terms
of mutual information or perhaps more interestingly, the reconstructability of the time series based
on the patterns. This aspect, however, is seemingly unaccounted for by most existing approaches,
which is evident in their dependence on a pre-defined distance metric ℓ as well as the similarity
threshold ϵ as mentioned above: without learning the embedding space of the time series, the preset
distance and threshold might not reflect well the subsequences’ intrinsic similarities. This could
potentially result in the accidental exclusion of important patterns which do not meet the implicit
biases encoded by a preset metric. For example, Euclidean distance (Dau & Keogh, 2017) biases
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towards minimal oscillation but depending on the specific nature of the data, patterns with minimal
oscillation (e.g., flat line) might not be most informative.

Recently, Noering et al. (2021) proposed a new approach that accounts for both the frequency and
informative aspects focusing on the reconstructability of a time series based on its patterns. This
is achieved via a convolutional autoencoder (CAE), which converts the time series to a gray-scale
image by discretizing the data into a given number of bins and then converting each bin to one-hot
encoding (Noering et al., 2021). The induced image is then embedded into a latent space via a
(learnable) convolutional neural net (i.e., the encoder). Its latent embedding vector is optimized so
that it can be used to reconstruct the original input via a (learnable) decoder net. Each of its latent
components can then be used to generate a separate, representative pattern using the decoder. CAE
however suffers a significant overhead of converting the time series to discrete images. Further, CAE
is not able to discover diverse patterns and tends to discover patterns with low complexity as a result
of converting the time series to discrete images, as shown by the authors’ experiments (Noering
et al., 2021).

Scalability of Pattern Mining. Furthermore, most of the current time series pattern discovery
methods are based on exhaustive search, which is the natural approach given the definition of a
pattern and its representativeness in terms of recurring subsequences deemed sufficiently similar by
some distance function. For example, using the Euclidean distance as the similarity function, the
cost of finding the most similar pattern with length τ from a time series of length n is O(τn2). The
cost of finding the most frequent pattern is even worse, scaling exponentially in the size of the time
series O(τn2)+O(Kn) for top-K patterns. As such, it can be seen that the complexity of exhaustive
search often scales very poorly in the size of the time series.

To sidestep this, two approaches have been proposed to reduce computational complexity. The
first approach (Ding et al., 2008) focuses on compressing the time series length, thus decreasing the
search space. However, the compression methods are lossy, which might omit important information
that results in the exclusion of some key patterns. To avoid this, the second approach (Zhu et al.,
2016; Alaee et al., 2021) focuses instead on decreasing the computational complexity of similarity
functions. For example, STOMP (Zhu et al., 2016) proposed an approximation that decreases the
cost of computing the Euclidean distance (ED) between subsequences from O(τ) to O(1), and
likewise, SWAMP (Alaee et al., 2021) reduces the cost of computing the Dynamic Time Warping
(DTW) distance from O(τ2) to O(τ). Nonetheless, the complexities of such approaches are still
dependent on a factor of O(n2), which is the main source of the computation bottleneck.

2.2 VARIATIONAL AUTOENCODERS

Introduced by Kingma & Welling (2014); Rezende et al. (2014), VAEs are probabilistic embedding
models. A VAE characterizes a distribution pθ(x, z) = p(z)pθ(x|z) over both the observed data x
and its latent embedding z. Its parameter is characterized by θ, which is often the weight tensors of
a deep neural net (DNN). In this view, p(z) is often characterized by a parameter-free prior distribu-
tion, e.g. a Gaussian N(0, I), over latent variable z. Its likelihood function (or the decoder) pθ(x|z)
is learned to generate authentic data x given latent variables z. Its posterior pθ(z|x) is conversely
designated as the encoder and needs to be computed from the above generative scheme. Such pos-
terior inference in most cases is however intractable, so VAE bypasses this by approximating it with
a surrogate qϕ(z|x) such that DKL(qϕ(z|x)∥pθ(x|z)) is minimized. This is interestingly equivalent
to maximizing the following lower-bound L(qϕ) of the model evidence

log p(x) ≥ L(qϕ) ≜ Ez∼qϕ(z|x)

[
log pθ(x|z)

]
−DKL

(
qϕ(z|x) || p(z)

)
(1)

This makes sense since log p(x) = L(qϕ) + DKL(qϕ(z|x)∥pθ(x|z)). Intuitively, the first term in
Eq. 1 reduces the reconstruction error and the second term minimizes the Kullback–Leibler diver-
gence between the posterior distribution qϕ(z|x) and the prior distribution pa(z). However, the
gradient w.r.t. ϕ cannot be easily computed. To overcome this problem and generate samples from
qϕ(z), a re-parameterization trick has been proposed. The random variable z ∼ qϕ(z|x) can be re-
parameterized using a differentiable transformation z = gϕ(ϵ,x), where ϵ is an auxiliary variable
with independent, parameter-free marginal p(ϵ) (that can be sampled from) and gϕ(.) is a (learnable)
vector-valued function parameterized by ϕ characterizing the transformation from ϵ to z. Appendix
A provides more information on VAEs.
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3 INFORMATION-THEORETIC PATTERN MINING

This section formalizes a new notion of the information-theoretic pattern (Section 3.1) and proposes
a scalable solution (Section 3.2) to discover it via augmenting the aforementioned VAE model for
data embedding with a concept of neuronal assembly by (Hebb, 2005), which (1) optimizes a prob-
abilistic embedding of the time series with minimal information loss; and (2) extracts a diverse set
of informative patterns from such latent embedding.

3.1 INFORMATION-THEORETIC PATTERN

Let x ≜ (x1, x2, . . . , xn) denote a time series of length n. Let pτ = {x†
1,x

†
2, . . . ,x

†
m} denote a

set of m sequences of length τ . We consider pτ a set of informative patterns if it can be used as a
sufficient statistic to infer any predictable (but unobservable) statistics c(x) of x. That is, pτ satisfies
p(c(x) | pτ ,x) = p(c(x) | pτ ) or c(x) ⊥ x | pτ for any predictable statistics c(x).

Motivated by the above VAE model (Section 2.2), a natural approach to finding such pτ is perhaps to
associate pτ with the probabilistic latent encoding z of x, which can provably be used to reconstruct
x with high-fidelity as a result of maximizing Eq. 1. However, such embedding z does not live
in the same space as x and it is therefore unclear how one would associate components of z with
representative sub-sequences of x. This raises the question of whether we can devise a latent space
for VAE that induces factorized encoding, which helps decompose the time series x into a diverse
set of disengtangled latent patterns spanning its information spectrum, which can be decoded back
(with minimized loss) into legitimate time series {x†

1,x
†
2, . . . ,x

†
m} living in the original space.

We will address this question via an adaptation of the VAE framework inspired by the concept of
neuronal assembly of (Hebb, 2005), which is discussed next.

3.2 DISCOVERING INFORMATION-THEORETIC PATTERNS

This section presents time-to-pattern (T2P), which is a scalable information-theoretic framework to
discover the pattern defined above. As mentioned above, it is based on a VAE whose latent space
implements the principle of neuronal assembly, which is concisely described below.

Neuronal Assemblies. The concept of neuronal assemblies, which is also known as cortical motif
or neuronal ensemble, was originally introduced by Hebb (2005). Neuronal assemblies are subsets
of neurons firing in a temporally coordinated way that gives rise to repeated motifs underlying neural
representation and information processing. There is evidence that all cognitive domains can benefit
from learning based on the Hebbian principle (Pulvermüller et al., 2021). For example, the fire-
together-wire-together principle leads to long-term potentiation (LTP) of connections between co-
activated neurons (Panahi et al., 2021). LTP is a process that synaptic connections between neurons
become stronger with frequent activation. Different methods have been proposed for capturing the
temporal structure of embedded assemblies in neural networks. PCA (Nicolelis et al., 1995) and ICA
(Comon, 1994) are the simplest methods for detecting cell motifs. More sophisticated methods have
been proposed recently, such as the utilization of sparse convolutional coding for reconstructing
the neural spike matrix as a convolution of motifs and their activations time points (Peter et al.,
2017). This concept has in fact been recently adopted in a recent work of (Kirschbaum et al., 2019),
which implements a VAE with discrete latent space which enables effective extraction of repetitive,
summarizing patterns in imaging videos of calcium activity in the brain.

VAE with Neuronal Assembly Prior. Inspired by such prospect of combining principles of neu-
ronal assemblies with probabilistic data embedding model, we further develop T2P, a VAE frame-
work for discovering informative patterns in time series data with neuronal assembly prior. We
hypothesize that if repetitive patterns exist in time series data, the neural network should learn the
same representation for them based on neuronal assembly theory.

Previous research (Alemi et al., 2016; Higgins et al., 2017; Achille et al., 2018; Achille & Soatto,
2018; Kirschbaum et al., 2019) that explores optimal representations also draws from information
theory. They utilize VAEs with a discrete latent space to learn patterns that describe image data.
VEAs with a discrete latent space can capture the neural spikes that result in discovering neuronal
assemblies, as shown by Kirschbaum et al. (2019). Further, VAEs with a discrete space can learn
disentangled representations (Dupont, 2018).
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Hence, we utilized a Bernoulli-VAE to implement this principle. However, Bernoulli is a discrete
distribution that poses a significant challenge because it cannot be re-parameterized using the con-
ventional reparameterization trick developed by (Kingma & Welling, 2014). Several methods have
been proposed to treat Bernoulli discrete nodes continuously, such as Binary Concrete (Maddison
et al., 2016), Beta-Bernoulli (Singh et al., 2017), and Continuous Bernoulli (Loaiza-Ganem & Cun-
ningham, 2019) distributions. In T2P, the Binary Concrete distribution is chosen as the Bernoulli
relaxation since it produced superior results in our initial testing. This is detailed below.

3.3 DERIVATION OF T2P FRAMEWORK

For each subsequent x† a latent random variable z ∈ {0, 1} is drawn from a prior distribution
pa(z). The variable z indicates whether pattern p is activated in the subsequence. The subse-
quence x† is then generated from the conditional distribution pθ(x|z) with parameters θ. Consider
an unnormalized parameterization (α1, α2) and let α = α1/α2 where α1, α2 ∈ (0,∞). Here, the
reparameterization trick for the Binary Concrete distribution proceeds as follows:

z = σ(Y ) =
1

1 + exp(−Y )
(2)

with

Y =
logα+ logU − log(1− U)

λ
(3)

where U is drawn from uniform random numbers U ∼ Uniform(0, 1). Correspondingly, Eq. (1)
can be written as

MSE(x, x̂)−KL(gα,λ1
(Y |x)||fa,λ2

(Y )) (4)

where MSE(x, x̂) represents the mean square error between input x and decoder output x̂,
gα,λ1

(Y |x) is the reparameterized Binary Concrete relaxation of the variational posterior qϕ(z|x)
with temperature λ1, and fa,λ2

(Y ) is the is the density of a Logistic random variable sampled via
Eq. 3 with temperature λ2 and the location of the prior distribution, a. The density of the Binary
Concrete distribution is computed as follows:

λαx−λ−1(1− x)−λ−1

(αx−λ + (1− x)−λ)2
. (5)

Combining the equations, we can specify that the objective of T2P is to minimize

βMSE .MSE(x, x̂) + βKL.EY∼gα,λ1
(y|x)

[
log

fa.λ2(Y )

gα,λ1
(Y |x)

]
(6)

where βMSE and βKL are hyperparameters that control the effects of MSE and KL, respectively.
Learning a particular pattern suited to represent a set of similar subsequences is difficult. In complex
time series data, representative patterns exhibit slight variations with each occurrence. To capture
such interesting and approximate occurrences, we need to choose βMSE < 1 and βKL > 1. To
illustrate the effect of the βMSE temperature, consider a synthetic sequence containing normal noise,
a noisy sine wave pattern, and another pattern, as shown in Figure 3d. When βMSE = 1 as in the
conventional VAE model, T2P is not able to learn the embedded pattern, as shown in Figure 3c. In
contrast, T2P can learn all the existing patterns by reducing the value to βMSE = 0.8, as shown in
Figure 3d. Similarly, as illustrated by (Higgins et al., 2017), choosing βKL > 1 results in a more
disentangled latent representation z.

3.4 COMPONENT PARAMETERIZATION FOR T2P

The T2P encoder network consists of convolution layers with 1D filters that extract features from
the time series subsequences. Next, the learned features feed to a convolution layer with 3D filters
to learn parameters α utilized by Eq. 3 for reparametrization. The decoder is a single deconvolution
layer that enforces the reconstructed data x̂ to be an additive mixture of the decoder filters. Thus,
the decoder filters contain the detected patterns after minimizing the objective function in Eq. 6.

For a given time series T with window length L, we propose to train the model multiple subsequence
windows. Given N windows, training T2P consists of positioning i randomly in the time series and
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(a) The synthetic data. (b) Three existing patterns in the data.

(c) Learned pattern by T2P with βMSE = 1. (d) Learned pattern by T2P with βMSE = 0.8.

Figure 3: Effect of βMSE on learning correct patterns from the data.

training the model on windows starting at those locations. We note that the choice of N does not
impact training quality – T2P uses this parameter to report which patterns were activated.

Training T2P is straightforward. Parameter a influences the sparsity of the latent space z. A smaller
value of a will penalize the activations harder and result in cleaner and more meaningful patterns.
Based on our experiments, we recommend a = 0.1 or a = 0.05, which worked well in all cases.
BKL is another parameter that improves the diversity of patterns learned by T2P. In our experiments,
we observe BKL = 2 works in all cases, and changing to a higher value does not help with learning
more diverse patterns. For the temperature parameters, the default values λ1 = 0.6 and λ2 = 0.5
worked well in most cases, and changing them is usually unnecessary. Figure 4 displays the plate
diagram of the proposed generative and recognition models.

X

Zϕ

θ

a

Recognition Model
z|x, ϕ ∼

∏
i BinConcrete(z|α(x;ϕ))

Generative Model
z ∼

∏
i BinConcrete(z|a)

x|z, θ ∼ N(x | fθ(z), 2−1
1)

Figure 4: Plate diagram and proposed generative and recognition model. Solid lines denote the
generative model pθ(x|z), dashed lines denote the variational approximation qϕ(z|x).

4 PATTERN DISCOVERY METRICS

It is important to be able to quantify the performance of time series pattern discovery algorithms.
However, designing specific metrics is not straightforward. Previous articles report anecdotal perfor-
mance, such as preferring a method that discovers patterns with more oscillation over a method that
discovers flat patterns. We begin by defining the properties that we expect discovered patterns should
exhibit. We then describe our proposed solution for quantifying the presence of such properties.

Based on the definitions in Section 3, we are able to measure the performance of time series pattern
discovery algorithms by utilizing Minimum Description Length (MDL). Introduced by Rissanen,
MDL states that the best theory to describe a set is to minimize the description length of the entire
dataset more than other theories Rissanen (1978). Hence, a pattern discovery method is evaluated
based on how well it can compress the data. According to the MDL principle, a method that min-
imizes DL(P ) + DL(X|P ) is preferred, where P is the discovered patterns, X is the input time
series, DL(P ) is the number of units (e.g., bits) required to encode the discovered pattern, and
DL(X|P ) is the number of units required to encode the time series X with respect to P .
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5 EXPERIMENTAL RESULTS

We validate the performance of T2P using a series of experiments. To our knowledge, T2P is the
first probabilistic model that learns an aggregate summary of patterns from raw time series data.
Hence, there is no directly-comparable baseline to consider. To provide a basis for comparison, we
include results using a current state-of-the-art time series pattern discovery algorithm, matrix profile
snippets (MP-snippets) Imani et al. (2018). We first test our method on synthetic datasets containing
predefined, embedded patterns.

We hypothesize that T2P offers advantages over prior discovery methods. First, because T2P does
not utilize a fixed similarity measure, the algorithm holds the potential to find more complex patterns.
Second, because T2P is governed by the information-theoretic preference for compressive patterns,
T2P’s discoveries do not focus exclusively on frequent patterns but instead balance pattern size and
frequency. Third, unlike earlier approaches, T2P does not rank the patterns but instead finds a set of
disentangled patterns, eliminating the need for priors. Finally, T2P replaces the traditional search-
based approach with a VAE learning model, offering improved scalability to larger time series.

5.1 DATASETS

To provide data for analysis of pattern discovery methods, we start with real data containing known
patterns and combine these time series to generate larger series with multiple embedded patterns.
Additionally, we performed experiments on the MixedBag Imani et al. (2018) and UCR Dau et al.
(2018) time series collections.

5.2 HUMAN ACTIVITY ANALYSIS

Analyzing human behavior is one of the most popular applications of pattern discovery Alaee et al.
(2021). For this experiment, we consider data collected for one person living in a semi-structured en-
vironment Imani et al. (2018). As Figure 5a shows, there are two embedded patterns corresponding
to the two scripted activities. MP-snippets yields the patterns shown in Figure 5b. To success-
fully find both patterns, the user must have prior information that there are two patterns within the
data. We also note that the top MP-snippets pattern corresponds to the walking activity (highlighted
blue). Although the goal of MP-snippets is to find frequent patterns, this top pattern is not the most
frequent for this dataset. MP-snippets overlooks the more-frequent jogging pattern because of the
algorithm’s use of a fixed Euclidean distance measure. In contrast to MP-snippets, T2P does not
require this information to discover all embedded patterns, as shown in Figure 5c. Here, the user
receives a summary of both patterns. Furthermore, T2P will highlight the variations of the pattern
that exist in the data, unlike MP-snippets.

We posited that the information-theoretic principle of minimizing description length offers a guide
to discovering the most informative patterns within time series data. In these experiments, we com-
pute the description length that results from compressing the data using the discovered pattern and
compare these results for alternative methods. In this case, each occurrence of the pattern is replaced
by a single “placeholder” bit, and the description length of the pattern definition is included in the
total. Another advantage is T2P compared to the traditional method is the ability to show different
variations of the same pattern, while MP-Snippets show only a subsequence from the data as the
best representation for each pattern. Both T2P and MP-snippets have the same description length
when the patterns are used to compress the data. While the original description length is 10,000, the
compressed data using either MP-Snippets or T2P have a description length of 300 (compression
ratio = 0.03).

5.3 UMD SYNTHETIC DATA

The UMD synthetic dataset contains three embedded time series patterns: one pattern is charac-
terized by an up-bell shape arising at the initial or final period (Up); one does not have any bell
(Middle); and one exhibits a down-bell shape arising at the initial or final period (Down), as shown
in Figure 12. When MP-snippets is used to discover the top-3 patterns, as shown in Figure 6b, one of
the patterns is presented twice. This is a result of employing the fixed, Euclidean Distance measure.

8



Under review as a conference paper at ICLR 2023

(a) Y-axis acceleration from a hip-mounted ac-
celerometer.

(b) The top two patterns discovered by MP-
snippets.

(c) Discovered patterns by T2P with a 2×5 decod-
ing filter size.

Figure 5: A sample of the data was collected
from a participant performing a walking ac-
tivity followed by a jogging activity.

(a) UMD synthetic data.

(b) The top three patterns discovered by MP-
snippets.

(c) Discovered patterns by T2P with a 3×6 decod-
ing filter size.

Figure 6: UMD synthetic data.

In contrast, T2P discovered a set of diverse patterns, as shown in Figure 6c. Additionally, the
T2P pattern resulted in a smaller description length than MP-snippets. The description length (DL)
of the original dataset is 5,400. The compressed DL of MP-snippets-compressed data is 3,615
(compression ratio of 0.67), while the DL of the T2P-compressed data is 2,274 (compression ratio
of 0.42). This analysis provides evidence that T2P offers greater compression of the original data
and thus, following information theory, offers more informative and comprehensive patterns. See
Appendix C for additional analyses and comparison of discovery results.

5.4 SCALABILITY

Figure 7: The run time comparison of
T2P and MP-Snippets in seconds.

Finally, we perform a scalability comparison between
MP-snippets and T2P. Figure 7 plots the run time of MP-
snippets and T2P as a function of each dataset size. As
illustrated in the graph, the run time of MP-snippets in-
creases superlinearly. In contrast, the run time of T2P
remains close to constant despite the increasing size of
the time series.

6 CONCLUSION

Motivated by information theory, T2P aims to discover
informative patterns in time series data that compress the
data. T2P differs from existing methods because the al-
gorithm does not rely on a fixed similarity function or an exhaustive search radius. T2P learns a set
of prototypes from training data, where each pattern is represented by a set of points in the feature
space. The extracted patterns provide an intuitive way to summarize the data.

In our experiments, we observe that the ability of T2P to identify patterns is equivalent or better than
a state-of-the-art method that requires an exhaustive search. Moreover, T2P identifies the pattern
variations that occur in the original time series. We anticipate that T2P will also be effective for
pattern discovery in multivariate time series data by analyzing each dimension separately.
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A VARIATIONAL AUTOENCODER

The variational autoencoder (VAE) Kingma & Welling (2014); Rezende et al. (2014) is a deep
generative model consisting of a true posterior (generator) pθ(x|z), a prior pθ(z), and an approxi-
mate posterior (inference) qϕ(z|x). Let us consider a dataset x = {x(i)}Ni=1 consisting of N i.i.d
samples of some continues or discrete variable x. We would like to compute the true posterior
pθ(z|x) = pθ(x,z)

pθ(x)
but computing the pθ(x) =

∫
pθ(x|z)p(z)dz is intractable in many cases. To

overcome this obstacle, we can approximate pθ(z|x) by selecting a tractable distribution q(z) such
as Gaussian. In order to approximate pθ(z|x), we minimize the KL-divergence between the ap-
proximate and true posterior DKL(qϕ(z|x)||pθ(z|x)). Thus the marginal likelihoods can be written
as:

log pθ(x
(i)) = DKL(qϕ(z|x(i))||pθ(z|x(i))) + L(θ, ϕ;x(i)) (7)

Because the KL divergence is non-negative, the second RHS term L(θ, ϕ;x(i)) is called the (varia-
tional) lower bound on the marginal likelihood of data point i. Instead of minimizing the KL diver-
gence between the approximate and true posterior, we can maximize the variational lower bound.

log pθ(x) ≥ L(θ, ϕ;x) = Eqϕ(z|x)
[
− log qϕ(z|x) + log pθ(x, z)

]
(8)

which can also be written as:
L(θ, ϕ;x) = −DKL(qϕ(z|x)||pθ(z)) + Eqϕ(z|x)

[
log pθ(x|z)

]
(9)

We need to compute the gradient of the lower bound L(θ, ϕ;x) w.r.t the generative parameter θ and
the inference parameter ϕ, in order to optimize.

∇ϕ,θL(θ, ϕ;x) = ∇ϕ,θEqϕ(z|x)
[
log pθ(x|z)

]
−∇ϕ,θDKL(qϕ(z|x)||pθ(z)) (10)

For the first part of the lower bound, the gradient w.r.t θ can be easily computed using Monte Carlo
sampling

∇θEqϕ(z|x)
[
log pθ(x|z)

]
= Eqϕ(z|x)

[
∇θ log pθ(x|z)

]
≈ 1

S

S∑
s=1

∇θ log pθ(x|zs) (11)

But the gradient w.r.t ϕ can not be sampled that easily

∇ϕEqϕ(z|x)
[
log pθ(x|z)

]
= ∇ϕ

∫
qϕ(z|x) log pθ(x|z)dz =

∫
log pθ(x|z)∇ϕqϕ(z|x)dz. (12)

To overcome this problem, we use reparameterization trick. The function gϕ(.) is chosen such that
it maps a data point x(i) and a random noise vector ϵ(l) to a sample from the approximate posterior
for that datapoint: z(i,l) = gϕ(ϵ

(l), x(i)) where z(i,l) ∼ qϕ(z|x(i)). A vector of latent variables z
in a high-dimensional space Z sample according to some probability density function (PDF) P (z)

defined over Z. Thus, the reparameterized lower bound L̃(p, q;x) ≈ L(p, q;x) can be written as

L̃(p, q;x) = 1

S

S∑
s=1

log pθ(x|zs)−DKL(qϕ(z|x)||pθ(z)) (13)

The first term of RHS is a negative reconstruction error and KL-divergence act as a regularizer in
auto-encoder parlance.

B T2P NETWORK ARCHITECTURE AND IMPLEMENTATION DETAILS

The details of T2P networks are shown in Algorithm 1, Figure 8, and Table 1

Input: raw time series x, architecture fθ, αϕ, hyperparameter λ1, λ2, a, βKL, βMSE .
/* trained fθ, αϕ */
θ, ϕ← Initialize network parameters;
/* Sample subset of frames from time series T */
while convergence of θ, ϕ do

x← Randomly chosen sequence of consecutive frames from X /* Encoding step */
Encode x to get α Compute z following Eq. 2 /* Decoding step */
x← decode via fθ(z) /* Update Parameters */
Compute the gradient of loss

end
Algorithm 1: T2P algorithm

12
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Input

Encoder
qϕ(z|x)

α1

α2

α z

Decoder
pθ(x|z)

Figure 8: Schematic T2P framework. In this example, three frames of time series feed to T2P. The
encoder network contains several layers of 1D convolution followed by a 3D convolution layer where
α = α1/α2 is the encoded space. The latent space z is sampled utilizing the reparametrization trick.
The discrete z space illustrates what filters have been utilized to reconstruct the input. The decoder
is a 3D convolution layer that employs to recreate the input. The learned filters for the reconstruction
of the input are shown inside the decoder.

Table 1: T2P network architecture details.

Operation Kernel Feature map Padding Stride Nonlinearity
Input: F time series sequence of length L

1D Convolution 3 24 0 1 ELU
1D Convolution 3 48 0 1 ELU
1D Max-Pooling 2 - 0 2 -
1D Convolution 3 72 0 1 ELU
1D Convolution 3 96 0 1 ELU
1D Max-Pooling 2 - 0 2 -
1D Convolution 3 120 0 1 ELU
1D Convolution 3 48 0 1 ELU

Output: F time series sequence of length L̃ = (((L− 3 + 1− 3 + 1)/2− 3 + 1− 3 + 1)/2− 3 + 1− 1 + 1)

Input: F time series sequence of length L̃

3D Convolution latentdim2 × L̃ 2× latentdim1 (latentdim2 − 1)× 0× 0 1 SoftPlus
Output: 2× latentdim1, (F + latentdim2 − 1)× 1× 1
Input: 2× latentdim1, (F + latentdim2 − 1)× 1× 1

Reparametrization - - - - -
Output: M activations, (F + latentdim2 − 1)× 1× 1
Input: M activations, (F + latentdim2 − 1)× 1× 1

3D Transposed Convolution latentdim2 × L M (latentdim2 − 1)× 0× 0 1 -
Output: F time series sequence of length L

C EXPERIMENTS AND RESULTS

C.1 HUMAN ACTIVITY

We repeat the experiment with similar data from the PAMAP dataset, a widely used benchmark. We
created a larger time series by concatenating several sequences collected from the same person, as
shown in Figure 10a. The top-4 patterns discovered by MP-snippets ranked by normal walk, run,
nordic walk, and rope jump, as shown in Figure 10b. To learn all existing patterns from this data, we
need to have a greater number of decoding filters, as shown in Figure 5c. Because there are several
patterns similar to each other (normal walk, run, and rope jump), T2P is able to recreate most of the
data using filters by learning only these patterns. However, T2P is able to learn nordic patterns by
increasing the number of filters, as shown in Figure 10c. We include more experiments to illustrate
the effect of the number of decoding filters in the appendix.

13



Under review as a conference paper at ICLR 2023

(a) Y-axis acceleration from a hip-mounted accelerometer.

(b) The top four patterns discovered by MP-snippets.

(c) Discovered patterns by T2P.

Figure 9: Samples of the data were collected from a participant doing nordic walk followed by run,
normal walk, nordic walk, normal walk, run, rope jumping, and normal walk.14
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C.2 ELECTRICAL POWER DEMAND ANALYSIS

To demonstrate that T2P is domain agnostic, we evaluate the versatility of T2P on the Italian power
demand dataset, as shown in Figure. The data represent a small Italian city’s electrical power demand
during summer and winter. The electrical demand is higher in the summer because more people use
their HVAC system than in the winter. We create this data set by repeating the data four ti,e to create
a larger dataset. MP-snippets rank summer and then winter patterns as illustrated in Figure. T2P
also is able to find similar patterns, as shown in Figure. Further, the patterns’ learned by T2P show
the curve exists in each pattern as repeated in the data more frequently.

(a) The power demand dataset corresponds to summer/winter.

(b) The top two patterns discovered by MP-snippets.

(c) Discovered patterns by T2P.

Figure 10: The Italian power dataset.

C.3 EXTRA HUMAN ACTIVITY ANALYSIS AND UMD SYNTHETIC DATA

In our experiments, we tried larger latent space to observe the effect. Increasing the number of latent
space result in learning repetitive patterns.
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(a) Y-axis acceleration from a hip-mounted ac-
celerometer.

(b) Discovered patterns by T2P with 4 by 5 decod-
ing filter size.

Figure 11: A small sample of the data was
collected from a participant doing walking
followed by jogging.

(a) UMD synthetic data.

(b) Discovered patterns by T2P with 5 by 6 decod-
ing filter size.

Figure 12: UMD synthetic data.
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