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Abstract

While formal geometric reasoning may be difficult for humans without extensive
training, humans seem to have the ability to intuitively reason about geometric
patterns in images and scenes from a young age. In contrast, developing large
multimodal models (LMMs) capable of similar feats represents a frontier in Al
research. We introduce TurtleBench, a benchmark designed to evaluate LMMs’ ca-
pacity to interpret geometric patterns—given visual examples, textual instructions,
or both—and generate precise code outputs. Inspired by turtle geometry, a notion
used to teach children foundational coding and geometric concepts, TurtleBench
features tasks with patterned shapes that have underlying algorithmic logic. Unlike
object detection tasks that typically do not involve understanding underlying pat-
terns, this benchmark combines geometrical reasoning with image understanding.
Our evaluation reveals that leading LMMs struggle significantly with these tasks,
with GPT-4V achieving only 19% accuracy on the simplest tasks. TurtleBench
highlights the gap between human and AI performance in intuitive and visual
geometrical understanding, setting the stage for future research in this area.

1 Introduction

Geometric reasoning is a hallmark of human mathematical reasoning that has been studied since the
Ancient Greeks. It was a task that attracted early artificial intelligence (AI) researchers and early
efforts on building intelligent tutoring systems also focused on geometry. Yet much of the emphasis
on geometric reasoning is on axiomatic-deductive geometry. Humans of all ages are naturally good
at more intuitive kinds of geometric reasoning that inform how we see and navigate the world.
One aspect of this is our ability to look at a geometric shape or complex pattern and construct an
algorithm to generate that pattern. We believe this is a powerful task to evaluate large multimodal
models (LMMs) for a number of reasons. First of all, constructing patterns in this way reflects
an early programming paradigm for teaching kids programming, initially developed in the 1970s
with the introduction of the Logo programming language (Papert, |1972,[1980). For several decades,
children from a young age have been learning how to procedurally draw geometric patterns and other
drawings using code in programming languages like Logo, Scratch, and Python—often as their first
introduction to programming. Given LMMSs’ success in a variety of complex programming tasks,
one might expect a programming task that children could solve to be easy. Second, recent research
suggests that this ability to procedurally generate shapes may be more fundamental to our psychology
than meets the eye. Spelke (2022) claims that from infancy (or even birth), humans have a set of six
core knowledge systems, two of which contribute to our understanding of geometry: a form system
and a place system. While the form system allows us to perceive the boundaries of objects, our core
knowledge of places interprets geometry in terms of how to navigate an environment (Dillon} 2023)).
Taking this a step further, [Sablé-Meyer et al.| (2022) suggest that humans perceive shapes and patterns
in terms of procedural programs that could generate them; they demonstrate that the time it takes
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Figure 1: An illustration of existing types and modes in TurtleBench, A task may have a type of
Scratch or Tweak, in a mode of code generation or code edit, with various modalities in the input.

for people to process these shapes correlates with the minimum description length of the shape in a
Logo-like programming language.

In this work, we introduce TurtleBench, a set of manually crafted image/text to code tasks in turtle
geometry (Papert, 1972} |Abelson & diSessa,|1986)) to evaluate the abilities of these models to combine
visual pattern recognition, abstract geometrical reasoning, and Python programming. To ensure the
visual inputs and the programming language remain straightforward, TurtleBench harnesses turtle
geometry, a concept widely recognized for its effectiveness in introducing programming concepts
to children within the K-12 education system. Although turtle programming is now used more as
a tool to foster computational thinking, turtle geometry has also been explored as a powerful way
of teaching geometry and mathematical reasoning to children (Hoyles & Noss,|1992;|Clements &
Saramal, |1997)). In turtle geometry, a turtle acts as a programmable object that navigates the screen,
drawing as it goes and turning at specified angles, to create simple visual patterns. The primary
objective within this framework is to generate code capable of producing simple visual inputs. These
visual inputs consist of basic geometric shapes, and the programming syntax required is intentionally
limited and straightforward. An example of such a task is presented in the left side of Figure[I] As
illustrated, the input image is the shape of a simple square and the corresponding code only uses two
simple turtle functions (forward and right) along with a simple for loop. This simplicity makes
TurtleBench an effective benchmark for evaluating the capabilities of LMMs.

To reflect different real-world use cases of an LMM in the domain of Turtle and also cover the
broad range of underlying reasoning abilities, TurtleBench includes 260 tasks with a variety of types
and modalities. We conduct an evaluation of leading LMMs on TurtleBench code generation and
code editing tasks, utilizing zero-shot and visual chain-of-thought (Singh et al., [2023)) approaches
across text-only, image-only, and mixed (text and image) input modalities. Our findings reveal that
these models generally perform poorly across all setups and variety of tasks and modalities. Our
best-performing model, GPT-4V, outperforms Gemini 1.5 Flash yet neither model comes close to
solving TurtleBench tasks, as about 75% of the tasks were left completely unsolved. Intriguingly,
our results indicate that performance improves when tasks are presented in text, rather than inputting
images. This suggests that integrating visual and linguistic information, particularly in domains
requiring visual pattern recognition, may need further refinement. All these findings demonstrate that
our benchmark poses a challenging task for LMMs, providing valuable insights into their capabilities.

2 G=C Overview of TurtleBench

TurtleBench is a set of 260 tasks that are designed to evaluate LMMSs’ performance on vision
and language algorithmic reasoning tasks. To ensure the novelty of the tasks and their quality in
incorporating authentic geometric shapes and concepts, we craft TurtleBench manually. All the tasks



in TurtleBench are accurately solvable based on the provided information for each, which means that
there are no ambiguities or arbitrary parameters leading to inaccuracies in the tasks for humans as
well as the models. To remove possible ambiguities in the tasks, two independent annotators worked
with us to identify and resolve any unclear instructions. Each task consists of a black-and-white image
illustrating a set of abstract geometric shapes as an input. An example of this task is presented in
Figure[l] TurtleBench is made up of two different types of tasks, these types reflect the methodologies
used in turtle geometry to introduce programming to children.

Scratch tasks are intended to show how well a model understands a pattern and translates its under-
standing to an executable code. In the general case of this type of task, an image is provided, and the
requested output is code in Python Turtle that creates the shapes in the image. In all scratch tasks,
the model is asked to generate the code in Python Turtle for the desired input shape. TurtleBench
includes a total of 130 scratch tasks. An example of these tasks is provided in Figure|l} top rows. To
distinguish between the models’ visual comprehension and their textual understanding, a subset (31%)
of these tasks includes a text description of the image input in addition to the visual representation.
This setup facilitates the evaluation of how models respond differently to visual and textual inputs,
providing a clearer understanding of their capabilities.

Tweak tasks are intended to measure how well a model uses their understanding of a visual pattern,
combined with an instruction to make minimal alterations. Each tweak task presents a model with an
image and an instruction; the expected output is Python Turtle code that modifies the shape in the
input image according to the given instruction. These tasks are particularly insightful for determining
whether a model is merely recalling memorized code for an image, or if it has developed a deeper,
more human-like comprehension of the patterns depicted in the images. For instance, a model might
be capable of generating code for a certain shape based on training data, but the real challenge lies in
its ability to adapt that shape in response to various instructed changes. An example of these tasks is
provided in Figure[I] bottom row. Here, the model is given an input image of a rectangle, with an
instruction to connect the midpoint of each side to the midpoint of adjacent sides. As illustrated in
Figure[I] we also introduce a code editing version of the tweak task. In this version, we supply the
code corresponding to the input image and then instruct the models to make specific modifications
to this code, aiming to achieve a change in the image as per the provided instructions. Detailed
information about types of tweaks and their examples is provided in Appendix

3 Evaluation Setup

In the following section, we evaluate TurtleBench using two state-of-the-art LMMs, GPT-4V and
Gemini 1.5 Flash and also an open source model, namely Llava-1.5-13B(Liu et al., [2023)) employing
greedy decoding in our evaluations. We evaluated two other open models, namely Qwen-VL-Max
(Bai et al.| |2023)) and CogVLM (Wang et al.,[2023)) on a subset of tasks in TurtleBench. However,
CogVLM and Qwen are not successful in producing a syntactically correct Python Turtle piece
of code even for the simplest tasks, therefore we limited our benchmark evaluation to the models
mentioned above.

We utilize two types of prompting in our experiments, 1) basic, where we simply prompt the the
model (c.f. Appendix[C.2)) to do our tasks, and 2) Chain-of-Thought (CoT) prompting (Wei et al.,
2022), which has shown to be an effective prompting technique in eliciting reasoning in these models.
Specifically, we use a more detailed version of CoT prompting that is tailored to LMMs, namely
v-CoT, recently proposed by Singh et al.|(2023). The v-CoT approach is inspired by m-CoT (Zhang
et al.,|2023)), which shows higher performance compared to it. This prompting has been shown to
improve LMMs’ performance on visual tasks that involved reasoning, such as ARC (Chollet, 2019).
This prompt, instructs the model to first extract all the relevant information in the image needed
for answering the problem and then to reason step by step based on the information extracted. The
specific prompt we used in our experiments is in Appendix [C.2]

4 Results

4.1 Models perform poorly on TurtleBench

We initially examine the performance of the GPT-4V, Gemini 1.5 Flash and Llava-1.5-13B models
on the comprehensive TurtleBench dataset. The findings, detailed in Table (1} reveal a notably poor



5¢s GPT-4V Gemini GPT-4V  Gemini Llava-1.5 Llava-1.5

5= basic  basic 0-SCoT 0-SCoT  basic  0-s CoT
Scratch Code Generation
Image only 16% 7.7% 19.23% 8.46% 1% 1%
Tweak Code Generation
Image + Text 10% 3.85% 12.3% 7.7% 0% 1%
Tweak Code Edit
Image + Text 18% 12% 18.46%  18.46% 1% 1%
Image + Image 12% 3% 13.84% 8.46% NA NA

Table 1: Performance of GPT-4V, Gemini 1.5 Flash, and Llava-1.5-13B on TurtleBench. Our result
shows that models perform poorly on TurtleBench.

performance across the tasks in TurtleBench, with a peak accuracy of 20% achieved by GPT-4V
in the code editing tasks, facilitated by Chain of Thought (CoT) prompting. In the scratch tasks,
which represent the simplest problem type within the dataset, GPT-4V’s success rate was just 19%,
underscoring the substantial challenges and complexities these tasks pose to the current models.
A comparison between CoT and basic prompting within Table [I]illustrates that CoT prompting
outperforms basic prompting on the same models, aligning with previous work that indicates CoT
enhances models’ reasoning abilities (Zhang et al., 2023). However, despite utilizing CoT prompting,
the task remains far from being solved. Additionally, we note a decline in the performance of
models when comparing tasks that involve tweaks to those starting from scratch. This observation
suggests that models fail to generalize their understanding to tweak tasks, even if they can successfully
complete tasks from scratch. Examples of model output in different subsets of the task are provided

in Figures §|and [I0]

4.2 Limited Visual Understanding in LMMs: Insights from Textual vs. Visual Tweak Tasks

For tweak tasks, where the Al had to edit existing code, we gave instructions either in natural language
or as images (see Figure[I] bottom rows, left two columns). As can be seen by comparing the bottom
two rows in Table[T] there is a huge decline in accuracy when instructions were provided visually
rather than textually, especially for Gemini. This outcome suggests a disparity in the models’ ability
to process visual versus textual instructions, revealing that their reasoning abilities may not align
closely with human-like understanding. The assumption that directly viewing the desired outcome
simplifies the task contrasts sharply with our findings, highlighting a reliance on textual interpretation
for reasoning and a notable limitation in pure visual reasoning capabilities within these models.
In Appendix we provide further evidence of this with additional analyses on scratch tasks by
varying the input to those tasks (i.e., visual or textual descriptions).

5 Conclusions

This study introduces TurtleBench, the first of its kind in benchmarks that focus on converting
visual inputs to code outputs. The evaluation results from TurtleBench reveal a significant disparity
between human capabilities and current state-of-the-art AI models in understanding simple geometric
shapes, reasoning about these shapes, and converting such understandings into executable code.
This gap underscores the challenges that lie ahead in the quest to enhance AI’s comprehension and
problem-solving abilities to match human levels. We believe that TurtleBench serves as a crucial
tool in the evaluation of models, offering a clear benchmark that tests the limits of large multimodal
models.
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A Related Work

A.1 Large Multi-modal Models

Recent advancements in foundational multimodal models have marked a significant stride towards
developing generalist Al systems capable of understanding and integrating information across
different modalities to solve tasks without the need for task-specific fine-tuning. Among these models
are closed source models such as Gemini 1.5 Flash (Team et al., 2023), GPT-4V (OpenAl et al.,
2024), and open source models as LLaVA-1.5 (Liu et al., [2023), Mini-GPT4 (Zhu et al., [2023)),
InstructBLIP (Dai et al., 2023) and CogVLM (Wang et al.,|2024). The versatility and multimodal
understanding exhibited by these foundational multimodal models have positioned them as prime
candidates for applications such as Al software engineers or programming tutors for children. Our
work evaluates the efficacy of these popular models on image/text-to-code tasks, measuring their
potential in vision/programming context.

A.2 Probabilistic Program Induction

Recent work in Bayesian cognitive science has modeled various aspects of cognition and learning
as probabilistic program induction (Lake et al.,|2015; |Lake & Piantadosi, [2020; Rule et al., [2020;
Ellis et al., [2023} [Wong et al.| 2021}, |Grand et al., [2023)). This has involved both modeling human
cognition as program induction as well as designing machine learning algorithms that can generate
programs for various tasks, including the kind of turtle geometry task we study here. [Ellis et al.| (2023))
developed the DreamCoder algorithm which can learn to induce programs by using self-supervision
to incrementally build up a library of programs and train a neural network to search to find the best
program for a given task. They created a dataset of 160 turtle programming tasks. In contrast to our
approach, where we assess the performance of out-of-the-box LMMs, DreamCoder is trained on a
training set of images (i.e., half of the dataset). However, it is interesting that the algorithm is trained
in an unsupervised fashion; that is, DreamCoder never receives the code used to generate the images
and learns that from experience. [Wong et al.|(2021) extended this work by developing an algorithm
(LAPS) that can induce programs given both the task and linguistic annotations for the task. They
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used a dataset of 311 turtle graphics with greater complexity than the original DreamCoder dataset.
While their dataset includes linguistic annotations, their dataset does not include tweak tasks like
in TurtleBench. Additionally, their tasks often include arbitrary aspects (for example, a gap with
unspecified distance between two shapes) that makes evaluation hard; in our tasks, the positional
relationships between shapes should be easy to infer exactly and hence we can evaluate models by
comparing exactly with ground truth shapes. Moreover, neither of these datasets have been framed
as a benchmark for visual program induction and have not been considered for evaluating LMMs.
Perhaps the approach closest to our work is by |Grand et al.| (2023)), who combined LLMs with a
symbolic program induction algorithm and evaluated the performance of their model (LILO) on the
turtle geometry task using the aforementioned dataset. Averaged over several runs, the performance of
the best versions of these approaches on the turtle geometry task is as follows: 43% for DreamCoder,
82% for LAPS, 49% for LILO, and 32% for a LLM solver. These results seem to suggest that
probabilistic programming approaches (such as LAPS) can greatly outperform LMMs on visual
programming tasks. We note that the performance of the LLM solver (32%) is comparable to the
performance of GPT-4V on our text-only input (37%; see Table ). Future work could assess the
performance of probabilistic program induction methods like LAPS on TurtleBench.

A.3 Mutimodal Algorithmic Reasoning

The existing literature features a range of studies that evaluate these models using naturalistic images
(Jiang et al.l 2022; Johnson et al., [2017; |Antol et al., 2015)), yet humans naturally are able to reason
over abstract shapes (Chollet, 2019 |Zhang et al.,|2019; |Spelke & Kinzler,|2007) and also many use
cases of LMMs involve understanding abstract shapes and sketches (Forbus et al., 2011} Nie et al.,
2020). Moreover, unlike naturalistic images (Marjieh et al., [2022; |Sucholutsky & Griffiths, [2024),
the relationship between language and abstract shapes is highly intertwined as minimal alterations
in language can lead to different visual perceptions in humans (Dillon} 2023} |[Lin & Dillon} 2023)).
The Multimodal Algorithmic Reasoning (MAR) task tests multi-modal models on fundamental skills
understandable by children, focusing on interpreting visual and linguistic information to answer
questions. Perhaps the most relevant work to ours is the paper by |Cherian et al.| (2023)) in which they
introduced a dataset with 101 multiple-choice questions inspired by the Math Kangaroo contest for 6
to 8-year-olds, involving images and texts that the model must analyze together. The task has been
shown to be challenging for multimodal deep neural networks, and the following trials to solve the
problem have gained less than 25% accuracy on the private test set/Wu et al.| (2023)). Our proposed
benchmark pushes the evaluation of LMMs forward as TurtleBench includes abstract geometric
shapes, and the task only relies on knowledge and reasoning over a set of simple functions in the
Python Turtle library. The open-ended nature of our benchmark and its flexibility over different
modalities makes evaluating different aspects of vision and language algorithmic reasoning in the
models more reliable.

B Additional Analyses

B.1 % Models fail to generalize

Given that these models have been extensively trained on vast datasets sourced from the internet,
there’s an underlying uncertainty regarding the source of their performance—albeit poor—on the
TurtleBench tasks. Specifically, it remains unclear whether this performance is the result of the
models’ ability to memorize aspects of our tasks, rather than genuinely understanding and solving
them based on their programming and reasoning capabilities. To address this issue, our next step
is to evaluate the true generalization ability of these models. By doing so, we aim to distinguish
between superficial learning, potentially influenced by memorization, and genuine comprehension
and problem-solving skills. To measure the generalizability of the model’s performance, we define
an arbitrary set of commands based on the turtle module in Python. In other words, we developed a
class called Rabbit that inherits the Turtle class from the turtle module. Although the functions of
the Rabbit class are functionally identical to those in the original turtle module, they are nominally
distinct. This differentiation allows us to evaluate the models’ ability to apply their knowledge to
unfamiliar yet equivalent command sets. The definition of the Rabbit class in Python is provided
in Appendix We perform a zero-shot CoT prompting to elicit the code using the new set of
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& GpTav ¥ GPTA4V Gemini ¥ Gemini
Turtle CoT  Rabbit CoT  Turtle CoT Rabbit CoT

Scratch Code Generation

Image only Input 19% 6% 8.46% 3%
Tweak Code Generation
Image + Text 12% 2% 7.7% 1%

Table 2: Performance of GPT-4V and Gemini 1.5 Flash on generalization tasks, in these tasks, we
defined Rabbit, a new set of functions practically equivalent to but nominally different from the ones
in Python Turtle. The performance in Rabbit drastically drops, showing poor generalization abilities
in both models.

£3 Python Turtle Output ~ Any Output

Scratch Code Generation

Image only Input 19.23% 21.6%
Tweak Code Generation
Image + Text 12.3% 15.1%

Table 3: Performance of (CoT) prompting with GPT-4V on tasks involving code generation for simple
geometric shapes in any programming language of the model’s choice reveals that models struggle
significantly, even in their preferred programming language.

commands. In the context window, we provide a verbal definition of each function in the Rabbit class.
The results of comparing the models’ performance using the Rabbit class versus the standard Python
Turtle module are presented in Table 2] We observe that, although both models were capable of
generating executable pieces of code with the new class, there is a huge decline in their performance
relative to their performance with the conventional Python Turtle module. This finding suggests that
the visual reasoning in these models is not robust to syntax changes, and it is likely that they rely on
training memorization rather than pure reasoning.

B.2 Assessing Model Proficiency Across Programming Languages

The initial suspicion might be that the models struggle with tasks in turtle geometry due to a lack
of exposure to specific programming syntax during pretraining. However, to investigate whether
the challenge lies not in syntax familiarity but in understanding visual input and translating this
understanding into effective programming, we modify our approach with GPT-4V. We choose GPT-
4V as it is our best-performing model in the main task. We allow it to generate code using any library,
language, or similar tools it deems appropriate, such as Matplotlib, TikZ, etc., without restricting it to
the Python Turtle library. The prompt for this subset of tasks is presented in Appendix We
manually evaluate the GPT-4V output for this task. Despite this freedom, we observe no significant
improvement in performance. The model chooses Matplotlib for 50% of the tasks and offers
pseudocode for 2%, with the remainder reverting to Python Turtle, even though we do not specify
Python Turtle in the prompts. Notably, it avoids using TikZ, despite its mention in the prompt and
proven capabilities in prior work to produce TikZ code (Bubeck et al.,[2023; Belouadi et al.| 2023)).
This outcome underscores a deeper issue than syntax familiarity: the models’ fundamental challenge
is accurately interpreting visual input and applying this understanding to generate corresponding
programming code.

B.3 Limited Visual Understanding in LMMs: Insights from Scratch Tasks

One of the questions regarding LMMs’ abilities in visual abstraction and understanding tasks is the
extent the incorporation of the visual component has enhanced their abilities in reasoning (Mitchell
et al.l|2023). In resonance with what Mitchell et al. (2023) found, here we also found that the vision
component contributes poorly to fostering the models’ visual reasoning abilities, at least in the domain
of TurtleBench. We explored this in the context of tweak tasks in Section Here, we explore it in
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GPT-4V basic  Gemini basic GPT-4V CoT Gemini CoT

Scratch Code Generation

Image only Input 26% 7.7% 29% 8.46%
Text only Input 37% 25.1% 38% 18.51%
Image and Text Input 38% 22.2% 40% 22.22%

Table 4: Performance of GPT-4V and Gemini 1.5 Flash on TurtleBench, for comparing visual vs.
text input on Scratch Code Generation Tasks

the context of scratch tasks. Specifically, we annotated 41 scratch code generation tasks and provided
clear descriptions for each in plain text. The remaining shapes were too complex to describe without
ambiguity in plain text. Then, we compared the three modes of presenting the task, image only, text
only, and the blend of an image and its description in text. Interestingly, for both GPT-4V and Gemini
1.5 Flash, the model performed worse when the task was presented only in the image, compared to
the other modes. This phenomenon is counterintuitive as for humans, perceiving the images should
be easier than first reading a description, imagining it, and then writing a code for it. Additionally, as
presented in Tabled]the blend of image and text only slightly improved GPT-4V’s performance (from
38% to 40%). These two findings show that there is still much room for improvement especially in
the visual components of LMMs.

B.4 Reasons of Failure

We manually investigated GPT-4V’s failures in solving Scratch tasks in a single run to find the major
causes of failure. We find four major causes: 1) Shape identification error: where the model fails to
completely capture existent shapes in the input image, for instance, if it confuses a semicircle with a
circle or assigns non-existent shape attributes to the input image. 2) Counting error: where the model
fails to count adequately, (e.g., three triangles counted as four), 3) Orientation error: where the model
fails to correctly find the relationships between different components of a shape (e.g., semicircle on
top of a square vs. at its bottom), and 4) Implementation error: where the model’s generated code
does not follow the pre-planned pseudocode.

We manually investigated GPT-4V’s failure output in the scratch code generation task and the results
are provided in Table [5] where the failures are not mutually exclusive as a model can perform a
combination of errors in each task. Furthermore, while the first three errors are according to the
vision component in these models, we see that 64% of the failures are according to these causes, and
in 36% of failure cases, there are no apparent vision errors.

Cause Description Percentage
Shape identification error | Shape Identification Error: The model fails to 25%
completely capture existent shapes in the input
image, confusing or misattributing shapes

Counting error Counting Error: The model inadequately counts 35%
the elements.
Orientation error Orientation Error: The model fails to correctly 21%

determine the spatial relationships between differ-
ent components of a shape

Implementation error Implementation Error: The model’s generated 45%
code does not adhere to the pre-planned pseu-
docode, resulting in incorrect implementation.
Table 5: Major Causes of GPT-4V’s Failures in Scratch Tasks; note that the failures are not mutually
exclusive, as a model can perform a combination of errors in each task
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C Experiment Setup

C.1 Automatic Evaluation of Code Output

Evaluation of the output code by an Al model is performed automatically. First, the output of the Al
model is processed to extract the code piece of output. Then, this piece of code is run in a sandbox,
and the shape produced by the code is stored. An illustration of this pipeline is provided in Figure
[ Finally, using the OpenCV module in Python, the binary versions of the correct shape and the
produced shape are compared using an adjusted measure of bitwise similarity where we first use
the bounding box technique with OpenCYV to find the exact location of the shape and then calculate
similarity with the formula:
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where B, and B,, represent black pixels in the input and LMM output, respectively. This metric
measures the ratio of co-occurring black pixels to the total black pixels Here, we utilize a heuristic
approach in labeling the correctness of the model’s output. If the bitwise similarity between output
and ground truth is higher than 95% the models’ output is labeled as correct and incorrect otherwise.
To make sure that our heuristic in labeling the correctness of generated shapes is reliable, we manually
annotated 2000 pairs of input and output images and we found that only three instances of pairs were
labeled incorrectly (two of them false negative and the other false positive.), leading to an error rate
of 0.15% which shows the high level of reliability in the heuristic we used.

C.2 Prompting
C.2.1 Basic Prompt

In each task, the user provides an image of an abstract geometric shape or pattern
and an instruction, you need to generate a code in Python Turtle that follows the
user's request.

Figure 2: basic prompt used in our experiments

C.2.2 v-CoT Prompt

You are Turtle Geometrician, you are an expert in reasoning about images and
generating code in Python Turtle using images You need to follow the steps below
before generating the answer:

(1) Describe the relevant information from the image needed to answer the question.
List all relevant artifacts from the image.

(2) Use the information described in (1) to reason about the problem by working
step by step to arrive at the final piece of code.

(3) Generate the final code. NEVER use "pensize" function in your code.

Figure 3: v-CoT prompt used in our experiments

C.2.3 A Complete Example

Here we provide an instance of a complete prompt we used for a tweak code generation task with
CoT prompting:

C.2.4 Arbitrary Output

Here we provide the CoT prompt we used for the model to provide a code in any arbitrary language
or library that creates the desired shape.
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System: You are Turtle Geometrician, you are an expert in reasoning about
images and generating code in Python Turtle using images. You need to
follow the steps below before generating the answer:

(1) Describe the relevant information from the image needed to answer the
question. List all relevant artifacts from the image.

(2) Use the information described in (1) to reason about the problem by
working step by step to arrive at the final piece of code.

(3) Generate the final code. NEVER use "pensize" function in your code.

Text: Provide a code in Python turtle that in the given shape inserts a
circle of an equal size to the smaller circle on the left of the bigger
circle to make a vertically symmetrical shape.

Complete the code:

import turtle

from math import *

t = turtle.Turtle()
large_circle_radius=100
small_circle_radius=50

Figure 4: An example of a complete prompt for a tweak code generation task with using v-CoT
prompting.

You are an expert in reasoning about images and generating code in any language you
prefer. You need to follow the steps below before generating the code that answers
the user's request:

(1) Describe the relevant information from the image needed to answer the question.
List all relevant information from the image.

(2) Use the information described in (1) to reason about the problem by working
step by step to arrive at the final piece of code.

(3) Generate the final code. Your code can be in any visual language or library,
such as Matplotlib, TikZ, etc.

Figure 5: The system prompt we used for the results discussed in Section

C.3 Rabbit
C.3.1 Prompt used

The prompt we used for this experiment is provided in Figure|[6]

C.3.2 Definition of the class

The rabbit class is an arbitrary class that we defined based on Turtle class in the Python Turtle Module.
This minimal set of functions includes all functions that a programmer or a model needs to create all
of the tasks in TurtleBench. We defined this new set of functions to measure how GPT-4V is able to
generalize its abilities in generating code in Python Turtle to a similar but minimally different set of
functions.

import turtle

class Rabbit(turtle.Turtle):
def __init__(self):
super (). __init__()
self.setheading (90)
self .pensize (5)

self.hideturtle ()

def aa(self, length):
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Suppose that I have a library named Rabbit in Python. Rabbit library has an object
constructor named Rabbit which is an object that moves on the screen and draws
lines. It only has these functioms:

aa(length): goes front or back (if the length is negative) and draws a line with
the length of pixels.

bb(degree) : The rabbit turns its head right or left (if degree is negative).
cc(radius, degree): creates an arc with the given radius for the given degree. If
degree=360 it creates a circle. The center of the circle is in the left of the
rabbit.

pp(vanish): if vanish=True vanishes Rabbit object so if it moves does not draw
anything, and if vanish=False, it appears the Rabbit object so if it moves draws on
the screen.

you call the functions on an object of Rabbit, such as r.aa(length) where r is an
object of Rabbit. When r is created, it faces north (up) on the screen and it does
not vanish, so it is in drawing mode.

You are Rabbit Geometrician, you are an expert in reasoning about images and
generating code in Python Rabbit using images. You need to follow the steps below
before generating the answer:

(1) Describe the relevant information from the image needed to answer the question.
List all relevant artifacts from the image.

(2) Use the information described in (1) to reason about the problem by working
step by step to arrive at the final piece of code.

(3) Generate the final code. Only use commands in the Rabbit class.

Figure 6: v-CoT prompt used for generalization experiments discussed in Section

self.forward(length)

def bb(self, degree):
self.right (degree)

def cc(self, radius, degree):
self.circle(radius, degree)

def pp(self, vanish):
if vanish:
self .penup ()
else:
self.pendown ()

C.4 Types of Tweak Tasks

TurtleBench includes a total of 130 tweak tasks. We provide a categorization for the tweaks as
follows: There are five major types of tweaks in TurtleBench;

* Deletion: Removing a specified part of a shape

* Insertion: Adding a specific shape to the pattern as directed

* Rotation: Rotating the entire shape

* Reflection: Reflecting the entire shape or parts of it across specified lines

* Generalization: maintaining a pattern in the image constant while varying its parameters.
An illustration of instances of each type is provided in Figure [/} These types are not mutually
exclusive as 10% of the tasks involve a combination of two types (e.g., removing one side of a square
and inserting a semicircle instead). To successfully complete deletion and insertion tweaks, a model
needs to demonstrate a nuanced understanding of the details in the image and program the resulting
shape accordingly. In contrast, rotation tasks can be relatively easy as most of them can be solved

only using a simple function in Turtle that can rotate the starting heading of the turtle which results in
complete rotation in the entire shape (i.e., turtle.right (angle)).
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Figure 7: Types of tweaks and their share in TurtleBench

C.5 Evaluating Image Complexity Using Contour Counts

As our result suggests that the vision component is contributing poorly to the models’ performance,
to gain a better understanding of the visual obstacles for the models to solve the tasks, we defined a
measure as a proxy for the complexity of shapes. For each provided image, we calculated the number
of contours in each shape. In OpenCV, a contour is a curve joining all the continuous points (along
the boundary), having the same color or intensity. Contours are a useful tool for shape analysis and
object detection and recognition. The high number of contours in an image hints that there are many
shapes being involved and interleaving with each other, which makes understanding and extracting
underlying patterns challenging.

We calculated the number of contours in each shape by utilizing the corresponding function in
OpenCV, and defined three arbitrary levels of complexity in the images, where the images which
include only one contour (e.g., the basic square in Figure[)) are at level 1 (simple), images including
less than 6 contours and more than 1 are at level 2 (medium) (e.g, the base shape of insertion
example in Figure[7) and the images in which there are more than 6 contours (e.g., the base shape
in generalization example in Figure[7) are at level 3 of the complexity (Complex). In Turtle, the
proportions of complexity levels 1, 2, and 3 are 25%, 40%, and 35%, respectively.

We investigate how models perform over tweak tasks. There are 9 different ways that a pair of input
and output image can combine. As shown in Table[6] the majority of tweak tasks (74) have same
levels of complexity for the input and output image.

To examine how complexity of input and output shapes impact the results, we categorize tweak tasks
in the 9 different categories and count the number of tasks that are ever solved by GPT-4V under
any prompting method in code generation and code edit tasks during 6 different runs. As shown in
Table[6] the more complex the input shape is, the more challenging solving the task is.

Output Complexity
Simple Medium Complex
Simple  35% (7/20)  30% (3/10)
Input Complexity Medium  40% (2/5) 7% (1/13)
Complex 11% (2/19)
Table 6: The number of tweak tasks under each category and the percentage of those tasks ever solved
by GPT-4V in different settings.

C.6 Task Instances
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Ground Truth

Description: Two adjacent equilateral
triangles sharing a horizontal common base
both pointing upward, where the left
triangle is larger than the right one

Code
def draw_polygon(sides, length):
outer_turn = 360 / sides

for _ in range(sides):
t.forward(length)
t.right(outer_turn)

t.setheading(60)
draw_polygon(3,
small_triangle_side)
t.left(120)
draw_polygon(3,
large_triangle_side)

Textual Tweak Instruction: Insert two

triangles to the right of the existing
shape to make it vertically symmetrical.

Desired Tweaked Shape

Scratch Tasks ‘

Code Generation ‘

Image Input Text Input I Image + Text Input
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Figure 8: An illustration of different modes of a single task in TurtleBench along with the images
generated by code from the outputs of GPT-4V and Gemini 1.5 Flash. More examples are provided

in Appendix Figure|[I0|

def draw_polygon(sides, length):
outer_turn = 360 / sides
for _ in range(sides):
t.forward(length)
t.right(outer_turn)

for i in range(6):
draw_polygon(6, small_hexagon_side)
t.right(60)

. /

Write Python Turtle code that generates the exact same shape. @

The image shows a large hexagon composed of seven smaller hexagons.
Each side of the smaller hexagons is equal in length. The large hexagon is
oriented such that one of its flat sides is at the top and bottom, rather than
a vertex pointing up or down.

To create this shape using Python Turtle, we need to:

1. Define a function to draw a hexagon.

2. Draw the central hexagon.

3. Move the turtle to the correct positions to draw the surrounding six
hexagons without drawing any unnecessary lines.

Here's how we can complete the code:

Sandbox

import turtle

Figure 9: An illustration of our evaluation pipeline
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Ground Truth

Description: A square with two horizontal
and vertical sides, inscribed in a circle.

Code

def draw_polygon(sides, length):
outer_turn = 360 / sides
for _ in range(sides):
t.forward(length)
t.right(outer_turn)

draw_polygon(4, square_side)
t.left(-135)
t.circle(square_side/2*sqrt(2),-360)

Textual Tweak Instruction: Write a
code in Python turtle that creates the
given shape without the quarter circles
on the left and the right of the square.

Desired Tweaked Shape

Scratch Tasks

Code
Image Input ‘ ‘ Text Input ‘ ‘ Image + Text Input ‘
Tweak Tasks

Code Generation

Code Edit

Image + Text Input

Image + Text Input

Image + Image Input ‘

o

()

J
~

o

o

[>)

Ground Truth

Description: Four adjacent squares of an
equal size that form a larger square.

Code

def draw_polygon(sides, length):
outer_turn = 360 / sides
for _ in range(sides):
t.forward(length)
t.right(outer_turn)

X =4

for i in range(x):
draw_polygon(4, small_square_side)
t.right(360 / x)

Textual Tweak Instruction: Write a
code in Python Turtle that creates the
given shape without the small square

on the top right.

Desired Tweaked Shape

Scratch Tasks \

Code ‘

Image Input ‘ ‘ Text Input ‘ ‘ Image + Text Input ‘
Tweak Tasks ‘

Code Generation

Code Edit

Image + Text Input

Image + Text Input

Image + Image Input ‘

()

L[]

o

| &
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0 4
[

Figure 10: Two examples of tasks in TurtleBench across different modalities
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