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Abstract

Diffusion models have recently dominated image synthesis and other related gener-
ative tasks. However, the iterative denoising process is expensive in computations
at inference time, making diffusion models less practical for low-latency and scal-
able real-world applications. Post-training quantization of diffusion models can
significantly reduce the model size and accelerate the sampling process without
requiring any re-training. Nonetheless, applying existing post-training quantization
methods directly to low-bit diffusion models can significantly impair the quality of
generated samples. Specifically, for each denoising step, quantization noise leads to
deviations in the estimated mean and mismatches with the predetermined variance
schedule. Moreover, as the sampling process proceeds, the quantization noise
may accumulate, resulting in a low signal-to-noise ratio (SNR) during the later
denoising steps. To address these challenges, we propose a unified formulation
for the quantization noise and diffusion perturbed noise in the quantized denoising
process. Specifically, we first disentangle the quantization noise into its correlated
and residual uncorrelated parts regarding its full-precision counterpart. The cor-
related part can be easily corrected by estimating the correlation coefficient. For
the uncorrelated part, we subtract the bias from the quantized results to correct the
mean deviation and calibrate the denoising variance schedule to absorb the excess
variance resulting from quantization. Moreover, we introduce a mixed-precision
scheme for selecting the optimal bitwidth for each denoising step, which priori-
tizes lower bitwidths to expedite early denoising steps, while ensuring that higher
bitwidths maintain a high signal-to-noise ratio (SNR) in the later steps. Extensive
experiments demonstrate that our method outperforms previous post-training quan-
tized diffusion models in generating high-quality samples, with only a 0.06 increase
in FID score compared to full-precision LDM-4 on ImageNet 256 × 256, while
saving 19.9× bit operations. Code is available at https://github.com/ziplab/PTQD.

1 Introduction

Diffusion models have demonstrated remarkable ability in generating high-quality samples in multiple
fields [10, 5, 58, 18, 38, 30, 13, 52, 8, 49]. Compared to generative adversarial networks (GANs) [15]
and variational autoencoders (VAEs) [27], diffusion models do not face the issue of mode collapse
and posterior collapse, thus training is more stable. Nonetheless, the application of diffusion models
is limited by two major bottlenecks. Firstly, diffusion models typically require hundreds of denoising
steps to generate high-quality samples, making the process significantly slower than that of GANs.
To address this, many studies [50, 36, 2, 28, 34] have proposed advanced training-free sampler to
reduce the number of denoising iterations. Among them, a recent study DPM-solver [36] curtails
the denoising process to ten steps by analytically computing the linear part of the diffusion ordinary
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Q-Diffusion (W4A8) PTQD (W4A8) Full Precision

Figure 1: The comparisons of samples generated by Q-Diffusion [31], PTQD and full-precision
LDM-4 [45] on CelebA-HQ 256× 256 dataset. Here, WxAy indicates the weights are quantized to
x-bit while the activations are quantized to y-bit.

differential equations (ODEs). Nevertheless, diffusion models with these fast samplers are not yet
ready for real-time applications. For instance, even when executed on a high-performance platform
such as the RTX 3090, Stable Diffusion [45] with the DPM-Solver [36] sampler still takes over a
second to generate a 512×512 image. Second, the application of diffusion models on various devices
is constrained by the massive parameters and computational complexity. To illustrate, executing
Stable Diffusion [45] requires 16GB of running memory and GPUs with over 10GB of VRAM,
which is infeasible for most consumer-grade PCs, not to mention resource-constrained edge devices.

Model quantization, which employs lower numerical bitwidth to represent weights and activations,
has been widely studied to reduce memory footprint and computational complexity. For instance,
employing 8-bit models can result in a significant speed-up of 2.2× compared to floating-point
models on ARM CPUs [21]. Adopting 4-bit quantization can further deliver a throughput increase
of up to 59% compared to 8-bit quantization [3]. To facilitate the quantization process without
the need for re-training, post-training quantization (PTQ) has emerged as a widely used technique,
which is highly practical and easy to implement. While PTQ on traditional models have been
widely studied [40, 32, 20, 33, 57], its application on diffusion models incurs two new challenges
at the fundamental level. First, with the noise prediction network quantized, its quantization noise
inevitably introduces bias in the estimated mean and brings additional variance that collides with
the predetermined variance schedule in each denoising step. Additionally, the quantization noise
accumulates as the iterative sampling process progresses, leading to a significant drop in the signal-
to-noise ratio (SNR) of the noise prediction network in the later denoising steps. This diminished
SNR severely impedes the denoising capability, resulting in a noticeable degradation in the quality of
the generated images.

To tackle the aforementioned challenges, we present PTQD, a novel post-training quantization
framework for diffusion models. To address the mean deviation and additional variance in each
denoising step, we model the quantization noise by disentangling it into its correlated and residual
uncorrelated parts regarding its full-precision counterpart, and designs separate correction methods
for them. By estimating the correlation coefficient, the correlated part can be easily rectified. For
the residual uncorrelated part, we subtract the bias from the estimated mean and propose variance
schedule calibration, which absorbs the additional variance into the diffusion perturbed noise. To
overcome the issue of low SNR that diminishes denoising capability in later denoising steps, we
introduce a step-aware mixed precision scheme, which adaptively allocates different bitwidths for
synonymous steps to maintain a high SNR for the denoising process.

In summary, our contributions are as follows:

• We present PTQD, a novel post-training quantization framework for diffusion models, which
provides a unified formulation for quantization noise and diffusion perturbed noise.

• We disentangle the quantization noise into correlated and uncorrelated parts regarding its full-
precision counterpart. Then we correct the correlated part by estimating the correlation coefficient,
and propose variance schedule calibration to rectify the residual uncorrelated part.

• We introduce a step-aware mixed precision scheme, which dynamically selects the appropriate
bitwidths for synonymous steps, preserving SNR throughout the denoising process.

• Our extensive experiments demonstrate that our method reaches a new state-of-the-art performance
for post-training quantization of diffusion models.
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2 Related Work

Efficient diffusion models. While diffusion models can produce high-quality samples, their slow
generation speed hinders their large-scale applications in downstream tasks. To explore efficient
diffusion models, many methods have been proposed to expedite the sampling process. These methods
can be classified into two categories: methods that necessitate re-training and advanced samplers for
pre-trained models that do not require training. The first category of methods comprises knowledge
distillation [37, 47], diffusion scheme learning [7, 12, 64, 39], noise scale learning [26, 43], and
sample trajectory learning [55, 29]. Although these methods can accelerate sampling, re-training
a diffusion model can be resource-intensive and time-consuming. On the other hand, the second
category of methods designs advanced samplers directly on pre-trained diffusion models, eliminating
the need for re-training. The primary methods in this category are implicit sampler [50, 28, 63, 56],
analytical trajectory estimation [2, 1], and differential equation (DE) solvers such as customized
SDE [51, 23, 25] and ODE [36, 34, 62]. Although these methods can reduce the sampling iterations,
the diffusion model’s massive parameters and computational complexity restrict their use to high-
performance platforms. Conversely, our proposed low-bit diffusion model can significantly reduce
the model’s computational complexity while speeding up the sampling and reducing the demand for
hardware computing resources in a training-free manner.

Model quantization. Quantization is a dominant technique to save memory costs and speed up
computation. It can be divided into two categories: quantization-aware training (QAT) [14, 35,
22, 65, 61] and post-training quantization (PTQ) [32, 40, 20, 57, 33]. QAT involves simulating
quantization during training to achieve good performance with lower precision, but it requires
substantial time, computational resources, and access to the original dataset. In contrast, PTQ does
not require fine-tuning and only needs a small amount of unlabeled data to calibrate. Recent studies
have pushed the limits of PTQ to 4-bit on traditional models by using new rounding strategies [40],
layer-wise calibration [20, 53], and second-order statistics [32, 57]. Additionally, mixed precision
(MP) [19, 11, 4, 59, 6] allows a part of the model to be represented by lower bitwidths to accelerate
inference. Common criteria for determining quantization bitwidths include Hessian spectrum [11, 6]
or Pareto frontier [4]. In contrast, we propose a novel mixed-precision scheme for diffusion models
that adapts different bitwidths for synonymous denoising steps.

Until now, there have been few studies specifically focusing on quantizing a pre-trained diffusion
model without re-training. PTQ4DM [48] is the first attempt to quantize diffusion models to 8-bit, but
its experiments are limited to small datasets and low resolution. Q-Diffusion [31] applies advanced
PTQ techniques proposed by BRECQ [32] to improve performance and evaluate it on a wider range
of datasets. Our paper aims to analyze systematically the quantization effect on diffusion models and
establish a unified framework for accurate post-training diffusion quantization.

3 Preliminaries

3.1 Diffusion Models

Diffusion models [50, 17] gradually apply Gaussian noise to real data x0 in the forward process and
learn a reverse process to denoise and generate high-quality images. For DDPMs [17], the forward
process is a Markov chain, which can be formulated as:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√
αtxt−1, βtI) (1)

where αt, βt are hyperparameteres and βt = 1− αt.

In the reverse process, since directly estimating the real distribution of q(xt−1|xt) is intractable,
diffusion models approximate it via variational inference by learning a Gaussian distribution
pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) and reparameterize its mean by a noise prediction
network ϵθ(xt, t):

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
(2)
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where ᾱt =
∏t

s=1 αs. The variance Σθ(xt, t) can either be reparameterized or fixed to a constant
schedule σt. When it uses a constant schedule, the sampling of xt−1 can be formulated as:

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz, where z ∼ N (0, I). (3)

Our method focuses on post-training quantization of diffusion models without the need of training.
Instead, we use pre-trained diffusion models and inherit their hyperparameters and variance schedules
for inference. Although the derivations presented in this paper are based on DDPM, they can be
readily extended to other fast sampling methods, such as DDIM [50]. Additional information can be
found in the supplementary material.

3.2 Model Quantization

We use uniform quantization in our study and all the experiments. For uniform quantization, given a
floating-point vector x, the target bitwidth b, the quantization process can be defined as:

x̂ = ∆ ·
(
clip(⌊ x

∆
⌉+ Z, 0, 2b − 1)− Z

)
, (4)

where ⌊·⌉ is the round operation, ∆ = max(x)−min(x)
2b−1

and Z = −⌊min(x)
∆ ⌉.

To ensure clarity and consistency, we introduce notation to define the variables used in the paper.
Let X be a tensor (weights or activations) in the full-precision model, the result after normalization
layers is denoted as X . The corresponding tensor of the quantized model is represented as X̂ . The
quantization noise is depicted by ∆X , which is the difference between X̂ and X .

4 Method

Model quantization discretizes the weights and activations, which will inevitably introduce quantiza-
tion noise into the result. As per Eq. (3), during the reverse process of the quantized diffusion model,
the sampling of xt−1 can be expressed as:

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵ̂θ(xt, t)

)
+ σtz (5)

=
1

√
αt

(
xt −

βt√
1− ᾱt

(
ϵθ(xt, t) + ∆ϵθ(xt,t)

))
+ σtz.

Here, ϵ̂θ(xt, t) is the output of the quantized noise prediction network and ∆ϵθ(xt,t) refers to the
quantization noise. The additional quantization noise will inevitably alter the mean and variance of
xt−1, decreasing the signal-to-noise ratio (SNR) and adversely affecting the quality of the generated
samples. Therefore, to mitigate the impact of quantization, it is necessary to correct the mean and
variance to restore the SNR at each step of the reverse process.

4.1 Correlation Disentanglement

We begin by making an assumption that a correlation exists between the quantization noise and
the result of the full-precision noise prediction network. While other factors, such as nonlinear
operations, may contribute to this correlation, Proposition 1 demonstrates that normalization layers
are responsible for a part of it.

Proposition 1. Given Y and Ŷ as inputs to a normalization layer in a full-precision model and
its quantized version, where the quantization noise ∆Y = Ŷ − Y is initially uncorrelated with Y ,
a correlation between the quantization noise and the output of the full-precision model after the
normalization layer will exist.

The proof is based on the fact that the mean and variance of Ŷ will differ from that of Y (depending
on the specific quantization scheme). Therefore, the quantization noise after normalization layer can
be expressed as :

∆Y =
Ŷ − µŶ

σŶ

− Y − µY

σY
=

σY ∆Y − (σŶ − σY )Y + σŶ µY − σY µŶ

σŶ σY
. (6)
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Figure 2: The correlation between the quantization noise (Y-axis) and the output of the full-precision
noise prediction network (X-axis). Each data point on the plot corresponds to specific entries within
these vectors. Data were collected by generating samples with 4-bit LDM-8 [45] for 200 steps on
LSUN-Churches [60].

Here, we omit the affine transform parameters in normalization layers for simplicity. It can be
observed from Eq. (6) that the second term in the numerator is related to Y , while the other three
terms are uncorrelated. Therefore, after normalization layers, the quantization noise ∆Y will be
correlated with Y .

The empirical observation illustrated in Figure 2 confirms a strong correlation between the quantiza-
tion noise and the output of the full-precision noise prediction network, which further verifies our
assumption. Based on the assumption and observation, the quantization noise of the quantized noise
prediction network can be disentangled into two parts:

∆ϵθ(xt,t) = kϵθ(xt, t) + ∆
′

ϵθ(xt,t)
. (7)

The first part, denoted by kϵθ(xt, t), is linearly related to ϵθ(xt, t). The second part, expressed
by ∆

′

ϵθ(xt,t)
, represents the residual component of the quantization noise, and is assumed to be

uncorrelated with ϵθ(xt, t). Here, k is the correlation coefficient, which can be estimated by applying
linear regression on the quantization noise ∆ϵθ(xt,t) and the original value ϵθ(xt, t). Details can be
found in Section 5.1.

With the disentanglement presented in Eq. (7), the sampling of xt−1 can be further expressed as:

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

(
ϵθ(xt, t) + ∆ϵθ(xt,t)

))
+ σtz (8)

=
1

√
αt

(
xt −

βt√
1− ᾱt

(
(1 + k) ϵθ(xt, t) + ∆

′

ϵθ(xt,t)

))
+ σtz.

Consequently, the bias and additional variance arise from both the correlated and uncorrelated parts
of quantization noise. In the following section, we will provide a detailed explanation of how these
two parts of quantization noise can be separately corrected.

4.2 Quantization Noise Correction

4.2.1 Correlated Noise Correction

Based on Eq. (8), the correlated part of the quantization noise can be rectified by dividing the output
of the quantized noise prediction network ϵ̂θ(xt, t) by 1 + k, resulting in:

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt,t)

)
+ σtz−

βt√
αt

√
1− ᾱt(1 + k)

∆
′

ϵθ(xt,t)
. (9)

Consequently, only the uncorrelated quantization noise remains. Moreover, for values of k ≥ 0, it
can be deduced that the mean and variance of the uncorrelated quantization noise are diminished
by 1

1+k . In practice, we enforce the non-negativity of k, and reset it to zero if it is negative. In the
following, we will explain how to handle the uncorrelated quantization noise that persists in Eq. (9).
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4.2.2 Uncorrelated Noise Correction

The presence of uncorrelated quantization noise introduces additional variance at each step, resulting
in a total variance that exceeds the scheduled value σ2

t . To address this, we propose to calibrate
the variance schedule for quantized diffusion models, which is denoted as σ

′2
t and smaller than the

original schedule σ2
t . To estimate σ

′2
t , we further make an assumption and model the uncorrelated

quantization noise as a Gaussian distribution with a mean of µq and a variance of σ2
q :

∆
′

ϵθ(xt,t)
∼ N (µq, σq). (10)

To verify this assumption, we conduct statistical tests (refer to the supplementary material) and present
the distribution of the uncorrelated quantization noise in Figure 3. The values of mean and variance
can be estimated by generating samples with both quantized and full-precision diffusion models and
collecting the statistics of the uncorrelated quantization noise. Following prior work [41], the mean
deviation can be rectified through Bias Correction (BC), where we collect the channel-wise means
of uncorrelated quantization noise and subtract them from the output of quantized noise prediction
network. For the variance of the uncorrelated quantization noise, we propose Variance Schedule
Calibration (VSC), where the uncorrelated quantization noise can be absorbed into Gaussian diffusion
noise with the above assumption. By substituting the calibrated variance schedule σ

′2
t into Eq. (9)

while keeping the variance of each step unaltered, we can solve for the optimal variance schedule
using the following approach:

σ
′2
t +

β2
t

αt(1− ᾱt)(1 + k)2
σ2
q = σ2

t , (11)

σ
′2
t =

{
σ2
t −

β2
t

αt(1−ᾱt)(1+k)2σ
2
q , if σ2

t ≥ β2
t

αt(1−ᾱt)(1+k)2σ
2
q

0, otherwise.
(12)

It can be observed that if the additional variance of quantization noise is smaller than the noise
hyperparameter σ2

t , the increase in variance caused by quantization can be eliminated. According to
Eq. (12), the coefficient for the variance of the quantization noise can be calculated as β2

t

αt(1−ᾱt)(1+k)2 ,
which is generally small enough to ensure that the quantization noise can be fully absorbed, except
for cases of deterministic sampling where σt is zero. In this case, there is no analytical solution
for σ

′2
t , and we use the optimal solution that is σ

′2
t = 0. Overall, the process quantization noise

correction is summarized in Algorithm 1.

Algorithm 1: Quantization noise correction.
Statistics collection before sampling:
1) Quantize diffusion models with BRECQ [32] (or other PTQ methods);
2) Generate samples with both quantized and FP models and collect quantization noise;
3) Calculate the correlated coefficient k based on Eq. (7), and the mean and variance of the

uncorrelated quantization noise as per Eq. (10);
Noise correction for each sampling step:
4) Correct the correlated part of the quantization noise by dividing the output of the noise

prediction network by 1 + k;
5) Calibrate the variance schedule by Eq. (12) and subtract the channel-wise biases from the

output of the quantized noise prediction network.

Although the proposed method can correct the mean deviation and the numerical value of the variance
for each step, generating satisfactory samples with low-bit diffusion models remains challenging due
to the low signal-to-noise ratio (SNR) of the quantized noise prediction network. In the next section,
we will analyze this issue in detail.
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4.3 Step-aware Mixed Precision

Given the output of the full-precision noise prediction network ϵθ(xt, t) and corresponding quantiza-
tion noise ∆ϵθ(xt,t), we define the SNRQ of quantized noise prediction network by:

SNRQ(t) =
∥ϵθ(xt, t)∥2
∥∆ϵθ(xt,t)∥2

. (13)

Figure 4 depicts the SNRQ with various bitwidths and correction methods. The figure reveals
several insights: 1) SNRQ drops drastically as step t decreases; 2) models with higher bitwidth
exhibit larger SNRQ; 3) the proposed correction methods yield clear SNRQ improvements, especially
for large steps. The first observation highlights the challenge of generating high-quality samples
using low-bit diffusion models. In particular, as t approaches zero, the SNRQ of W4A4 diffusion
models diminishes and approaches unity, implying that the magnitude of quantization noise is even
comparable to the original result of the noise prediction network. To enable low-bit diffusion models
while maintaining good generation performance, we propose a novel approach called Step-aware
Mixed Precision, which involves setting different bitwidths for synonymous steps to keep SNRQ

within a reasonable range across all steps.

Specifically, the bitwidth of weights is fixed and shared across different denoising steps, which
eliminates the need to store and reload multiple model state files during the sampling process.
As a result, we only adjust the bitwidth of activations. Formally, we predefine a set of bitwidths
B = {b1, b2, . . . , bn} for activations and evaluate the SNRQ under each bitwidth. To establish a
benchmark for SNRQ, we follow prior studies [36, 26] and introduce SNRF based on the forward
process, which denotes the degree of data noise at each step:

SNRF(t) = α2
t /σ

2
t . (14)

Figure 4 illustrates SNRF(t), which decreases strictly with respect to steps t. To determine the
optimal bitwidth for each step t, we compare the SNRQ of each bitwidth with SNRF, and select the
minimum bitwidth bmin that satisfies:

SNRQ
bmin

(t) > SNRF(t). (15)

If none of the bitwidths satisfies this condition, we utilize the maximum bitwidth in B to achieve a
higher SNR. In practice, models with different bitwidths are calibrated separately, with the calibration
set collected from the corresponding steps.
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5 Experiments

5.1 Implementation Details

Datasets and quantization settings. We conduct image synthesis experiments using latent diffusion
models (LDM) [45] on three standard benchmarks: ImageNet[9], LSUN-Bedrooms, and LSUN-
Churches [60], each with a resolution of 256× 256. All experimental configurations, including the
number of steps, variance schedule (denoted by eta in the following), and classifier-free guidance
scale, follow the official implementation [45]. For low-bit quantization, we use the PTQ method
proposed in BRECQ [32] and AdaRound [40], which is congruent with Q-Diffusion [31]. For 8-bit
quantization on ImageNet, we only use a naive PTQ method proposed by TensorRT [44], which
is simple and fast. The input and output layers in the model are fixed to 8-bit, while all other
convolutional and linear layers are quantized to the target bitwidth. In mixed precision experiments,
we fix the weights to 4-bit and use Eq. (15) to determine the bitwidth of activations over uncorrected
quantized diffusion models with a bitwidth set of {4, 8}. Details of bitwidth allocation can be found
in the supplementary material.

Evaluation metrics. For each experiment, we report the widely adopted Frechet Inception Distance
(FID) [16] and sFID [42] to evaluate the performance. For ImageNet experiments, we additionally
report Inception Score (IS) [46] for reference. To ensure consistency in the reported outcomes,
including those of the baseline methods, all results are obtained by our implementation. We sample
50,000 images and evaluate them with ADM’s TensorFlow evaluation suite [10]. To quantify
the computational efficiency, we measure Bit Operations (BOPs) for a single forward pass of the
diffusion model using the equation BOPs = MACs · bw · ba, where MACs denotes Multiply-And-
Accumulate operations, and bw and ba represent the bitwidth of weights and activations, respectively,
following [54].

Statistics collection. Before implementing our method, three statistics need to be collected: the
correlation coefficient, denoted as k in Eq. (7), and the mean and variance of the uncorrelated
quantization noise, as depicted in Eq. (10). To obtain these statistics, we generate 1024 samples using
both quantized and full-precision diffusion models, store the quantization noise at each step, and then
calculate the required statistics.

5.2 Ablation Study

As shown in Table 1, we conduct ablation experiments on ImageNet 256× 256 dataset over LDM-
4 model, to demonstrate the effectiveness of the proposed techniques. These techniques include
Correlated Noise Correction (CNC) for addressing the correlated quantization noise, as well as Bias
Correction (BC) and Variance Schedule Calibration (VSC) for correcting the residual uncorrelated
quantization noise. By employing Correlated Noise Correction, we achieved a 0.48 reduction in FID
and a 6.55 decrease in sFID. The considerable reduction in sFID suggests that the generated images
possess more intricate spatial details than those generated using the baseline method, and that the
correlated portions significantly contribute to the quantization noise. With the proposed Variance
Schedule Calibration, the additional variance of uncorrelated quantization noise can be absorbed,
achieving a reduction of 0.2 in FID and 0.11 in sFID. By further introducing Bias Correction that
effectively corrects the mean deviation caused by quantization noise, our proposed PTQD achieved
an FID of 6.44 and an sFID of 8.43, with only a 1.33 increase in sFID under the W4A4/W4A8 mixed
precision setting. These results demonstrate the efficacy of the proposed techniques in achieving
accurate post-training quantization of diffusion models.

Additional ablation experiments can be found in the supplementary material.

5.3 Main Results

5.3.1 Class-conditional Generation

In this section, we evaluate the performance of class-conditional image generation on 256 × 256
ImageNet dataset, as presented in Table 2. By utilizing the Naive PTQ method [44] and quantizing to
8-bit, diffusion models can achieve a notable 12.39× reduction in bit operations, while experiencing
minimal increases in FID/sFID. With the aggressive W4A8 bitwidth setting, our method effectively
narrows the FID gap to a mere 0.06 with 250 generation steps. In this setting, the model size is
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Table 1: The effect of different components proposed in the paper. Here, MP denotes the proposed
step-aware mixed precision scheme.

Models Method Bitwidth
(W/A) FID↓ sFID↓

LDM-4
(steps = 250

eta = 1.0
scale = 1.5)

Q-Diffusion MP 9.97 18.23
+ CNC MP 9.49 11.68

+ CNC + VSC MP 9.29 11.57
PTQD (CNC + VSC + BC) MP 6.44 8.43

FP 32/32 5.05 7.10

compressed by 6.83× and the bit operations can be reduced by a remarkable 19.96×. In experiments
utilizing mixed precision with W4A4 and W4A8 bitwidths, previous methods encounter difficulties
in mitigating substantial quantization noises caused by low-bit quantization. For instance, in the
first set of experiments with a 20-step generation process, Q-Diffusion [31] obtains FID and sFID
scores as high as 116.61 and 172.99, respectively, indicating difficulties in handling low-bit diffusion
models with fewer generation steps. While our method cannot calibrate the variance schedule due
to a zero value for the hyperparameter eta, it still achieves an exceptionally low FID score of 7.75,
demonstrating effective rectification of the correlated quantization noise and mean deviation. The
second set of mixed precision experiments also yielded similar results, with our method reducing
FID and sFID scores by 3.53 and 9.80, respectively.

Table 2: Performance comparisons of class-conditional image generation on ImageNet 256× 256.

Model Method Bitwidth
(W/A)

Model Size
(MB)

BOPs
(T)

BOP comp.
ratio IS↑ FID↓ sFID↓

LDM-4
(steps = 20
eta = 0.0

scale = 3.0)

FP 32/32 1603.35 102.21 - 225.16 12.45 7.85
Naive PTQ 8/8 430.06 8.25 12.39× 152.91 12.14 8.43

Ours 8/8 430.06 8.25 12.39× 153.92 11.94 8.03
Q-Diffusion 4/8 234.51 5.12 19.96× 212.52 10.63 14.80

Ours 4/8 234.51 5.12 19.96× 214.73 10.40 12.68
Q-Diffusion MP 234.51 4.73 21.61× 7.86 116.61 172.99

Ours MP 234.51 4.73 21.61× 175.19 7.75 18.78

LDM-4
(steps = 250

eta = 1.0
scale = 1.5)

FP 32/32 1603.35 102.21 - 185.04 5.05 7.10
Naive PTQ 8/8 430.06 8.25 12.39× 180.56 4.06 5.91

Ours 8/8 430.06 8.25 12.39× 180.83 4.02 5.81
Q-Diffusion 4/8 234.51 5.12 19.96× 148.74 5.37 9.56

Ours 4/8 234.51 5.12 19.96× 149.74 5.11 8.49
Q-Diffusion MP 234.51 4.81 21.25× 121.10 9.97 18.23

Ours MP 234.51 4.81 21.25× 126.26 6.44 8.43

5.4 Unconditional Generation

In this section, we present a comprehensive evaluation of our approach on LSUN-Bedrooms and
LSUN-Churches [60] datasets for unconditional image generation. As shown in Table 3, our method
consistently narrows the performance gap between quantized and full-precision diffusion models.
Notably, our proposed method allows for compression of diffusion models to 8-bit with minimal
performance degradation, resulting in a mere 0.1 increase in FID on the LSUN-Churches dataset.
With the W4A8 bitwidth setting, our method reduces FID and sFID by notably 0.78 and 3.61
compared with Q-Diffusion [31] on LSUN-Bedrooms. Furthermore, Q-Diffusion fails to effectively
denoise samples under the mixed precision setting on LSUN-Churches due to its low SNR. In this
case, the hyperparameter eta is set to zero, which prevents the use of Variance Schedule Calibration.
Despite relying solely on Correlated Noise Correction and Bias Correction, our approach remarkably
enhances the quality of the generated images, as demonstrated by a substantial reduction in the
FID score from 218.59 to 17.99. This notable improvement highlights the significant impact of the
correlated part of quantization noise on the overall image quality, which can be effectively rectified
by our method.

Additional evaluation results on CelebA-HQ dataset can be found in the supplementary material.
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Table 3: Performance comparisons of unconditional image generation.

LSUN-Bedrooms 256× 256
LDM-4 (steps = 200, eta = 1.0)

LSUN-Churches 256× 256
LDM-8 (steps = 200, eta = 0.0)

Method Bitwidth
(W/A) FID↓ sFID↓ Method Bitwidth

(W/A) FID↓ sFID↓
Full precision 32/32 3.00 7.13 Full precision 32/32 6.30 18.24
Q-Diffusion 8/8 3.80 9.95 Q-Diffusion 8/8 6.94 18.93

Ours 8/8 3.75 9.89 Ours 8/8 6.40 18.34
Q-Diffusion 4/8 6.72 18.80 Q-Diffusion 4/8 7.80 19.97

Ours 4/8 5.94 15.16 Ours 4/8 7.33 19.40
Q-Diffusion MP 5.75 12.79 Q-Diffusion MP 218.59 312.86

Ours MP 5.49 12.04 Ours MP 17.99 37.34

5.5 Deployment Efficiency

We have measured the latency of matrix multiplication and convolution operations in quantized and
full-precision diffusion models using an RTX3090 GPU, as shown in Table 4. Both floating-point and
quantized operations are implemented with CUTLASS [24]. When both weights and activations are
quantized to 8-bit, we observe a 2.03× reduction in latency compared to its full-precision counterpart
over LDM-4. Moreover, when weights and activations are quantized to 4-bit, the speedup further
increases to 3.34×. The mixed-precision settings explored in our experiments strike a good balance
between latency and model performance.

Table 4: Comparisons of time cost across various bitwidth configurations on ImageNet 256× 256.
Due to the current lack of a fast implementation for W4A8, we implement MP scheme with W8A8
and W4A4 kernels.

Model Bitwidth
(W/A)

Model Size
(MB) FID↓ sFID↓ Time

(s)
LDM-4

(steps=250
eta=1.0

scale=1.5)

32/32 1603.35 5.05 7.10 5.46
8/8 430.06 4.02 5.81 2.68
MP 234.51 6.44 8.43 2.45
4/4 234.51 - - 1.63

6 Conclusion and Future Work

In this paper, we have proposed PTQD, a novel post-training quantization framework for diffusion
models that unifies the formulation of quantization noise and diffusion perturbed noise. To start with,
we have disentangled the quantization noise into correlated and residual uncorrelated parts relative to
its full-precision counterpart. To reduce mean deviations and additional variance in each step, the
correlated part can be easily corrected by estimating the correlation coefficient. For the uncorrelated
part, we have proposed Variance Schedule Calibration to absorb its additional variance and Bias
Correction to correct the mean deviations. Moreover, we have introduced Step-aware Mixed Precision
to adaptively select the optimal bitwidth for each denoising step. By incorporating these techniques,
our PTQD has achieved significant performance improvement over existing state-of-the-art post-
training quantized diffusion models, with only a 0.06 FID increase compared to the full-precision
LDM-4 on ImageNet 256 × 256 while saving 19.9× bit-operations. In the future, we can further
quantize other components within diffusion models, such as the text encoder and image decoder, to
achieve higher compression ratios and accelerated performance. We may also extend PTQD to a
wider range of generative tasks to assess its efficacy and generalizability.

Limitations and Broader Impacts. The proposed PTQD framework stands out for its high efficiency
and energy-saving properties, which carry significant implications in reducing the carbon emissions
attributed to the widespread deployment of diffusion models. However, similar to other deep
generative models, PTQD has the potential to be utilized for producing counterfeit images and videos
for malicious purposes.

Acknowledgement This work was supported by National Key Research and Development Program
of China (2022YFC3602601).
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