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Abstract

Vision Transformer (ViT), a Transformer-based architecture
that divides images into patches, can catch up with or sur-
pass convolution-based networks in multiple Computer Vi-
sion tasks. However, ViT is also vulnerable in the face of ad-
versarial examples (AEs). Thus the topic around the attack
and defense of ViT becomes very rewarding. Recent studies
have found that the AEs against ViT seem to have grid-like
textures that coincide with the patches. In this paper we con-
firm such sensation is true. We show that these grid-like tex-
tures are the remained vestiges due to the patch division from
ViT. We name them as Patch Vestiges. We propose statis-
tics to measure the sizes of Patch Vestiges in the images or
AEs quantitatively. We also build a linear regression classi-
fier to detect the AEs against ViT practically via the proposed
statistics. The experiments show that the performance of the
simple classifier can even match some recent adversarial de-
tection methods, suggesting that when trying to attack ViT or
detect the AEs against ViT, Patch Vestiges are worth consid-
ering about as a critical factor.

Transformer (Vaswani et al. 2017) is almost based on self-
attention mechanisms and fully connected layers. It cre-
atively subverts the architecture of RNNs and realizes the
state-of-the-art performances on almost all Natural Lan-
guage Processing tasks. It is naturally hoped that Trans-
former can be applied to the field of Computer Vision.
However, Transformer requires a sequential input that has
a quite different shape from an image. Vision Transformer
(ViT) (Dosovitskiy et al. 2020) overcomes the difficulty by
dividing an image into small patches and linking them into
a sequence. With the help of Transformer, ViT achieves ex-
cellent performances in many Computer Vision tasks.

Although ViT is effective, it has similar weakness with
CNNs in front of the adversarial examples. Adversarial Ex-
amples (AEs) (Szegedy et al. 2013) are images with artifi-
cial perturbations that are small enough to fool the human
eyes but can make deep neural networks output wrong re-
sults. Some preliminary studies (Bhojanapalli et al. 2021;
Shao et al. 2021; Mahmood, Mahmood, and van Dijk 2021)
show that ViT is vulnerable to all common AEs, and even
weaker than CNNs under some attacks. The good news is
that it is difficult for the AEs against CNNs to transfer to ViT

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

directly (Shao et al. 2021; Naseer et al. 2021; Aldahdooh,
Hamidouche, and Déforges 2021). Thus it is meaningful to
study the unique natures of the AEs against ViT.

To the human eye, the magnified adversarial perturbations
of the AEs against ViT seem to have grid-like textures and
exhibit some periodicity and repetition (Bhojanapalli et al.
2021), as shown in Figure 1. This is the initial inspiration of
this paper. A very intuitive conjecture is that the AEs against
ViT may also be divided into patches. In this paper, we con-
firm this conjecture is true and bring up the concept Patch
Vestiges. We define Patch Vestiges as the abnormalities of
the AEs against ViT that are caused by the patch division.

We also find a method to measure Patch Vestiges quanti-
tatively. We propose Leaps to measure the step changes be-
tween two adjacent pixels in different patches. We assume
the step changes are the key points of Patch Vestiges. Ad-
ditionally, we propose statistics PV, IPC and NCC based on
Leaps and build a binary linear regression classifier on them.
The experiments show that our approximations on Leaps
are successful and that by our proposed statistics PV, IPC
and NCC, the linear regression classifier can detect the AEs
against ViT effectively.

We sum up the key contributions of this paper as follows:

• We substantiate the human instinct that the patches used
in Vision Transformer remain vestiges in the adversarial
examples.

• We bring up the concept Patch Vestiges and find a quan-
titative measurement for them.

• We prove that Patch Vestiges can be a critical weakness
of the adversarial examples against Vision Transformer.

Related Work
Vision Transformers Vision Transformer (ViT) (Dosovit-
skiy et al. 2020) is the first work to successfully leverage
Transformer (Vaswani et al. 2017) in Computer Vision tasks
by dividing images into patches. DeiT (Touvron et al. 2021)
uses a similar model structure but adds a new distillation to-
ken. T2T-ViT (Yuan et al. 2021) recursively integrates the
adjacent tokens to better extract the low-level image fea-
tures.Recently, Swin Transformer (Liu et al. 2021) shows the
superiority of Transformer and defeats CNN-based models
in many tasks by bringing in the shifted window scheme.



(a) ResNet / ViT “plane” (b) ResNet AE “dog” (c) ResNet AE perturb. (d) ViT AE “dog” (e) ViT AE perturb.

Figure 1: A clean image and its AEs and according adversarial perturbations. The image “plane” is chosen from the
ILSVRC2012 (ImageNet) dataset (Russakovsky et al. 2015). ResNet and ViT both give the correct classification when the
input is clean. The AEs generated by PGD ℓ∞ = 8 make ResNet and ViT output the wrong category “dog” respectively. The
adversarial perturbations are effect images that are magnified from the real values to make them explicit.

Adversarial Detection Bayesian uncertainty (BU) and ker-
nel density (KD) are previously proposed to detect the out-
of-manifold points (Feinman et al. 2017). RCE (Pang et al.
2018) uses a new Reverse Cross-Entropy based on KD to
better distance the clean images from the AEs. LID (Ma
et al. 2018) detects the AEs by the local sparseness. A Ma-
halanobis distance based score is afterwards proposed (Lee
et al. 2018). Under the assumption that AEs are out of the
manifold of the natural scenes, natural scene statistics (NSS)
are used in the detector (Kherchouche et al. 2020). More re-
cently, LiBRe (Deng et al. 2021) leverages Bayesian neural
networks with refined training procedures for adversarial de-
tection.

Methodology
Despite the recent excellent improvements of ViT, we focus
on the vanilla ViT model (Dosovitskiy et al. 2020) because
the fixed division makes the research stable. The vanilla ViT
divides an image into n×n patches in a grid shape, making
several horizontal and vertical dividing lines. Intuitively, the
adversarial perturbations of the adjacent pixels astride the
dividing lines should have step changes because they come
from different partial differential expressions. We measure
the step changes by Leaps. To calculate Leaps, we approxi-
mately assume that the pixel values of the clean images and
the adversarial perturbations inside the patches vary mildly,
and only the adversarial perturbations across the patches are
violent, as shown in Figure 2(a).

We calculate Leaps as follows. We denote the change
of the pixel values between the adjacent pixels i and j by
G(i, j). For both clean images and inside-patch adversarial
perturbations, a center G should be equal to the average of
its bilateral Gs under our approximation. But for adversarial
perturbations astride the dividing lines, the equality does not
hold. Thus we define

Leap(i,⊢)

=

∣∣∣∣G(i, i⊕1)− (G(i, i⊖1) +G(i⊕1, i⊕2))

2

∣∣∣∣ , (1)

where ⊢ means the alternative direction that is either hori-
zontal or vertical and i⊕n, i⊖n means moving n pixels for-
ward or backward along the direction ⊢ from the pixel i.
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Figure 2: (a) The illustrative diagrams of Leaps. (b) The ex-
ample positions of the proposed statistics PV, IPC and NCC.

Leap(i,⊢) shows the non-smoothness of the local changes
G around the pixel i. If Leap(i,⊢) is high and pixels i and
i⊕1 stride over a dividing line, there will be larger possibil-
ity that the given image is an AE against ViT.

Based on Leaps, we propose PV, IPC and NCC, stand-
ing for Patch Vestiges, Inside-Patch Contrast and Natural
Change Contrast respectively. PV consists of Leaps astride
the dividing lines, IPC consists of Leaps that are fully inside
the patches, and NCC consists of all the adjacent changes
(see Figure 2(b)). More precise definitions are:

PV (X) = Ave⊢∈{−,|},i∈PB(X,⊢)(Leap(i,⊢)),
IPC(X) = Ave⊢∈{−,|},i∈PI(X)(Leap(i,⊢)),
NCC(X) = Ave⊢∈{−,|},i∈X(|G(i, i⊕1)|),

(2)

where Ave means the average, PB(X,⊢) means the pixel
set that i and i⊕1 stride over a dividing line, and PI(X)
means the pixel set that i, i⊕1, i⊕2, i⊖1 are in the same
patch. Under this definition, PV will be much higher than
IPC only for the AEs with large Patch Vestiges. NCC mea-
sures the natural pixel fluctuations of clean images and is a
baseline for PV and IPC.

We also leverage linear regression and build a simple bi-
nary classifier y = a1PV + a2IPC+ a3NCC+ a4, where
a1, a2, a3, a4 are trainable parameters. If PV of the AEs
against ViT is very different from IPC, the binary classi-
fier will have high capacity to distinguish those AEs from
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Figure 3: The distributions of the statistics PV, IPC and NCC of the images or AEs on the CIFAR-10 training set. The AEs
are generated by the PGD ℓ∞ = 8 attack. The victim models are ResNet and ViT respectively. The solid lines in the figures
represent the frequencies of the statistics accumulated by 100 groups. The dashed lines are the averages of the according
statistics.

clean images. And since PV, IPC and NCC are all statistics,
if the the simple linear classifier works well, DNNs should
be more capable to dig out the infomation of the AEs in
Patch Vestiges.

Experimental Setups

Datasets We use the CIFAR-10 (Krizhevsky 2009) dataset
for our experiments. The CIFAR-10 dataset has 50,000 train-
ing images, 10,000 test images and 10 categories. The size
of each image is 3×32×32.
Attacks We use the white-box adversarial attack meth-
ods FGSM (Goodfellow, Shlens, and Szegedy 2015),
BIM (Kurakin, Goodfellow, and Bengio 2017a), PGD (Ku-
rakin, Goodfellow, and Bengio 2017b) and DeepFool
(DF) (Moosavi-Dezfooli, Fawzi, and Frossard 2016). We re-
strict all the AEs with ℓ∞ = 8. Notice that DF originally
generates AEs with ℓ∞≤8. We rescale the perturbations and
use DF* to denote the modification. We run all the BIM and
PGD attacks for 20 iterations. We use the AEs of PGD to
train our linear regression classifier and directly test it with
the AEs from all the attack methods.
Victim Models The major victim model is the vanilla Vi-
sion Transformer (ViT) (Dosovitskiy et al. 2020). We also
use ResNet (He et al. 2016) as a contrast model. ViT used in
the experiments has a 4×4 patch size, 6 layers and 16 heads
for Multi-Head Attentions. The ResNet model in the exper-
iments has 56 layers.
Compared Methods We use LID (Ma et al. 2018) and
NSS (Kherchouche et al. 2020) for comparison. Notice that
the settings of these methods are not in accord with ours
strictly. For example, our classifier only requires the input
image, the ViT logits and the patch size. The comparisons
are mainly used as a reference.
Environments We build our project on the open-source
toolbox ARES (Dong et al. 2020) and make references to
the codes of TRADES (Zhang et al. 2019). We run the ex-
periments on GeForce RTX 2080 Ti.

Results
We first compare the distributions and the averages of PV,
IPC and NCC between the clean images, the AEs using the
PGD attack against ResNet and the AEs against ViT. All
the images and AEs are from the training set of CIFAR-10.
The results are shown in Figure 3. We observe that for the
clean images and the AEs against ResNet, the distributions
of PV and IPC are close. But PV of the AEs against ViT is
much larger than IPC. We use the T’-test and confirm that
PV is significantly larger than IPC and NCC (p<5e-4) in
Figure 3(c). We can also observe in Figure 3(c) that there
are large area where the distribution of PV is not overlapped
with IPC and NCC. The results prove that the assumptions
and approximations about Leaps are effective, and illustrate
that Patch Vestiges are the unique and significant character-
istics of the AEs against ViT.

Model KR DR
FGSM BIM PGD DF*

LID 96.17 57.36 85.17 94.51 78.64
NSS 93.29 87.10 66.26 62.09 61.55
Ours 86.90 94.60 87.74 88.11 74.62

Table 1: The keep rates (KR, %) of the clean images and
the detection rates (DR, %) against the different AEs of the
compared models. DF* is the DF modification introduced in
the experimental setup section. All the AEs have perturba-
tions with ℓ∞ = 8.

We also train a linear classifier (named Ours in Table 1)
using the PGD attack and compare the keep rates (KR, the
ratio of classifying clean images correctly) and the detection
rates (DR, the ratio of classifying AEs correctly) under dif-
ferent attacks. Our linear classifier is trained on the CIFAR-
10 training set with the PGD attack. All the results in Ta-
ble 1 are tested on the CIFAR-10 test set. We observe that
the simple linear regression classifier, although not state-of-
the-art, is comparable enough with the mature adversarial
detection methods. This again suggests that Patch Vestiges
are significant. The results also show that Patch Vestiges are



the intrinsic attributes of the AEs against ViT and are easily
transferred from one attack method to another.

Q: Is it useful to reduce the perturbated pixels to
avoid the effect of Patch Vestiges?
A: In some cases, yes.
One major intuitive suspicion about Patch Vestiges may lie
in the fact that our method takes all the pixels in the im-
ages or AEs into account. To confirm whether reducing the
perturbated pixels would reduce Patch Vestiges or not, we
make a specific experiment to answer this question. We vary
the proportion of the perturbated pixels from 10% to 100%.
Two dependent variables are watched: 1. the detection rates
of one linear classifier that is trained with 100% pixels per-
turbated; 2. the detection rates of another linear classifier
that is trained with the same percentages of perturbated pix-
els as the test procedure. The results are shown in Figure 4.
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Figure 4: The changes of the detection rates of the two linear
classifiers with different percentages of perturbated pixels
on the CIFAR-10 test set. “100%”: the classifier is trained
where all the pixels in the AEs are perturbated. “Same”: the
perturbated pixels in the training and test procedures have
the consistent proportions. Other settings of the classifiers
are the same as the above experiments. The AEs are gener-
ated by PGD ℓ∞ = 8 attack.

We can observe evident declines of the detection rates of
the both classifiers when there are fewer perturbated pixels,
which makes sense with the intuition. However, the classi-
fier trained with the same proportion declines very slowly.
When there only 10% perturbated pixels, the classifier can
achieve above 80% detection rate. These phenomena indi-
cate that, when reducing the proportion of the perturbated
pixels largely, Patch Vestiges will also be reduced to a great
extent, but the remained Patch Vestiges are still large enough
for adversarial detection. In view of the fact that reducing
the perturbated pixels will possibly reduce the attack perfor-
mance, this topic may become another focus of attack and
defense.

Conclusion
In this paper, we confirm the human intuition that the di-
vision of the patches by Vision Transformer remains large

vestiges in the adversarial examples. We bring up the con-
cept Patch Vestiges to measure to what extend the patches
can leave over their traces into the AEs. We also quantita-
tively show that Patch Vestiges can be leveraged to detect
whether an image is an adversarial example against ViT or a
clean one.

Besides the practical significance, our work can also pro-
mote the thinkings towards the adversarial examples and the
AI safety. Is a more complicated structure more vulnerable?
The answer is “yes” under many circumstances, consider-
ing that most of the new structures are not designed for the
security purpose of the models but bring in more potential
defects. However, in this paper, we observe that the artifacts
of Vision Transformer on the contrary improve its robust-
ness. The attack and defense around the special structures of
the models is expected to become a new and attractive topic
in the future.
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