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ABSTRACT
This paper is the first to use contrastive learning to improve the

robustness of graph representation learning for signed bipartite

graphs, which are commonly found in social networks, recom-

mender systems, and paper review platforms. Existing contrastive

learning methods for signed graphs cannot capture implicit rela-

tions between nodes of the same type in signed bipartite graphs,

which have two types of nodes and edges only connect nodes of

different types. We propose a Signed Bipartite Graph Contrastive

Learning (SBGCL) method to learn robust node representation

while retaining the implicit relations between nodes of the same

type. SBGCL augments a signed bipartite graph with a novel two-

level graph augmentation method. At the top level, we maintain

two perspectives of the signed bipartite graph, one presents the

original interactions between nodes of different types, and the other

presents the implicit relations between nodes of the same type. At

the bottom level, we employ stochastic perturbation strategies to

create two perturbed graphs in each perspective. Then, we con-

struct positive and negative samples from the perturbed graphs

and design a multi-perspective contrastive loss to unify the node

presentations learned from the two perspectives. Results show pro-

posed model is effective over state-of-the-art methods on real-world

datasets. Implementation available in PyTorch1.

CCS CONCEPTS
• Information systems → Users and interactive retrieval; So-
cial networks.
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1 INTRODUCTION

Figure 1: A scenario for the signed bipartite graph.

A signed bipartite graph is comprised of two disjoint sets of nodes

and a number of positive or negative edges connecting nodes from

different node sets. Signed bipartite graphs widely exist in social

networks, recommender systems, paper review systems, etc. In

social networks, users can place positive or negative opinions on a

post. In recommender systems, users can rate positively (e.g., high

ratings) or negatively (e.g., low ratings) on an item as illustrated

in Figure 1. Analysis of the interactions between the two sets of

nodes in signed bipartite graphs is essential for applications such

as recommendations and link prediction.

Representation learning is one of the key techniques for graph

data analysis. Although some representation learning methods for

signed graphs have been proposed in recent years [4, 6, 19, 37], they

work on unipartite graphs, and they are sensitive to noisy interac-

tions. In real-world applications, noisy interactions commonly exist.

For instance, a user may “unlike” an item by mistake. The noisy

interactions can mislead the signed graph representation learning

methods through the message-passing process, and thus degrade

their performance in downstream applications.
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Contrastive learning has achieved great success in learning robust
graph representations that are invariant to small perturbations. In

general, contrastive graph representation learning methods apply

graph augmentation techniques (e.g., randomly adding or removing

edges) to create several augmented graphs, and obtain node rep-

resentations by contrasting the representations of the same node

(i.e., positive samples) and those of different nodes (i.e., negative

samples) in different augmented graphs. In this way, the learned

representation of each node is consistent across the augmented

graphs. GCA [39] proposes an adaptive augmentation method that

incorporates various priors for topological and semantic aspects of

the graph. A recent study proposes SGCL [24], a contrastive learn-

ing method for robust signed graph representation learning. SGCL

employs an additional contrastive loss tomake two nodes connected

with a positive link to be close, and two nodes connected with a

negative link to be distant, in the representation space. Although

contrastive learning techniques have been introduced to graphs

and signed graphs, how to design contrastive learning methods for

signed bipartite graphs remains an open problem.

The main challenge in designing effective contrastive learning

methods for signed bipartite graphs is to retain the implicit relations
between two nodes in the same set. For example, in Fig. 1, two buy-

ers 𝐵3 and 𝐵5 are considered to have similar interests because they

both rate positively on 𝐶2 & negatively on 𝐶5. Such implicit rela-

tions have proved to be effective in link sign prediction [10]. Since

existing contrastive learning methods only use explicit relations, i.e.,
links between nodes from different sets in signed bipartite graphs,

they are incapable of modeling the implicit relations between nodes

in the same set. In Fig. 1, existing contrastive learning methods

for signed graphs will make the representation of 𝐶5 distant from

those of 𝐵3 and 𝐵5 because they are connected with negative edges.

However, 𝐵3 and 𝐵5 are not necessarily close in the representation

space, even though they have similar rating behaviors.

To overcome the challenge above, we propose a novel Signed

Bipartite Graph Contrastive Learning method (SBGCL) that ob-
tains robust node representations from two perspectives of a signed

bipartite graph, i.e., inter-set perspective and intra-set perspective.
The two perspectives present the explicit and implicit relations

between nodes, respectively. Specifically, we propose a two-level

graph augmentation method that creates the inter-set and intra-set

perspectives at the top level and two randomly perturbed graphs

for each perspective at the bottom level. To create the intra-set per-

spective, we connect two nodes in the same set according to their

agreement/disagreement with their neighbors (in the other set), mo-

tivated by balance theory [9]. Then, we design a multi-perspective

contrastive loss, which consists of two losse: (1) Perspective-specific
contrastive loss to capture the explicit and implicit relations in the

two graph perspectives; and (2) Cross-perspective contrastive loss
to obtain node representations that are consistent with those ob-

tained from the two perspectives. In this way, the learned node

representations are not only invariant to small perturbations but

also capture the implicit relations between nodes in the same set.

Further, we provide a theoretical analysis of the impact of different

graph perturbations (e.g., adding/removing edges, flipping the sign)

on the learned representations.

The main contributions of this paper are summarized as follows:

• This work is the first to introduce contrastive learning for robust

signed bipartite graph representation learning.

• We propose a two-level data augmentation method to capture

explicit and implicit relations between nodes in signed bipar-

tite graphs and conduct a theoretical analysis of different graph

perturbations on the representation learning of graphs.

• Wedesign amulti-perspective contrastive loss to obtain perturbation-

invariant node representations that encode the implicit relations

between nodes in the same set.

• We conduct experiments on four real-world signed bipartite net-

works, including product review, and peer review. Experimental

results demonstrate the effectiveness of our proposed model in

link sign prediction.

2 RELATEDWORK

Signed graph representation. Signed graphs have been widely-

studied due to the rapid development of social networks and rec-

ommender systems. Various signed graph analysis tasks have been

explored, e.g., node classification [27], node ranking [14], link sign

prediction, community detection [1], and visualization [30]. Graph

representation learning is the key technique for most graph analy-

sis tasks. Early graph representation learning methods for signed

graphs are based on random walk [15, 16, 37] and matrix factoriza-

tion [3, 18]. Recent years have seen deep learning been employed

in signed representation learning. First, SiNE [30] extracts struc-

tural information from triangle motifs and designs an objective

function based on balance theory [9]. Then, SGCN [6] becomes

the first signed graph neural network model extending GCN [17]

and employs balance theory to determine positive and negative

relationships between nodes in multi-hop neighborhoods. Similarly,

other models such as SiGAT [11], SNEA [19], and SDGNN [12] learn

signed graph representations using graph attention nets [28]. Yet,

these methods rely on the message-passing mechanism, which is

sensitive to noisy interactions between nodes. A recent study [24]

proposes a contrastive learning method for robust signed graph rep-

resentation learning. Still, most signed graph representation models

are designed for unipartite graphs. Although there have been many

studies on unsigned bipartite graph embedding [2, 13, 25, 34], this

paper only focuses on signed graph embedding methods. It is non-

trivial to extend the existing signed graph representation learning

methods to signed bipartite graphs. This is because existing meth-

ods may introduce unbalanced circles to signed bipartite graphs,

and we theoretically prove that the unbalanced circles prohibit the

message-passing mechanism to learn proper node presentations.

Graph contrastive learning. Contrastive learning has recently
received significant interest due to its success in self-supervised

representation learning in the computer vision domain. Unlike su-

pervised methods where a human annotation is needed for every

input sample, contrastive learning is a self-supervised learning

method by contrasting positive and negative samples. For image

data, negative samples can be generated using a multi-stage aug-

mentation pipeline, consisting of color jitter, random flip, cropping,

resizing, rotation, color distortion, etc. Inspired by the success of

contrastive learning in images, researchers manage to extend con-

trastive learning to graph representation learning in recent years.
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Graph contrastive representation learning aims to learn node rep-

resentations invariant to small perturbations [23, 32, 39]. For exam-

ple, DGI [29] incorporates graph neural networks and contrastive

learning and generates node representations by maximizing mu-

tual information between global graph representations and local

node representations. GraphCL [36] develops a graph contrastive

learning framework that leverages various types of graph augmen-

tations to capture the invariant node representations. GCA [39]

generates graph views by two graph augmentation methods and

maximizes the agreement of node representations in different views.

Most graph contrastive learning models are designed for unsigned

graphs. Shu et al. [24] propose a graph contrastive learning method

called SGCL for signed unipartite graphs. However, SGCL cannot

learn proper node representations when applied to signed bipartite

graphs because it may create unbalanced circles, as discussed above.

3 PROBLEM FORMULATION
A signed bipartite graph is G = (U,V, E+, E−), where the two

sets of nodes U =
{
𝑢1, 𝑢2, . . . , 𝑢 |U |

}
& V =

{
𝑣1, 𝑣2, . . . , 𝑣 |𝑉 |

}
are

disjoint, E+ ⊆ U ×V and E− ⊆ U ×V are positive & negative

edge sets, resp.. Note that E+ ∩ E− = ∅ and the two endpoints

of any edge in E+ ∪ E−
must come from different sets U and V .

For example in Figure 1, the setU could be the set of users in an

e-commerce platform, and the setV could be the set of products. A

positive edge (𝑢, 𝑣) ∈ E+
represents that the user𝑢 rates favourably

the product 𝑣 , and a negative edge (𝑢, 𝑣) ∈ E−
represents that 𝑢

rates 𝑣 unfavourably. In this paper, we ignore the directions of the

edges and treat the graph G as an undirected graph.

Given G = (U,V, E+, E−), the goal is to learn a function 𝑓 to

map nodes 𝑢𝑖 ∈ U and 𝑣 𝑗 ∈ V to low-dimensional embeddings

𝑧𝑢𝑖 ∈ R𝑑 and 𝑧𝑣𝑗 ∈ R𝑑 , where 𝑑 is the dimension of node embed-

dings, so that the embeddings are useful in downstream tasks such

as link sign prediction [6].

4 PROPOSED METHOD
In this section, we present a new Signed Bipartite Graph Contrastive

Learning (SBGCL) model, aiming to obtain node representations

that are invariant to small perturbations, and retain the implicit

relations between nodes in the same set. Figure 2 shows the over-

all architecture. SBGCL consists of two novel components, i.e.,

(1) two-level graph augmentation; and (2)multi-perspective
contrastive learning. To be specific, we first propose a two-level

graph augmentation scheme to create two different perspectives of

the original signed bipartite graph, namely inter-set perspective and
intra-set perspective, to present the explicit and implicit relations

of the graph, respectively. In each graph perspective, we employ

stochastic graph augmentation to generate two augmented graphs,

which are then passed to the multi-perspective contrastive learning

component. In the multi-perspective contrastive learning compo-

nent, we first split each augmented graph into a positive graph
and a negative graph and apply graph neural networks (GNNs) to

learn node representations. Then, we design a multi-perspective
contrastive loss that enforces the representation of the same node

to be consistent in different augmented graphs, while retaining

both explicit and implicit relations. In addition, we analyze some

natural graph augmentation methods from a theoretical point of

view and conclude that those stochastic augmentation methods

that can reduce unbalanced cycles are more effective.

4.1 Two-level Graph Augmentation
Graph augmentation plays an important role in graph contrastive

learning, which aims to reduce the harm of interaction noise to mod-

els. In previous works [24, 38, 39], stochastic graph augmentation

schemes are used to generate variants of the original graph by per-

turbing the graph structure and attributes. In essence, contrastive

learning methods seek to learn representations that are invariant to

perturbation introduced by the augmentation schemes [31].When it

comes to signed bipartite graphs, the situation is more complex, and

there are two problems to be solved. First, the relations between
nodes from the same set are not present in a signed bipartite graph,

and GNNs cannot utilize such implicit relations. Second, there is
a lack of theoretical analysis of stochastic augmentation methods

(e.g., randomly adding and removing edges, flipping edge signs)

adopted by existing graph augmentation schemes. It is unclear how

different perturbation influences the learned representations. To
solve the first problem, we propose a two-level graph augmenta-

tion scheme. The new graph augmentation scheme maintains two

perspectives of the graph, namely inter-set perspective and intra-set
perspective, respectively, at its top level. The inter-set perspective

contains the original edges of the graph to capture the relations

between nodes from different sets. The intra-set perspective con-

centrates on the implicit relations between nodes in the same set.

Specifically, we create the intra-set perspective by placing positive

and negative edges between nodes in the same set (Section 4.1.1).

At the bottom level, we apply stochastic perturbation methods to

generate two augmented graphs for each perspective (Section 4.1.2).

To solve the second problem, we provide a theoretical analysis

of three perturbation methods, including adding edges, removing

edges, and flipping the edge sign (Section 4.1.3). Our theoretical

analysis is based on the proof that current GNN encoders cannot

learn proper representations for nodes from unbalanced circles.

Therefore, the stochastic graph augmentation schemes that can

reduce the number of unbalanced circles are more effective.

4.1.1 Intra-set Perspective. Relations between nodes are essential

for downstream tasks such as link sign prediction. Since nodes in the

same setU orV are not explicitly connected, the message-passing

mechanism of existing GNNs cannot capture their implicit relations.

As such, we propose an intra-set perspective of the original graph

that showcase solely the implicit relations between nodes in the

same set. The key question here is, how to determine the sign of a
link established between two nodes in the same set? Intuitively, if
two nodes agree with each other, i.e., share similar positive and

negative neighbors, they should be connected positively. Otherwise,

they should be connected negatively. For example in Fig. 3, 𝑢1 &

𝑢2 should be positively connected when they connect to node 𝑣1
with the same sign (i.e., 𝑢1 →+ 𝑣1, 𝑢2 →+ 𝑣1 or 𝑢1 →− 𝑣1, 𝑢2 →−

𝑣1). When 𝑢1 and 𝑢2 connect 𝑣1 with different signs (e.g., 𝑢1 →+

𝑣1, 𝑢2 →− 𝑣1), they should be connected negatively. Our intuition

aligns with balance theory [9]: Call the three triangles in Fig. 3

balanced. Balance theory says that human societies tend to avoid

conflictual relations and form balanced triangles.
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Figure 2: The overall architecture of SBGCL

Figure 3: The model creates edges between nodes in the same
set, where green lines refer to the positive edges and red lines
refer to negative edges. Dotted lines refer to the created edges

Based on the intuition above, we connect two nodes in the same

set U or V with the sign that favors producing balanced triangles.

Since there could be multiple common neighbors of these two

nodes, inconsistency may occur. For example, although nodes 𝑢1
and 𝑢2 connect to 𝑣1 with the same sign, they may connect to

other nodes, e.g., 𝑣2, with different signs (𝑢1 →+ 𝑣1, 𝑢2 →+ 𝑣1
or 𝑢1 →+ 𝑣2, 𝑢2 →− 𝑣2). In this paper, we determine the sign

by majority vote: Say two nodes 𝑢𝑖 , 𝑢 𝑗 in the same set are to be

connected, each of their common neighbors produces a candidate

sign (either positive or negative) that forms a balance triangle. For

𝑢𝑖 ∈ U (𝑣𝑖 ∈ V), letN+
V (𝑢𝑖 ) &N−

V (𝑢𝑖 ) (N+
U (𝑣𝑖 ) &N−

U (𝑣𝑖 )) denote
the set of neighbors in V (in U) with positive and negative edges

to 𝑢𝑖 ∈ U (𝑣𝑖 ∈ V), respectively. Compute the difference between

the number of positive candidates and the number of negative

candidates as:

E𝑖 𝑗 = sgn
(
|N+

V (𝑢𝑖 ) ∩ N+
V (𝑢 𝑗 ) | + |N−

V (𝑢𝑖 ) ∩ N−
V (𝑢 𝑗 ) |−

|N+
V (𝑢𝑖 ) ∩ N−

V (𝑢 𝑗 ) | − |N−
V (𝑢𝑖 ) ∩ N+

V (𝑢 𝑗 ) |
) (1)

where sgn(·) is the sign function. The notation | · | refers to the

cardinality of a set. Nodes 𝑢𝑖 and 𝑢 𝑗 are connected by a positive

(negative) edge when E𝑖 𝑗 > 0 (E𝑖 𝑗 < 0). When E𝑖 𝑗 = 0, no edge

is added between nodes 𝑢𝑖 and 𝑢 𝑗 . Likewise, we can construct the

sign between nodes of the other node setV .

4.1.2 Stochastic Perturbation. Stochastic perturbation is used to

enhance the robustness and generalization capability of the learned

node representations. Concretely, through perturbing the structure,

we make the learned representations invariant to perturbations by

contrasting the representations obtained from different perturbed

graphs [35]. In this work, we adopt and analyze three graph pertur-

bation methods:

Randomly add or remove edges. Given a signed (bipartite)

graph, we perturb the connectivity of the graph by randomly adding

or removing edges. Each non-existing edge is addedwith probability

𝑝 . Similar, each edge is discarded with probability 𝑝 . For each edge

to be added, we sample its sign uniformly.

Randomly flip edge signs. Different from the connectivity per-

turbation, an exclusive augmentation for signed graphs is randomly

flipping edge signs. Particularly, a positive edge is transformed into

a negative one with a probability 𝑝 while a negative edge is trans-

formed into a positive one with the same probability.

With any of the above stochastic perturbation methods, the two-

level graph augmentation can produce several augmented graphs

for each perspective. In this paper, we create two augmented graphs

for each perspective, resulting in four augmented graphs, denoted

as G𝑚 = (U,V, E+
𝑚, E−

𝑚), where𝑚 ∈ {1, 2, 3, 4}.
Although data augmentationmethods based on stochastic pertur-

bation have been widely used in many graph contrastive learning

methods [24, 38], it is unclear which perturbation method is more

effective for signed bipartite graph representation learning. Next,

we proceed to give a theoretical analysis of the effectiveness of the

above three stochastic graph perturbation methods in the context

of our two-level graph augmentation scheme.

4.1.3 Theoretical Analysis. Once the augmented graphs G𝑚 are

obtained, we apply GNNs to learn the node representations on each

augmented graph. We prove that current GNN encoders cannot

learn proper representations for nodes from unbalanced circles in

the augmented signed graphs, i.e., G𝑚 . Thus, graph perturbation

methods that can reduce the number of unbalanced circles are more

effective than those that cannot. We do not strictly distinguish the

node type in the theoretical analysis, because the message-passing

mechanism of GNNs does not distinguish nodes of different types.
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Figure 4: Four isomorphism types of undirected triangles.
Green and red lines represent + and - edges, resp.

Figure 5: Seven isomorphism types of undirected Signed But-
terfly. Green and red lines represent + and - edges, resp.

We start with the definition of proper representations of nodes

in signed graphs and balanced/unbalanced circles.

Definition 4.1 (Proper node representations). Given a (augmented)

signed graphG𝑚 = (U,V, E+
𝑚, E−

𝑚), a GNNmodel 𝑓𝜃 : U∪V → 𝐻

and any non-negative distance metric dist : 𝐻 × 𝐻 → N, we call
ℎ𝑣𝑖 = 𝑓𝜃 (𝑣𝑖 ) a proper representation of any node 𝑣𝑖 ∈ U ∪V if the

following conditions hold:

(a) There exists 𝜖 > 0 such that for any 𝑣 𝑗 ∈ N−
𝑚 (𝑣𝑖 ) and ℎ𝑣𝑗 =

𝑓𝜃 (𝑣 𝑗 ), dist (ℎ𝑣𝑖 , ℎ𝑣𝑗 ) > 𝜖 ;

(b) For any 𝑣 𝑗 ∈ N+
𝑚 (𝑣𝑖 ), 𝑣𝑘 ∈ N−

𝑚 (𝑣𝑖 ) and ℎ𝑣𝑗 = 𝑓𝜃 (𝑣 𝑗 ), ℎ𝑣𝑘 =

𝑓𝜃 (𝑣𝑘 ), 𝑑𝑖𝑠𝑡 (ℎ𝑣𝑖 , ℎ𝑣𝑗 ) < dist (ℎ𝑣𝑖 , ℎ𝑣𝑘 ),
where N+

𝑚 (𝑣𝑖 ) and N−
𝑚 (𝑣𝑖 ) denote the set of positive and negative

neighbors of node 𝑣𝑖 in the graph G𝑚 , respectively.

An intuitive explanation for Definition 4.1 is that two nodes

connected with a negative edge should be distant, i.e., greater than

some positive value 𝜖 (Condition a), and nodes connected with

positive edges should be closer in the embedding space than those

connected with negative edges (Condition b). Most GNNs follow a

message-passing scheme where the node representations are recur-

sively updated by aggregating and transforming the information

from the neighboring nodes. A recent study [33] shows that a max-

imally powerful GNN maps two nodes to the same location in the

embedding space only if they have identical subtree structures. On

the contrary, for two nodes with different rooted subtree structures,

they will be mapped to different embeddings. Based on this con-

clusion, we will analyze the representation limitation of applying

GNN models on the augmented signed graphs.

For graphs in the inter-set perspective, the common circle struc-

tures are quadruple circles (i.e., butterflies), while triangles are
the basic circle structure in the intra-set perspective. Figure 4 illus-

trates four possible configurations for signed triangles. The different

types of signed butterflies are summarized in Figure 5.

Definition 4.2. Balanced (unbalanced) triangles are cycles with 3

nodes containing even (odd) negative edges.

Definition 4.3. Balanced (unbalanced) butterflies are cycles with
4 nodes containing even (odd) negative edges.

Theorem 4.4. A GNN cannot learn proper representations for
nodes in a signed graph from unbalanced triangles and butterflies.

Figure 6: Rooted subtree of situation (c) in Figure 4

Figure 7: Rooted subtree of situation (f) in Figure 5

Proof. For simplicity, we only discuss the situation (c) in tri-

angles and situation (f) in butterflies. Other unbalanced situations

follow a similar proving process.

For situation (c) in Figure 4, we construct the 2-hop rooted sub-

tree of node 𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 and 𝑣𝑙 in Figure 6, denoted as 𝜏𝑖 , 𝜏 𝑗 , 𝜏𝑘 , re-

spectively. We can observe that 𝜏𝑖 and 𝜏 𝑗 are isomorphic. Based

on the previous analysis [33], nodes 𝑖 and 𝑗 will be mapped to the

same embeddings. On the contrary, as 𝜏𝑖 and 𝜏𝑘 are not isomorphic,

they will be mapped to different embeddings. Therefore, we can

get 𝑑𝑖𝑠𝑡 (ℎ𝑣𝑖 , ℎ𝑣𝑗 ) ≤ 𝑑𝑖𝑠𝑡 (ℎ𝑣𝑖 , ℎ𝑣𝑘 ), where 𝑑𝑖𝑠𝑡 is a distance metric.

As a result, the representations of nodes connected with negative

edges are closer than nodes connected with positive edges, which

contradicts Condition b of Definition 4.1. Thus, the ℎ𝑣𝑖 , ℎ𝑣𝑗 , ℎ𝑣𝑘
learned by GNN are not proper representations for node 𝑣𝑖 , 𝑣 𝑗 , and

𝑣𝑘 .

For situation (f) in Figure 5, we construct the 2-hop rooted sub-

tree of node 𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 , 𝑣𝑙 in Figure 7, denoted as 𝜏𝑖 , 𝜏 𝑗 , 𝜏𝑘 , 𝜏𝑙 , respec-

tively. We can observe that 𝜏 𝑗 and 𝜏𝑘 are isomorphic, and thus they

will be mapped to the same embeddings. Meanwhile, 𝜏𝑖 and 𝜏𝑘 are

not isomorphic, and thus they will be mapped to different embed-

dings. Therefore, we can get 𝑑𝑖𝑠𝑡 (ℎ𝑣𝑖 , ℎ𝑣𝑘 ) ≤ 𝑑𝑖𝑠𝑡 (ℎ𝑣𝑗 , ℎ𝑣𝑘 ) , where
𝑑𝑖𝑠𝑡 is a distance metric, which means the representations of nodes

connected with negative edges are closer than nodes connected

with positive edges. Based on Definition 4.1, the learnedℎ𝑣𝑖 , ℎ𝑣𝑗 , ℎ𝑣𝑘
are not proper representations for node 𝑣𝑖 , 𝑣 𝑗 and 𝑣𝑘 . □

Intuitively, Theorem 4.4 implies that unbalanced cycles may

harm the performance of GNN models. Therefore, it is reasonable

to claim that the signed graph augmentation methods that can

reduce the number of unbalanced circles are more effective than

those that cannot. Recall the three stochastic perturbation methods

discussed in Section 4.1.2, i.e., randomly adding edges, randomly re-

moving edges, and randomly flipping edges. Random edge removal

can reduce the number of unbalanced circles by chance, while ran-

domly adding edges could result in more unbalanced circles. For

randomly flipping edge signs, some balanced circles may become

unbalanced, while some unbalanced circles may become balanced.

Overall, whether randomly flipping edge signs reduces unbalanced

circles depends on the balanced degree of the datasets. Consider-

ing that most circle structures are balanced in real datasets [10],

this perturbation method will eventually produce more unbalanced

structures. Based on this analysis, randomly removing edges is in

principle a more preferred method than the other two perturbation

methods in signed graph representation learning.
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4.2 Graph Encoder
After data augmentation, we obtain four augmented graphs as

shown in Figure 2, where G1,G2 belong to the inter-set perspective

andG3,G4 belong to the intra-set perspective. In signed graphs, pos-

itive and negative edges have distinct semantic properties – positive

edges reflect closeness to friends and negative edges imply hatred to

enemies. This motivates us to design two separate GNNs to aggre-

gate information from positive and negative neighbors, respectively,

which also serves for the contrastive objective to be introduced in

the next subsection. Therefore, we further split each augmented

graph G𝑚 =
(
U ∪V, E+

𝑚, E−
𝑚

)
into two graphs containing only

positive edges and only negative edges, referred to as positive graph

G+
𝑚 =

(
U ∪V, E+

𝑚

)
and negative graph G−

𝑚 =
(
U ∪V, E−

𝑚

)
, re-

spectively. Following the similar design from [24], positive GNN

is leveraged to learn node representations from positive graphs

while a negative GNN is used to learn representations from the

negative graphs. Parameters are shared in the same perspective

for positive (negative) GNNs. SBGCL is model-agnostic, and thus

any GNN model can be used as its graph encoder. However, in this

paper, we adopt GAT [28] as the graph encoder. The comparison

between different graph encoders is out of the scope of this paper

and we leave it as future work. Formally, the node representation

in each augmented graph is computed as follows:

ℎ
(𝑙+1),𝜎
𝑖,𝑚

= GNN
𝜎
𝑚 (ℎ (𝑙 ),𝜎

𝑖,𝑚
, G𝜎

𝑚 ) (2)

𝑧𝜎𝑖,𝑚 =

[
ℎ
(0),𝜎
𝑖,𝑚

∥ℎ (1),𝜎
𝑖,𝑚

∥ · · · ∥ℎ (𝐿),𝜎
𝑖,𝑚

]
𝑊 𝜎

𝑚 (3)

where 𝜎 ∈ {+,−},𝑚 refers to the𝑚-th augmented graph, 𝐿 denotes

the number of GNN layers. ℎ
(0),𝜎
𝑖,𝑚

denotes the input feature vector

of the 𝑖-th node.𝑊 𝜎
𝑚 is a learnable transformation matrix.

4.3 Multi-Perspective Contrastive Objective
In this subsection, we design a multi-perspective contrastive ob-

jective for robust signed bipartite graph representation learning,

which consists of two losses – (1) Perspective-specific contrastive
loss and (2) Cross-perspective contrastive loss.

4.3.1 Perspective-specific contrastive loss. As shown in Figure 2, af-

ter graph augmentation, SBGCL creates four augmented graphs, i.e.,

G1, G2, G3 and G4, each of which is further split into positive and

negative graphs. Since positive and negative graphs have distinct

semantic properties, we define the perspective-specific contrastive

losses for positive and negative augmented graphs separately. We

focus our discussion on the positive graphs and define the loss for

negative graphs in a similar way.

For any positive graph in each perspective, in order to obtain

node representations invariant to small perturbations, SBGCL max-

imizes the agreements between representations of the same node

learned from the other positive augmented graph in the same per-

spective while minimizing the similarities between the representa-

tions of different nodes. Figure 8 illustrates the process. For exam-

ple, the representation of the 𝑖-th node in graph G+
1
of the inter-set

perspective, i.e., 𝑧+
𝑖,1
, should be consistent with representations gen-

erated from the same node in the other positive augmented graph

G+
2
in the same perspective, i.e., 𝑧+

𝑖,2
. Thus, we use the representa-

tions of the same node generated from different augmented graphs

in the same perspective as positive samples. Meanwhile, the repre-

sentation of a node (e.g., 𝑧+
𝑖,1
) should be distinct from other nodes’

representations (e.g., 𝑧+
𝑗,2
). We take the representations generated

from different nodes in the other positive augmented graph in the

same perspective as negative examples. Inspired by the InfoNCE

loss [21, 26], the perspective-specific contrastive loss for positive

augmented graphs is defined as follows:

L+
per

= − 1

𝐼

𝐼∑︁
𝑖=1

log

exp

(
sim

(
𝑧+𝑖,𝑚, 𝑧+

𝑖,𝑚′
)
/𝜏
)

∑𝐼
𝑗=1, 𝑗≠𝑖 exp

(
sim

(
𝑧+
𝑖,𝑚

, 𝑧+
𝑗,𝑚′

)
/𝜏
) (4)

where 𝐼 is the number of nodes in a mini-batch, 𝑧+
𝑖,𝑚

represents

the representation of node 𝑖 in the𝑚-th augmented positive graph,

𝑠𝑖𝑚(·, ·) represents the similarity function between the two repre-

sentations (e.g., cosine similarity) and 𝜏 denotes the temperature

parameter. Likewise, the perspective-specific contrastive loss for

negative graphs is:

L−
per

= − 1

𝐼

𝐼∑︁
𝑖=1

log

exp

(
sim

(
𝑧−𝑖,𝑚, 𝑧−

𝑖,𝑚′
)
/𝜏
)

∑𝐼
𝑗=1, 𝑗≠𝑖 exp

(
sim

(
𝑧−
𝑖,𝑚

, 𝑧−
𝑗,𝑚′

)
/𝜏
) (5)

Combining the above two losses, we obtain the perspective-

specific contrastive loss:

Lper = L+
per

+ L−
per

(6)

4.3.2 Cross-perspective contrastive loss. The perspective-specific
contrastive loss only makes the node representation learned from

positive and negative graphs in each perspective invariant to small

perturbations. Still, node representations of the positive and neg-

ative graphs in different perspectives are learned independently.

We follow two intuitions to design a cross-perspective contrastive

loss to obtain the final node representations by contrasting the

information from the positive and negative graphs in both perspec-

tives. Our first intuition is that the final node representation should

capture both explicit and implicit information, and thus should

be close to representations obtained from the positive graphs in

both perspectives. Our second intuition is that the final node rep-

resentation should be distant from the representations obtained

from negative graphs in both perspectives because the information

aggregated from negative neighbors tends to diverge from the tar-

get node. Fig. 9 illustrates the idea of cross-perspective contrastive

learning. SBGCL makes the final representation of each node close

to its representations obtained from positive graphs across both

perspectives, and distant from its representations obtained from

negative graphs across both perspectives. Specifically, we compute

the final representation of the 𝑖th node by concatenating 𝑧+
𝑖,1
, 𝑧+

𝑖,2
,

𝑧+
𝑖,3
, 𝑧+

𝑖,4
, 𝑧−

𝑖,1
, 𝑧−

𝑖,2
, 𝑧−

𝑖,3
, 𝑧−

𝑖,4
, since all these representations contain

useful information of diverse aspects, which is formulated as:

𝑧𝑖 = 𝑔

(
𝑧+𝑖,1∥𝑧

+
𝑖,2∥∥𝑧

+
𝑖,3∥𝑧

+
𝑖,4∥𝑧

−
𝑖,1∥𝑧

−
𝑖,2∥𝑧

−
𝑖,3∥𝑧

−
𝑖,4

)
(7)

where 𝑔(·) is an MLP layer and 𝑧𝑖 ∈ R𝑑 is the final representation

of node 𝑖 . We regard the representations of the 𝑖-th node from

positive graphs as positive samples and representations obtained

from negative graphs as negative samples. In this way, we can

make nodes more similar to neighbors connected with positive
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Figure 8: Inter-view Contrastive Learning

Figure 9: Intra-view Contrastive Learning

edges and dissimilar to those with negative edges. Formally, the

cross-perspective contrastive objective is defined as follows:

Lcross = − 1

𝐼

𝐼∑︁
𝑖=1

log

∑𝑀
𝑚=1 exp

(
sim

(
𝑧𝑖 , 𝑧

+
𝑖,𝑚

)
/𝜏
)

∑𝑀
𝑚=1 exp

(
sim

(
𝑧𝑖 , 𝑧

−
𝑖,𝑚

)
/𝜏
) (8)

where𝑀 denotes the number of augmented graphs, which equals

to 4 in our paper.

4.3.3 Combined contrastive loss. We perform both perspective-

specific and cross-perspective contrastive learning and combine

the two losses as follows:

L𝐶𝐿 = (1 − 𝛼) · Lper + 𝛼 · Lcross (9)

where 𝛼 is the weight coefficient that controls the significance

between two losses.

4.4 Loss Function
In this paper, we focus on the most common analysis task for signed

graphs, i.e., link sign prediction [6, 19, 20, 30] that predicts the edge

sign (either positive or negative) between two nodes. For signed

bipartite graphs, the link sign prediction task only happens between

two nodes from different sets. Specifically, after obtaining the final

representations in Equation 7, we employ a 2-layer MLP to estimate

the sign scores between two nodes from different sets:

𝑦
pred

= sigmoid

(
MLP

(
𝑧𝑢𝑖 ∥𝑧𝑣𝑗

))
(10)

where 𝑦
pred

is the predicted score of edge sign between nodes

𝑢𝑖 ∈ U and 𝑣 𝑗 ∈ V . The larger the 𝑦
pred

is, the higher probability

that the edge sign is positive. Contrarily, the smaller 𝑦
pred

is, the

higher probability that the edge sign is negative. Following prior

work [10], we use cross-entropy as the loss function of the link sign

prediction task :

L
label

= −𝑦 · log𝑦
pred

+ (1 − 𝑦) · log
(
1 − 𝑦

pred

)
(11)

where 𝑦 is the ground truth mapped from {−1, 1} to {0, 1}.
At last, SBGCL is trained by the joint loss of link sign prediction

and the combined contrastive loss:

L = L
label

+ 𝛽 · L𝐶𝐿 (12)

Table 1: Statistics on Signed Bipartite Networks.

Review Bonanza ML-1M Amazon-Book

U 182 7,919 6,040 35,736

V 304 1,973 3,952 38,121

| E | = | E+ | + | E− | 1,170 36,543 1,000,209 1,960,674

%Positive Edges 0.403 0.980 0.575 0.806

%Negative Edges 0.597 0.020 0.425 0.194

where 𝛽 is the weight that controls the contribution of the con-

trastive loss.

5 EXPERIMENTS
In this section, we evaluate the performance of link sign prediction

of our proposed method SBGCL on four real-world datasets through

answering the following questions:

• Q1: Does our proposed model SBGCL outperform existing base-

lines on link sign prediction task?

• Q2: Can the experimental results confirm our theoretical analysis

results for graph perturbation methods?

• Q3: Is the proposed model sensitive to hyperparamters ? How

do key hyperparameters impact the model performance?

5.1 Datasets
We conduct experiments on four real-world datasets, i.e., Review,

Bonanza, ML-1M and Amazon-Book. The main statistics of each

dataset are summarized in Table 1. In the following, we explain

important characteristics of the datasets briefly.

Review. Review [12] is the peer review data from a top computer

science conference
2
. Reviewers U can give "SA"(Strong Accept),

"A"(Accept), "WA"(Weak Accept), "WR"(Weak Reject), "R"(Reject),

and "SR"(Strong Reject) to papersV after reviewing, where "SA",

"A" and "WA" are regarded as positive edges and "SR", "R", and "WR"

are regarded as negative edges.

Bonanza. Bonanza 3
is a e-commerce website where users can

purchase products from a seller and rate the seller with "Positive",

"Neutral" or "Negative" scores.

ML-1M. MovieLens-1M (ML-1M)
4
is a platform where users

can rate movies from 1 to 5.

Amazon-Book. This is a Amazon-Review dataset
5
which con-

tains book ratings from users (also from 1 to 5)

Following the experimental settings in [5], we randomly select

10% of the edges as test set, 5% for validation set, and the remaining

as training set for each dataset. We run with different train-val-test

splits for 5 times to get the average scores and standard deviation.

2
Due to anonymity, we removed the name of the conference.

3
https://www.bonanza.com/

4
https://grouplens.org/datasets/movielens/1m/

5
https://jmcauley.ucsd.edu/data/amazon/index.html
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5.2 Baselines and Experiment Setting
We compare our method SBGCL with several baselines including

Random Embeddings, Unsigned Network Embeddings, Unsigned

GNN, Signed GNN.

Random Embeddings: It generate 𝑑 dimensional random val-

ues from a uniform distribution over [0, 1). Given embeddings 𝑧𝑢𝑖
and 𝑧𝑣𝑗 , we concatenate them and train a Logistic Regressor(LR) on

the training data to predict the sign between 𝑢𝑖 and 𝑣 𝑗 in the test

data. Since random embeddings do not encode any information of

the graph, it is supposed to perform the worst [10].

Unsigned Network Embeddings: Node2vec [8] is a classical
unsigned network embedding method where we only consider

positive edges to learn node embeddings for node 𝑢𝑖 and 𝑣 𝑗 . Like

Random Embeddings, we concatenate node embeddings 𝑧𝑢𝑖 and

𝑧𝑣𝑗 , and use LR to predict the sign of links.

Unsigned GNN: We employ two classical GNN models (i.e.,

GCN [17] and GAT [29]) and one contrastive learning based model

GCA [39]. These methods are designed for unsigned graphs, thus,

as mentioned before, we only consider the positive edges to learn

node embeddings in the experiments.

Signed Graph Neural Networks: SGCN [6] and SNEA [19]

respectively generalize GCN [17] and GAT [29] to signed graphs

based on message mechanism and balance theory. SGCL [24] is the

first research to employ graph contrastive learning on unipartite

signed graphs. SBGNN [10] designs a new message-passing mech-

anism for signed bipartite graph which is our most competitive

competitor.

For a fair comparison, we set all the node embedding dimension

to 32 which is as same as that in SBGNN [10] for all embedding

based methods. For other parameters in baselines, we follow the

recommended settings in their original papers. For our SBGCL,

we use PyTorch [22] and its associated graph libraries, PyTorch

Geometric [7] to implement it. We use Adam optimizer with an

initial learning rate of 0.005 and a weight decay of 1e-5. We run

2000 epochs for SBGCL and choose the model that performs the

best AUC metrics on the validation set.

The evaluation task is link sign prediction which is a binary

classification problem, we use AUC, Binary-F1, Macro-F1 andMicro-

F1 to evaluate the results. These metrics are widely used in existing

work [10, 20]. Note that, for all these four evaluation metrics, a

higher value indicates a better performance.

5.3 Performance on Link Sign Prediction (Q1)
The performance of all methods is summarized in Table 2. We

have bolded the highest value of each row and underlined the

second highest value. From Table 2, we summarize some major

observations as follows:

• Even with random embedding, LR can still achieve a certain

accuracy (partial AUC>0.5) on link sign prediction task, which

demonstrates the classification ability of LR.

• Unsigned GNNs improve the prediction results compared to ran-

dom embedding. For example, GRACE outperforms random em-

bedding by 19.43%, 5.80%, 33.05% and 75.75% on AUC in Review,

Bonanza, ML-1M and Amazon-book, respectively. The results

demonstrate that positive structure information is helpful in link

sign prediction task.

• Signed GNNs can employ both positive and negative edges. The

experimental results demonstrate the negative edges contribute

to the link sign prediction tasks. Even the worst-performing

signed GNN model, i.e., SGCN, outperforms the best unsigned

GNNmodel GRACE in several metrics, especially inML-1M(2.34%

on AUC) and Amazon-book (6.49% on AUC) datasets.

• Our proposed model SBGCL achieves the best results on most

metrics, except for Binary-F1 and Macro-F1 on Bonanza dataset.

SBGCL shows a significant improvement over the state-of-the-art

signed bipartite GNN, i.e., SBGNN, by 10.82%, 2.27%, 5.01% and

5.55% in terms of AUC on the four datasets, respectively.

5.4 Performance on Different Graph
Pertubations (Q2)

In Section 4.1.3, we give a theoretical analysis of graph augmenta-

tion methods. We prove that current GNN encoders cannot learn

proper representations for nodes from unbalanced circles. Thus, the

signed graph augmentation methods that can reduce the number of

unbalanced circles are more effective than those that cannot. Next,

we conduct experiments to investigate the effectiveness of different

graph augmentationmethods.We compare the three graph augmen-

tation methods described in Section 4.1.2, random edge deletion,

random sign flip, random edge addition. The AUC scores of SBGCL

with the different stochastic augmentations are summarized in Ta-

ble 3. With a small perturbation probability (e.g., 5%), random edge

deletion performs better than the other two graph stochastic aug-

mentation methods. This is consistent with the conclusion of our

theoretical analysis.

5.5 Ablation Study and Hyper-parameter
Analysis (Q3)

5.5.1 Ablation Study. We conduct ablation study to investigate

the effectiveness of different components in our proposed model,

where we choose edge deletion as the graph augmentation in the

next experiments. Concretely, we compare our method SBGCL with

four variants: 𝑆𝐵𝐺𝐶𝐿𝑤/𝑜 𝑎𝑢𝑔 , 𝑆𝐵𝐺𝐶𝐿𝑤/𝑜 𝐺𝐶𝐿 , 𝑆𝐵𝐺𝐶𝐿𝑤/𝑜 𝑖𝑛𝑡𝑒𝑟 and

𝑆𝐵𝐺𝐶𝐿𝑤/𝑜 𝑖𝑛𝑡𝑟𝑎 , which are defined as follows:

• SBGCL𝑤/𝑜 𝑎𝑢𝑔 : This variant removes the stochastic perturbation.

For the edge deletion augmentation, we set the deletion ratio to

zero, i.e., 𝑝 = 0.

• SBGCL𝑤/𝑜 L𝐶𝐿
: This variant removes the graph contrastive loss

(L𝐶𝐿) and only considers link sign prediction loss, i.e., 𝛽 = 0.

• SBGCL𝑤/𝑜 Lper
: This variant ignores the perspective-specific con-

trastive loss, i.e., 𝛼 = 1.

• SBGCL𝑤/𝑜 Lcross
: This variant ignores the cross-perspective con-

trastive loss, i.e., 𝛼 = 0.

The AUC comparisons of SBGCL with the four variants are

summarized in Table 4. From this table, we can conclude that:

• The performance of SBGCL𝑤/𝑜 𝑎𝑢𝑔 and SBGCL𝑤/𝑜 L𝐶𝐿
decrease

greatly in the first two datasets (Review and Bonanza), which

demonstrates the effectiveness of both stochastic perturbation

and contrastive loss in contrastive learning.

• The performance of SBGCL𝑤/𝑜 Lper
and SBGCL𝑤/𝑜 Lcross

demon-

strate both losses can boost the performance of SBGCL.



Contrastive Learning for Signed Bipartite Graphs SIGIR ’23, July 23–27, 2023, Taipei, Taiwan.

Table 2: The results of Link Sign Prediction on four datasets

Dataset Metric

Random

Embedding

Unsigned

Network

Embeddings

Unsigned

GNN

Signed

GNN
Our Method

Random Node2vec GCN GAT GRACE SGCN SGCL SBGNN SBGCL Impro

Review

AUC 0.514± 0.010 0.508± 0.031 0.522± 0.053 0.643± 0.052 0.613 ± 0.013 0.610 ± 0.034 0.729 ± 0.024 0.675 ± 0.035 0.748 ± 0.017 2.61%

Binary-F1 0.435 ± 0.014 0.129± 0.087 0.396± 0.084 0.538± 0.076 0.592 ± 0.020 0.593 ± 0.031 0.656 ± 0.015 0.637± 0.030 0.706 ± 0.022 7.62%

Macro-F1 0.430 ± 0.025 0.422± 0.055 0.514± 0.059 0.639 ± 0.064 0.621 ± 0.021 0.601 ± 0.011 0.631 ± 0.023 0.663 ± 0.016 0.747 ± 0.016 12.67%

Micro-F1 0.539 ± 0.018 0.571 ± 0.049 0.547 ± 0.059 0.668± 0.065 0.653 ± 0.017 0.637 ± 0.023 0.633 ± 0.017 0.667 ± 0.016 0.754 ± 0.015 13.04%

Bonanza

AUC 0.503 ± 0.018 0.562± 0.018 0.506± 0.011 0.498± 0.006 0.532 ± 0.018 0.587± 0.007 0.584 ± 0.024 0.577 ± 0.033 0.590 ± 0.031 1.02%

Binary-F1 0.608 ± 0.015 0.719± 0.125 0.757± 0.372 0.582± 0.476 0.953 ± 0.013 0.896 ± 0.014 0.987 ± 0.002 0.962 ± 0.001 0.973 ± 0.002 −
Macro-F1 0.327 ± 0.021 0.385 ± 0.066 0.396 ± 0.184 0.304± 0.232 0.505 ± 0.013 0.487 ± 0.014 0.514 ± 0.020 0.540 ± 0.015 0.558 ± 0.013 3.33%

Micro-F1 0.445 ± 0.025 0.580 ± 0.141 0.722 ± 0.354 0.574± 0.454 0.923± 0.016 0.814± 0.033 0.974 ± 0.005 0.927 ± 0.006 0.947 ± 0.005 −

ML-1M

AUC 0.473 ± 0.019 0.635 ± 0.002 0.502 ± 0.003 0.508 ± 0.003 0.629 ± 0.007 0.632 ± 0.015 0.632 ± 0.014 0.652 ± 0.007 0.685 ± 0.004 5.06%

Binary-F1 0.322 ± 0.023 0.582 ± 0.002 0.344 ± 0.233 0.401± 0.068 0.637 ± 0.017 0.652 ± 0.024 0.673 ± 0.015 0.699 ± 0.009 0.702 ± 0.011 0.42%

Macro-F1 0.352 ± 0.021 0.609 ± 0.002 0.412± 0.062 0.467± 0.024 0.623 ± 0.011 0.615 ± 0.003 0.662 ± 0.002 0.653 ± 0.006 0.678 ± 0.006 2.42%

Micro-F1 0.346 ± 0.023 0.611 ± 0.002 0.476± 0.046 0.478± 0.015 0.614 ± 0.006 0.627 ± 0.013 0.652 ± 0.002 0.674 ± 0.004 0.680 ± 0.006 0.89%

Amazon-

Book

AUC 0.343 ± 0.004 0.547 ± 0.002 0.501 ± 0.001 0.515± 0.008 0.602 ± 0.013 0.593 ± 0.003 0.613 ± 0.007 0.603 ± 0.006 0.637 ± 0.005 3.91%

Binary-F1 0.402 ± 0.024 0.656 ± 0.004 0.618± 0.331 0.634± 0.008 0.651 ± 0.007 0.693 ± 0.003 0.710 ± 0.016 0.720 ± 0.014 0.734 ± 0.014 1.94%

Macro-F1 0.362 ± 0.024 0.488 ± 0.002 0.395± 0.114 0.489± 0.023 0.512 ± 0.017 0.504 ± 0.020 0.502 ± 0.015 0.552 ± 0.008 0.587 ± 0.011 6.24%

Micro-F1 0.414 ± 0.023 0.543 ± 0.004 0.579± 0.241 0.615± 0.011 0.601 ± 0.013 0.582 ± 0.023 0.604 ± 0.014 0.612 ± 0.006 0.640 ± 0.015 4.07%

Table 3: The AUC performances with different graph pertur-
bation methods

Aug. Review Bonanza ML-1M Amazon-Book

Delete 0.748 ± 0.017 0.590 ± 0.031 0.685 ± 0.004 0.639 ± 0.005

Flip 0.728 ± 0.039 0.588 ± 0.039 0.683 ± 0.002 0.627 ± 0.010

Add 0.704 ± 0.057 0.586 ± 0.024 0.683 ± 0.006 0.630 ± 0.011

Table 4: The AUC performances with SBGCL and its variants

Models Review Bonanza ML-1M Amazon-Book

SBGCL 0.748 ± 0.017 0.590 ± 0.031 0.685 ± 0.004 0.639 ± 0.005

SBGCL𝑤/𝑜 𝑎𝑢𝑔 0.703 ± 0.051 0.578 ± 0.033 0.674 ± 0.005 0.625 ± 0.009

SBGCL𝑤/𝑜 L𝐶𝐿
0.718 ± 0.048 0.557 ± 0.023 0.680 ± 0.004 0.614 ± 0.010

SBGCL𝑤/𝑜 Lper
0.691 ± 0.064 0.559 ± 0.043 0.683 ± 0.003 0.630 ± 0.006

SBGCL𝑤/𝑜 Lcross
0.721 ± 0.017 0.564 ± 0.018 0.680 ± 0.004 0.621 ± 0.004

5.5.2 Hyper-parameters Analysis. The key hyper-parameters in

ourmodel: 𝑝 stochastic perturbation ratio (only considering random

edge deletion), 𝛼 that balances the perspective-specific and cross-

perspective contrastive losses, 𝛽 that balances the contrastive loss

and link sign prediction loss and the node embedding dimension 𝑑 .

The default setting for the hyper-parameters are 𝑝 = 0.1, 𝛼 = 0.8,

𝛽 = 5𝑒 − 4, 𝑑 = 32. We fix other hyper-parameters when evaluating

each of them. To analyze the effects of node dimension 𝑑 of SBGCL,

we choose 𝑑 ∈ {4, 8, 16, 32, 64, 128}. For 𝛼 , we choose the value from
{0, 0.2, 0.4, 0.6, 0.8, 1}. For 𝛽 , we choose the value from {1𝑒 − 6, 1𝑒 −
5, 1𝑒 − 4, 1𝑒 − 3, 1𝑒 − 2, 1𝑒 − 1, 1}. For the perturbation ratio 𝑝 , we

choose 𝑝 ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. The AUC performances

are reported in Fig. 10 and observations are summarized as follows:

• Fig.10(a) shows that the AUC of SBGCL increases as 𝑑 increases

from 4 to 32 on most datasets, e.g., Review (from 0.66 to 0.70)

and ML-1M (from 0.63 to 0.67). When 𝑑 is greater than 32, the

performance of SBGCL degrades due to overfitting.

• Fig. 10(b) shows that the model achieves the best performance

when 𝛼 is set to a value between 0.5 and 0.75. The results sug-

gest that the cross-perspective loss tends to be more important

because it makes the learned representation consistent across

Figure 10: Parameter sensitivity of SBGCL with regard to 𝑑 ,
𝛼 , 𝛽 , 𝑝 on four real-world datasets

different augmented graphs while retaining the explicit and im-

plicit relations. The model performance degrades when 𝛼 = 0

and 𝛼 = 1, which indicates that both losses are indispensable.

• From Figure 10(c), the performance rises when the value of 𝛽

increases. The result demonstrates that the graph contrastive

learning loss is essential to the link sign prediction task. However,

when 𝛽 becomes too large, the information from ground truth

labels is weaken. Therefore, we observe that performance of

model drops sharply.

• From Figure 10(d), we can see smaller perturbations (e.g., 𝑝=0.1)

can improvemodel performance. But as the perturbation probabil-

ity increases (e.g., 𝑝=0.5), the performance of the model degrades

sharply due to the loss of too much structure information.

6 CONCLUSION
In this paper, we propose a novel graph contrastive representa-

tion model, which is the first work to employ graph contrastive

learning to signed bipartite graph. We propose a two-level graph

augmentation method and theoretically analyze the effectiveness

of stochastic graph augmentation methods. Further, we design a

new multi-perspective contrastive loss for learning robust node

representations while retaining the explicit and implicit relations

between nodes in singed bipartite graphs.
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