

000 CS-DIALOGUE: A 104-HOUR DATASET OF SPONTA- 001 NEOUS MANDARIN-ENGLISH CODE-SWITCHING DIA- 002 LOGUES FOR SPEECH RECOGNITION 003

004 **Anonymous authors**
 005

006 Paper under double-blind review
 007

008 ABSTRACT 009

010 Code-switching (CS), the alternation between two or more languages within a
 011 single conversation, presents significant challenges for automatic speech recogni-
 012 tion (ASR) systems. Existing Mandarin-English code-switching datasets often
 013 suffer from limitations in size, spontaneity, and the lack of full-length dialogue
 014 recordings with transcriptions, hindering the development of robust ASR mod-
 015 els for real-world conversational scenarios. This paper introduces CS-Dialogue,
 016 a novel large-scale Mandarin-English code-switching speech dataset comprising
 017 104 hours of spontaneous conversations from 200 speakers. Unlike previous
 018 datasets, CS-Dialogue provides full-length dialogue recordings with com-
 019 plete transcriptions, capturing naturalistic code-switching patterns in continuous
 020 speech. We describe the data collection and annotation processes, present detailed
 021 statistics of the dataset, and establish benchmark ASR performance using state-
 022 of-the-art models. Our experiments, using Transformer, Conformer, and Branch-
 023 former, demonstrate the challenges of code-switching ASR, and show that ex-
 024 isting pre-trained models such as Whisper still have the space to improve. The
 025 CS-Dialogue dataset will be made freely available for all academic purposes.
 026

027 1 INTRODUCTION 028

029 Code-switching (CS) refers to the practice of alternating between two or more languages within a
 030 single conversation or utterance (Moyer, 2002). It is a common linguistic phenomenon in multilin-
 031 gual communities and occurs in various communication settings, including spoken dialogues, social
 032 media, and written texts. The increasing prevalence of code-switching presents significant chal-
 033 lenges for automatic speech recognition (ASR) systems, as they must effectively handle complex
 034 acoustic and linguistic variations across different languages (Yilmaz et al., 2018).
 035

036 Traditional ASR systems, predominantly trained on monolingual data, struggle with code-switched
 037 speech due to mismatches in phonetic inventories, syntactic structures, and language switching pat-
 038 terns (Mustafa et al., 2022; Zhou et al., 2024). These challenges necessitate the development of
 039 specialized ASR models and high-quality datasets tailored for code-switching scenarios. Despite
 040 recent advancements, existing Mandarin-English code-switching speech corpora remain limited in
 041 size, spontaneity, and accessibility, restricting further research and model development.
 042

043 Table 1 provides an overview of publicly available Mandarin-English code-switching datasets. Many
 044 existing corpora (Shen et al., 2011; Wang et al., 2016; Li et al., 2022) focus on read speech or con-
 045 strained domains, lack full transcriptions or are not publicly accessible. Crucially, most datasets
 046 comprise isolated code-switching utterances rather than full dialogues, limiting their utility for
 047 studying naturalistic speech patterns and contextual dependencies (Chang et al., 2023).
 048

049 To address these gaps, we introduce **CS-Dialogue**, a novel large-scale Mandarin-English code-
 050 switching speech dataset consisting of 104 hours of spontaneous conversations from 200 speakers.
 051 Unlike prior work, our dataset provides full-length dialogue recordings with complete transcriptions,
 052 capturing naturalistic code-switching phenomena in continuous speech. This dataset enables more
 053 comprehensive investigations into code-switching ASR beyond isolated utterances. CS-Dialogue is,
 to the best of our knowledge, the largest publicly available dataset of spontaneous Mandarin-English
 code-switching dialogues with full transcriptions.
 054

054
 055
 056
 057
 058 Table 1: Comparison of Mandarin-English code-switching speech datasets. "Tr." indicates whether
 059 transcripts are available, "Avail." specifies whether the dataset is publicly accessible, and "Full-
 060 dialogue" denotes whether full-length dialogue recordings and transcriptions are provided.
 061
 062
 063
 064
 065

Dataset	Duration (h)	#Speakers	Audio Type	Tr.	Avail.	Full-dialogue
CECOS (Shen et al., 2011)	12.1	77	Read	No	No	No
OC16-CE80 (Wang et al., 2016)	80	1400+	Read	Yes	No	No
ASRU (Shi et al., 2020)	240	N/A	N/A	Yes	No	No
TALCS (Li et al., 2022)	587	100+	Online Teaching	Yes	Yes	No
DOTA-ME-CS (Li et al., 2025)	18.54	34	Read	Yes	Yes	No
SEAME (Lyu et al., 2010)	30	157	Conversation	Yes	Paid	No
Li et al. (Li et al., 2012)	36	N/A	Conversation	Partial	No	No
ASCEND (Lovenia et al., 2022)	10.62	23	Conversation	Yes	Yes	No
Ours	104.02	200	Conversation	Yes	Yes	Yes

066
 067 In this paper, we describe the data collection and annotation processes, present key characteristics
 068 of the dataset, and evaluate its impact on ASR performance through baseline experiments. Our
 069 contributions are summarized as follows:
 070

071 • We construct a large-scale, spontaneous Mandarin-English code-switching speech corpus
 072 with full-length dialogue transcriptions, filling the gap of publicly available datasets in this
 073 domain.
 074 • We detail the data collection and annotation processes, ensuring high transcription accuracy
 075 and providing a well-documented resource for future research.
 076 • We establish benchmark ASR performance on our dataset using state-of-the-art models,
 077 offering insights into the challenges of code-switching ASR.
 078

079 2 RELATED WORK

080 Existing Mandarin-English CS speech datasets can be broadly categorized into read speech and
 081 spontaneous speech corpora. Read speech datasets typically contain pre-defined sentences that
 082 participants are instructed to read aloud, offering controlled phonetic and linguistic variations but lacking
 083 the spontaneity of natural conversations.
 084

085 The CECOS dataset (Shen et al., 2011) is one of the earliest Mandarin-English CS corpora, comprising
 086 12.1 hours of read speech from 77 speakers at National Cheng Kung University in Taiwan. While
 087 it includes code-switching utterances, it lacks publicly available transcriptions. OC16-CE80 (Wang
 088 et al., 2016) significantly expands the scale, offering 80 hours of read speech from over 1400 speakers,
 089 with transcriptions available but not open-sourced. The ASRU dataset (Shi et al., 2020), developed
 090 for an ASR challenge, contains 240 hours of predominantly Mandarin speech interspersed with some English.
 091 Although transcriptions exist, the dataset is not publicly accessible.
 092

093 More recent datasets, such as DOTA-ME-CS (Li et al., 2025), offer open-source transcriptions and
 094 introduce AI-based augmentation techniques (e.g., timbre synthesis, speed variation, and noise ad-
 095 dition) to enhance diversity. However, its scale remains relatively small, with only 18.54 hours
 096 from 34 speakers. TALCS (Li et al., 2022) provides a much larger dataset, comprising 587 hours of
 097 speech from online teaching scenarios. While it is open-source and valuable for acoustic modeling,
 098 its domain-specific nature introduces biases in discourse structure, grammar, and lexical choices,
 099 making it less representative of everyday spontaneous conversations.
 100

101 Spontaneous CS datasets, in contrast, are essential for modeling real-world language use but present
 102 greater challenges in collection and annotation. SEAME (Lyu et al., 2010) provides approxi-
 103 mately 30 hours of spontaneous Mandarin-English conversations from 92 speakers in Singapore
 104 and Malaysia. It includes word-level transcriptions with time-aligned language boundaries, making
 105 it a valuable resource for code-switching research. Li et al. (2012) compiled 36 hours of sponta-
 106 neous CS speech across various settings, including conversational meetings and student interviews,
 107 but only part-of-speech data is transcribed, limiting its usability for ASR research. ASCEND (Love-
 108 nia et al., 2022) provides a smaller (10.62 hours) yet fully transcribed and open-source dataset of
 109 spontaneous CS conversations recorded in Hong Kong, featuring 23 bilingual speakers.
 110

108 Despite these advancements, most existing datasets exhibit limitations in scale, availability, or annotation completeness. Many either focus on isolated code-switching utterances rather than full dialogues, or remain inaccessible to the research community. In contrast, our dataset aims to bridge these gaps by providing 104 hours of spontaneous Mandarin-English CS speech, featuring full-length dialogue recordings with comprehensive transcriptions. It captures naturalistic code-switching patterns within extended conversations, making it a valuable resource for both ASR research and broader linguistic analysis.

115 While our focus is on Mandarin-English, it is important to acknowledge the growing body of research on code-switching in other language pairs. Notable examples include datasets and studies for Spanish-English (García et al., 2018), Arabic-English (Chowdhury et al., 2021), Hindi-English (Dey & Fung, 2014), and Manipuri-English (Singh et al., 2024), each contributing to a broader understanding of this complex linguistic phenomenon.

121 3 DATASET CREATION

123 The creation of the CS-Dialogue dataset involved a meticulous multi-stage process, encompassing 124 careful data acquisition and rigorous annotation ensuring the development of a high-quality resource 125 for code-switching research.

127 3.1 DATA ACQUISITION

129 3.1.1 SPEAKER SELECTION

131 All speakers were native Chinese citizens with demonstrated fluency in English. Selection criteria 132 prioritized individuals with significant exposure to English-speaking environments, such as over- 133 seas experience or high scores on standardized English proficiency tests (e.g., IELTS 6 or TEM-4). 134 Prospective speakers underwent an audition to ensure adequate speech quality and language profi- 135 ciency before being included in the recording sessions.

137 3.1.2 ETHICAL CONSIDERATIONS AND COMPENSATION

138 Prior to participation, all speakers provided informed consent, granting permission for the collection, 139 processing, and potential sharing of their data, including with parties located outside of China. The 140 consent process adhered to ethical guidelines and ensured participants were fully aware of the data's 141 intended use. Each speaker received financial compensation of 300 RMB (approximately 50 USD) 142 for their contribution to the dataset.

144 3.1.3 TOPIC SELECTION

146 The dataset incorporates seven prevalent topics of daily relevance: personal topics, entertainment, 147 technology, education, job, philosophy, and sports. A detailed overview of these topics could be 148 found in Appendix A.3. To ensure comprehensive coverage, a minimum of 15 distinct speaker pairs 149 engaged in discussions for each topic. Individual speaker pairs selected between two and six topics 150 based on their personal interests, aiming to foster natural and engaging conversations.

152 3.1.4 DIALOGUE RECORDING PROCEDURE

153 To facilitate natural and spontaneous interaction, paired dialogues were conducted through an audio- 154 visual platform. Participants recorded their individual audio streams using smartphone microphones 155 in quiet environments. For privacy and efficiency, only the audio recordings were retained for the 156 dataset. A timekeeper facilitated each session, ensuring adherence to the established recording 157 protocol. Each dialogue commenced with brief introductory remarks, transitioning into discussions 158 centered on the pre-selected topics. The linguistic composition of the dialogue progressed system- 159 atically: initially in Mandarin Chinese, followed by a period of code-switching between Chinese 160 and English, and concluding with exclusive use of English. Each topic segment was designed to 161 last approximately 20 minutes, with a target allocation of 8 minutes for Chinese, 6 minutes for code-switching, and 6 minutes for English.

162
163
164 Table 2: Annotation Symbols and Definitions
165
166
167
168
169
170
171
172
173

Symbol	Definition
**	Indicates unintelligible words or phrases.
<FIL/>	Filled pauses resulting from hesitation.
<SPK/>	Speaker-related noises, such as lip smacking, laughter, coughing, or throat clearing.
<NON/>	Non-speech noises, such as door slams, knocks, or ringing sounds.
<NPS/>	Noises made by individuals other than the designated speakers, including speech or noise.

174 While the timekeeper provided prompts to maintain the intended schedule, natural variations in pac-
 175 ing were permitted to encourage spontaneous and authentic communication. Participants were not
 176 strictly limited to a single language during any segment. They could code-switch naturally in mono-
 177 lingual phases, and monolingual speech was also allowed during the code-switching segment. This
 178 flexible setup helped preserve spontaneity. The transcriptions faithfully reflect what was actually
 179 spoken, including deviations from the intended language schedule, ensuring the dataset captures
 180 authentic conversational behavior. A dedicated observer monitored each session, verifying proce-
 181 dural compliance and recording relevant metadata for subsequent analysis. The entire procedure took
 182 approximately 1.5 hours. All audio files in the dataset are stored in a 16 kHz, 16-bit, mono, PCM
 183 WAV format.

184
185 3.2 ANNOTATION
186

187 To ensure high data quality and support downstream tasks, all audio files underwent a rigorous an-
 188 notation process. This included precise manual transcription, detailed labeling of non-lexical events,
 189 and strict quality control procedures. All annotations were carried out by a dedicated in-house team
 190 (see Appendix A.1 for annotator details) following a standardized protocol. An illustrative example
 191 of a dialogue transcription is provided in Appendix A.2.

192 The transcription process prioritized accurate representation of the spoken content, focusing on the
 193 speaker’s actual pronunciation. The following guidelines were implemented to maintain consistency
 194 and ensure high transcription quality:

1. **Word Count Fidelity:** Transcriptions were required to maintain a precise word-for-word correspondence with the spoken utterance, preventing both omissions and additions.
2. **Treatment of Disfluencies:** Clear repetitions of sounds or words were transcribed verbatim (e.g., ”放放假” transcribed as ”放放假”). Partially articulated syllables were transcribed using the most appropriate homophone (e.g., ”放假” pronounced as ”fu-fang4-jia4” transcribed as ”夫放假”). Epenthetic or extremely faint sounds were disregarded.
3. **Numerical Representation:** Arabic numerals were converted to their corresponding Chinese characters or English words, depending on the context and pronunciation (e.g., ”711” transcribed as ”七幺幺” or ”Seven Eleven”).
4. **Accent Accommodation:** Regional accents and variations in pronunciation (e.g., distinctions between retroflex and non-retroflex consonants, nasal finals, or the pronunciation of /h/ and /f/ or /l/ and /n/) were preserved in the transcription without correction.
5. **Punctuation Conventions:** Punctuation marks, including both Chinese and English symbols, were applied according to standard grammatical conventions and semantic context to ensure clarity and accurate segmentation.
6. **Spelling conventions:** Spelling followed common English conventions and standards to ensure quality of annotations.
7. **Acronym Representation:** Acronyms were transcribed using uppercase letters separated by spaces (e.g., ”I B M”). Utterances consisting of three or fewer letters transcribed as an acronym were categorized as Chinese.

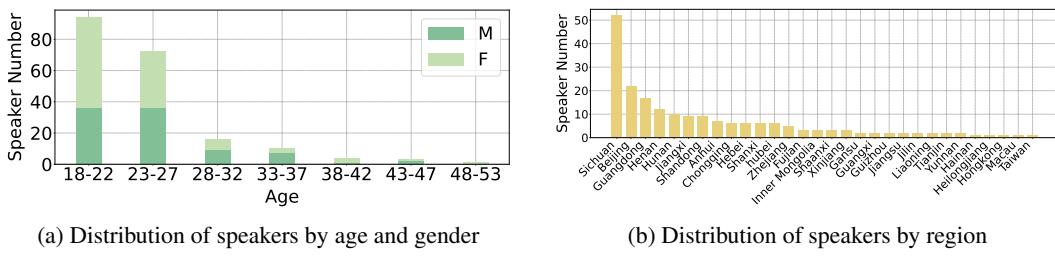


Figure 1: Demographic distributions of the speaker population

In addition to the transcription of spoken words, a set of specialized symbols was used to annotate non-lexical events and acoustic phenomena. These symbols, detailed in Table 2, provided additional information about the acoustic characteristics of the data.

Following the initial annotation, a separate quality control team performed a rigorous review process to ensure data accuracy. Discrepancies were resolved through discussion and iterative refinement of the annotation protocol, ensuring the high transcription quality.

4 DATASET DESCRIPTION

This section provides a comprehensive overview of the CS-Dialogue dataset, including its profile, statistical analysis, and details on speaker demographics, duration, topic distribution, and textual characteristics.

4.1 PROFILE

The CS-Dialogue dataset comprises 104.02 hours of spontaneous Mandarin-English code-switching speech from 200 speakers, structured as 100 dialogues (200 raw recordings, as each dialogue involves two participants). These dialogues encompass 320 topic sessions, offering a diverse range of conversational contexts. The dataset contains 38,917 utterances. Table 3 summarizes the key characteristics of the dataset, including the total duration, number of speakers, dialogues, utterances, and language distribution.

For model development and evaluation, the dataset is divided into three speaker-independent sets: training, development, and test. The breakdown of each split is presented in Table 4. Critically, these splits are speaker-independent ensuring a robust evaluation of model generalization.

4.2 STATISTICS

4.2.1 SPEAKER DEMOGRAPHICS

The age and gender distribution of the speakers is illustrated in Figure 1a. Speaker ages range from 18 to 53, grouped into four-year intervals. Male speakers are represented in green and female speakers in light green in the stacked bar chart. A notable trend is the concentration of speakers in the younger age brackets (18-22 and 23-27), with a relatively balanced gender distribution. The decrease in speaker numbers in older age groups may be attributed to the greater prevalence of Mandarin-English bilingualism among younger generations, or potential challenges in recruiting older participants with the required language proficiency. The data was collected from various regions in China.

Table 3: Overview of our dataset

Characteristic	Value
Duration (hrs)	104.02
# Speakers	200
# Dialogues	100
# Raw Recordings	200
# Topic Sessions	320
# Utterances	38,917
Avg. Duration (s)	9.62

Table 4: Summary of data splits

Split	# Spk.	# Utt.	Dur. (hrs)	Avg. (s)
Train	140	26,428	68.97	9.40
Dev	30	6,196	18.30	10.63
Test	30	6,293	16.74	9.58
Total	200	38,917	104.02	9.62

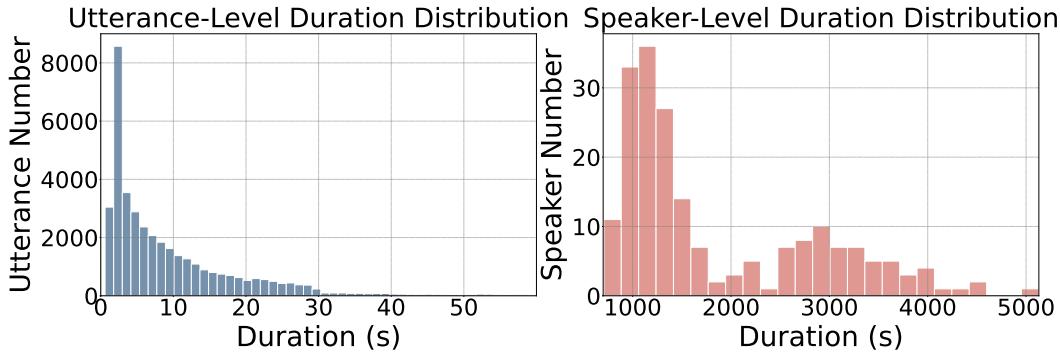


Figure 2: Utterance-level (left) and speaker-level (right) duration distributions.

The regional distribution of speakers, based on their reported origin, is displayed in Figure 1b. Sichuan has the highest representation, followed by Beijing and Guangdong, while the remaining regions have significantly fewer speakers.

4.2.2 DURATION ANALYSIS

Utterance-level and speaker-level duration distributions are presented in Figure 2. Most utterances are under 30 seconds, and the majority of speakers have a total speaking time clustered towards the lower end of the range. However, a few speakers contribute significantly more data, leading to a long-tailed distribution.

The training, development, and test sets exhibit a consistent proportional distribution of Chinese, English, and mixed-language durations, as shown in Figure 3. This balanced representation of each language category within each split ensures that models trained on one split are likely to generalize well to others. Appendix B.1 details the distribution of full-dialogue durations.

4.2.3 DIALOGUE TOPIC ANALYSIS

The dataset’s conversation topics are distributed as shown in Table 5. Categorized into seven broad themes—Personal Topics, Entertainment, Technology, Education, Job, Philosophy, and Sports—the 320 topic sessions offer diverse conversational contexts (see Appendix A.3 for details). Personal Topics are the most frequent (24.38%; 78/320 sessions), while Philosophy is the least frequent (4.69%), indicating a focus on everyday conversational themes, along with a smaller, yet still significant, representation of more specialized topics.

Further details on the distribution of these seven conversation topics across each data split (training, development, and test sets) are provided in Appendix B.2.

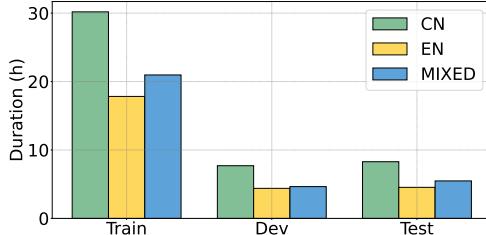


Figure 3: Duration of each language per data split

Table 5: Topic distribution in the full-dialogue recordings

Topic Name	Frequency	Proportion
Personal topics	78	24.38%
Entertainment	60	18.75%
Technology	26	8.13%
Education	61	19.06%
Job	36	11.25%
Philosophy	15	4.69%
Sports	44	13.75%
Total	320	100.00%

324 4.2.4 TEXT ANALYSIS
325

326 An analysis of frequent strings (Appendix C) reveals distinct patterns in language use and code-
327 switching strategies. Discourse markers like "我觉得" (I think) and "比如说" (for example) char-
328 acterize the Chinese segments, while phrases like "a lot of" and "I think it's" are frequently used
329 in the English segments. A crucial observation in the mixed-language segments is the frequent use
330 of function words from one language to frame content words from the other (e.g., "you know 就"),
331 suggesting that code-switching commonly occurs at clause or phrase boundaries.

332 5 EXPERIMENTS
333

335 This section presents our experimental evaluation of the CS-Dialogue dataset. We assess the per-
336 formance of various ASR models, including those trained from scratch and pre-trained models, with
337 and without fine-tuning on our data.

338 5.1 METRICS
339

340 ASR performance on the code-switching dataset is evaluated using three metrics: Mixture Error
341 Rate (MER), Word Error Rate (WER), and Character Error Rate (CER). Following (Shi et al., 2020),
342 MER is adopted as the primary metric due to its holistic assessment of ASR accuracy, calculating the
343 edit distance considering both Chinese characters and English words. In addition to MER, WER and
344 CER are calculated separately for English and Chinese segments to provide more granular insights
345 into per-language performance.

347 5.2 BASELINE MODELS
348

349 Two categories of baseline ASR models are evaluated: models trained from scratch on the CS-
350 Dialogue dataset and models pre-trained on large external datasets. Details regarding model training
351 and hyperparameter configurations are provided in Appendix D.

352 5.2.1 MODELS TRAINED FROM SCRATCH
353

354 We train three ASR models from scratch using the WeNet toolkit (Yao et al., 2021): (1) **Transformer**
355 (Vaswani, 2017), an attention-based encoder-decoder (AED) model; (2) **Conformer** (Gulati et al.,
356 2020), which integrates convolution and self-attention for modeling local and global context; and
357 (3) **Branchformer** (Peng et al., 2022), which introduces a branching mechanism to capture diverse
358 speech patterns. All models are trained solely on the CS-Dialogue training set using a joint CTC
359 (Graves et al., 2006) and AED (Chorowski et al., 2014) loss, without external data.

360 5.2.2 PRE-TRAINED MODELS
361

362 Several state-of-the-art pre-trained models are also evaluated on the CS-Dialogue dataset:

- 364 • **Whisper** (Radford et al., 2023): A robust, multilingual Transformer-based ASR model
365 pre-trained by OpenAI on 680,000 hours of diverse speech data¹.
- 366 • **Qwen2-Audio** (Chu et al., 2024): A large-scale audio-language model from Alibaba²,
367 capable of processing various audio inputs and performing tasks like audio analysis and
368 speech-instruction following.
- 369 • **SenseVoice-Small** (An et al., 2024): A non-autoregressive, encoder-only speech founda-
370 tion model from Alibaba designed for multilingual, multi-style ASR and other speech un-
371 derstanding tasks³.
- 372 • **FunASR-Paraformer** (Gao et al., 2022): A fast and accurate non-autoregressive (NAR)
373 end-to-end ASR model⁴.

375 ¹<https://github.com/openai/whisper>

376 ²<https://github.com/QwenLM/Qwen2-Audio>

377 ³<https://github.com/FunAudioLLM/SenseVoice>

378 ⁴<https://github.com/modelscope/FunASR>

378 Table 6: Performance of different models training from scratch under various decoding strategies.
379

Model	# Params	Greedy			Beam			Attention			Attention Rescoring		
		CER	WER	MER	CER	WER	MER	CER	WER	MER	CER	WER	MER
Transformer	29M	22.56	45.34	27.21	22.24	45.19	27.01	39.23	62.80	44.05	21.60	43.44	26.06
Branchformer	29M	18.86	39.16	23.01	18.78	39.20	22.95	44.06	60.90	47.50	18.29	37.55	22.23
Conformer	31M	15.91	33.67	19.54	15.88	33.60	19.50	24.98	42.75	28.61	15.45	32.36	18.91

386 Table 7: Performance comparison of different ASR models on the CS-Dialogue test set. S: Substitution;
387 D: Deletion; I: Insertion.
388

Model	# Param	CER (%)	WER (%)	MER (%)			
				S	D	I	Overall
Whisper Large-V2	1,550M	10.70	31.11	6.00	7.60	<u>1.69</u>	15.29
Qwen2-Audio	8.2B	7.15	<u>19.82</u>	<u>4.32</u>	1.82	<u>3.62</u>	9.76
Paraformer	220M	3.70	<u>32.02</u>	<u>6.30</u>	0.98	2.37	<u>9.65</u>
SenseVoice-Small	234M	<u>4.42</u>	15.57	3.44	<u>1.42</u>	1.85	6.71

397 Table 8: Zero-shot and fine-tuning performance of different Whisper models and SenseVoice-Small
398 on the CS-Dialogue test set.
399

Model	# Param	Zero-shot			Fine-tuning		
		CER (%)	WER (%)	MER (%)	CER (%)	WER (%)	MER (%)
Whisper-Tiny	38M	27.83	41.69	31.11	19.24	29.64	21.38
Whisper-Base	74M	19.90	37.21	23.90	15.36	27.20	17.80
Whisper-Small	244M	12.82	<u>30.81</u>	16.76	7.51	16.09	9.26
Whisper-Medium	769M	<u>11.34</u>	<u>32.57</u>	<u>15.88</u>	<u>6.12</u>	<u>13.02</u>	<u>7.53</u>
SenseVoice-Small	234M	4.42	15.57	6.71	3.34	10.87	4.99

409 5.3 RESULT ANALYSIS
410411 5.3.1 PERFORMANCE OF MODELS TRAINED FROM SCRATCH
412

413 The performance comparison of models trained from scratch is presented in Table 6. Across all
414 decoding methods (greedy decoding, beam search, attention decoding, and attention rescoring), the
415 Conformer consistently outperforms both the Transformer and Branchformer. Attention rescoring
416 yields the best performance for all models, resulting in the lowest CER, WER, and MER. For in-
417 stance, the Conformer achieves a CER of 15.45%, a WER of 32.36%, and an MER of 18.91%
418 with attention rescoring, a substantial improvement over the results obtained with greedy decod-
419 ing (15.91% CER, 33.67% WER, 19.54% MER). While the Branchformer generally surpasses the
420 Transformer in performance, it exhibits the highest error rate under the attention decoding strategy.
421

422 5.3.2 PERFORMANCE OF PRE-TRAINED MODELS
423

424 Table 7 presents the performance of several pre-trained models on the test set. Among them,
425 SenseVoice-Small achieves the lowest MER (6.71%). Despite its broader capabilities and signif-
426 icantly larger size, Qwen2-Audio reports a higher MER (9.76%) compared to SenseVoice-Small.
427 Similarly, Whisper Large-V2, another large-scale multilingual model, exhibits the highest error
428 rates, with an MER of 15.29%. SenseVoice-Small achieves better MER despite its small size likely
429 because it is optimized for ASR in a limited set of languages, with a task-specific architecture and
430 substantial exposure to Chinese during training. In contrast, larger models like Qwen2-Audio and
431 Whisper are trained for a wide range of tasks and languages, which may dilute their performance on
432 specialized CS-ASR scenarios. Notably, all models show a higher proportion of substitution errors
433 relative to deletions or insertions, as revealed by the MER breakdown.

432 Among the pre-trained models, Whisper is one of the most widely adopted ASR foundation models.
 433 We evaluate different sizes of Whisper in both zero-shot and fine-tuned settings, and additionally in-
 434 clude SenseVoice-Small, which achieves the best zero-shot performance. The results are presented
 435 in Table 8. Fine-tuning consistently yields substantial improvements across all Whisper model sizes.
 436 Within the Whisper family, the Medium model achieves the best post-finetuning performance. How-
 437 ever, the overall best results are obtained by SenseVoice-Small after fine-tuning, reaching a CER of
 438 3.34%, a WER of 10.87%, and an MER of 4.99%. These findings demonstrate that while larger
 439 Whisper models benefit more from fine-tuning, SenseVoice-Small sets the performance benchmark
 440 for code-switching ASR in our experiments.

441 Beyond the quantitative results, a qualitative analysis of the Whisper-Medium model’s output is
 442 provided in Appendix E. This analysis includes example transcriptions, comparing zero-shot and
 443 fine-tuned performance, and highlights common error types.

444

445 5.3.3 IMPACT OF DIALOGUE CONTEXT

446 To investigate the benefit of utilizing full dialogue
 447 context, a characteristic feature of the CS-Dialogue
 448 dataset, we conducted an additional experiment
 449 with the Whisper Large-V2 model. Specifically,
 450 we evaluated its performance on CS-Dialogue
 451 while varying the number of preceding dialogue
 452 turns provided as contextual prompts. The results,
 453 presented in Table 4, demonstrate a clear trend:
 454 increasing the amount of dialogue context signifi-
 455 cantly improves code-switching ASR performance.

456 For instance, using three preceding dialogue turns as context reduces the MER from 15.29% (no con-
 457 text) to 12.97%. This finding highlights the advantage of CS-Dialogue’s full dialogue structure over
 458 datasets comprising only isolated utterances.

459

460 5.3.4 TOPIC-SPECIFIC PERFORMANCE ANALYSIS

461 Figure 5 illustrates the MER of the four pre-
 462 trained ASR models across the seven con-
 463 versation topics. Model performance varies
 464 considerably across topics. SenseVoice-
 465 Small consistently achieves the lowest
 466 MERs, indicating its superior performance
 467 on this task. Comparing Qwen2-Audio
 468 and Paraformer reveals no consistent dom-
 469 inance of one model over the other; in-
 470 stead, their relative performance is topic-
 471 dependent. In addition, “Sports” and “Phi-
 472 losophy” tend to have higher MERs for
 473 all models, while “Job” and “Technology”
 474 generally exhibit lower MERs, suggesting
 475 varying levels of difficulty across topics.

476

6 CONCLUSION

477

478 In this paper, we presented CS-Dialogue, a new 104-hour large-scale dataset of spontaneous
 479 Mandarin-English code-switching dialogues. Unlike most existing datasets that primarily offer iso-
 480 lated utterances, CS-Dialogue provides full-length dialogue recordings and complete transcriptions,
 481 enabling unprecedented research into the contextual dynamics of code-switching. This resource
 482 addresses existing dataset limitations by capturing naturalistic code-switching patterns. Our rigor-
 483 ous data creation and baseline experiments highlight code-switching challenges and the value of
 484 fine-tuning. CS-Dialogue offers a benchmark for future ASR and dialogue modeling, aiming to ad-
 485 vance robust multilingual communication systems that can leverage conversational context. Future
 486 extensions could explore additional language pairs and more diverse conversational settings.

Figure 4: Impact of dialogue context on Whisper Large-V2 performance

Context Segments	CER (%)	WER (%)	MER (%)
0 (baseline)	10.70	31.11	15.29
1	10.30	29.34	14.51
2	9.81	28.05	13.74
3	9.13	26.26	12.97

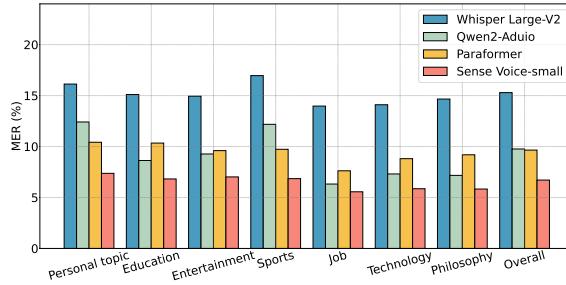


Figure 5: Comparison of MER for Whisper Large-V2, Qwen2-Audio, Paraformer, and Sense Voice-Small across different conversation topics

486 ETHICS STATEMENT
487488 The collection and use of the CS-Dialogue dataset were conducted in accordance with established
489 ethical guidelines and regulations for human subjects research. Prior to participation, all speakers
490 were provided with a comprehensive information sheet detailing the study's purpose, data collection
491 procedures, and their rights as participants, including the right to withdraw from the study at any
492 time without penalty. Informed consent was obtained from each speaker, explicitly authorizing the
493 recording of their conversations, the processing and analysis of their speech data, and the potential
494 sharing of anonymized data with other researchers (including those located outside of China) for
495 research purposes.496 Participants were assured that their data would be treated with strict confidentiality and anonymized
497 to protect their privacy. No personally identifiable information (e.g., names, specific locations) will
498 be included in the released dataset or any associated publications. Participants received compen-
499 sation for their time and contribution to the study, commensurate with standard rates for similar
500 research participation. The research protocol, including the informed consent process and compen-
501 sation procedures, was designed to ensure the protection of participants' rights and well-being. To
502 mitigate potential risks, the topics of discussion during the dialogues were carefully selected to avoid
503 sensitive or potentially harmful content. Participants were given the autonomy to choose topics from
504 a predefined list and were free to pause or stop the recording at any point during the session.505
506 REPRODUCIBILITY STATEMENT
507508 To promote reproducibility and facilitate future research, we will publicly release the CS-Dialogue
509 dataset under a permissive license for non-commercial use. The dataset includes detailed transcrip-
510 tions, annotations, and metadata, enabling researchers to fully replicate our experiments and explore
511 new directions. In addition, we have reported the training configurations and hyperparameters of
512 our baseline models, which are implemented using open-source toolkits.513
514 REFERENCES
515516 Keyu An, Qian Chen, Chong Deng, Zhihao Du, Changfeng Gao, Zhifu Gao, Yue Gu, Ting He,
517 Hangrui Hu, Kai Hu, et al. Funaudiollm: Voice understanding and generation foundation models
518 for natural interaction between humans and llms. [arXiv preprint arXiv:2407.04051](https://arxiv.org/abs/2407.04051), 2024.519 Feng-Ju Chang, Thejaswi Muniyappa, Kanthashree Mysore Sathyendra, Kai Wei, Grant P. Strimel,
520 and Ross McGowan. Dialog act guided contextual adapter for personalized speech recognition. In
521 ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing
522 (ICASSP), pp. 1–5, 2023. doi: 10.1109/ICASSP49357.2023.10094707.524 Jan Chorowski, Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. End-to-end con-
525 tinuous speech recognition using attention-based recurrent nn: First results. [arXiv preprint](https://arxiv.org/abs/1412.1602)
526 [arXiv:1412.1602](https://arxiv.org/abs/1412.1602), 2014.527 Shammur Absar Chowdhury, Amir Hussein, Ahmed Abdelali, and Ahmed Ali. Towards one
528 model to rule all: Multilingual strategy for dialectal code-switching arabic asr. [arXiv preprint](https://arxiv.org/abs/2105.14779)
529 [arXiv:2105.14779](https://arxiv.org/abs/2105.14779), 2021.531 Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv,
532 Jinzheng He, Junyang Lin, et al. Qwen2-audio technical report. [arXiv preprint arXiv:2407.10759](https://arxiv.org/abs/2407.10759),
533 2024.535 Anik Dey and Pascale Fung. A hindi-english code-switching corpus. In Proceedings of the Ninth
536 International Conference on Language Resources and Evaluation (LREC'14), 2014.538 Zhifu Gao, ShiLiang Zhang, Ian McLoughlin, and Zhijie Yan. Paraformer: Fast and accurate parallel
539 transformer for non-autoregressive end-to-end speech recognition. In Interspeech 2022, pp. 2063–
2067, 2022. doi: 10.21437/Interspeech.2022-9996.

540 Paula B García, Lori Leibold, Emily Buss, Lauren Calandruccio, and Barbara Rodriguez. Code-
 541 switching in highly proficient spanish/english bilingual adults: Impact on masked word recogni-
 542 tion. *Journal of Speech, Language, and Hearing Research*, 61(9):2353–2363, 2018.

543

544 Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist tempo-
 545 ral classification: labelling unsegmented sequence data with recurrent neural networks. In *ICML*,
 546 pp. 369–376, 2006.

547

548 Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
 549 Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming Pang. Conformer: Convolution-augmented
 550 transformer for speech recognition. In *Interspeech 2020*, pp. 5036–5040, 2020. doi: 10.21437/
 551 Interspeech.2020-3015.

552

553 Chengfei Li, Shuhao Deng, Yaoping Wang, Guangjing Wang, Yaguang Gong, Changbin Chen, and
 554 Jinfeng Bai. Talcs: An open-source mandarin-english code-switching corpus and a speech recog-
 555 nition baseline. In *Interspeech 2022*, pp. 1741–1745, 2022. doi: 10.21437/Interspeech.2022-877.

556

557 Ying Li, Yue Yu, and Pascale Fung. A mandarin-english code-switching corpus. In *LREC*, pp.
 558 2515–2519, 2012.

559

560 Yupei Li, Zifan Wei, Heng Yu, Huichi Zhou, and Björn W Schuller. Dota-me-cs: Daily oriented text
 561 audio-mandarin english-code switching dataset. *arXiv preprint arXiv:2501.12122*, 2025.

562

563 Holy Lovenia, Samuel Cahyawijaya, Genta Winata, Peng Xu, Yan Xu, Zihan Liu, Rita Frieske,
 564 Tiezheng Yu, Wenliang Dai, Elham J. Barezi, Qifeng Chen, Xiaojuan Ma, Bertram Shi, and Pas-
 565 cale Fung. ASCEND: A spontaneous Chinese-English dataset for code-switching in multi-turn
 566 conversation. In Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christo-
 567 pher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani,
 568 Hélène Mazo, Jan Odijk, and Stelios Piperidis (eds.), *Proceedings of the Thirteenth Language
 569 Resources and Evaluation Conference*, pp. 7259–7268, Marseille, France, June 2022. European
 570 Language Resources Association. URL [https://aclanthology.org/2022.lrec-1.
 571 788/](https://aclanthology.org/2022.lrec-1.788/).

572

573 Dau-Cheng Lyu, Tien-Ping Tan, Eng Siong Chng, and Haizhou Li. Seame: a mandarin-english
 574 code-switching speech corpus in south-east asia. In *Interspeech 2010*, pp. 1986–1989, 2010. doi:
 575 10.21437/Interspeech.2010-563.

576

577 Melissa G Moyer. Bilingual speech: A typology of code-mixing, 2002.

578

579 Mumtaz Begum Mustafa, Mansoor Ali Yussof, Hasan Kahtan Khalaf, Ahmad Abdel Rahman Mah-
 580 moud Abushariah, Miss Laiha Mat Kiah, Hua Nong Ting, and Saravanan Muthaiyah. Code-
 581 switching in automatic speech recognition: The issues and future directions. *Applied Sciences*,
 582 12(19):9541, 2022.

583

584 Yifan Peng, Siddharth Dalmia, Ian Lane, and Shinji Watanabe. Branchformer: Parallel mlp-attention
 585 architectures to capture local and global context for speech recognition and understanding. In *International
 586 Conference on Machine Learning*, pp. 17627–17643. PMLR, 2022.

587

588 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 589 Robust speech recognition via large-scale weak supervision. In *International conference on
 590 machine learning*, pp. 28492–28518. PMLR, 2023.

591

592 Han-Ping Shen, Chung-Hsien Wu, Yan-Ting Yang, and Chun-Shan Hsu. Cecos: A chinese-english
 593 code-switching speech database. In *2011 International Conference on Speech Database and
 594 Assessments (Oriental COCOSDA)*, pp. 120–123. IEEE, 2011.

595

596 Xian Shi, Qiangze Feng, and Lei Xie. The asru 2019 mandarin-english code-switching speech recog-
 597 nition challenge: Open datasets, tracks, methods and results. *arXiv preprint arXiv:2007.05916*,
 598 2020.

599

600 Naorem Karline Singh, Yambem Jina Chanu, and Hoomexsun Pangatabam. Mecos: A bilingual
 601 manipuri-english spontaneous code-switching speech corpus for automatic speech recognition.
 602 *Computer Speech & Language*, 87:101627, 2024.

594 A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.
595

596 Dong Wang, Zhiyuan Tang, Difei Tang, and Qing Chen. Oc16-ce80: A chinese-english mixlin-
597 gual database and a speech recognition baseline. In *2016 Conference of The Oriental Chapter*
598 *of International Committee for Coordination and Standardization of Speech Databases and*
599 *Assessment Techniques (O-COCOSDA)*, pp. 84–88. IEEE, 2016.

600 Zhuoyuan Yao, Di Wu, Xiong Wang, Binbin Zhang, Fan Yu, Chao Yang, Zhendong Peng, Xiaoyu
601 Chen, Lei Xie, and Xin Lei. Wenet: Production oriented streaming and non-streaming end-to-end
602 speech recognition toolkit. In *Interspeech 2021*, pp. 4054–4058, 2021. doi: 10.21437/Interspeech.
603 2021-1983.

604 Emre Yilmaz, Henk van den Heuvel, and David A van Leeuwen. Acoustic and textual data augmen-
605 tation for improved asr of code-switching speech. *arXiv preprint arXiv:1807.10945*, 2018.

606

607 Jiaming Zhou, Shiwan Zhao, Hui Wang, Tian-Hao Zhang, Haoqin Sun, Xuechen Wang, and Yong
608 Qin. Improving zero-shot chinese-english code-switching asr with knn-ctc and gated monolingual
609 datastores. *arXiv preprint arXiv:2406.03814*, 2024.

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A DATASET DETAILS
649650 A.1 ANNOTATOR INFORMATION
651652 Table A.1 provides a breakdown of the annotators' demographic characteristics, including their age,
653 gender, hometown, and educational background.
654655 A.2 DIALOGUE TRANSCRIPTION FORMAT
656658 Dialogue transcription format are shown in Figure A.2 as an example. Note that the names used in
659 this example (e.g., "凯丽", "贝拉") are pseudonyms and do not correspond to the real names of the
660 speakers, ensuring the privacy of participants.
661

```

662         xmin = 0
663         xmax = 6148.265
664         tiers? <exists>
665         size = 3
666         item []:
667             item [1]:
668                 class = "IntervalTier"
669                 name = "ZH-CN_U0018_S0"
670                 xmin = 0
671                 xmax = 6148.265
672                 intervals: size = 368
673                     intervals [1]:
674                         xmin = 0
675                         xmax = 5.81
676                         text = "<S>"
677                     intervals [2]:
678                         xmin = 5.81
679                         xmax = 11.232
680                         text = "嗨, 嗯, 你好啊, 你好漂亮啊, 嗯。"
681                     intervals [3]:
682                         xmin = 11.232
683                         xmax = 12.6
684                         text = "<S>"
685                     intervals [4]:
686                         xmin = 12.6
687                         xmax = 20.415
688                         text = "嗯, 哦, 你可以叫我凯丽, 凯丽就行,
689                         嗯, 那你叫什么名字呢? "
690                     intervals [5]:
691                         xmin = 20.415
692                         xmax = 21.155
693                         text = "<S>"
694                     intervals [6]:
695                         xmin = 21.155
696                         xmax = 25.245
697                         text = "啊, 好, 嗨, 贝拉, 嗯。"
698

```

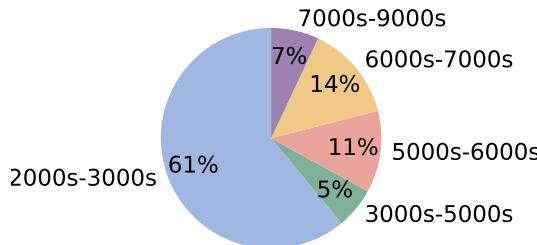
693 Figure A.1: A format example of dialogue transcription file (TextGrid)
694695 A.3 TOPICS, DESCRIPTIONS, AND EXAMPLES
696697 Table A.2 provides details on the seven conversation topics covered in the dataset, including a brief
698 description of each topic and an example utterance illustrating typical content and code-switching
699 patterns. This information clarifies the thematic scope of the data and provides context for interpreting
700 the experimental results.
701

Table A.1: Summary of Annotator Demographics

Category	Value	Count/Percentage
Gender	Male	6 (40%)
	Female	9 (60%)
Education	Bachelor's	12 (80%)
	Master's	3 (20%)
Hometown	Liaoning	1 (6.67%)
	Henan	1 (6.67%)
	Shanxi	3 (20%)
	Zhejiang	1 (6.67%)
	Jiangxi	2 (13.33%)
	Beijing	1 (6.67%)
	Fujian	1 (6.67%)
	Hebei	3 (20%)
	Shaanxi	1 (6.67%)
	Ningxia	1 (6.67%)
Age	21	5 (33.33%)
	22	1 (6.67%)
	24	4 (26.67%)
	25	3 (20%)
	28	2 (13.33%)

Table A.2: Details of topics, descriptions, and examples

Topic	Description	Example
Personal	Discussions centered on individual experiences, preferences, and relationships.	”就是我听你的描述，感觉你喜欢 Taylor. 因为我其实我有个弟弟也很喜欢 Taylor, 就是但是他性格还确实跟你相差蛮大，就是你给我的感觉 You are very a quiet boy”
Entertainment	Conversations focusing on various forms of entertainment and cultural trends.	”对，因为我们都想表现的自己非常的 courage, 但其实我小的时候也看着也非常 frightened, 然后我会直接; FIL/; 放学到 home 之后就一直坐坐在 sofa 上面看到十点都 can't move”
Technology	Debates and dialogues concerning technological advancements and their impact.	”是的，而且他们会通过算法去非常精准地知道你到底想要看一些什么样的东西，所以我感觉其实有的时候 big data 也是一个非常恐怖的东西”
Education	Discussions about the academic environment, including challenges and experiences.	”那是你们这个 group 自己去想一个 topic 呢，还是这个 professor 会提供一些他的 project 来支撑你们的毕业论文”
Job	Conversations about past or present employment situations, work environment, co-workers, etc.	”对对，如果有有更多的 opportunity 去供我去选择的话，我还是可能会就是放开专业去选择更多的这个看一看，开阔一下我的 horizon”
Sports	Discussions on sports activities, athletes, benefits of exercise, etc.	”但是这种持续的时间 I couldn't find very long, 就是我也能找到那种 feeling, but very quickly, It disappear only maybe half an hour is a longest period, sometimes 也就十五分钟二十分钟”
Philosophy	Discussions about philosophical ideas and debates on current social issues.	”这就是他们现在所处的一个 dilemma, It's really classic, I feel like it's happening everywhere。因为每一个国家都有他各自的 minorities, 然后也不得不承认有些地方的 educational resource 真的没有另一些地方更加的 advanced, 更加的丰富。”

756 **B DIALOGUE ANALYSIS**
757758 **B.1 FULL-DIALOGUE DURATION DISTRIBUTION**
759760 As presented in Figure B.1, most of full-dialogue recordings are between 2000 to 3000 seconds. This
761 distribution indicates a dataset primarily composed of relatively shorter full-dialogue recordings,
762 with a smaller number of significantly longer recordings.
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777778 **Figure B.1: Duration distribution of full-dialogue recordings**
779780 **B.2 TOPIC DISTRIBUTION**
781782 The distribution of the seven conversation topics across each data split is detailed in Table B.1. This
783 table presents, for each topic, the total duration, its proportion of the entire dataset, the utterance
784 count, total duration, and average utterance length for each split. While the topic distribution is
785 relatively consistent across the three sets, some variation exists in average utterance lengths. Notably,
786 "Philosophy" tends to have slightly longer utterances than other categories, particularly in the test
787 set (12.95s).
788789 **Table B.1: Topic distribution across training, development, and test sets: counts, durations, and
790 average utterance lengths**

Topic	Dur. (hrs)	Proportion	Train			Dev			Test		
			Count	Dur. (hrs)	Avg. (s)	Count	Dur. (hrs)	Avg. (s)	Count	Dur. (hrs)	Avg. (s)
Personal topics	21.53	20.69%	5,865	14.59	8.95	1,348	3.55	9.48	1,487	3.39	8.22
Education	19.20	18.45%	4,853	13.34	9.9	1,014	3.11	11.04	931	2.75	10.63
Entertainment	23.88	22.95%	6,609	15.85	8.63	1,509	4.39	10.47	1,402	3.64	9.34
Sports	14.14	13.59%	3,476	8.64	8.95	745	2.35	11.34	1,236	3.15	9.17
Job	11.94	11.48%	2,555	7.37	10.38	1,052	3.02	10.35	513	1.55	10.9
Technology	8.70	8.36%	2,151	6.09	10.19	335	1.24	13.36	475	1.37	10.35
Philosophy	4.65	4.47%	919	3.11	12.17	193	0.64	11.92	249	0.9	12.95

791 **C TEXT ANALYSIS**
792801 To illustrate common linguistic patterns and code-switching behaviors, Table C.1 presents the most
802 frequent strings found in the Chinese (CN), English (EN), and mixed-language utterances within the
803 dataset. The table lists the strings and their corresponding frequencies.
804805 **D EXPERIMENTAL CONFIGURATIONS**
806807 This section provides detailed hyperparameters used for training and fine-tuning ASR models dis-
808 cussed in the paper. All experiments were conducted using four GTX 3090 for several hours. All
809 models utilized in this research are open-source and operate under the MIT License.
810

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
Table C.1: Top Frequent Strings in Each Language Category

CN		EN		MIXED	
String	Count	String	Count	String	Count
我觉得	3,391	a lot of	304	you know 就	20
的时候	2,056	I think it's	208	know 就是	18
比如说	1,410	I want to	182	这个 AI	14
是一个	1,173	do you like	178	school 的时	12
因为我	1,119	do you have	168	我的 friends	11
然后我	1,033	I don't know	143	就是 you	11
的一个	982	yeah yeah yeah	142	就是 AI	10
但是我	958	and I think	141	一个 very	10
的一些	925	so I think	139	非常 interesting	10
就是我	913	yeah I think	132	I think 我	9
的就是	809	what do you	118	常的 happy	9
非常的	792	go to the	115	play 麻将	9
或者是	733	but I think	110	high school 的	8
有一些	730	I think I	108	一个 big	8
我感觉	726	you want to	107	together 然后	7

D.1 TRAINING ASR MODEL FROM SCRATCH

Table D.1 presents the training hyperparameters for Transformer, Branchformer and Conformer using Wenet toolkit, including batch size, learning rate and epochs. A dynamic batch size is utilized, constrained to a maximum of 60,000 frames per batch.

Table D.1: Hyperparameters for training ASR models from scratch.

Model	Batch size	Learning rate	Epochs
Transformer	Dynamic	1.00E-03	150
Branchformer	Dynamic	1.00E-03	150
Conformer	Dynamic	1.00E-03	150

D.2 FINE-TUNING ASR MODEL

Table D.2 presents the hyperparameters used during fine-tuning of the different Whisper model versions and SenseVoice-Small. These parameters include the learning rate and the number of epochs. A dynamic batch size is utilized, constrained to a maximum of 12,000 frames per batch.

Table D.2: Hyperparameters for fine-tuning different Whisper versions and SenseVoice-Small.

Model	Batch size	Learning rate	Epochs
Whisper-Tiny	16	1.00E-05	20
Whisper-Base	16	1.00E-05	20
Whisper-Small	16	1.00E-05	20
Whisper-Medium	16	1.00E-05	20
SenseVoice-Small	Dynamic	4.00E-05	10

E CASE STUDIES

To illustrate the types of errors made by the Whisper Medium model and the improvements achieved through fine-tuning, Figure E.1 presents example transcriptions for several utterances. The figure compares the zero-shot and fine-tuned outputs against the ground truth transcriptions, highlighting differences and providing the associated MER. We observe that whisper designed for both ASR and S2TT tasks, exhibits an unintended behavior in code-switching ASR scenarios. Specifically, the model occasionally produces translations of the input speech rather than accurate transcriptions, deviating from the expected ASR output.

864
 865 Utterance: ZH-CN_U1093_SO_65.wav
 866 Ground truth: 然后就还直直接就是 FALL IN THE STREET
 867 Zero-shot: 然后就还直直接就要 **FOR INDUSTRY** 去 MER: 46.15 % N=13 C=7 S=4 D=2 I=0
 868 Fine-tuning: 然后就还直直接就是 **FOUR IN THE STREET** MER: 15.38 % N=13 C=11 S=1 D=1 I=0
 869 Utterance: ZH-CN_U0017_SO_2.wav
 870 Ground truth: HELLO HELLO 很高兴认识你啊
 871 Zero-shot: 哈 嘟 哈 嘟 很高兴认识你啊 MER: 44.44 % N=9 C=7 S=2 D=0 I=2
 872 Fine-tuning: HELLO HELLO 很高兴认识你 嘴 MER: 11.11 % N=9 C=8 S=1 D=0 I=0
 873 Utterance: ZH-CN_U1093_SO_175.wav
 874 Ground truth: 国内的 SINGER 的话 I MOST LIKE IS 周杰伦 DO YOU KNOW
 875 Zero-shot: 国内的 SINGER 的话 I MOST LIKE IS 周杰伦 对 鸣 MER: 18.75 % N=16 C=13 S=2 D=1 I=0
 876 Fine-tuning: 国内的 SINGER 的话 I MOST LIKE IS 周杰伦 DO YOU KNOW MER: 0.00 % N=16 C=16 S=0 D=0 I=0
 877 Utterance: ZH-CN_U0066_SO_60.wav
 878 Ground truth: 哦我平常喜欢做运动 **SOMETHING LIKE BASKETBALL FOOTBALL TABLE TENNIS AND SWIMMING** 然后 我也经常去健身房
 879 和一些 STRONG MAN 交流一下运动技巧然后我最喜欢的运动应该是 BASKETBALL
 880 Zero-shot: - 我平常喜欢做运动 **比 如 球 足 球 乒乓 球** 和游泳 我也经常去健身房和一些 **力量** 男生交流运
 881 动技巧 我最喜欢的运动应该是 球 MER: 39.62 % N=53 C=35 S=13 D=5 I=3
 882 Fine-tuning: - 我平常喜欢做运动 **SOMETHING LIKE BASKETBALL FOOTBALL TABLE TENNIS AND SWIMMING** 然后 我也经常去健身房
 883 和一些 STRONG MAN 交流一下运动技巧然后我最喜欢的运动应该是 BASKETBALL
 884 MER: 1.89 % N=53 C=52 S=0 D=1 I=0

880 Figure E.1: Examples of ASR output from the Whisper Medium model under zero-shot and fine-
 881 tuned conditions, showing ground truth transcriptions and error rates
 882
 883

884 F LIMITATIONS

885 While CS-Dialogue represents a significant contribution to the field, it has certain limitations. First,
 886 the dataset focuses exclusively on Mandarin-English code-switching. While this is a prevalent lan-
 887 guage pair, future work should expand to include other language combinations to enhance the gener-
 888 alizability of code-switching ASR models. Second, all participants are native Chinese speakers with
 889 strong English proficiency. The dataset does not include native English speakers who code-switch
 890 into Mandarin, which represents another important aspect of bilingual conversation. Third, although
 891 the dialogues are spontaneous, they are still recorded in a controlled environment, which may not
 892 fully reflect the acoustic diversity of real-world scenarios (e.g., noisy public spaces, varying micro-
 893 phone quality). Future work could explore data augmentation techniques to simulate a wider range
 894 of acoustic conditions.

895 G LLMs USAGE

896 In this work, Large Language Models (LLMs) were used to assist with language refinement and
 897 manuscript polishing. Specifically, LLMs helped improve clarity, coherence, and grammar. We
 898 independently developed all research ideas, experiments, and conclusions. We take full responsi-
 899 bility for the content, ensuring it meets academic standards and avoids any form of misconduct or
 900 plagiarism.

901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917