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ABSTRACT

Object counting and localization in dense scenes is a challenging class of image
analysis problems that typically requires labour intensive annotations to learn to
solve. We propose a form of weak supervision that only requires object-based
pairwise image rankings. These annotations can be collected rapidly with a sin-
gle click per image pair and supply a weak signal for object quantity. However,
the problem of actually extracting object counts and locations from rankings is
challenging. Thus, we introduce adversarial density map generation, a strategy
for regularizing the features of a ranking network such that the features corre-
spond to an object proposal map where each proposal must be a Gaussian blob
that integrates to 1. This places a soft integer and soft localization constraint on
the representation, which encourages the network to satisfy the provided rank-
ing constraints by detecting objects. We then demonstrate the effectiveness of
our method for exploiting pairwise image rankings as a weakly supervised signal
for object counting and localization on several datasets, and show results with a
performance that approaches that of fully supervised methods on many counting
benchmark datasets while relying on data that can be collected with a fraction of
the annotation burden.

1 INTRODUCTION

Object counting is a popular computer vision problem that involves localizing and quantifying the
number of objects within an image, which has broad applicability across several domains. For
example, counting problems have been explored throughout plant analysis (David et al., 2020; 2021;
Häni et al., 2020; Bargoti & Underwood, 2017; Minervini et al., 2015; Teimouri et al., 2018), wildlife
population monitoring (Arteta et al., 2016), crowd surveillance (Change Loy et al., 2013; Chen et al.,
2013; Loy et al., 2013; Chen et al., 2012; Zhang et al., 2016; 2015), tissue sample analysis (Marsden
et al., 2018; Paul Cohen et al., 2017; Xie et al., 2018; Kainz et al., 2015), and vehicle surveillance
(Guerrero-Gómez-Olmedo et al., 2015; De Almeida et al., 2015; Wang et al., 2008). However,
we highlight two major problems that prevent counting problems from being widely applicable.
First, there is no consensus on how to structure the optimization target. Different methods have
approached the problem using a variety of annotations, which include bounding boxes (Ren et al.,
2015; Redmon et al., 2016), global object counts (Chattopadhyay et al., 2017), point maps (Laradji
et al., 2018), and density maps (Lempitsky & Zisserman, 2010). Bounding boxes are a popular
optimization target for detection problems. However, these annotations tend to under-perform on
counting problems, in particular, when scenes contain many highly occluded objects at a variety of
scales (Chattopadhyay et al., 2017). Density map annotations often perform better, but suffer from a
lack of information related to object characteristics such as scale (Arteta et al., 2016). Second, as the
quantity and density of objects in an image increase, all of the above annotation types become labour
intensive to collect and prone to significant annotator noise (Arteta et al., 2016). We circumvent the
burden of object labelling by introducing a simple form of annotation that can be rapidly collected,
and design a method to propose density maps from these annotations.

We propose using pairwise image ranking, a binary valued annotation that orders image pairs based
on per-image object counts. Previous work has demonstrated these annotations to be an effective
training signal for semi-supervised counting problems (Liu et al., 2018). Whereas this work relied
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on leveraging automatically collected intra-image relationships between the whole image and sub-
image crops, we extend this idea further by proposing a method for learning to count and localize
objects exclusively from inter-image pairwise image rankings. Our inter-image annotations carry a
weak but information rich training signal despite being quick to collect. Humans are adept at rapidly
assessing which of two images has more objects of interest, and untrained annotators are capable
of discriminating between two images at a ratio of 10:11 objects in under 0.75 seconds (Pica et al.,
2004; Halberda & Feigenson, 2008). While previous optimization targets require an annotator to
identify and count out each object, pairwise image rankings only require a single click from an an-
notator. In Tables 2, 3, and 4 we evaluate the annotation burden for recent object counting strategies
and demonstrate that our annotation strategy carries only a fraction of the burden. Given these sav-
ings, there is significant value in developing methods that learn to extract counts and locations from
this type of training data.

The major technical challenge in exploiting this type of annotation is finding a way to extract counts
and locations given only pairwise rankings. In this work, we propose an adversarial strategy for
regularizing the penultimate representation of a ranking network to have the properties of a density
map by comparing it to a pseudo-density map distribution. This places a soft integer and localization
constraint on the representation. We argue that this strategy forces the model to solve the ranking
sub-task by detecting re-occurring objects that can satisfy all of the ranking constraints. Combined
with the weak quantity signal provided by pairwise image ranking annotations, this strategy pro-
duces a counting and localization model that is competitive with architectures trained on images
with their density maps and global counts annotations. In summary, our work makes the following
contributions:

1. We propose object-based pairwise inter-image ranking as a novel, low-cost annotation strat-
egy for weakly supervised counting and localization, and demonstrate that it performs com-
parably with fully supervised counting methods.

2. We propose adversarial density map regularization, a method for enforcing that the network
output has the properties of a density map.

2 PREVIOUS WORK

Object Counting with Limited Data. Object counting methods perform best when learning from
density maps (Lempitsky & Zisserman, 2010; Chattopadhyay et al., 2017), which carry a high anno-
tation burden. Several methods have emerged that attempt to eliminate this burden. These methods
can be loosely split into 4 categories – semi-supervised, knowledge transfer, sample selection, and
weakly supervised methods.

Semi-supervised counting methods alleviate the annotation burden by including additional unla-
belled data; a recent approach (Liu et al., 2019b; 2018) introduced an unsupervised ranking loss that
exploits the fact that any image has as many or more objects than any cropped sub-portion of that
image. Other methods (Sam et al., 2019) have proposed more general feature learning strategies.
Knowledge transfer methods explore transferring features between counting problems; one method
(Zhang et al., 2015) proposed learning from a multi-modal dataset which contained a mix of density
maps and global object counts. A more recent approach (Ranjan et al., 2021) proposed a few-shot
learning strategy where the model was trained using exemplar and density map pairs such that it
could be extended to novel object classes. Active learning methods (Ranjan et al., 2020; Zhao et al.,
2020) approach the problem by finding ways to only label the most important examples in a new
domain. Weakly supervised methods have explored strategies for better utilizing global counts as
annotations. Recent methods (Yang et al., 2020; Lei et al., 2021) proposed various regularization
terms. One such method introduced a soft-sorting multi-task loss (Yang et al., 2020), which involved
learning from global object count annotations directly and indirectly through a soft-sorting task. An-
other recent work (Liang et al., 2021) has suggested that self-attention can improve learning from
global counts. A different approach (Cholakkal et al., 2019) involved using object recognition com-
bined with global object counts to create class-specific density maps. Our method differs from the
above weakly-supervised methods by learning exclusively from a much weaker signal than global
object counts.
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Weakly-Supervised Object Localization. Related to weakly-supervised object counting is
weakly-supervised object localization (WSOL) (Zhang et al., 2021). This task involves localiz-
ing objects using only some weak image-level label. Arguably, the most important WSOL methods
are class activation maps (CAM) (Zhou et al., 2016) and Grad-CAM (Selvaraju et al., 2017). The
authors of CAM discovered that using global average pooling in a classification network allowed
them to localize parts of the object being classified. Grad-CAM extends this work by re-weighting
the activation map using the gradients of some target class. Separately, image region erasing has be-
come a popular strategy for learning localized features from global class labels. Some works (Singh
& Lee, 2017; Choe & Shim, 2019) randomly erase image regions, forcing the network to rely on
the whole object to classify the image. Other works (Choe & Shim, 2019; Zhang et al., 2018; Kim
et al., 2017; Wei et al., 2017) proposed adaptive erasing strategies for removing the image regions
that contribute most to classification, forcing the network to explore other regions in an attempt to
accurately classify the image. Our problem shares similarities with WSOL in that we are using a
global image label, albeit a pairwise image ranking label and not an image class label, to detect
objects.

Counting, Detection, and Output Representations. Localizing and counting target objects in
images is an important computer vision problem. However, there is no consensus on the appropriate
optimization target for this task. Bounding boxes (Ren et al., 2015; Redmon et al., 2016) are a
popular approach, but regressing over box coordinates is a difficult problem that underperforms on
counting tasks (Chattopadhyay et al., 2017). Density maps (Lempitsky & Zisserman, 2010) are
frequently used as an alternative, but, in their basic form, suffer from a lack of information about
object scale and scene geometry. To remedy this, different strategies for producing adaptive density
maps have been explored. Self-attention (Wan & Chan, 2019) for selecting the best density map
scale has worked for crowd counting problems. Similarly, ad-hoc geometric priors (Zhang et al.,
2016) have been used to fuse scene geometry and density maps. Other methods have explored
finding object blobs from dot maps (Laradji et al., 2018); multi-scale and multi-resolution density
maps (Idrees et al., 2018); and learning directly from dot maps by treating density map estimation
as a perspective-guided unbalanced optimal transport problem (Wan et al., 2021).

Ranking as Supervision The use of ranking as a training signal, sometimes known as ordinal
regression, originates within information retrieval research. RankNet (Burges et al., 2005), a doc-
ument retrieval network, emerged as the first deep learning approach to ranking. However, this
approach has been extended into several computer vision applications. Facial age estimation (Chen
et al., 2018; Lim et al., 2020) has benefited from pairwise image rankings, which learn the ‘amount’
of age in an image. Pairwise image ranking has been used to localize facial attributes (Singh & Lee,
2016), compare agent skills in videos (Doughty et al., 2018), and detect video highlights (Yao et al.,
2016). Ranking has also been used for ranking object proposals and class label proposals (Li et al.,
2017; Liu et al., 2021). These applications highlight that ranking as an optimization signal plays a
significant role in computer vision applications.

3 PAIRWISE RANKING AS WEAK SUPERVISION

Pairwise image ranking is a task which requires an annotator to provide an ordering for image pairs
based on the quantity of objects present in the image. Given some dataset

Drank = {(xi, xj), rij ≡ ci ≥ cj}N ,

we would like to extract the underlying object counts ci and cj given only the image ranking con-
straints rij for N pairs of images (xi, xj). The goal of this paper is to develop a strategy to use the
implicit weak object quantity signal present in Drank to solve the counting task. However, we first
provide a motivation for this strategy by exploring the limitations of other annotation strategies and
the strengths of pairwise image ranking.

Density maps are the most popular annotation strategy for solving counting problems. Here, a den-
sity map is defined as a heatmap where a Gaussian kernel is convolved with point-wise annotations,
with the property that the density map integrates to the global count. This annotation formulation
is useful because it provides a location-based target for the object counting problem but has less
complexity than bounding-box annotations. However, collecting point-wise annotations presents
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Figure 1: Method overview. Pairs of images with object count ranking labels are used to train a
neural network to count and localize objects. Each image xi and xj are passed to the generator
model and their respective outputs zi and zj are used to calculate Lrank, which provides the weak
object quantity training signal. In addition to this, we include an adversarial density map generation
loss, Lgan, which encourages the output of the generator model to have the properties of a density
map.

significant challenges. Strategies that learn directly from global object counts are able to reduce the
annotation burden associated with density maps, but these methods still carry their own significant
annotation burden. Global counting annotations and point-wise annotations require an annotator to
visually localize all objects and record those labels. This can be time consuming and error prone, es-
pecially as object quantity, occlusion, and density increase. In fact, it has been demonstrated (Arteta
et al., 2016) that when multiple annotators label an image with point-wise annotations, the annota-
tors often suffer from fatigue or make inconsistent decisions when faced with ambiguity and make
regular errors that lead to significant signal noise. Given the annotation burden that exists with all
of the above methods, it would be valuable to establish a weak signal that could be rapidly collected
by annotators while still leading to similar performance on the counting problem.

Researchers in human psychology have found that humans can rapidly assess which of two groups
of objects has the most objects if the difference in object count is greater than a particular ratio. This
ratio is approximated by Weber-Fechner law, which is a law that describes the change in a stimulus
necessary for some human to perceive the difference relative to the existing stimulus. For the task
of pairwise image ranking, researchers (Pica et al., 2004; Halberda & Feigenson, 2008) have found
that within 0.75 seconds, untrained adults are capable of determining which of two images has the
most objects if the object count ratio is smaller than approximately 9:10 and 10:11 (independent of
the absolute count). This suggests that, for untrained adults, the task of rapidly annotating image
pairs with their respective rank should be relatively simple as long as the ratio between object counts
within the image pairs remains smaller than the given ratio. Thus, given a weak signal that can be
rapidly collected, we are left to answer the difficult question of how to extract the counts.

4 METHOD

The goal of our method is to develop a model which can extract object counts given only pairwise
image rankings. These annotations contain a weak signal for object quantity, which we use to train
a neural network, zi = f(xi; θ), outlined in Figure 1. However, this target alone is not enough to
learn a representation from which we can extract global object counts. We solve this problem by
proposing adversarial density map estimation, a strategy which structures the output of fθ to have
the properties of a density map. With this strategy, our model learns to count objects and even
localize those objects within an image.
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4.1 RANKING NETWORK

The purpose of the network f(xi; θ) is to extract the underlying weak object quantity signal from the
pairwise image ranking annotations. As outlined in Figure 1, our base counting model fθ receives
two images as input, xi and xj , and outputs representations zi, zj ∈ [0, 1]56×56. We use these
representations to model the probability that ci ≥ cj by approximating the true distribution as
follows:

prank = P (rij |xi, xj ; θ) = σ(
∑
k,l

(zi)kl − (zj)kl), (1)

where σ is the sigmoid operation and (k, l) are the indices for the representations zi and zj . Here,
we benefit from the fact that when the difference between zi and zj is positive, the sigmoid operation
outputs a value greater than 0.50. Whereas when the difference is negative, the sigmoid operation
outputs a value less than 0.50. This allows us to model which of two images in a pair has more
objects by inspecting the magnitudes of the sum over zi and zj . Thus, by optimizing θ using the
following loss function:

Lrank = −Epdata
[log(prank)], (2)

the model must learn to minimize the number of pairwise inversions (from the ground truth distri-
bution pdata) among all ranking examples in the training dataset, which creates a partial ordering
of all the images by object count. However, this ordering is decoupled from any notion of object
identity and location. In the next section, we propose an approach to explicitly connect the output
representation to object locations.

4.2 ADVERSARIAL DENSITY MAP GENERATION

Previous empirical results have demonstrated the value of density maps as a location-based annota-
tion for counting problems. Density maps are structured such that they place Gaussian density where
objects occur and integrate to the global count. These properties are useful because they explicitly
connect the detection and counting task. While we do not have access to density maps, we argue
that allowing the counting network fθ to propose density maps when solving the pairwise image
ranking problem captures some of the useful properties of density maps. We explore a strategy for
structuring the output representation zi to have these properties.

We start by establishing a pseudo point map distribution from which we can randomly sample point
maps zpoint ∈ {0, 1}56×56. We convolve zpoint with Kδ , a 2D kernel with width δ, to generate a
pseudo density map:

z̃dmap = Kδ ∗ zpoint. (3)

If an appropriate sampling distribution is chosen, then we can establish an adversarial training objec-
tive that penalizes the network output zi when it deviates from the properties of a density map. We
first describe the adversarial training objective, and then describe methods of selecting appropriate
pseudo density map distributions.

Adversarial training (Goodfellow et al., 2014) is a widely adopted technique for modeling the un-
derlying generating distribution that explains a dataset. This training strategy involves optimizing
two neural networks, our counting network f (termed the generator) and a discriminator D. The
generator is tasked with generating samples from an underlying distribution and the discriminator
is tasked with evaluating whether a sample came from the pseudo point map distribution or the
generator’s distribution. The generator is optimized using feedback from the discriminator, and the
discriminator is optimized using the samples from the generator. Under this training paradigm, the
discriminator D : R56×56 → R predicts whether its input is a sample from the pseudo-density map
distribution. We use the LS-GAN objective function (Mao et al., 2017), which is given as:

Lfgan = −Ex
[
D(fθ(xi)− 1)2

]
, (4)

for the generator, and:

LDgan =− Ez̃dmap
[
(D(z̃dmap)− 1)2

]
+ Ex

[
D(fθ(xi))

2
]
.

(5)
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Selecting a point map distribution is a challenging problem, as it is known that convolution neural
networks can encode spatial information (Islam et al., 2020). Given this, a discriminator can penalize
the underlying spatial distribution of objects learned by the generator. Given this situation, we
choose to sample point maps uniformly. To produce the pseudo point map distribution, first, we
uniformly sample a total count, cpseudo, for the number of Gaussian blobs in a particular density
map:

cpseudo ∼ U{0,Nc}, (6)

whereNc is the estimated maximum object count for the dataset. Then, we uniformly sample cpseudo
co-ordinates:

i, j ∼ U[0,56]×[0,56], (7)

which gives us zpoint. This uninformative prior makes it more difficult for the discriminator to
exploit the underlying spatial distribution, as any point location is equally likely.

4.3 IMPLEMENTATION DETAILS

Architecture. We use ResNet50 (He et al., 2016) as the default architecture for the underlying
counting model fθ. The ResNet50 model shares parameters across both branches of the network in
Figure 1. We generate a density map zi in a similar fashion to previous work on segmentation that
use fully convolutional networks (Long et al., 2015). First, we pass an image xi through ResNet50
and collect features at different resolutions throughout the network. Then, we up-sample the features
using transposed convolutions and combine these features to form zi, a 56×56 density map estimate.
To construct the ranking network, we pass two images through fθ and then we take the sum of the
difference between the respective density map estimates before passing the final number through a
sigmoid activation whose output is used as the predicted image ranking.

Adversarial Setup. The density map estimates, zi and zj , are passed to the discriminator. The
discriminator predicts whether or not the resulting density map estimates look like samples of the
pseudo density map distribution. The discriminator itself is designed to have a relatively simple
architecture, comprised of 5 convolutional layers with 4× 4 filters and LeakyReLU activations that
downsample the density map. Then, these features are passed through a final fully connected layer.

Training. Each model for each experiment is trained for 200 epochs using the Adam optimizer
with a batch size of 32. The learning rate is randomly selected between 10−5 and 10−3, with 5×10−5
being a reliable choice. Similarly, the β1 parameter of the Adam optimizer was randomly selected
from a normal distribution, with 0.50 being the most reliable choice. The optimizer hyperparameters
are shared by both the ranking architecture and the discriminator. Each image is augmented using a
random combination of horizontal flipping, rotation, colour jitter, and noise such that no objects are
lost and such that the object identity is preserved. Due to the instability of GANs, we run multiple
experiments and select the best performing model using the validation set.

5 EXPERIMENTS

5.1 DATASETS

We benchmark our results on four object counting datasets, which we describe here. TRANCOS
(Guerrero-Gómez-Olmedo et al., 2015) is a 2015 vehicle counting benchmark dataset containing
1,244 images with point map annotations for 46,796 highly occluded vehicles in traffic. Penguins
(Arteta et al., 2016) is a 2016 animal counting benchmark dataset containing around 82,000 images
of penguin colonies taken under a diverse set of environmental conditions across 40 different loca-
tions. Each image contains several dot maps from different annotators. The UCSD dataset (Chan
& Vasconcelos, 2008; Chan et al., 2008) is a 2008 crowd counting dataset containing 2,000 video
frames of pedestrian traffic across a campus. The Mall dataset (Change Loy et al., 2013; Chen et al.,
2013; Loy et al., 2013; Chen et al., 2012) is a 2013 crowd counting data containing 2,000 video
frames of pedestrian traffic in shopping malls, with over 60,000 human heads annotated across the
dataset. All of these datasets are challenging benchmarks as they contain highly occluded objects in
dense scenes with a variety of environmental conditions and scales.
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Figure 2: Qualitative examples of density maps predicted by the baseline model at inference time.
Top: Trancos. Middle: Penguins. Bottom: MALL.

Table 1: Ablation of results for the baseline model modified by removing different components to
reveal their underlying contribution to the model

Method Trancos Mall Penguins UCSD

MAE R2 MAE R2 MAE R2 MAE R2

Lrank + Lgan 5.89 0.76 3.62 0.41 7.43 0.52 5.04 0.47

Lgan 13.19 -0.15 4.80 0.00 13.70 -0.08 7.70 -0.45

Lrank 9.47 0.51 5.46 -0.14 7.72 0.58 7.04 -0.15

5.1.1 SAMPLING IMAGE RANKING DATA

There are presently no well-established image ranking datasets available for weakly supervised ob-
ject counting and localization benchmarking. Given this, all image ranking datasets used for evaluat-
ing our experiments must be curated. We experiment with the object counting and detection datasets
outlined above, and reformulate all of the available datasets as ranking datasets as follows. Given a
counting dataset

Dcount = {xi ∈ Rh,w,d, ci ∈ N}Nc
i=0,

where d is the number of channels and ci is the object count in image xi, we randomly sample
N = 2, 000 image pairs (xi, xj) and calculate their pairwise ranking as rij = ci ≥ cj . This
provides us with a curated ranking dataset:

Drank = {(xi, xj)n, (rij)n ≡ (ci ≥ cj)n}Nn=1.

For our experiments, we impose no constraints on the sampling procedure and generate the training
ranking dataset by simply uniformly sampling examples from the training dataset. We benchmark
against the original counting test data provided with each dataset.

5.2 RESULTS

Ablation of Model Components. In Table 1, we explore the contribution of each model compo-
nent to the test error. We evaluate each experiment using MAE and R2. MAE is the mean absolute
error and measures the difference between the predicted count and ground truth count, with a lower
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score corresponds to a better performing model. R2 is the coefficient of determination, which de-
scribes how well the model fits the data with a higher score corresponding to a better fit. When only
Lgan is included during model training, we find that the model fails to detect and count objects.
This result is intuitive, as the weak quantity signal is only provided by Lrank. However, when only
Lrank is included during model training, we find that the model under-performs when compared
to the model trained with both Lrank and Lgan. This result demonstrates that Lgan contributes an
important training signal when solving the object counting problem using pairwise image rankings.

Evaluating the Annotation Burden vs. Error Trade-Off. We compare our results with state-
of-the-art object counting methods and we provide an estimate of the annotation burden for each

Table 2: Comparison of the test error and annotation time for state-of-the-art counting methods on
the TRANCOS crowd counting dataset. When methods use the standard dot-map training set, their
annotation times are equivalent.

Method Supervision Est. Annotation
Time

MAE

Hydra CCNN (Oñoro-Rubio & López-Sastre, 2016) Dot-map 9 hr 11 min 10.99

FCN-MT (Zhang et al., 2017b) Dot-map 9 hr 11 min 5.31

FCN-HA (Zhang et al., 2017a) Dot-map 9 hr 11 min 4.20

LC-PSPNet (Laradji et al., 2018) Dot-map 9 hr 11 min 3.57

CSRNet (Li et al., 2018) Dot-map 9 hr 11 min 3.56

SPN (Chen et al., 2019) Dot-map 9 hr 11 min 3.35

ADSCNet (Bai et al., 2020) Dot-map 9 hr 11 min 2.60

Glance (Chattopadhyay et al., 2017) Counts 2 hr 41 min -
7 hr 54 min

7.00

Adv. Dmap (Ours) Pairwise
Rank

25 min 5.89

Table 3: Comparison of the test error and annotation time for state-of-the-art counting methods on
the MALL crowd counting dataset.

Method Supervision Est. Annotation Time MAE

CNN-Boosting (Walach & Wolf, 2016) Dot-map 7 hr 13 min 2.01

LC-PSPNet (Laradji et al., 2018) Dot-map 7 hr 13 min 2.01

AL-AC (Zhao et al., 2020) 10% w/ Dot-map 43 min 3.80

Adv. Dmap (Ours) Pairwise Rank 25 min 3.62

Table 4: Comparison of the test error and annotation time for state-of-the-art counting methods on
the USCD crowd counting dataset.

Method Supervision Est. Annotation Time MAE

ADCrowdNet (Liu et al., 2019a) Dot-map 6 hr 59 min 0.98

Sorting (Yang et al., 2020) Counts 2 hr 00 min - 5 hr 54 min 1.80

Adv. Dmap (Ours) Pairwise Rank 25 min 5.04
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method. Here, we establish an annotation burden estimate for dot-maps and global object counts
calculated over the training and validation set and compare it to the estimated annotation burden
of our method. To estimate the annotation burden for dot-maps, we use the per-object annotation
time of 1.1 s established by Cholakkal et al. (2020) and multiply this by the number of objects
in the dataset. To estimate the annotation time for global object counts, we use a slightly more
complex formula which includes the human ability to rapidly count objects within the range of 1 to
4, often referred to as the subitizing range. Saltzman & Garner (1948) established a counting speed
of 0.1 s for each object within the subitizing range and 0.35 s for each additional object outside
of the range. However, the participants in this experiment were only asked to count simple shapes
placed on a white background. Cholakkal et al. (2020) looked more closely at human counting
of complex object classes in realistic scenes and established a counting speed of 0.5 s within the
subitizing range and 1.0 s for objects outside of this range. We use these two measures to create
a range for our estimate of object counting speed. We calculate the annotation speed by analyzing
the per-image count in each dataset and assigning a lower and upper bounds for the counting time
of [0.1, 0.5] seconds for each object within the subitizing range and [0.35, 1.0] seconds for objects
outside of the range. This provides our lower bound and upper bound for global object counting. To
calculate pairwise image ranking speed, we use the per image-pair ranking time of 0.75 established
by Pica et al. (2004); Halberda & Feigenson (2008) and multiply it by 2,000, which is the number
of image-pairs in our sampled ranking dataset.

Table 2 compares our method to previous state-of-the-art counting methods evaluated on the TRAN-
COS dataset, where we find that our method performs similarly to the method proposed by Zhang
et al. (2017b), despite their method being supervised by dot maps requiring ×22 the annotation
time. More recent methods, such as the method proposed by Bai et al. (2020), outperform ours by
a mean error of 3.29 vehicles per images, where each image contains an average of 38 vehicles.
However, we find that our method requires 4.54% of the annotation time as the best performing
fully supervised methods. We also find that our method outperforms Glance (Chattopadhyay et al.,
2017), which learns from image-level object counts, while also requiring a smaller annotation bur-
den (by a factor of 15.5% to 5.27%). Likewise, Table 3 presents the same comparison evaluated on
the MALL dataset. We find that our method performs comparably to current state-of-the-art count-
ing methods (our method’s MAE differs by -0.18 to 1.61 object count), while requiring a fraction
(5.77% to 5.81%) of the annotation time. Further, we find that our method outperforms the method
proposed Zhao et al. (2020), which was specifically developed to deal with the annotation burden,
while still only requiring a fraction (5.81%) of the annotation time. In Table 4, we evaluate our
method on the USCD crowd dataset. We find that our method performs modestly when compared
to state-of-the-art method (our MAE differs by 3.24 to 4.06 objects), but still requires a significantly
smaller annotation burden (by a factor of 5.97% to 20.8%). We argue that these results demonstrate
the value of pairwise image-ranking as a weak object counting signal and the value of our method
for extracting object counts while minimizing the annotation burden.

6 CONCLUSION

In this paper, we present a weakly supervised strategy for extracting object counts and locations
from pairwise image rankings, which can be easily and rapidly collected by annotators. We demon-
strate that our method performs well on various benchmarks and approaches fully supervised base-
lines. This work highlights the value in exploring novel weak annotation formulations and provides
a direction forward for solving counting problems in domains where annotation collection would
otherwise be impermissible.

7 ETHICS STATEMENT

Object counting methods are broadly useful computer vision methods that are considered highly
valued across several industries (see Section 1). However, object counting is also frequently used in
human surveillance and thus lowering the burden necessary to develop new surveillance applications
poses serious ethical concerns. In particular, tracking human movement can directly aid in military
and carceral system applications, which can potentially empower unethical actors in the violation of
fundamental human rights. While this should not inherently dissuade researchers from developing
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new techniques for this application, it does call on the community to remain vigilant about which
end-users benefit from the technology.

8 REPRODUCIBILITY STATEMENT

In section 4.3, we make an effort to detail network architecture, hyperparameters, and training pa-
rameters necessary to achieve the provided results. In sections 5.1 and 5.1.1, we detail the bench-
mark datasets used within our experiment and the strategy used to generate the ranking dataset.
Additionally, we anonymously provide the source code necessary for reproducing the results.
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