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Abstract
Federated learning (FL) is a distributed machine
learning framework where the global model of a
central server is trained via multiple collaborative
steps by participating clients without sharing their
data. While being a flexible framework, where the
distribution of local data, participation rate, and
computing power of each client can greatly vary,
such flexibility gives rise to many new challenges,
especially in the hyperparameter tuning on both
the server and the client side. We propose ∆-SGD,
a simple step size rule for SGD that enables each
client to use its own step size by adapting to the
local smoothness of the function each client is op-
timizing. We provide empirical results where the
benefit of the client adaptivity is shown in various
FL scenarios. In particular, our proposed method
achieves TOP-1 accuracy in 73% and TOP-2 ac-
curacy in 100% of the experiments considered
without additional tuning.

1. Introduction
Federated learning (FL) is a distributed machine learning
framework that allows multiple clients to learn a global
model collaboratively. Each client trains the model on its
local data and sends only the updated model parameters to
a central server for aggregation. Mathematically, FL aims
to solve the following optimization problem:

min
x∈Rd

f(x) :=
1

m

m∑
i=1

fi(x), (1)

where fi(x) := Ez∼Di
[Fi(x, z)] is the loss function of the

i-th client, and m is the number of clients.

A key property of FL is its flexibility in how different clients
participate in the overall training: the number of clients m,
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their participation rates, and computing power available to
each client can all vary and change at any point during the
overall training procedure. On top of that, each client’s local
data is not shared with other clients or the server, resulting
in certain inherent data privacy (McMahan et al., 2017;
Agarwal et al., 2018).

While advantageous, such flexibility and data privacy also
introduces a plethora of new challenges, notably: i) how
the server aggregates the local information coming from
each client, and ii) how to make sure each client meaning-
fully “learns” using their local data and computing device.
The first challenge was partially addressed in Reddi et al.
(2021), where adaptive optimization methods, such as Ada-
grad (Duchi et al., 2011) or Adam (Kingma & Ba, 2014),
were utilized in the aggregation step. However, the sec-
ond challenge remains largely unaddressed other than the
exception of Wang et al. (2021); Xie et al. (2019).

Local data of each client is not shared, which intrinsically
implies heterogeneity in terms of the size and the distri-
bution Di of local datasets. That is, Di differs for each
client i, as well as the number of samples z ∼ Di. Conse-
quently, fi(x) can vastly differ from client to client, making
problem (1) hard to solve. Moreover, the sheer amount of
local updates is far larger than the number of aggregation
steps, given that less communication is desired due to the
high communication cost—typically 3-4× orders of magni-
tude more expensive than local computation—in distributed
optimization settings (Lan et al., 2020).

Hence, extensive fine-tuning of the client optimizers is of-
ten required to achieve good performance. For instance,
experimental results of the famous FedAvg algorithm were
obtained after performing a grid-search of typically 11-13
step sizes of the clients’ SGD (McMahan et al., 2017, Sec-
tion 3), as SGD (and its variants) are highly sensitive to the
step size (Moulines & Bach, 2011; Toulis & Airoldi, 2017;
Assran & Rabbat, 2020; Kim et al., 2022). Similarly, in
Reddi et al. (2021), six different client step sizes were grid-
searched for different tasks, and not surprisingly, each task
requires a different client step size to obtain the best result,
regardless of the server-side adaptivity (Reddi et al., 2021,
Table 8). Importantly, these “fine-tunings” are done under
the setting that all clients use the same step size, which is
sub-optimal, given that fi can be different per client.
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Figure 1. Test accuracies for various client optimizers for three different tasks. We fine-tune the step size for each client optimizer in
task (A), and intentionally keep it the same for the other tasks, to highlight the effect of not properly tuning the step size of each client
optimizer. Our proposed method, ∆-SGD, exhibits superior performance in all settings, without any additional tuning. (A): CIFAR-10
classification task trained on ResNet-18. (B): MNIST classification task trained on shallow CNN. (C): CIFAR-100 classification task
trained on ResNet-50. All experiments use FedAvg (McMahan et al., 2017) as the server optimizer.

Initial examination as motivation. The implication of
not properly tuning the client optimizer is highlighted in
Figure 1. We plot the progress of test accuracies for different
client optimizers, where, for all the other test cases, we
intentionally use the same step size rules that were fine-
tuned for the task in Figure 1(A). There, we train a ResNet-
18 for CIFAR-10 dataset classification within an FL setting,
where the best step sizes were used for all algorithms after
grid-search; we defer the experimental details to Section 3.
Hence, all methods perform reasonably well, although ∆-
SGD, our proposed method, achieves noticeably better test
accuracy when compared to non-adaptive SGD variants –
e.g., a 5% difference in final classification accuracy from
SGDM– and comparable final accuracy only with adaptive
SGD variants, like Adam and Adagrad.

In Figure 1(B), we train a shallow CNN for MNIST data
classification using the same step size rules. MNIST classi-
fication is now considered an “easy” task, and hence SGD
with the same constant and decaying step sizes from Fig-
ure 1(A) works well. However, with momentum, SGDM
exhibits oscillating behavior, which results in slow progress
and poor final accuracy, especially without decaying the step
size. Adaptive optimizers like Adam and Adagrad show sim-
ilar behavior: falling short in achieving good final accuracy,
compared to their performance in Figure 1(A).

Similarly, in Figure 1(C), we plot the test accuracy progress
for CIFAR-100 classification trained on ResNet-50, again
using the same step size rules as before. Contrary to Fig-
ure 1(B), SGD with momentum (SGDM) works better than
SGD, both with the constant and the decaying step sizes.
Adam becomes a “good optimizer” again, but its “sibling,”
Adagrad, performs worse than SGDM. On the contrary, our
proposed method, ∆-SGD, which we introduce in Section 2,
achieves superior performance in all cases without any addi-
tional tuning.

The above empirical observations beg answers to important

and non-trivial questions in training FL tasks using variants
of SGD methods as the client optimizer: Should the mo-
mentum be used? Should the step size be decayed? If so,
when? Unfortunately, Figure 1 indicates that the answers to
these questions highly vary depending on the setting; once
the dataset itself or how the dataset is distributed among
different clients changes, or once the model architecture
changes, the client optimizers have to be properly re-tuned
to ensure good performance. Perhaps surprisingly, the same
holds for adaptive methods like Adagrad (Duchi et al., 2011)
and Adam (Kingma & Ba, 2014).

Our hypothesis and contributions. Our paper takes a stab
in this direction: we propose DELTA-SGD (DistributEd
LocaliTy Adaptive SGD), a simple adaptive SGD scheme,
that does not require any knowledge of the problem con-
stants, such as the L-smoothness parameter. We will refer to
our algorithm as ∆-SGD in the rest of the text. Our adaptive
step size is extended from Malitsky & Mishchenko (2020),
where the focus was centralized convex optimization; we
defer the readers to Section 2 for details. Our contributions
can be summarized as follows:

• We extend the (centralized) adaptive step size from Malit-
sky & Mishchenko (2020) to the FL setting. The impli-
cation of this adaptive step size in FL is twofold: i) each
client can use its own step size, and ii) each client’s step
size adapts to the local smoothness of fi—hence LocaliTy
Adaptive— and can even increase during local iterations.
Moreover, thanks to the simplicity of the proposed step
size, our method is agnostic to the server optimizer as
well as the loss function, and thus can be easily combined
with server adaptive methods such as FedAdam (Reddi
et al., 2021), or methods that use different (regularized)
loss functions such as FedProx (Li et al., 2020) or MOON
(Li et al., 2021).

• We evaluate our approach on several benchmark datasets
and demonstrate that ∆-SGD achieves superior perfor-
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mance compared to other state-of-the-art FL methods.
Our experiments show that our method can effectively
adapt the client step size to the underlying data distribu-
tion and achieve faster convergence of the global model,
without any additional tuning. Our approach can help
overcome the client step size tuning challenge in FL and
enable more efficient and effective collaborative learning
in distributed systems.

2. DELTA(∆)-SGD: Distributed locality
adaptive SGD

Algorithm 1 DELTA(∆)-SGD
1: input: x0 ∈ Rd, η0, θ0, γ > 0, and p ∈ (0, 1).
2: for each round t = 0, 1, . . . , T−1 do
3: sample a subset St of clients with size |St| = p ·m
4: for each machine in parallel for i ∈ St do
5: set xi

t,0 = xt

6: set ηit,0 = η0 and θit,0 = θ0
7: for local step k ∈ [K] do
8: xi

t,k = xi
t,k−1 − ηit,k−1∇̃fi(x

i
t,k−1)

9: ηit,k = min
{

γ∥xi
t,k−xi

t,k−1∥
2∥∇̃fi(xi

t,k)−∇̃fi(xi
t,k−1)∥

,√
1 + θit,k−1η

i
t,k−1

}
10: θit,k = ηit,k/η

i
t,k−1

11: end for
12: end for
13: xt+1 = 1

|St|
∑
i∈St

xi
t,K

14: end for
15: return xT

Malitsky & Mishchenko (2020) presented a new step size
rule for (centralized) gradient descent (GD). This new
method adjusts to the local geometry of the objective func-
tion. The proposed step size is clever and strikingly simple:

ηt = min
{

∥xt−xt−1∥
2∥∇f(xt)−∇f(xt−1)∥ ,

√
1 + θt−1ηt−1

}
, (2)

where θt−1 = ηt−1/ηt−2. The step size in (2) adapts to the
local smoothness of the iterates, that is:

∥∇f(xt)−∇f(xt−1)∥ ⩽ Lt · ∥xt − xt−1∥, ∀t = 1, 2, . . .
(3)

Therefore, the step size rule in (2) can increase during it-
erations, while the second condition in (2) ensures that ηt
does not increase arbitrarily. By definition, Lt in (3) is never
bigger than the global smoothness parameter L, resulting
in faster convergence in practice (Malitsky & Mishchenko,
2020, Section 4).

Note that (2) is vastly different from some standard adaptive
methods like Adagrad (Duchi et al., 2011), which can only

decrease the learning rate, as they accumulate non-negative
quantities in the denominator of the step size. As a result,
the scalar multiplied to their “adaptive” learning rates play a
crucial role and requires proper tuning, similarly to vanilla
SGD, as evident in Figure 1; see also Table 1 in Section 3.

We now introduce DELTA(∆)-SGD: DistributEd LocaliTy
Adaptive SGD, where we extend (2) to the FL setting, with
the inclusion of stochasticity and local iterations; see Algo-
rithm 1. For brevity, we use ∇̃fi(x) =

1
|B|

∑
z∈B

Fi(x, z) to

denote the stochastic gradients with batch size |B| = b.

We make a few remarks about Algorithm 1. First, the input
η0 > 0 can be quite arbitrary, as it can be corrected, per
client level, in the 1st local iteration (line 9); similarly for
θ0 > 0 (line 10). 1 Second, as the step size ηit,k requires two
successive stochastic gradients, there could be two options:
using i) the same batch or ii) a new batch; the second option
will incur additional memory requirement, so we use the
first.2 Third, after local steps are done, η0 is re-used (line 6);
we could potentially use a more sophisticated approach and
use a similar adaptive step size to line 9, but we leave this
for future work. Last, we present simple averaging as the
server-side aggregation for simplicity (line 13), but more
sophisticated methods like FedAdam (Reddi et al., 2021)
can be used instead.

3. Experimental Setup and Results
Experimental Setup. We evaluate on four datasets com-
monly used in FL scenarios: MNIST, FMNIST, CIFAR-10,
and CIFAR-100 (Krizhevsky et al., 2009). For MNIST and
FMNIST, we train a shallow CNN. For CIFAR-10, we train
a ResNet-18 (He et al., 2016). For CIFAR-100, we train
both a ResNet-18 and a ResNet-50 to study the effect of
changing the model architecture. Due to space constraints,
we defer the details of experimental setup to Appendix A.

Changing the level of non-iidness. We first investigate
how the performance of different client optimizers degrade
in increasing degrees of heterogeneity by varying the con-
centration parameter α ∈ {1, 0.1, 0.01} multiplied to the
prior of Dirichlet distribution, following Hsu et al. (2019).

Three illustrative cases are visualized in Figure 2. We re-
mind that the hyperparameters are tuned for the case of
CIFAR-10 trained with ResNet-18, with α = 0.1 (Fig-
ure 2(A)). For this task, with α = 1 (i.e., closer to iid),
all methods perform better than α = 0.1, as expected. With

1We use the default value, η0 = 0.2 and θ0 = 1 from
the original implementation in https://github.com/
ymalitsky/adaptive_GD/blob/master/pytorch/
optimizer.py in all our experiments.

2This distinction was already analyzed in the centralized setting,
and it was reported that using the same batch performed better in
practice (Malitsky & Mishchenko, 2020).
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Non-iidness Optimizer Dataset / Model

Dir(α · p) MNIST FMNIST CIFAR-10 CIFAR-100 CIFAR-100
CNN CNN ResNet-18 ResNet-18 ResNet-50

α = 1

SGD 98.3↓(0.2) 86.5↓(0.8) 87.7↓(2.1) 57.7↓(4.2) 53.0↓(12.8)
SGD (↓) 97.8↓(0.7) 86.3↓(1.0) 87.8↓(2.0) 61.9↓(0.0) 60.9↓(4.9)
SGDM 98.5↓(0.0) 85.2↓(2.1) 88.7↓(1.1) 58.8↓(3.1) 60.5↓(5.3)

SGDM (↓) 98.4↓(0.1) 87.2↓(0.1) 89.3↓(0.5) 61.4↓(0.5) 63.3↓(2.5)
Adam 94.7↓(3.8) 71.8↓(15.5) 89.4↓(0.4) 55.6↓(6.3) 61.4↓(4.4)

Adagrad 64.3↓(34.2) 45.5↓(41.8) 86.6↓(3.2) 53.5↓(8.4) 51.9↓(13.9)
SPS 10.1↓(88.4) 85.9↓(1.4) 82.7↓(7.1) 1.0↓(60.9) 50.0↓(15.8)

∆-SGD 98.4↓(0.1) 87.3↓(0.0) 89.8↓(0.0) 61.5↓(0.4) 65.8↓(0.0)

α = 0.1

SGD 98.1↓(0.0) 83.6↓(2.8) 72.1↓(12.9) 54.4↓(6.7) 44.2↓(19.9)
SGD (↓) 98.0↓(0.1) 84.7↓(1.7) 78.4↓(6.6) 59.3↓(1.8) 48.7↓(15.4)
SGDM 97.6↓(0.5) 83.6↓(2.8) 79.6↓(5.4) 58.8↓(2.3) 52.3↓(11.8)

SGDM (↓) 98.0↓(0.1) 86.1↓(0.3) 77.9↓(7.1) 60.4↓(0.7) 52.8↓(11.3)
Adam 96.4↓(1.7) 80.4↓(6.0) 85.0↓(0.0) 55.4↓(5.7) 58.2↓(5.9)

Adagrad 89.9↓(8.2) 46.3↓(40.1) 84.1↓(0.9) 49.6↓(11.5) 48.0↓(16.1)
SPS 96.0↓(2.1) 85.0↓(1.4) 70.3↓(14.7) 42.2↓(18.9) 42.2↓(21.9)

∆-SGD 98.1↓(0.0) 86.4↓(0.0) 84.5↓(0.5) 61.1↓(0.0) 64.1↓(0.0)

α = 0.01

SGD 96.8↓(0.7) 79.0↓(1.2) 22.6↓(11.3) 30.5↓(1.3) 24.3↓(7.1)
SGD (↓) 97.2↓(0.3) 79.3↓(0.9) 33.9↓(0.0) 30.3↓(1.5) 24.6↓(6.8)
SGDM 77.9↓(19.6) 75.7↓(4.5) 28.4↓(5.5) 24.8↓(7.0) 22.0↓(9.4)

SGDM (↓) 94.0↓(3.5) 79.5↓(0.7) 29.0↓(4.9) 20.9↓(10.9) 14.7↓(16.7)
Adam 80.8↓(16.7) 60.6↓(19.6) 22.1↓(11.8) 18.2↓(13.6) 22.6↓(8.8)

Adagrad 72.4↓(25.1) 45.9↓(34.3) 12.5↓(21.4) 25.8↓(6.0) 22.2↓(9.2)
SPS 69.7↓(27.8) 44.0↓(36.2) 21.5↓(12.4) 22.0↓(9.8) 17.4↓(14.0)

∆-SGD 97.5↓(0.0) 80.2↓(0.0) 31.6↓(2.3) 31.8↓(0.0) 31.4↓(0.0)

Table 1. Experimental results based on the settings detailed in Section 3. Performance difference within 0.5% of the best result for each
task are shown in bold. Subscripts↓(x.x) is the performance difference from the best result and is highlighted in pink when the difference
is bigger than 2%. The symbol (↓) appended to SGD and SGDM indicates step-wise learning rate decay, where the step sizes are divided
by 10 after 50%, and another by 10 after 75% of the total rounds.

Figure 2. The effect of stronger heterogeneity on different client optimizers, induced by the Dirichlet concentration parameter α.
(A): CIFAR-10 trained with ResNet-18, (B): FMNIST trained with CNN, (C): CIFAR-100 trained with ResNet-50.

Figure 3. The effect of changing the dataset and the model architecture on different client optimizers. (A): CIFAR-100 trained with
ResNet-18 versus Resnet-50 (α = 0.1), (B): MNIST versus FMNIST trained with CNN (α = 0.01), (C): CIFAR-10 versus CIFAR-100
trained with ResNet-18 (α = 0.01).
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α = 0.01, which is highly non-iid, we see a significant drop
in performance for all methods. SGD with LR decay and ∆-
SGD perform the best, while adaptive methods like Adam
(85% → 22.1%) and Adagrad (84.1% → 12.5%) degrade
noticeably more than other methods.

For FMNIST trained with CNN (Figure 2(B)), which can
be considered as an easier problem compared to CIFAR-10
classification, the performance degradation with varying
α’s is much milder. Interestingly, adaptive methods like
Adam, Adagrad, and SPS perform much worse than other
methods, indicating their inflexibility when applied to di-
verse datasets and model architectures, which often is worse
than simple SGD-based methods; we further investigate this
phenomenon in more detail in the next remark.

A similar trend can be seen in MNIST classification, where
SGD-based methods work relatively well, except for SGDM
with α = 0.01: without the LR decay, SGDM only achieves
around 78% accuracy, while SGD without LR decay still
achieves over 96% accuracy (c.f., Figure 1(A)). Even with
the LR decay, SGDM achieves noticeably worse perfor-
mance. While this may seem like an “easy fix” in hindsight,
it indicates that in a highly non-iid setting, one should be
extremely careful in tuning SGD-based methods, even for
easy datasets like MNIST.

Interestingly, SPS performs particularly poorly, merely
achieving 10% for MNIST with α = 1, while achieving
96% for the “harder” case of α = 0.1, and again dropping
to 69.7% with α = 0.01. A possible explanation is, with
simple CNN, the model is not over-parameterized enough to
have f⋆

i = 0, the default estimate we use on which the per-
formance of SPS crucially relies (Hazan & Kakade, 2019).
Adagrad similarly performs poorly.

Lastly, in Figure 2(C), results for CIFAR-100 classification
trained with ResNet-50 are illustrated. ∆-SGD exhibits
superior performance in all cases of α. Unlike MNIST
and FMNIST, Adam enjoys the second (α = 0.1) or the
third (α = 1) best performance in this task, complicating
how one should tune Adam for the task at hand. Other
methods, including SGD with and without momentum/LR
decay, Adagrad, and SPS perform much worse than ∆-SGD.

Changing the model architecture. For this remark, let
us focus on CIFAR-100 trained on ResNet-18 versus on
ResNet-50, with α = 0.1, illustrated in Figure 3(A). SGD
and SGDM (both with and without LR decay), Adagrad,
and SPS perform worse using ResNet-50 than ResNet-18.

This is a counter-intuitive behavior, as one would expect to
get better accuracy by using a more powerful model. ∆-
SGD is an exception: without any additional tuning, ∆-SGD
can improve its performance. Adam also improves similarly,
but the achieved accuracy is significantly worse than that
of ∆-SGD. While it is true that the performance of ∆-SGD

also slightly degrades for α = 0.01, it still performs better
than the other methods.

Changing the dataset. We now focus on cases where
the dataset changes, but the model architecture remains
the same. We mainly consider two cases, illustrated in
Figure 3(B) and (C): when CNN is trained for classifying
MNIST versus FMNIST, and when ResNet-18 is trained for
CIFAR-10 versus CIFAR-100. Aggravating the complexity
of tuning SGD(M) for MNIST, one can observe a similar
trend in CIFAR-10 trained with ResNet-18. In that case, ∆-
SGD does not achieve the best test accuracy (although it is
the second best with a pretty big margin with the rest), while
SGD with LR decay does. However, without LR decay, the
accuracy achieved by SGD drops more than 11%.

Interestingly, when we change the dataset from CIFAR-10
to CIFAR-100, SGD without LR decay (which is not one of
the best methods for CIFAR-10) achieves the second-best
performance (after ∆-SGD). On the other hand, SGDM
with LR decay, which achieves the 3rd best performance for
CIFAR-10, achieves very poor performance (more than 10%
less than the best) for CIFAR-100. Finally, SGD with decay,
which performs the best in the CIFAR-10 case, turns out
to be the 3rd best algorithm when we change the dataset to
CIFAR-100. Again, adaptive methods like Adam, Adagrad,
and SPS perform quite poorly.

4. Conclusion
In this work, we proposed ∆-SGD, a distributed SGD
scheme equipped with an adaptive step size that enables
each client to use its step size and adapts to the local smooth-
ness of the function each client is optimizing. We presented
extensive empirical results, where the superiority of ∆-SGD
is shown in various scenarios without any tuning. For fu-
ture works, extending ∆-SGD to a coordinate-wise step
size in spirit of (Duchi et al., 2011; Kingma & Ba, 2014),
as well as enabling asynchronous updates (Assran et al.,
2020; Toghani et al., 2022; Nguyen et al., 2022) could be
interesting directions.

Broader Impacts. We believe that ∆-SGD can potentially
impact reducing the amount of tuning required in training
FL models. By now, it is widely believed that FL systems
do not “dodge the bullet” of high carbon emission in AI/ML:
as noted in a recent study (Yousefpour et al., 2023), “com-
pute on client devices, and the communication between the
clients and the server are responsible for the majority of FL’s
overall carbon emissions (97%).” The lack of principled hy-
perparameter tuning only exacerbates this problem. Based
on the results presented in Section 3, ∆-SGD achieves supe-
rior performance without any additional tuning, while being
robust to different settings.
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A. Experimental Setup
Datasets and models. To test the performance of different client optimizers in various settings, we evaluate on four datasets
commonly used in FL scenarios: MNIST, FMNIST, CIFAR-10, and CIFAR-100 (Krizhevsky et al., 2009). For MNIST
and FMNIST, we train a shallow CNN with two convolutional and two fully-connected layers, followed by dropout and
ReLU activations. For CIFAR-10, we train a ResNet-18 (He et al., 2016). For CIFAR-100, we train both a ResNet-18 and a
ResNet-50 to study the effect of changing the model architecture.

We create a federated version for each dataset by randomly partitioning the training data among 100 clients, with each client
getting 500 examples.3 To control the level of “non-iidness”, we apply latent Dirichlet allocation (LDA) over the labels
following Hsu et al. (2019), where each client has an associated multinomial distribution over the labels from which its
examples are drawn. That is, the local training examples of each client have been drawn from a categorical distribution over
N classes, parameterized by q, such that q ∼ Dir(αp), where p is a prior distribution over N classes, with α > 0 being the
concentration parameter. We vary α ∈ {0.01, 0.1, 1}, where bigger α indicates settings closer to i.i.d. scenarios.

FL setup and optimizers. For all cases, we fix the number of clients to be 100, and randomly sample 10% among the 100
clients. Similarly to Reddi et al. (2021); Li et al. (2020), we perform E local epochs of training over each client’s dataset,
and we utilize mini-batch gradients of size b = 64, leading to K ≈ ⌊E·500

64 ⌋ local gradient steps; we use E = 1 for all
settings. For client optimizers, we compare stochastic gradient descent (SGD), SGD with momentum (SGDM), adaptive
methods including Adam (Kingma & Ba, 2014), Adagrad (Duchi et al., 2011), SGD with stochastic Polyak step size (SPS)
(Loizou et al., 2021), and our proposed method: ∆-SGD in Algorithm 1. As our focus is on client adaptivity, we only
present the results using simple FedAvg (McMahan et al., 2017) as the server optimizer.

Hyperparameters. For all methods, we perform a simple grid search on a single task: CIFAR-10 classification trained with
ResNet-18, with Dirichlet concentration parameter α = 0.1; for the rest of the settings, we use the same hyperparameters.
For SGD, we perform a grid search with η ∈ {0.01, 0.05, 0.1, 0.5}. For SGDM, we use the same grid for η and use
momentum parameter β = 0.9. For Adam, we tried η ∈ {0.001, 0.01}, and for Adagrad, we tried η ∈ {0.01, 0.1} (i.e., the
default learning rates in Pytorch and their one-tenths). For SPS, we use the default setting of the official implementation.4

For ∆-SGD, we append δ in front of the second condition:
√
1 + δθit,k−1η

i
t,k−1 following Malitsky & Mishchenko (2020),

and use δ = 0.1 for all experiments. To account for the SGD(M) fine-tuning done in practice, we also tested dividing the
step size (LR decay) by 10 after 50%, and then again by 10 after 75% of the total training rounds and report the inclusive
results in Table 1. Finally, for the number of rounds T , we use 500 for MNIST, 1000 for FMNIST, and 2000 for CIFAR-10
and CIFAR-100.

Implementation. We use Pytorch (Paszke et al., 2019) to implement all experiments and run on eight P100 GPUs.

3All the datasets we consider have 50, 000 training samples, leading to 500 samples distributed per client.
4I.e., we use f⋆

i = 0, an c = 0.5, for the SPS step size: fi(x)−f⋆
i

c∥∇fi(x)∥2
. The official implementation can be found in https:

//github.com/IssamLaradji/sps
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