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ABSTRACT

Distance field-based implicit representations like signed/unsigned distance fields
have recently gained prominence in geometry modeling and analysis. However,
these distance fields are reliant on the closest distance of points to the surface,
introducing inaccuracies when interpolating along cube edges during surface ex-
traction. Additionally, their gradients are ill-defined at certain locations, causing
distortions in the extracted surfaces. To address this limitation, we propose Shape
as Line Segments (SALS), an accurate and efficient implicit geometry represen-
tation based on attributed line segments, which can handle arbitrary structures.
Unlike previous approaches, SALS leverages a differentiable Line Segment Field
to implicitly capture the spatial relationship between line segments and the sur-
face. Each line segment is associated with two key attributes, intersection flag and
ratio, from which we propose edge-based dual contouring to extract a surface. We
further implement SALS with a neural network, producing a new neural implicit
presentation. Additionally, based on SALS, we design a novel learning-based
pipeline for reconstructing surfaces from 3D point clouds. We conduct extensive
experiments, showcasing the significant advantages of our methods over state-of-
the-art methods. We have included the source code in the Supplemental Material.

1 INTRODUCTION

Various implicit geometry representations have emerged as powerful approaches in 3D vision,
graphics, and robotics (Park et al., 2019; Takikawa et al., 2021; Wang et al., 2021; Mescheder et al.,
2019; Chibane et al., 2020b). Unlike explicit representations that define surfaces through point
clouds or polygon meshes, implicit representations describe surfaces as the isosurface of a scalar
field. The signed/unsigned distance field (SDF/UDF) is among the most widely used implicit repre-
sentations. Specifically, SDF captures the signed distance from a given point to the closest surface,
where the sign is used to distinguish between the inside and outside. The surface can be extracted
from SDFs easily via Marching Cubes (MC) (Lorensen & Cline, 1987), Dual Contouring (Ju et al.,
2002) or their variants (Ju et al., 2002; Doi & Koide, 1991; Shen et al., 2021). However, SDF can
only represent watertight shapes and cannot represent more general shapes, such as those with open
boundaries and multi-layers, limiting its applications. By contrast, UDF, representing the absolute
distance to the closest surface, allows for the representation of more general shapes. However, ex-
tracting surfaces from UDFs is much more difficult than SDFs, although several methods (Guillard
et al., 2022; Ye et al., 2022; Chen et al., 2022; Zhang et al., 2023; Ren et al., 2023; Zhou et al., 2022)
modified from MC and DC have been recently presented to extract surfaces from UDFs.

When extracting surfaces from SDFs and UDFs, MC-based methods compute the intersection point
on each cube edge by interpolating the ratio of the distance values at the two endpoints of the
edge. However, since this distance reflects the closest surface, inaccuracies may arise when there is
another surface closer to one or both endpoints, leading to erroneous intersection points, as shown
in Fig. 1a. Similarly, for DC-based methods (see Fig. 1b), an inaccurately calculated intersection
point on the edge can lead to an incorrect solution of the quadratic error function within the cube.
The differentiable properties of SDFs and UDFs, specifically their spatial gradients, are critical
for surface extraction and offer notable advantages. However, the use of distance fields results in
gradients that are meaningless in certain regions, such as at points equidistant from two surfaces
(Fig. 1c), or even directly on the surface for UDFs. These limitations of SDFs and UDFs can
introduce distortions during surface extraction.
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(a) (b)

=

(c) (d)

Figure 1: Visual comparisons of various implicit
geometry representations and surface extraction
methods. The gray points and gray line segments
denote the vertices and edges of the cubes, respec-
tively. The blue lines indicate the ground truth
surface, while the orange lines represent the re-
constructed surfaces. Green points points mark
the correctly interpolated points on the edges,
whereas red points indicate interpolation errors.
The pink arrows and pink lines represent ori-
ented and unoriented normal vectors, respectively.
(a) MC. (b) DC. (c) Gradient of distance fields.
(d) Ours.

Distance fields like SDF and UDF focus on the clos-
est distances of individual spatial points to the sur-
face. However, surface extraction from these fields
often introduces distortions. As analyzed previously,
both MC-based and DC-based methods rely on inter-
polation along each edge (line segment) of the cubes
during surface extraction. Therefore, a natural ap-
proach is to shift the focus from individual points to
line segments in 3D space. So can we build a field re-
flecting the spatial relationship between the line seg-
ment and the surface? Building on this intuition, we
propose Shape as Line Segments (SALS), a precise
and versatile implicit surface representation that cen-
ters on spatial line segments. SALS consists of two
key components: 1) a differentiable line segment
field (LSF) that captures the spatial relationship be-
tween a query line segment and the surface, and 2)
an edge-based dual contouring approach to extract
the surface from the LSF. As illustrated in Fig. 1d,
our method focuses on line segments, avoiding the
distortions typically introduced by SDFs and UDFs
when extracting surfaces. Additionally, we establish
a relationship between the unoriented surface normal
and the proposed LSF, which facilitates surface ex-
traction from LSFs. Based on SALS, we develop a
neural surface representation technique and a surface
reconstruction method from point clouds. Extensive
experiments on diverse geometric data demonstrate
the significant superiority of SALS over state-of-the-art methods.

In summary, we have made the following key contributions:
• a novel, accurate, and efficient implicit geometry representation, as well as its neural implemen-

tation, termed the line segment field (LSF), capable of handling shapes with arbitrary structures;

• a new surface extraction algorithm specifically designed for LSFs;

• a highly accurate, efficient, and generalizable learning pipeline for surface reconstruction from
3D point clouds.

2 RELATED WORK

Implicit Geometry Representation. Implicit geometry representations use the isosurface of a func-
tion or field to define a surface. Methods such as ONet (Mescheder et al., 2019), IF-Net (Chibane
et al., 2020a), CONet (Peng et al., 2020), SPSR (Kazhdan & Hoppe, 2013), SAP (Peng et al., 2021),
and POCO (Boulch & Marlet, 2022) employ the binary occupancy field (BOF) to represent surfaces
by dividing the space into two regions—inside and outside the surface. This approach formulates
the problem as binary classification, where the isosurface at a value of 0.5 defines the surface. Com-
pared to BOFs, signed distance fields (SDFs) offer a more accurate representation by incorporating
distance and using signs to indicate inside and outside regions. DeepSDF (Park et al., 2019) and
DeepLS (Chabra et al., 2020) optimize latent vectors using an auto-decoder to refine SDFs, while
NeuralPull (Baorui et al., 2021) and OSP (Ma et al., 2022) focus on the gradients of SDFs, pulling
points onto the surface to guide SDFs. Some traditional methods can also be integrated with neural
networks; for instance, DeepIMLS (Liu et al., 2021) and DOG (Wang et al., 2022) adapt implicit
moving least-squares (IMLS) (Kolluri, 2008) to estimate SDFs. Recently, methods like (Wang et al.,
2021; 2023; Meng et al., 2023) utilize SDFs in the volume rendering pipeline, and utilize image in-
formation as supervision to optimize the SDFs.

BOFs and SDFs are limited to representing watertight shapes and cannot handle more general ge-
ometries, such as open surfaces with boundaries or non-manifold surfaces. The unsigned distance
field (UDF), the absolute value of SDF, is capable of representing more general shapes. NDF
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(Chibane et al., 2020b) employs 3D CNNs to regress UDFs from voxelized point clouds and gener-
ates dense point clouds by adjusting points according to UDF gradients. Building on previous work
(Baorui et al., 2021; Ma et al., 2022), CAP-UDF (Zhou et al., 2022) applies a field consistency con-
straint to achieve consistency-aware UDFs. To improve reconstruction accuracy and generalizabil-
ity, GeoUDF (Ren et al., 2023) leverages the geometric properties of point clouds to predict UDFs,
decoupling UDF from its gradients. Methods like NueralUDF(Long et al., 2023) and NeUDF(Liu
et al., 2023) incorporate UDFs to represent the objects in the volume rendering pipeline. Beyond
distance fields, other types of implicit fields have also been developed to represent surfaces (Ye et al.,
2022; Lu et al., 2024).

Surface Extraction from Implicit Geometry Representations. Marching Cubes (MC) (Lorensen
& Cline, 1987) is the most widely used method for extracting surfaces from BOFs and SDFs. March-
ing Tetrahedra (Doi & Koide, 1991) and its variant (Shen et al., 2021) further divide the space into
tetrahedra, a simpler cell than cubes. However, these methods are not applicable to UDFs due to
the lack of inside/outside information. NDF (Chibane et al., 2020b) addresses this limitation by
generating a much denser point cloud and then using the ball-pivoting algorithm (Bernardini et al.,
1999) to create triangle meshes.

GIFS (Ye et al., 2022) employs a classifier to determine whether each edge of the cubes intersects
the surface and then selects the closest match from the MC lookup table to extract triangles. In con-
trast, GeoUDF (Ren et al., 2023) uses UDF and its gradient to determine edge-surface intersections.
MeshUDF (Guillard et al., 2022) and CAP-UDF (Zhou et al., 2022) adopt a different approach by
using one vertex of the cube as a reference and computing the inner product of the UDF gradient
with the remaining vertices. This converts a UDF into an SDF within the cube based on the sign of
the inner product, allowing triangle extraction through MC. However, this method lacks robustness,
often mispredicting faces at edges and corners. DCUDF (Hou et al., 2023) does not directly extract
the surface, it first utilizes MC to extract an inflated surface, then the UDF gradients are used to
refine the vertices.

Compared to these MC-based surface extraction techniques, dual contouring (DC) (Ju et al., 2002)
preserves sharp surface features by solving a quadratic error function (QEF) in each cube. DC
can be applied to BOFs, SDFs, and UDFs alike. Recently, NDC (Chen et al., 2022) improves DC
by leveraging neural networks to solve QEFs, and DualMesh (Zhang et al., 2023) by introducing
subsampling within each cube.

3 PROPOSED METHOD

As analyzed previously, existing implicit geometry representations, such as SDF and UDF, primarily
focus on the closest distance from individual points to the surface, which can introduce distortion
during surface extraction. Moreover, their differentiable properties, such as the gradient of UDF, be-
come ill-defined at certain critical positions, further reducing the accuracy of the extracted surfaces.

(a) (b)

Figure 2: Visual illustration of the two attributes of the
query segments: (a) o and (b) s.

Unlike previous approaches, our method is fo-
cused on spatial line segments to capture the
geometric relationship between the segments
and the surface. Specifically, we introduce a
line segment field (LSF) to represent this spa-
tial relationship (Sec. 3.1). We then propose
edge-based dual contouring (E-DC) to extract
the triangle mesh from the LSF (Sec. 3.2).
Finally, based on LSF and E-DC, we propose
neural shape representation (Sec. 3.3) and a
new pipeline for reconstructing surfaces from
3D point clouds (Sec. 3.4).

3.1 DEFINITION OF LINE SEGMENT FIELD

Unlike existing implicit representations such as BOF and SDF, which concentrate on individual
points in space, our line segment field (LSF) emphasizes spatial line segments. Let uv ∈ Ω be a
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query line segment with u,v ∈ R3 being the two end-points and Ω the set of all line segments in
space and S a 3D surface. The spatial relationship between uv and S can be classified into two
types: intersecting and non-intersecting. If intersecting, the intersection point lies on uv, whose
position can be represented as a linear combination of u and v.

Under such an intuition, we assign two attributes to the line segment uv: a binary intersection flag
o(uv) ∈ {0, 1} and an intersection ratio s(uv) ∈ [0, 1]1. More precisely, as illustrated in Fig.
2a, when o(uv) = 1, it indicates the line segment uv intersects the surface S, whereas o(uv) = 0
signifies non-intersection. The intersection ratio s(uv) specifies the location of the intersection
point, denoted as p ∈ R3, under the case o(uv) = 1; moreover, we have p = s(uv)u + (1 −
s(uv))v, as shown in Fig. 2b. Thus, by using the query line segments in Ω, the surface S could be
represented implicitly as

S = {s(uv)u+ (1− s(uv))v| o(uv) = 1, uv ∈ Ω}. (1)

Figure 3: Local geometry
of the surface near the inter-
section point.

Given that o and s characterize the local geometric properties of the sur-
face S around the query line segment uv, we utilize the tangent plane
of the surface at the intersection point p to represent the local geometry.
Specifically, let n ∈ R3 be the unoriented normal vector at p, and p0

any point on the tangent plane. It is worth noting that n and p0 are fixed,
independent of uv. Theorem 1 demonstrates that the normal vector n is
parallel to the spatial gradient of s with respect to u and v, and provides
a formal proof of this relationship.

Theorem 1. The unoriented normal vector n at the intersection point
p between the ling segment uv and surface S is parallel to the spatial
gradient of s, ∇us and ∇vs.
Proof. According to Fig. 3, the intersection ratio s is calculated as

s =
n⊤(v − p0)

n⊤(v − u)
.

Then, its gradient for u and v is

∇us =
n⊤(v − p0)

(n⊤(v − u))2
n, ∇vs = − n⊤(v − p0)

(n⊤(v − u))2
n.

Obviously, they are parallel to n.

3.2 SURFACE EXTRACTION FROM LSFS VIA EDGE-BASED DUAL CONTOURING

(a) (b)
Figure 4: Visual illustration of surface extraction
from an LSF. (a) QEF in each cube. (b) Triangle
extraction in adjacency cubes.

Building upon the principles of dual contouring (Ju
et al., 2002), we propose edge-based dual contour-
ing (E-DC) to extract the triangle meshes indicated
by a given LSF. Specifically, as shown in Fig. 4a,
for a given cube C with its set of edges denoted as
E = {uivi}12i=1, the normal vector ni at uivi’s inter-
section point pi can be calculated through Theorem
1. Specifically, we use the gradient of the endpoint
nearest to the intersection point to determine the nor-
mal vector’s direction at that point,

ni =

{
n = ∇us/||∇us||, if s(uivi) ≤ 0.5

n = ∇vs/||∇vs||, otherwise
. (2)

The intersection point within the cube can be determined through optimizing the following quadratic
error function (QEF):

x̂ = argmin
x

∑
uivi∈E

(oi(x− pi)
⊤ni)

2, (3)

1In practice, the inputs of o and s are the two endpoints of the line segments.
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We refer readers to Appendix B for the solution to Eq. (3).

For any edge uv that intersects the surface, i.e., o(uv) = 1, it belongs to four cubes, denoted as
{Ci}4i=1, as shown in Fig. 4b. By solving the QEFs in these cubes, we obtain intersection points
{x̂i}4i=1 within these four cubes, which can be connected to form a quadrilateral. However, since
quadrilateral meshes are not widely used in practice, it is necessary to subdivide the quadrilateral
into triangles to generate a triangular mesh. Importantly, the intersection point p on the edge uv lies
on the surface, enabling the quadrilateral to be divided into four triangles. By applying this process
to all edges intersecting the surface, we can extract a triangle mesh from a given LSF.

Remark. Our proposed E-DC is significantly different from previous DC-based methods, such as
NDC (Chen et al., 2022) and DualMesh (Zhang et al., 2023). Both NDC and DualMesh focus only
on surface extraction from implicit representations, like SDFs or USDFs. NDC utilizes a trained
network to predict the intersection point in each cube, and DualMesh adapts the traditional DC for
neural UDFs. Differently, our proposed E-DC is an optimization-based surface extraction method,
specifically designed to extract surfaces from LSF.

3.3 LSF-BASED NEURAL IMPLICIT REPRESENTATION

In this section, we employ a neural network to model the LSF of a given shape, where a lightweight
MLP is trained with a set of ground-truth attributed line segments sampled in the space. After
training, the MLP can predict the attributes o and s for any query line segment, producing the LSF,
where we can utilize E-DC to extract a triangle mesh.

Technically, for a typical query line segment uv, we concatenate its two endpoints u and v, which
are then fed into an MLP parameterized with θ, outputting the corresponding values for o and
s. It is worth noting that the concatenation is in an orderly manner, and the output intersection
ratio s always indicates the ratio of the distance from the intersection point to the endpoint at the
second concatenated position to the total length of the line segment, while the intersection flag o is
independent of the concatenation order. Such a process is described as

{o, s} = MLPθ(u||v), (4)

where || denotes the concatenation of two vectors. The surface normal at the intersection points on
the line segments can be determined by computing the gradient of s via backpropagation.

We optimize θ by minimizing the following loss function:

L = E
uv∈Ω∗

(λ1BCE(o(uv), o
∗(uv)) + λ2o

∗(uv)|s(uv)− s∗(uv)|) , (5)

where BCW(·, ·) represents Binary Cross Entropy, Ω∗ is the set of sampled line segments, and o∗ and
s∗ are the ground-truth intersection flag and ratio, respectively. See Sec. 4.1 for the experimental
comparisons and analyses.

3.4 LEARNING LSFS FROM 3D POINT CLOUDS FOR SURFACE RECONSTRUCTION

K-NN
Index

… …

… …

… …

MLP1

&
MaxPool

MLP2

&
MaxPool

MLP3

Figure 5: Flowchart of our learning-based surface re-
construction method from 3D point clouds.

Built upon the LSF introduced in Sec. 3.1,
we propose a novel learning-based pipeline for
reconstructing surfaces from 3D point clouds.
After training, this pipeline is capable of pre-
dicting the LSF for any given 3D point cloud,
enabling the subsequent application of our E-
DC in Sec. 3.2 to extract a precise triangle
mesh.

Denote by P a 3D point cloud. Let N (uv) =
{pi}Ki=1 be a patch of K points associated with
a typical query line segment uv, which is de-
rived by finding the K-nearest neighbors of the
midpoint of uv in P. Also, let Nu(uv) :=
{pi − u}Ki=1 and Nv(uv) := {pi − v}Ki=1.
Calculating the attributes of uv against the un-
derlying surface of P is a local geometry problem, which pertains only to N (uv). Based on this
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observation, we construct our surface reconstruction pipeline using the following network architec-
ture, as illustrated in Fig. 5: two MLPs followed by a MaxPool operation are first utilized to extract
features from these two localized patches:

Fu = MaxPool
(
MLPθ1

(Nu(uv))
)
, Fv = MaxPool

(
MLPθ2

(Nv(uv))
)
, (6)

where θ1 and θ2 are the sets of network parameters. The resulting features Fu and Fv are then
concatenated and fed into another MLP parameterized with θ3 to predict the corresponding o and s:

{o, s} = MLPθ3
(Fu||Fv). (7)

We minimize the loss function defined in Eq. (5) to train the network. See Sec. 4.1 for the experi-
mental comparisons and analyses.

4 EXPERIMENTS

4.1 EVALUATION ON NEURAL IMPLICIT REPRESENTATION

Datasets. We randomly selected 50 shapes from the ABC dataset (Koch et al., 2019) to conduct ex-
periments. Additionally, we constructed a more complex dataset named non-manifold ABC dataset,
in which each of the 50 shapes was produced by intersecting two randomly selected shapes for
creating non-manifold structures. Besides, we utilized shapes from other commonly used datasets,
including open-boundary clothes from the DeepFashion3D dataset (Zhu et al., 2020), and complex
shapes from the Famous dataset (Erler et al., 2020). All shapes were rescaled to a bounding cube
with an edge length of 2 and centered at the origin.

Implementation Details. We employed an 8-layer MLP, with each layer comprising 512 neurons.
All layers, except the final one, use the Softplus activation function (β = 100, as recommended
in (Atzmon & Lipman, 2020)). The final layer consists of 2 neurons, followed by a Sigmoid acti-
vation function. We sampled 10 million line segments within the space to optimize the MLP. The
model was trained for 100,000 epochs with a batch size of 10,000, using the ADAMW optimizer
(Loshchilov, 2017) with an initial learning rate of 0.001. The learning rate was progressively ad-
justed using cosine annealing (Loshchilov & Hutter, 2016), with a minimum learning rate of 10−5.
When extracting the surface, the resolution of grids used in E-DC was set to 128, keeping the same
as the baseline methods. To measure the reconstructed quality quantitatively, we sample 105 points
from each surface to calculate L1-CD, Normal Consistency (NC), and F-Score with the threshold of
0.005 and 0.01 with respect to the ground truth surfaces.

Methods under Comparison. We compared our method against three commonly used implicit
geometry representations, i.e., BOF, SDF, and UDF, using MLPs with the same architectures as
ours for modeling. For surface extraction methods from implicit representations, we benchmarked
SALS against MC (Lorensen & Cline, 1987), NDC (Chen et al., 2022), MeshUDF (Guillard et al.,
2022), DCUDF (Hou et al., 2023), and DualMesh (Zhang et al., 2023). Additionally, we included
two recently proposed methods, i.e., NGLOD (Takikawa et al., 2021) and UODF (Lu et al., 2024),
maintaining the settings consistent with their original papers.

Results. We quantitatively compared those methods on the ABC and non-manifold ABC datasets
in Table 1, where it can be seen that our method outperforms the other methods in terms of all
metrics, especially on the non-manifold ABC dataset. The visual results are shown in Fig. 6, and
obviously, the surfaces represented by our method can preserve detailed structures, including the
non-manifold ones. Our method only built upon a simple MLP can represent shapes with higher
accuracy, compared with the relatively complex methods, such as NGLOD and UODF, which is
credited to our novel LSF. BOF represents the probability that a query point is either inside or outside
the surface, and it is less accurate than other methods. Surfaces extracted from the distance fields
present distortion at the detailed regions since they rely on the closest distance of individual points
to the surface. Therefore, under the same MLP settings, these methods exhibit low representation
accuracy. UODF utilizes SPSR (Kazhdan & Hoppe, 2013) to extract the surface, decreasing its
accuracy. When handling shapes with non-manifold structures, the representation accuracy of both
BOF and SDF drops significantly, as they are inherently unable to represent non-manifold geometry.
While UDF can represent non-manifold structures, its reliance on gradients for surface extraction
leads to inaccuracies, particularly at non-manifold regions, which in turn reduces representation
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Table 1: Quantitative comparisons of different neural implicit representations with various surface extraction
methods on the ABC and non-manifold ABC datasets. The best results are highlighted in bold.

Methods # Param CD (10−3) ↓ NC ↑ F1-0.005 ↑ F1-0.01 ↑

A
B

C
Neural BOF + MC (Lorensen & Cline, 1987) 1.84M 6.385 0.911 0.528 0.941
Neural SDF + MC (Lorensen & Cline, 1987) 1.84M 5.810 0.966 0.618 0.946
Neural SDF + NDC (Chen et al., 2022) 2.07M 4.607 0.967 0.627 0.963
NGLOD (Takikawa et al., 2021) 10.14M 6.070 0.957 0.541 0.919
Neural UDF + MeshUDF (Guillard et al., 2022) 1.84M 5.075 0.967 0.578 0.937
Neural UDF + NDC (Chen et al., 2022) 2.07M 4.944 0.955 0.584 0.942
Neural UDF + DCUDF (Hou et al., 2023) 1.84M 4.593 0.971 0.625 0.962
Neural UDF + DualMesh (Zhang et al., 2023) 1.84M 4.725 0.978 0.609 0.952
UODF (Lu et al., 2024) 5.55M 4.794 0.977 0.603 0.953
SALS (Ours) 1.84M 4.493 0.980 0.638 0.965

N
on

-m
an

if
ol

d
A

B
C

Neural BOF + MC (Lorensen & Cline, 1987) 1.84M 14.371 0.886 0.356 0.810
Neural SDF + MC (Lorensen & Cline, 1987) 1.84M 13.567 0.929 0.422 0.822
Neural SDF + NDC (Chen et al., 2022) 2.07M 8.642 0.944 0.422 0.835
NGLOD (Takikawa et al., 2021) 10.14M 10.250 0.913 0.301 0.750
Neural UDF + MeshUDF (Guillard et al., 2022) 1.84M 6.465 0.948 0.392 0.855
Neural UDF + NDC (Chen et al., 2022) 2.07M 14.893 0.932 0.382 0.849
Neural UDF + DCUDF (Hou et al., 2023) 1.84M 6.111 0.954 0.427 0.886
Neural UDF + DualMesh (Zhang et al., 2023) 1.84M 6.706 0.961 0.367 0.823
UODF (Lu et al., 2024) 5.55M 6.746 0.953 0.367 0.835
SALS (Ours) 1.84M 5.949 0.963 0.437 0.889

accuracy. Additionally, Fig. 7 visualizes the results of our method on other general shapes from
the DeepFashion3D and Famous datasets. Obviously, the extracted surface can preserve detailed
structures. We refer the readers to Appendix C for more results.

4.2 EVALUATION ON SURFACE RECONSTRUCTION FROM 3D POINT CLOUDS

Datasets. We employed a significantly smaller training set compared to previous methods, compris-
ing 100 shapes selected from the Thingi10K dataset (Zhou & Jacobson, 2016) to train our network.
For testing, we utilized the ABC and non-manifold ABC datasets, as well as more diverse shapes
from the DeepFashion3D (Zhu et al., 2020), Synthetic Rooms (Peng et al., 2020) and Waymo (Sun
et al., 2020) datasets. Each shape contains 40,000 randomly sampled points.

Implementation Details. Each of the three MLPs in Fig. 5 consists of 4 layers, with 256 neurons
per layer. All layers, except the final one, used the LeakyReLU activation function. The patch size
for K-NN is set to K = 20. The network was trained for 400 epochs with a batch size of 4, where
5120 line segments were sampled for each shape at each iteration. The optimizer used was ADAMW
(Loshchilov, 2017), with an initial learning rate of 0.001, which was adjusted via cosine annealing
(Loshchilov & Hutter, 2016) to a minimum learning rate of 10−5. The grid resolution was set to 128
when performing surface extraction, keeping the same as the baseline methods.

Methods under Comparison. We compared our method against SOTA surface reconstruction
methods, including POCO (Boulch & Marlet, 2022), GIFS (Ye et al., 2022), CAP-UDF (Zhou et al.,
2022), and GeoUDF (Ren et al., 2023), whose settings were maintained the same as their original
papers for fair comparisons.

Results. Table 2 lists the quantitative results of different methods. It is obvious that our method
outperform baseline methods, especially on the non-manifold ABC datasets. Achieving such high-

Table 2: Quantitative comparisons of 3D point cloud-based surface reconstruction methods on the ABC and
non-manifold ABC datasets. The best results are highlighted in bold.

Method # Param CD (10−3) ↓ NC ↑ F1-0.005 ↑ F1-0.01 ↑

A
B

C

POCO (Boulch & Marlet, 2022) 12.79M 8.855 0.952 0.558 0.886
GIFS (Ye et al., 2022) 3.68M 5.726 0.940 0.471 0.923
CAP-UDF (Zhou et al., 2022) 0.46M 5.308 0.958 0.554 0.924
GeoUDF (Ren et al., 2023) 0.77M 4.678 0.970 0.615 0.957
SALS (Ours) 1.07M 4.560 0.973 0.630 0.962

N
on

-m
an

if
ol

d
A

B
C

POCO (Boulch & Marlet, 2022) 12.79M 16.830 0.905 0.269 0.658
GIFS (Ye et al., 2022) 3.68M 7.078 0.927 0.305 0.826
CAP-UDF (Zhou et al., 2022) 0.46M 7.280 0.929 0.357 0.833
GeoUDF (Ren et al., 2023) 0.77M 6.230 0.950 0.410 0.869
SALS (Ours) 1.07M 6.033 0.951 0.425 0.883
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DualMesh
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Figure 6: Visual comparisons of different neural implicit representations. ü Zoom in to see details.
precision reconstruction with so little training data and such a simple network structure is primarily
attributed to our proposed implicit geometry representation and the effective local geometry mod-
eling. The visual comparison is shown in Fig. 8, where our method can preserve detailed struc-
tures. Furthermore, Figs. 9 and 10 present the results of our method applied to additional shapes
and scenes from the DeepFashion3D, Synthetic Rooms, and Waymo datasets. Notably, the recon-
structed surfaces successfully capture fine structural details, highlighting the strong generalizability
and robustness of our approach across diverse datasets. We refer the reader to Appendix D for more
results.
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GT

Ours

Figure 7: Visual results on the DeepFashion3D and Famous datasets. ü Zoom in to see details.

(a) Input (b) POCO (c) GIFS (d) CAP-UDF (e) GeoUDF (f) Ours (g) GT
Figure 8: Visual comparisons of different point cloud surface reconstruction methods. ü Zoom in to see
details.

4.3 ABLATION STUDY

(a) w/o normal (b) w/ normal (c) GT

Figure 11: Extracted surfaces using E-DC without and
with normal.

We conducted comprehensive ablation studies
on the ABC dataset to show the rationality of
our design.

Spatial gradient of s. Theorem 1 demonstrates
that the normal vector at the intersection point is parallel to the spatial gradient of s, which is
crucial for accurate surface extraction. To validate this, we conducted experiments where, instead
of directly utilizing the normal vectors at the intersection points, we employed the center of the
intersection points within each cube as the solution for the QEF during surface extraction from the
LSF. As shown in Fig 11, removing normals from E-DC significantly reduces the ability to capture
fine surface details, as normals are essential for describing detailed structures. On the other way,
this also confirms the validity of Theorem 1.

Table 3: Representation accuracy under various resolutions of E-DC.
Res. Inf. Time GPU Mem. CD (10−3) NC F1-0.005 ↑ F1-0.01 ↑
64 1.099s 1.55GB 4.731 0.963 0.606 0.952
128 6.682s 4.78GB 4.493 0.980 0.638 0.965
192 19.663s 11.99GB 4.490 0.981 0.638 0.965

E-DC Resolution. We eval-
uated the accuracy of the ex-
tracted surfaces under varying
resolutions of E-CD, with the
numerical results presented in
Table 3. At lower resolutions, such as 64, the representation accuracy decreases significantly. How-
ever, increasing the resolution beyond 128, for instance to 192, does not yield substantial improve-
ments in accuracy despite requiring more computational resources. We also refer reviewers to Fig.
15 of Appendix C for the visual results. Table 4: Point cloud surface reconstruction accu-

racy under different K-NN sizes.

K CD (10−3) NC F1-0.005 ↑ F1-0.01 ↑
10 6.367 0.903 0.489 0.848
20 4.560 0.973 0.630 0.962
50 14.370 0.657 0.164 0.415

K-NN Size of Query Line Segments. When com-
puting the LSF for query line segments from a point
cloud, the size of the K-NN patch is a critical hy-
perparameter. To evaluate its impact, we tested the
accuracy of our method under different values of K.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Ours

GeoUDF

CAP-UDF

GIFS

Input

Figure 9: Visual results of point cloud surface reconstruction methods on DeepFashion3D and Synthetic
Rooms datasets. ü Zoom in to see details.

(a) Input (b) GeoUDF (c) Ours
Figure 10: Visual results of point cloud surface reconstruction methods on the Waymo dataset. ü Zoom in
to see details.
As listed in Table 4, setting K either too large or too small leads to a noticeable decrease in recon-
struction accuracy. We also refer reviewers to Fig. 20 of Appendix C for visual results.

Table 5: Point cloud surface reconstruction accu-
racy under different numbers of input points.

# Points CD (10−3) NC F1-0.005 ↑ F1-0.01 ↑
1× 104 4.842 0.953 0.608 0.948
4× 104 4.560 0.973 0.630 0.962
10× 104 4.514 0.977 0.636 0.964

Point Cloud Density. We evaluated the reconstruc-
tion accuracy of our method across different point
cloud densities to verify its robustness. The numer-
ical results, presented in Table 5, indicate a slight
decrease in accuracy when the point clouds become
sparser. However, increasing the number of points
does not result in significant improvements in accuracy, suggesting its robustness. We also refer
reviewers to Fig. 19 in Appendix for visual results.

5 CONCLUSION

We have introduced SALS, an accurate and flexible implicit geometry representation. We began
by analyzing the primary limitations of existing implicit representations, which are predominantly
based on distance fields. In contrast, SALS focuses on the spatial relationship between line segments
and the surface, resulting in greater accuracy than prior methods. Leveraging SALS, we proposed
both a neural shape representation approach and a learning pipeline of surface reconstruction from
point clouds, achieving superior performance over state-of-the-art methods. The effectiveness and
advantages of SALS underscore its potential to significantly advance the field of 3D geometric
modeling and processing.
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ETHICS STATEMENT

SALS is an accurate and versatile implicit surface representation capable of representing arbitrary
shapes. We have read and adhere to the Code of Ethics of ICLR 2025. To the best of our knowledge,
this study does not involve ethics issues.

REPRODUCIBILITY STATEMENT

We have included the source code in the Supplementary Material submitted to the system, and
detailed instructions for its usage are outlined in the ‘README.md’ file.
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Appendix

A DIFFERENCE FROM GIFS AND UODF

GIFS employs a classifier to predict whether a line segment intersects the surface. If an intersection
occurs, the intersection point on the line segment is interpolated using the UDF values of its two
endpoints. Then, it modifies the Marching Cubes (MC) algorithm to extract surfaces based on the
intersection status of each cube’s edges. In contrast, our SALS predicts an intersection ratio for
a given line segment, avoiding the interpolation errors introduced by UDFs, as discussed in Sec.
1. Furthermore, we propose E-DC to extract surfaces directly from our LSF. Experimental results
demonstrate the significant advantage of our method in terms of both reconstruction accuracy and
efficacy.

For a query point, UODF only predicts its distance to the surface along three fixed directions, making
it non-differentiable. Additionally, UODF does not offer a surface extraction method but instead
generates a dense point cloud, from which a masked Poisson method is used to reconstruct the mesh.
In contrast, our approach samples line segments across the entire space, develops their differentiable
properties, and utilizes the custom-designed E-DC for surface extraction.

B SOLUTION OF QEF

QEF can be solved using least squares method,

x̂ = (A⊤A)−1A⊤B, (8)

where matrix A and B are defined as

A =

(
......

−oini−
......

)
,

B =

 ......
−oip

⊤ni−
......

 .

(9)

Considering that A⊤A may be singular, directly calculating its inverse may get wrong results. We
first perform eigenvalue decomposition on the matrix,

A⊤A = U⊤ΣU, (10)

where U is an orthogonal matrix and Σ is a diagonal matrix, Σ = Diag(σ1, σ2, σ3), with σ1 ≥
σ2 ≥ σ3 representing the eigenvalues. Here we define the inverse matrix of Σ

Σ−1 =

(
Inv(σ1) 0 0

0 Inv(σ2) 0
0 0 Inv(σ3)

)
, (11)

where Inv is defined as

Inv(σ) =

{
1/σ, if σ > ϵ

0, else
. (12)

In our experiment, we set ϵ = 0.1.

C NEURAL IMPLICIT REPRESENTATION

Network Details. The last layer of the network uses a sigmoid function to constrain the output to
the range [0,1]. For the intersection flag, we apply a threshold to binarize the output. If the threshold
is set too low, some intersecting line segments may be incorrectly classified as non-intersecting,
resulting in holes when extracting the surface using E-DC. The number of holes can be reduced by
lowering the threshold for the intersection flag. In our experiments, the threshold was set to 0.1. We
have included visual results of the extracted surfaces under different thresholds in Fig. 12.
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(a) 0.8 (b) 0.5 (c) 0.2

(d) 0.1 (e) 0.05 (f) GT

Figure 12: Extracted surfaces under different thresholds for intersection flag.

Error Map. Fig. 13 presents the error maps of the reconstructed models shown in Fig. 6. The
results demonstrate that the reconstruction errors of models produced by our method are significantly
smaller than those of the baseline methods, particularly in regions with sharp features.

Correctness of Theorem 1. To verify the correctness of Theorem 1, we utilize two different kinds
of normal vectors in E-DC, random and zeros, and the visual comparison and error maps are shown
in Fig. 14. It can be seen that using the gradient of s as the direction of normal vectors could achieve
significant better reconstruction accuracy, demonstrating the correctness of Theorem 1.

Evaluation on Sharp Edges. Following previous methods (Chen et al., 2022), we utilize Edge
Chamfer Distance (ECD) and Edge F-score (EF1) to evaluate the preservation of sharp edges. The
results on the ABC dataset are shown in Table 6. Clearly, under the evaluation metrics ECD and
EF1, our SALS significantly outperforms the baseline methods.

Table 6: Numerical comparison of different methods under ECD and EF1 metrics.

Method ECD (10−2) ↓ EF1 ↑
Neural BOF + MC 5.231 0.182
Neural SDF + MC 7.238 0.167
Neural SDF + NDC 2.501 0.526
NGLOD 28.249 0.044
Neural UDF + MeshUDF 6.651 0.169
Neural UDF + NDC 2.632 0.476
Neural UDF + DCUDF 2.828 0.058
Neural UDF + DualMesh 2.870 0.609
UODF 55.823 0.034
SALS (Ours) 1.970 0.601

Different E-DC Resolutions. Fig. 15 demonstrates the visual results of different E-DC resolutions
on the selected shapes from the Famous dataset. When the resolution is set to 64, the extracted
surfaces do not show significant distortion.

Positional Encoding. Positional Encoding (PE) is a widely adopted technique in implicit repre-
sentations. However, incorporating PE into our SALS framework leads to a reduction in surface
reconstruction quality. As illustrated in Fig. 16, the use of PE introduces floating artifacts around
the extracted surface, diminishing the overall representation accuracy.
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Figure 13: Visual comparisons of different neural implicit representations. ü Zoom in to see details.

Efficiency Analysis. In the task of neural implicit representation (Sec. 3.3), the time cost consists
of two parts, training/overfitting time and surface extraction time. We have recorded the runtime for
these two parts, as shown in Table 7. It is worth noting that the resolution of Marching Cubes, Dual
Contouring, and our E-DC is 128. During training, our method takes slightly longer compared to
neural BOF/SDF/UDF because it processes a 6D input vector and outputs a 2D vector, unlike the
latter approaches which take a 3D input vector and produce a scalar output. NGLOD and UODF
employ complex architectures, resulting in longer training times. In terms of surface extraction time,
our method is slower than MC, MeshUDF, and DualMesh but significantly faster than DCUDF and
NDC.

Runtime of E-DC. We measured the runtime for calculating intersection points in each cube and
performing triangle extraction, as shown in Table 8. The results demonstrate that our E-DC is
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(a) Random (b) Zeros

(c) Gradient of s
0

0.004

(d) GT

Figure 14: Extracted surfaces using E-DC with different estimated normal vectors. ü Zoom in to see details.

GT

192

128

64

Figure 15: Visual results of different E-DC resolutions on the selected shapes from the Famous dataset.
ü Zoom in to see details.

faster than NDC in terms of intersection point calculating in each cube and triangle extraction. This
efficiency is due to our method not relying on a neural network to estimate the intersection points
within each cube.
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GT w/o PE Dim PE=6 Dim PE=10

Figure 16: Visual comparison of shape representation with and without PE in the MLP. ü Zoom in to see
details.

Table 7: Running time of different representation methods.

Method Training Time (min) Inference Time (s)
Neural BOF + MC 10.02 0.57
Neural SDF + MC 10.34 0.60
Neural SDF + NDC 7.41
NGLOD 30.14 1.02
Neural UDF + MeshUDF

10.56

1.57
Neural UDF + NDC 6.983
Neural UDF + DCUDF 68.81
Neural UDF + Dual Mesh 1.69
UODF 185.68 10.64
SALS (Ours) 11.56 2.96

D SURFACE RECONSTRUCTION FROM POINT CLOUDS

Error Maps. Fig. 17 shows the error maps of the reconstructed models shown in Fig. 8, demon-
strating that the reconstruction errors of the models produced by our method are significantly smaller
than those of the baseline methods, especially in regions with sharp features.

Additional Visual Results. Fig. 18 shows additional visual results on the ABC dataset.

Evaluation on Sharp Edges. We utilize ECD and EF1 to evaluate the preservation of sharp edges
in the reconstructed surfaces from point clouds. The results on the ABC dataset are shown in Table
9. Clearly, under the evaluation metrics ECD and EF1, our SALS significantly outperforms the
baseline methods.

Different Point Cloud Densities. Fig. 19 illustrates the reconstructed surfaces under varying input
point cloud densities. Notably, reducing the point cloud density does not lead to a significant drop
in reconstruction accuracy, underscoring the robustness of our method to variations in input point
cloud density.

Different K-NN Patch Sizes. Fig. 20 shows the reconstructed surfaces under different K-NN
patch sizes. We also tested different K-NN patch sizes on point clouds with different densities, the
numerical results are shown in Table 10. It can be seen that the variation trend of K-NN patch size is
similar across point clouds with different densities and datasets, i.e., too large or small K-NN patch
size can lead to a decrease in reconstruction accuracy.
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Table 8: Comparison of runtime between NDC and our E-DC..

Method Calculate Intersection Points (s) Triangle Extraction (s) Total Time (s)
NDC 0.151 0.045 0.196
E-DC (Ours) 0.129 0.005 0.134

(a) Input (b) POCO (c) GIFS (d) CAP-UDF (e) GeoUDF (f) Ours

0 0.008

Figure 17: Visual comparisons of different point cloud surface reconstruction methods. ü Zoom in to see
details.

Efficiency Analysis. In the task of surface reconstruction from point clouds (Sec. 3.4), the inference
times of different methods are shown in Table 11. Our method is comparable to POCO and GeoUDF
but faster than GIFS. CAP-UDF is an optimization-based method, which requires more time.

E LIMITATION

Unlike previous implicit representations that primarily focus on individual points in 3D space, our
proposed SALS targets line segments in 3D space, which introduces greater complexity. Conse-
quently, when the number of sampled line segments is limited, the network struggles to accurately
model the LSF, leading to distortions in the reconstructed surfaces, as shown in Table 12.

Table 9: Numerical comparison of different point cloud surface reconstruction methods under ECD and EF1
metrics.

Method ECD (1e-2) EF1
POCO 14.661 0.069
GIFS 7.669 0.105
CAP-UDF 11.022 0.140
GeoUDF 14.818 0.067
Ours 3.480 0.432
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Input

Ours

GT

Figure 18: Additional visual results on the ABC dataset. ü Zoom in to see details.

10000 40000 100000 GT

Figure 19: Visual results of different input point cloud densities. ü Zoom in to see details.

Input 10 20 50 GT

Figure 20: Visual comparison of reconstructed surfaces under different K-NN patch sizes. ü Zoom in to see
details.
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Table 10: Surface reconstruction of point clouds with varying densities under different K-NN sizes.

Dataset # Points K CD (10−3) ↓ NC F1-0.005 ↑ F1-0.01 ↑

ABC

10000
10 9.852 0.840 0.367 0.685
20 4.842 0.953 0.608 0.948
50 11.504 0.609 0.163 0.524

40000
10 6.367 0.903 0.489 0.848
20 4.560 0.973 0.630 0.962
50 14.370 0.657 0.164 0.415

100000
10 5.547 0.930 0.541 0.902
20 4.514 0.977 0.636 0.964
50 29.224 0.643 0.068 0.170

non-manifold ABC

10000
10 13.956 0.754 0.188 0.512
20 6.992 0.857 0.441 0.818
50 13.466 0.576 0.088 0.399

40000
10 8.502 0.845 0.291 0.724
20 6.033 0.951 0.425 0.883
50 14.565 0.650 0.144 0.456

100000
10 8.494 0.845 0.291 0.725
20 4.733 0.956 0.613 0.949
50 14.562 0.651 0.144 0.456

Table 11: Running time of different point cloud surface reconstruction methods.

Method POCO GIFS CAP-UDF GeoUDF SALS (Ours)
Inference Time (s) 13.66 45.57 906.34 15.269 14.38

Table 12: Numerical results under different numbers of samples.

# Samples CD (10−3) ↓ NC F1-0.005 ↑ F1-0.01 ↑
100K 19.200 0.778 0.304 — 0.565
500K 8.086 0.923 0.542 0.862
1M 5.242 0.962 0.609 0.937
5M 4.623 0.976 0.630 0.959

10M 4.493 0.980 0.638 0.965
20M 4.691 0.975 0.629 0.956
40M 4.534 0.979 0.635 0.963
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