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ABSTRACT
While traditional methods for calling variants across whole genome sequence data rely
on alignment to an appropriate reference sequence, alternative techniques are needed
when a suitable reference does not exist. We present a novel alignment and assembly
free variant callingmethod based on information theoretic principles designed to detect
variants have strong statistical evidence for their ability to segregate samples in a given
dataset. Our method uses the context surrounding a particular nucleotide to define
variants. Given a set of reads, we model the probability of observing a given nucleotide
conditioned on the surrounding prefix and suffixes of length k as a multinomial
distribution. We then estimate which of these contexts are stable intra-sample and
varying inter-sample using a statistic based on the Kullback–Leibler divergence.
The utility of the variant calling method was evaluated through analysis of a pair of
bacterial datasets and a mouse dataset. We found that our variants are highly informa-
tive for supervised learning tasks with performance similar to standard reference based
calls and another reference free method (DiscoSNP++). Comparisons against reference
based calls showed ourmethod was able to capture very similar population structure on
the bacterial dataset. The algorithm’s focus on discriminatory variants makes it suitable
for many common analysis tasks for organisms that are too diverse to be mapped back
to a single reference sequence.

Subjects Bioinformatics, Computational Biology
Keywords Alignment free, Variant, Assembly free, Genome, Acteria, Feature extraction

INTRODUCTION
Many sequencing studies begin by the transformation of raw sequence data to relatively
few features, usually single-nucleotide variants. Typically, this is done by aligning the
individual sequence reads to a reference genome to identify single nucleotide differences
from the reference.

Although straightforward, the genome alignment approach has several shortcomings:

• A suitable reference may not exist; this is especially important for unstable genomes
such the anuploid genomes frequently encountered in cancer (Beroukhim et al., 2010),
and also for some organisms with large genetic diversity such as bacteria (Ochman,
Lawrence & Groisman, 2000);
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• Selecting a reference may be difficult when there is uncertainty about what has been
sampled; and
• It performs poorly when a sample contains significant novel material, i.e., sequences
that are not simple variations of the reference.

Existing reference-free approaches are either based on assembly (Li, 2012), which
possibly introduces misassembly biases, or on searching for structural motifs within a
universal de Bruijn graph of all samples (Peterlongo et al., 2010; Iqbal et al., 2012; Uricaru
et al., 2015) that correspond to simple variants.

We present a variant calling algorithm to generate features from unaligned raw reads.
Rather than attempting to identify all genetic variation within a given set of samples, we
instead focus on selected variants that have have strong statistical evidence for their ability
to segregate samples in a given dataset. Such variants form useful features for many tasks
including genomic prediction of a given phenotype, modelling population structure or
clustering samples into related groups.

Our method uses the context surrounding a particular nucleotide to define variants.
Given a set of reads, we model the probability of observing a given nucleotide conditioned
on the surrounding prefix and suffix nucleotide sequences of length k as a multinomial
distribution. We then estimate which of these contexts form potential variants, i.e., those
that are stable intra-sample and varying inter-sample, using a statistic based on the
Kullback–Leibler divergence. Given this list of candidate variants, we call those variants by
maximum likelihood of our multinomial model.

Furthermore, we show that the size of the context k can be chosen using the minimum
message length principle (Wallace & Boulton, 1968) and that our context selection statistic
is γ -distributed. Consequently, k can be determined from the data and the contexts
surrounding variants can be selected with statistical guarantees on type-1 errors.

The utility of variant calling method was evaluated through simulation experiments and
empirical analysis of a pair of bacterial datasets and a mouse dataset. Through simulations
we showed themethod has good power and false positive rate for detecting variants, though
the ability to detect rare variants required high depth and large number of samples.

Our empirical results indicated our variants are highly informative for antimicrobial
resistance phenotypes on the bacterial datasets and were able to accurately capture
population structure. On the mouse dataset, the variants were also found to be good
for modelling coat colour. Further investigations of the variants found for the bacterial
dataset using a known reference sequence revealed variants associated with boxB repeat
regions, a repeat previously used for population structure mapping (Rakov, Ubukata &
Robinson, 2011), suggesting the model can generate features for more complex genetic
elements. These results suggest the variants are capturing genotypic variation well and can
model heritable traits in different organisms. Our proposed method will be of strongest
utility when modelling of population structure, phylogenetic relationships or phenotypes
from genotype for large scale datasets of organisms with either variable genomes (as is the
case for many bacteria), or those lacking a reference genome.
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METHODS
Our variant calling method comprises two steps: modelling the probability that a base
is observed in a sample given the surrounding context; and determining which contexts
surround variable bases in a population represented by several samples. The former
provides a mechanism to call variants in a sample given a set of contexts, and the latter
determines the set of contexts associated with variants.

Variant calling
We consider the case of variant calling directly from a collection of reads. Let random
variable xij taking values in {A,C,G,T } denote the jth nucleotide of the ith read, with
1≤ i≤ n and 1≤ j ≤mi the number of reads and nucleotides in the read i.

Definition 1 (k-context): The k-context around a nucleotide j consists of a k-prefix
sequence

πk(xi,j) := [xi(j−k),xi(j−k+1),...,xi(j−1)]

and a k-suffix sequence

σk(xi,j) := [xi(j+1),xi(j+2),...,xi(j+k)].

Contexts that consist of only the prefix/suffix sequences are suffix/prefix-free.

Definition 2 (k-context probability): The k-context probability is the probability of
observing a base at a particular position given the context, that is

P(xij |πk(xi,j),σk(xi,j)).

The k-context probabilities can be estimated from the data by maximising a
pseudolikelihood. Let f (b,πk,σk) := 1+

∑
ijJxij = b∧πk = πk(xi,j)∧ σk = σk(xi,j)K

denote the counts of how often b was observed with k-prefix πk and k-suffix σk in the
read set x , where J·K is the Iverson bracket. Here the pseudocount encodes a weak uniform
prior. The probability density estimate of observing a base b in context (πk,σk) is then
given by

P̂(b|πk,σk) :=
f (b,πk,σk)∑
b′ f (b′,πk,σk)

.

The suffix/prefix free densities are thus

P̂(b|πk)=
∑
σk

P̂(b|πk,σk) and P̂(b|σk)=
∑
πk

P̂(b|πk,σk).

Given a context (πk,σk), the base can be called as argmaxb P̂(b|πk,σk), and similarly for
prefix/suffix free densities.

Bedo et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.71 3/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.71


Variant finding
Determining the list of variants consists of determining which contexts (πk,σk) surround
a variable base in our population, then call the base for each variant-defining context
and each sample. We consider inter-sample variants and not intra-sample variants; we are
interested in finding contexts which define variants that differ amongst samples and are not
attributable to noise. In this section, we develop a statistic based on the Kullback–Leibler
(KL) divergence that achieves these two points.

Let X be a set of samples, each consisting of a collection of reads as defined above. For
each x ∈X , we refer to the jth nucleotide of the ith read as xij , the number of reads in the
sample as nx , and the number of nucleotides in read xi as mxi . Similarly to the previous
section, we denote fx(b,πk,σk) as the frequency of observing base b given context (πk,σk)
for sample x . As before, a pseudocount is usedwhen estimating fx to encode a uniformprior.

The KL divergence measure provides a way of quantifying the differences between two
probability distributions. We will develop a statistic based upon the KL-divergence that
compares the individual sample distributions of nucleotide occurrence for a given context
with a global expected distribution. Contexts that significantly diverge from the global
expected distribution surround a site which is variant in the population sample.

Definition 3 (Kullback–Leibler divergence): Let P and Q be two discrete probability
densities over the domain Y . The Kullback–Leibler (KL) divergence is

P(·)‖klQ(·) :=
∑
y∈Y

P(y)log
P(y)
Q(y)

.

Definition 4 (Total divergence): The total divergence for a given context (πk,σk) is
estimated as the total KL divergence between the samples in the dataset X and the expected
probability distribution given the context:

DX (πk,σk) :=
∑
x∈X

P̂x(·|πk,σk)‖klQ(·|πk,σk),

where

P̂x(·|πk,σk) :=
fx(b,πk,σk)∑
b′ fx(b′,πk,σk)

denotes the probability density estimated for sample x and context (πk,σk) and

Q(b|πk,σk) :=
∑

x∈X fx(b,πk,σk)∑
x∈X ,b′ fx(b′,πk,σk)

.

The total divergence statistic is proportional to the expected KL-divergence between a
sample and the global expected probability distribution. To see why this statistic is robust
to noise, consider the case where variation is due purely to noise. As the noise distribution
is independent of sample, it will be well modelled by the expected distribution Q and
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therefore the divergence between each sample and Q will be small. Conversely, if variation
is due to samples being drawn from two or more latent probability densities, then Q will
be an average of these latent densities and divergence will be high.

The next theorem is crucial for determining when a particular divergence estimate
indicates a significant divergence from the expected distribution Q. Using this theorem,
we can use hypothesis testing to select which contexts are not well explained by Q. These
contexts not well explained by Q are variant and we call them as in ‘Variant calling.’

Theorem 5. Under random sampling from Q, D follows a γ distribution.

The proof of this theorem is trivial given a well known result regarding the G-test (see
Sokal & Rohlf (1994)).

Lemma 6 Let fx be a frequency function and g := E[fx ]. The G-test is

G :=
∑
x∈X

∑
b∈{A,T,C,G}

fx(b,πk,σk)log
(
fx(b,πk,σk)
g (b,πk,σk)

)
.

Under the null hypothesis that fx results from random sampling from a distribution with exp-
ected frequencies g , G follows a χ2 distribution with 3|X | degrees of freedom asymptotically.

From this lemma, the proof of Theorem 5 follows easily:

Proof. D is proportional to the G-test. As the G-test is χ2-distributed,D is γ -distributed.�

Clearly our statisticD is very similar toG, but has an important property:D is invariant to
coverage. AsD operates on estimates of the probability rather than the raw counts, changes
in coverage are effectively normalised out. This is advantageous for variant discovery as
it avoids coverage bias and allows variants to be called for (proportionally) low-coverage
areas, if statistical support for their variability in the population exists.

To select contexts, a γ distribution is fitted to the data. For the results in our experiments,
we used a Bayesian mixture model with a β prior over the mixing weights whereby each
context could originate from the null (γ ) distribution or from a uniform distribution.
The mixing weights were then used to determine if a context is not well supported by the
null distribution. Such a model comparison procedure has several advantages and directly
estimates the probabilities of support by the data for each context (Kamary et al., 2014),
providing an easily interpretable quantity.

Choosing context size
The problem of choosing context size k is difficult; if too large then common structures
will not be discovered, and if too small then base calling will be unreliable. We propose to
choose k using the minimum message length principle (Wallace & Boulton, 1968).

Consider a given sample x . The message length of a two-part code is the length of
the compressed message plus the length of the compressor/decompresser. In our case,
the length of the compressed message is given by the entropy of our above probability
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distribution:

L(x;P̂(·|πk,σk)) :=−
∑
ij

logP̂(xij |πk,σk).

The compressor/decompresser is equivalent to transmitting the counts for the probability
distribution. This can be thought of as transmitting a k length tuple of counts. Let
N =

∑
i(mi−2k) be the total number of contexts in the read set (i.e., the total number

of prefix and suffix pairs in the data). Thus,
(
N+42k+1−1
42k+1−1

)
count distributions are possible

amongst the number of total prefix and suffix pairs (4k×4k = 42k distinct prefix/suffix
pairs, and 4 possible observable bases), giving a total message length of

ML(x;P̂(·|πk,σk)) := L(x;P̂(·|πk,σk))+ log
(
N +42k+1−1
42k+1−1

)
.

Approximating the R.H.S using Stirling’s approximation and dropping constant terms
yields

ML
∼

∝ 2L(x;P̂(·|πk,σk))+2log(4)
(
k−(1+2k)41+2k

)
+
(
2
(
41+2k+N

)
−1
)
log
(
N +41+2k

)
.

For suffix free densities the message length simplifies to

ML(x;P̂(·|πk)) := L(x;P̂(·|πk))+ log
(
N +4k+1−1
4k+1−1

)
∼

∝ 2L(x;P̂(·|πk))+ log(4)
(
k−2(1+k)41+k

)
+
(
2
(
41+k+N

)
−1
)
log
(
N +41+k

)
,

and similarly for prefix free.

Prefix/suffix free contexts
The method we have presented so far has been developed for any contexts defined by any
combination of prefix and suffix. The question of whether prefix/suffix-free contexts or
full contexts (both prefix and suffix) naturally arises. The decision depends on the type of
variants of interest: using full contexts will restrict the variants to single nucleotide variants
(SNV), while one sided contexts allow for more general types of variants such as insertions
and deletions. Full contexts also have less power to detect variation caused by close-by
SNVs; two SNVs in close proximity will create several different contexts when modelling
with both prefixes and suffixes. It is also worth remarking that the choice between prefix
and suffix free contexts is immaterial under the assumption of independent noise and
sufficient coverage. Thus, our experiments concentrate on suffix-free contexts as it is the
more general case.

Reference-based variant calling
To compare the ability of our proposed method to a reference-based approach, we
have processed all datasets using a standard mapping-based SNP calling pipeline. Using
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SAMtools v1.2-34, raw reads from each sample were mapped to the relevant reference
sequence and sorted. The mapped reads are then further processed to remove duplicates
arising from PCR artefacts using Picard v1.130 and to realign reads surrounding indels
using GATK v3.3-0. Pileups are then created across all samples using SAMtools and SNPs
are called using the consensus-method of BCFtools v1.1-137. The resulting SNPs were then
filtered to remove those variants with phred-scaled quality score below 20, minor allele
frequency below 0.01 or SNPs that were called in less than 10% of samples.

RESULTS
Simulation study
We first investigate the power and the false positive rate (FPR) of ourmethod by simulations
as minor allele frequency (MAF), sequencing depth, and sample size are varied. A total of
3,000 contexts per sample, of which one was a variant site with two possible alleles across
the population, were simulated by sampling counts from a multinomial distribution. This
corresponds to a simulating a SNP, indel or any other variant whose first base, i.e., the base
directly following the context, is bi-allelic. Each context was simulated with a sequencing
read error of 1% by sampling from a multinomial distribution, with the total number
of simulations per context determined by the specified sequencing depth. Variants were
determined by fitting a gamma distribution and rejecting at a level of p< 0.05 corrected
for multiple testing by Bonferroni’s method. This procedure is repeated 1,000 times for
each combination of simulation parameters.

Figures 1 and 2 shows the results of the simulation. With a depth of 25 our method is
able to recover the variant site with high power when the MAF is 20% or higher, even with
few samples (50). The FPR was also well controlled, but reduces sharply with moderate
depth (>25) at 100 samples, and is low at most depth for 1,000 samples. Identification of
rare variants at low sample sizes (1% MAF at 100 samples) is not reliable, however rare
variants are still identifiable with high power at high depth and samples (depth greater
than 64 and 1,000 samples).

Empirical experiments
We also evaluated our method on three different datasets: two datasets are of Streptococcus
pneumoniae bacteria, one collected in Massachusetts (Croucher et al., 2013) and the other
in Thailand (Chewapreecha et al., 2014a); and one mouse dataset (Fairfield et al., 2011).
The two S. pneumoniae datasets comprise 681 and 3,369 samples sequenced using Illumina
sequencing technology. The Jax6 mouse dataset (Fairfield et al., 2011) contains sequenced
exomes of 16 inbred mouse lines.

All experiments were conducted with suffix-free contexts and only contexts present
across all samples were evaluated for variants. Our method identified 40,071 variants in
the Massachusetts dataset, 57,050 in the Thailand dataset, and 50,000 in the mouse dataset.
We refer to these as KL variants.

We also compare our method with a mapping-based SNP calling approach on the S.
pneumoniae datasets. Using sequence for S. pneumoniae ATCC 700669 (NCBI accession
NC_011900.1) as a reference, there were 181,511 and 251,818 SNPs called for the
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Figure 1 Power curves for 3,000 simulated contexts with a single variant context for varying depth and
sample size (panels). The bi-allelic variant context was simulated 1,000 times and curves show the mean
of the 1,000 simulations. The error for the mean is less than 3% in all cases.

Figure 2 False positive rate for 3,000 simulated contexts with a single variant context for varying
depth and sample size (panels) as described in Fig. 1. The error for the mean is less than 3% in all cases.
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Figure 6: Message length for prefix-only contexts on two S. pneumoniae samples from the
Massachusetts and Thailand datasets, and the 129S1/SvImJ mouse line from the Jax6 dataset.
The optimal k under the MML framework is k = 14 for the S. pneumoniae Massachusetts dataset,
k = 13 for the S. pneumoniae Thailand dataset, and k = 15 for Jax6.

To evaluate the stability of the message length criterion, the optimal k according to message344

length was calculated on all samples from the Massachusetts data (table 4). The majority345

of samples had an optimal length of k = 14, with the remainder being optimal at k = 13.346

Investigation into the singleton sample with minimal length at k = 8 revealed a failed sequencing347

with only 18,122 reads present. We also evaluated all samples present in the Jax6 dataset and348

found all but one sample had minimal message length at k = 15. The stability of k is therefore349

high and we use k = 14 for the two S. pneumoniae datasets and k = 15 for the Jax6 mouse dataset350

henceforth in all experiments.351

Table 4: Proportion of samples in Massachusetts data by optimal k.

Optimal k Count

8 1
13 304
14 376

13

Figure 3 Message length for prefix-only contexts on two S. pneumoniae samples from the
Massachusetts and Thailand datasets, and the 129S1/SvImJ mouse line from the Jax6 dataset. The
optimal k under the MML framework is k = 14 for the S. pneumoniae Massachusetts datasets, k = 13 for
the S. pneumoniae Thailand dataset, and k= 15 for Jax6.

Massachusetts and Thailand datasets. To be comparable with the resulting binary SNPs
calls, we transform our multi-allelic variants to binary variants with the major allele being
one and other alleles being zero.

Finally, we compare our results with variants called by another reference-free caller
DiscoSNP++ (Uricaru et al., 2015) (v2.2.1). DiscoSNP++ finds 8,728 variants for the
Massachusetts S. pneumoniae data, and 290,615 variants for Jax6. DiscoSNP++ results are
not available on the Thailand dataset as the software fails to run in reasonable time on such
a large dataset.

Message lengths
Our first experiment investigated the optimal k resulting from our message length criterion
(see ‘Choosing context size’). Figure 3 shows the results of various contexts sizes on three
samples, one from each of the Massachusetts S. pneumoniae, Thailand S. pneumoniae and
Jax6 mouse data. The S. pneumoniae Massachusetts and Thailand samples had the shortest
message length at k= 14 and k= 13 respectively, and the 129S1/SvImJ mouse line had the
shortest message length at k= 15.

To evaluate the stability of the message length criterion, the optimal k according to
message length was calculated on all samples from the Massachusetts data (Table 1). The
majority of samples had an optimal length of k = 14, with the remainder being optimal
at k = 13. Investigation into the singleton sample with minimal length at k = 8 revealed a
failed sequencing with only 18,122 reads present. We also evaluated all samples present in
the Jax6 dataset and found all but one samples had minimal message length at k= 15. The
stability of k is therefore high and we use k = 14 for the two S. pneumoniae datasets and
k= 15 for the Jax6 mouse dataset henceforth in all experiments.
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Table 1 Count of samples inMassachusetts data by optimal k.

Optimal k Count

8 1
13 304
14 376

Table 2 AMR prediction results using KL variants.Variants were discovered only on the Massachusetts
dataset and then called on both Massachusetts and Thailand datasets. Each row indicates what dataset
models were trained on and the columns denote the testing dataset. Numbers are the Area Under the Re-
ceiver Operating Characteristic (AROC). The AROC was estimated using 10-fold cross-validation within
datasets. The numbers in parentheses are the performance when predicting on standard SNP calls (S) de-
rived through a traditional alignment pipeline and DiscoSNP++ (D) calls. DiscoSNP++ results are not
available on the Thailand dataset as the software fails to run in reasonable time on such a large dataset.

Training dataset Massachusetts Thailand All

Massachusetts 95.6 (S: 94.4, D: 96.6) 81.3 (S: 88.6)
Thailand 72.5 (S: 66.8) 97.6 (S: 97.6)
All 97.1

Supervised learning performance
To investigate the robustness of our variants for genomic prediction tasks, we evaluated
the ability of variants called on the Massachusetts S. pneumoniae dataset for the prediction
of Benzylpenicillin resistance under different training and testing scenarios across the two
S. pneumoniae datasets. Each sample was labelled as resistant if the minimum inhibitory
concentration exceeded 0.063 µg/mL (Chewapreecha et al., 2014b). In all tasks, a support
vector machine (SVM) (Schölkopf & Smola, 2001) was used to predict resistance from the
variants, and the performance measured using the Area under the Receiver Operating
Characteristic (AROC).

Table 2 shows the results of the experiments. Each row indicates what dataset models
were trained on and the columns denote the testing dataset. For intra-dataset experiments
(i.e., the diagonal), AROC was estimated using 10-fold cross validation.

Our variants are clearly capturing the various resistance mechanisms, as evident by the
strong 10-fold cross validation predictive performance. In comparison to the traditional
pipeline andDiscoSNP++ features (onMassachusetts data only) also performedwell. Given
the high level of accuracy, the three methods do not differ significantly in performance.

The model trained using our variants on theMassachusetts data is moderately predictive
on the Thailand dataset. Conversely, the model from the Thailand dataset can also
moderately predict resistance in theMassachusetts data, but to a lesser degree. One possible
explanation for this limited predictive ability is the existence of resistance mechanisms
unique to each dataset, hence a model trained on one dataset will not capture unobserved
mechanisms and consequently the model is unable to predict resistance arising form these
unknown mechanisms. This hypothesis is supported by the strong performance observable
on the diagonal: when combining both datasets and preforming cross-validation, the
performance is high.
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Figure 4 ROC produced from leave-one-out cross-validation performance predicting agouti coat
colour from KL variants on Jax6 mouse dataset. AROC is 96%.

We also evaluated our variants for predicting coat colour on the Jax6 mouse dataset
(Fairfield et al., 2011). As few samples are available (14 labelled samples), we reduced the
problem to a 2-class classification problem, classifying coat colour into agouti or not. This
led to a well balanced classification problem with 8 samples in the agouti classes and 6 not.
The performance for this task was estimated at 96% AROC using leave-one-out (LOOCV)
cross-validation, suggesting the variants are also predictive of heritable traits in higher level
organisms. Fig. 4 shows the ROC for this classification problem.

Population structure
Finally, we investigate the population structure captured by KL variants and the SNP calls
on the Massachusetts dataset. The population structures were estimated using Principle
Component Analysis (PCA), a common approach whereby the top principal components
derived across all genetic variants reflect underlying population structure rather than the
studied phenotype of interest (Price et al., 2010). Five sub-populations (clusters) were
identified using k-means on the first two principal components from the SNP data.
Projecting those 5 clusters on to the principal component scores of our variants (Fig. 5)
results in highly concordant plots. Four out of the five clusters can be easily identified using
our variants, indicating the detected variation preserves population structures well.

A canonical correlation analysis (CCA) was performed to further assess the similarities
between the two feature sets (Table 3). Regularisation was used to find the canonical vectors
as the cross-covariance matrices are singular for our dataset. As there are significantly more
features than samples, regularised CCA was used and the correlation between projections
estimated using 100 samples of leave-one-out bootstrap (Hastie, Tibshirani & Friedman,
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Figure 5 First two principal components derived from alignment-based SNP calls (A) and from vari-
ants detected by our method (B) applied to theMassachusetts S. pneumoniae dataset. Each point repre-
sents a sample and the colours denotes the cluster assignment determined by k-means clustering. The sim-
ilar pattern of samples in each plot indicates that the same population structure signal is detected by the
two variant detection methods.

Table 3 Correlation coefficients for first 5 CCA components, estimated using 10-fold cross-validation
onMassachusetts data.

Component Correlation coefficient (±95% CI)

1 0.873± 0.014
2 0.880± 0.006
3 0.877± 0.007
4 0.862± 0.007
5 0.867± 0.008

2013). We found the first three components explain all the variance (99%), with the first
component alone explaining 76%. Therefore, both mapping-based SNPs and KL variants
are largely capturing the same variance on the Massachusetts data.

Analysis of contexts
To further elucidate the type of variants that are being discovered by ourmethod, we aligned
the significant contexts from the Massachusetts dataset to the S. pneumoniae reference.
Of the contexts, less than 1% failed to align, 41% aligned in a single location, and the
remainder aligned in two or more locations.

One context aligned in 82 different locations in the reference genome. Further
investigation revealed the context corresponds to a boxB repeat sequence. Such repeats have
previously been used to identify population structure of S. pneumoniae isolates carrying the
12F serotype, supporting our population structure findings (Rakov, Ubukata & Robinson,
2011). This suggests the variants may be tagging more complex structural elements than
just single nucleotide variants.
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CONCLUSIONS
Wepresented a novel reference-free variant detectionmethod for next-generation sequence
data. Our method has the advantage of no tuning parameters, rapid calling of known
variants on new samples, and may be suited for targeted genotyping once a known set of
variants are obtained.

Simulation experiments showed the method is relatively robust and has good power
and FPR to detect common variants, but for rare variants the power was lower and a high
depth and number of samples were required to reliably detect them.

In a typical genomic prediction setting the method was able to predict heritable
phenotypes on both a bacterial dataset (anti-microbial resistance) and on a mouse dataset
(coat-colour). On the S. pneumoniae datasets, our method was shown to have similar
performance to a standard alignment-based SNP calling pipeline, with its requirements
for a suitable reference genome. Moreover, the method was shown to capture the same
population structure on theMassachusetts Streptococcus bacterial datasets as an alignment-
based variant calling approach. These results show our method is capable of capturing
important genomic features without a known reference.

As with other reference-free variant calling methods, interpretation of the detected
variants is more difficult compared to a mapping-based approach as called variants are
reported without positional information. One approach to obtain such annotations is to
map the variant and its context back to a given reference. Given that most sequences with a
length greater than 15bp that exist in a given bacterial reference will have a uniquemapping,
many variants could be easily mapped back. However, such information is unlikely to exist
for variants that do not occur in the reference, or may be misleading for variants that arise
through complicated procedures such as horizontal gene transfer. Alternatively, variants
and their context could be examined via BLAST searches to determine whether these
sequences correspond to previously identified genes or other genomic features.

In our experiments we used a combination of these approaches to investigate some of the
variants found on the bacterial dataset. We identified contexts that mapped to numerous
locations in the reference genome and then used BLAST to identify the likely origin of
the sequence. Through this method, variants associated with boxB repeat sequence were
found, suggesting our method is capturing variance associated with complex structures.

We envisage that the method proposed here could be used to conduct a rapid initial
analysis of a given dataset, such as species identification, outbreak detection or genomic
risk prediction. Our method also enables analysis of data without a suitable reference while
still avoiding the computationally expensive step of assembly. Furthermore, our method
scales linearly with the total number of reads, allowing application to large datasets.

The statistical framework established in this work is quite general and could be expanded
in several ways. While we have examined only single nucleotide variants within this work,
insertions and deletions could be explicitly modelled within this framework at the cost of
increased computational expense. It may also be possible to model other types of variants,
such as microsatellites, provided that a suitable representation for them could be found.
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