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Abstract

Accurately interpreting natural language com-001
mands is crucial for deploying autonomous002
unmanned aerial vehicles (UAVs) in indus-003
trial environments. This study introduces the004
UAVIntent dataset by systematically using 16005
Myers-Briggs Type Indicator (MBTI) person-006
ality types and drone operator roles for syn-007
thesizing the dataset with One-Shot Chain-of-008
Thought (CoT) based dataset pipeline. The009
dataset consists of 122 distinct command types010
derived from MAVLink documentation, total-011
ing 19,088 data points.012

We conducted extensive experiments on this013
dataset, evaluating different approaches for014
converting natural language instructions into015
MAVLink-based commands and extraction016
of parameters by fine-tuning multiple small017
language models (SLMs) and a retrieval-018
augmented generation (RAG) framework lever-019
aging Phi-3. Among SLMs, DistilBERT020
achieves the highest command classification021
accuracy (99.22%), outperforming BART-Base022
(97.65%), BART-Large (98.83%) and RAG023
+ Phi-3 (97.42%). For parameter extraction,024
RAG + Phi-3 attains the highest exact match025
accuracy (90.74%) and slot-wise accuracy026
(95.47%), but at a significantly higher compu-027
tational cost. DistilBERT , while less accurate028
(82.34% exact match, 92.35% slot-wise), offers029
a more time-efficient alternative for real-time030
UAV command processing.031

1 Introduction032

Unmanned Aerial Vehicles (UAVs), commonly033

referred to as drones, are being increasingly uti-034

lized across domains such as defense, surveil-035

lance, disaster response, and autonomous logis-036

tics (Javaid et al., 2024). The ability to interpret037

natural language commands accurately and effi-038

ciently is critical for enabling autonomous UAV039

operations in both structured and unstructured envi-040

ronments (Sikorski et al., 2024). Traditional UAV041

control pipelines rely on rigid, predefined scripting 042

interfaces, limiting adaptability and requiring man- 043

ual reconfiguration for different mission scenarios 044

(Javaid et al., 2024). 045

Recent advances in Natural Language Process- 046

ing (NLP) have made it increasingly feasible to 047

design UAV systems that respond to flexible hu- 048

man input rather than rigid control scripts (Tellex 049

et al., 2011; Brown et al., 2020). Leveraging pre- 050

trained language models helps reduce redundant 051

engineering efforts while enabling dynamic and 052

semantically rich command execution. However, 053

translating open-ended language into structured, 054

MAVLink-compatible instructions remains a key 055

challenge—particularly under constraints of real- 056

time execution and precision control (Wei et al., 057

2022; Lewis et al., 2020). 058

Command Text:
"Switch relay instance 0 on and off 5 times,
with each cycle lasting 3 seconds."

Intent: CycleRelay

Slots:

Name Value Description
instance 0 Relay instance number
count 5 Number of cycles
time 3 Cycle time in seconds

Figure 1: Example of a structured data point from the
MAVLingo dataset, illustrating the mapping between a
natural language command and its corresponding struc-
tured representation. The "intent" field identifies the
high-level UAV command (e.g., CycleRelay), while
the "slots" capture essential parameters (e.g., instance
ID, repetition count, duration).

To address these limitations, we introduce a 059

dataset for UAV command understanding that en- 060

ables intent classification and slot filling for struc- 061
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tured MAVLink command generation. Covering all062

122 MAVLink command types with over 19,000063

synthetic examples, the dataset includes role-based064

and personality-aware language variations. We065

benchmark four SLMs and LLMs using both fine-066

tuning and prompting, offering one of the first sys-067

tematic comparisons for joint intent-slot prediction,068

and analyzing trade-offs in accuracy, computational069

cost, and deployment efficiency.070

The remainder of this paper is organized as fol-071

lows: In Section 2, we review prior work on com-072

mand interpretation and language modeling across073

domains. Section 3 describes dataset generation074

process, annotation strategy, dataset statistics, and075

error analysis. Section 4 outlines the experimental076

setup, including model configurations and evalua-077

tion metrics. Section 5 presents a comprehensive078

analysis of model performance on classification079

and extraction tasks, inference efficiency, and real-080

world applicability. Finally, Section 6 concludes081

the paper with key findings and future research082

directions.083

2 Related Work084

The task of translating natural language into struc-085

tured, executable commands has been a longstand-086

ing research challenge in fields like semantic pars-087

ing and robotic instruction following. Early works088

like GeoQuery (Zelle and Mooney, 1996) and ATIS089

(Dahl et al., 1994) laid the groundwork for struc-090

tured query generation. More recent efforts have091

targeted physical domains. For instance, (Tellex092

et al., 2011) mapped language to navigation goals093

in robots, while (Misra et al., 2018) proposed a094

neural model for parsing natural instructions with095

visual observations for instruction execution. Simi-096

larly, (Matuszek et al., 2012) worked on grounded097

language understanding for robot perception and098

action.099

However, the focus of these efforts has been lim-100

ited to general robotics or indoor navigation. Works101

directly mapping to aviation control languages like102

MAVLink remain sparse, with most studies relying103

on fixed templates or hardcoded rules. Now we104

will discuses the datasets and approaches used in105

different domains.106

Datasets for grounded command learning have107

expanded from simple action domains to rich,108

multi-step tasks involving visual and contextual109

grounding. Dataset TEACh (Blukis et al., 2021),110

and capture navigation in complex environments.111

Synthetic datasets such as SCAN (Lake and Baroni, 112

2018) have been useful for compositional general- 113

ization. The approach used by (Chen et al., 2019) 114

for intent and slots classification over the snips 115

(Coucke et al., 2018) and ATIS (Dahl et al., 1994) 116

dataset. 117

Despite this progress, datasets combining opera- 118

tor context, psychological profiles, or role diversity 119

remain largely unexplored. While few works incor- 120

porate user roles in dialog systems, none leverage 121

MBTI-style (Myers, 2003) personality variation for 122

command expression diversity in UAV settings for 123

synthetic data generation. Our work addresses this 124

gap by systematically generating commands using 125

operator-role and personality-informed templates 126

aligned with MAVLink specifications (mav). 127

Slot filling and intent detection are foundational 128

tasks in task-oriented dialogue and command sys- 129

tems (Tur and De Mori, 2011). Joint modeling 130

approaches such as (Chen et al., 2019), SlotRefine 131

(Qin et al., 2020), and BERT-CRF () have been 132

shown to improve performance by sharing repre- 133

sentations between tasks. 134

However, most of these models are benchmarked 135

on standard NLP datasets like ATIS (Dahl et al., 136

1994) or SNIPS (Coucke et al., 2018) and not 137

adapted to domains requiring precise numerical 138

and spatial parameter extraction, such as UAV con- 139

trol. The need for real-valued slot prediction with 140

strict accuracy constraints is largely absent in ex- 141

isting literature. We address this with a MAVLink- 142

grounded dataset, and compare SLM-based fine- 143

tuning with LLM-based multi-stage prompting for 144

UAV-specific slot filling. Now we will discuss the 145

latest Prompt Engineering based approaches for 146

solving the NLP tasks. 147

The rise of prompting-based techniques for 148

LLMs has revitalized interest in zero-shot and 149

few-shot learning (Brown et al., 2020). Chain-of- 150

thought (CoT) prompting (Wei et al., 2022) and 151

tool-augmented LLMs (Chen et al., 2023) have im- 152

proved structured reasoning. RAG architectures 153

(Lewis et al., 2020) and retrieval-augmented de- 154

coding (Izacard and Grave, 2021) allow LLMs to 155

better reason over external structured documents 156

such as APIs and manuals. 157

While these models have achieved success in 158

question answering and code generation, their ef- 159

fectiveness in interpreting and executing low-level 160

UAV control instructions remains underexplored. 161

Our work introduces CommandPrompt Cascade, a 162

novel multi-stage prompting pipeline combining 163
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Phi-3.5 and GPT-4o, and benchmarks it against164

fine-tuned SLMs on command intent classification165

and slot extraction.166

To the best of our knowledge, no prior work has167

provided a comprehensive dataset that combines168

UAV-specific command structures, role-based op-169

erator variation, and psychological typing (MBTI)170

(Myers, 2003) for command classification from171

text. Additionally, there has been little exploration172

of the trade-offs between small model fine-tuning173

and multi-stage prompting with LLMs for real-time174

command interpretation. So there are various novel175

contribution of current research in understanding176

the effectiveness of prompting and there compari-177

son with SLM for the UAV Command classification178

from text in industrial settings.179

A Novel, Personality-Aware Dataset for UAV180

Command Understanding We present an ex-181

tended version of the MAVLingo dataset, con-182

sisting of 19,088 instances across 122 distinct183

MAVLink command types, systematically gener-184

ated using MBTI (Myers, 2003) personality types185

and drone operator roles to simulate diverse linguis-186

tic expressions in natural UAV command scenarios.187

Synthetic Data Generation Pipeline Aligned188

with MAVLink Standards We design a robust,189

structured pipeline for synthetic data generation,190

incorporating MAVLink command schemas, para-191

phrased natural language templates, and command192

slot annotations to bridge unstructured input and193

executable MAVLink messages.194

Comparative Evaluation of SLM Fine-Tuning195

vs. LLM Prompting We conduct a detailed evalu-196

ation of SLM-based fine-tuning approaches (Dis-197

tilBERT, BART-base, BART-large) against LLM198

prompting and RAG-based methods, analyzing per-199

formance on both intent classification and slot fill-200

ing.201

Empirical Trade-off Analysis: Accuracy vs.202

Efficiency We highlight the accuracy-efficiency203

trade-offs between fine-tuned lightweight mod-204

els and LLM pipelines, showing that DistilBERT205

achieves 99.22% intent accuracy with minimal in-206

ference cost, while RAG + Phi-3.5 achieves 95.47%207

slot-wise accuracy at higher compute overhead.208

3 Dataset209

Our research aims to develop a command classifica-210

tion dataset that enhances the operational efficiency211

of drone users by accurately mapping user instruc-212

tions to MAVLink commands. A well-structured213

and high-quality dataset is essential for improving 214

the precision of command classification models, en- 215

suring reliable communication between users and 216

autonomous drone systems. 217

Figure 2: Overview of the UAVIntent dataset generation
pipeline. The process begins by combining command
definitions (including command names and MAVLink-
compatible structures), drone operator characteristics
(role and MBTI-based personality type), and carefully
designed prompts (Few-Shot and Chain-of-Thought).
These inputs are fed into GPT 4(o) (OpenAI et al., 2024)
to generate natural language command instances.

3.1 Dataset Creation and Annotation 218

A systematic review of the MAVLink protocol 219

(MAVLink Contributors, 2024) yielded 157 com- 220

mands, of which 122 were retained (35 deprecated). 221

To enhance linguistic and behavioral diversity, we 222

incorporate operator roles and personality types of 223

MBTI (Myers, 2003) during data generation. 224

ChatGPT-4o was prompted using engineered 225

templates combining command details, role- 226

personality mappings, and output format con- 227

straints. Prompts produced natural language in- 228

structions with Chain-of-Thought reasoning, re- 229

turning structured JSON including intent, slots, 230

and descriptions. Each entry was annotated with 231

slot names, values, and intent. Figure 2 shows the 232

pipeline for the generation of the dataset. 233

Dataset Generation Phases: 234

• Phase 1: Initial Testing (n=38) — Identified 235

issues with missing parameters and format- 236

ting; 42% failure rate. 237

• Phase 2: Template Refinement — Enforced 238

parameter completeness, explicit enums, and 239

format clarification. 240

• Phase 3: Bulk Generation — Applied re- 241

fined prompts to systematically generate data 242

across command-role-MBTI combinations. 243
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• Phase 4: Human Validation — Reviewed by244

three annotators and one expert. Faulty entries245

were regenerated.246

Error Analysis247

Two recurring issues were identified in the gener-248

ated JSON outputs:249

(1) missing values in the "commands" field (affect-250

ing 4% of samples), and251

(2) blank "Mav_cmd_name" entries due to misclas-252

sification errors (impacting 40%). These issues253

were traced to limitations in prompt design and254

were resolved through improved template structur-255

ing and post-processing logic, ensuring both se-256

mantic accuracy and syntactic validity in the final257

outputs.258

3.2 Dataset Statistics259

The dataset comprises a total of 19,088 samples,260

generated from 122 unique MAVLink command261

classes. For each command, we aimed to create ap-262

proximately 160 samples (derived from 16 MBTI263

personality types × 10 samples per type) to en-264

sure linguistic diversity and behavioral variability.265

However, due to occasional generation inconsisten-266

cies—such as incomplete slot filling or incorrect267

formatting—some instances (e.g., only 9 instead268

of 10 per personality type) were either reduced or269

discarded when errors could not be automatically270

corrected. This pragmatic filtering ensured the fi-271

nal dataset retained only high-quality, structurally272

valid examples suitable for training and evaluation.273

Figure 3: Word cloud of slot descriptions extracted from
the MAVLingo dataset. Prominent terms such as alti-
tude, meter, longitude, and degree highlight frequently
used parameters in UAV command instructions. This vi-
sualization reflects the common structure and semantics
of drone control vocabulary.

The dataset covers 281 unique slot types, with274

0–7 slots per command (avg. 4.3). Common slots275

include altitude, yaw, latitude, and delay,276

spanning geospatial, temporal, and categorical di- 277

mensions. Slot descriptions are 85.2% textual and 278

14.8% numerical. Figure 3 represents a word cloud 279

of the slots present in the dataset. 280

4 Experiment and Methodology 281

This section presents the experimental setup, 282

methodologies, evaluation metrics, and results for 283

the task of command classification and parameter 284

extraction. Three different approaches were em- 285

ployed: 286

1. Fine-tuning a BART-based and BERT-based 287

Sequence Labeling Model (SLM) 288

2. Retrieval-Augmented Generation (RAG) with 289

Large Language Models (LLMs) 290

3. Prompt-Based Few-Shot Learning with LLMs 291

Each method follows a two-step process: (i) 292

identifying the command class from the given in- 293

struction and (ii) extracting relevant parameters, 294

followed by slot-filling to generate a structured 295

JSON output. 296

4.1 Experimental Setup 297

For fine-tuning, facebook/bart-base, 298

facebook/bart-large, and distilbert-base- 299

uncased were trained on the dataset using a 300

cross-entropy loss function. The training objective 301

was to classify (command types (CommandName) 302

and extract slot parameters with high accuracy. 303

Each model was optimized to effectively capture 304

the relationships between input commands and 305

their structured representations while maintaining 306

robust generalization across different command 307

variations. 308

The RAG-based approach integrated an exter- 309

nal retrieval mechanism with an LLM. This method 310

first retrieved relevant command descriptions be- 311

fore generating structured responses. 312

In the prompt-based approach, structured 313

prompts containing command descriptions, oper- 314

ator characteristics, and few-shot examples were 315

provided to the LLM. The model was instructed to 316

generate JSON-formatted outputs directly. 317

4.2 Dataset 318

Our dataset consists of textual input commands and 319

structured output containing slot values and a class 320

label, CommandName. The dataset is stored in 321

CSV format with two columns: Input (containing 322
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natural language instructions) and Output (contain-323

ing slot-value pairs and CommandName) in JSON324

format. The dataset follows the format :325

• Input: "Enable and reset the triggering sys-326

tem for all connected cameras while avoiding327

pause actions."328

• Output: {"enable" : 1, "reset" : 1, "pause" :329

-1, "target_camera_id": 0, "CommandName":330

30}331

The dataset comprises a total of 19,088 data points,332

which are divided into training and testing sets us-333

ing an 80:20 split. The training set consists of334

15,255 samples, while the test set contains 3,833335

samples. Additionally, the dataset includes 122336

unique command labels (CommandName), repre-337

senting different categories of commands.338

4.3 Evaluation Metrics339

The performance of all models was assessed using340

the following evaluation metrics:341

• Command Classification Metrics: Accu-342

racy, precision, recall, and F1-score were used343

to measure the effectiveness of predicting the344

correct CommandName. These metrics eval-345

uate the model’s ability to correctly classify346

commands while maintaining a balance be-347

tween precision and recall.348

• Slot Filling Metrics:349

Exact Match (EM): Measures the percentage350

of predictions that exactly match the ground351

truth JSON structure, ensuring the complete352

correctness of extracted slots.353

Slot-wise Accuracy: Assesses the correct-354

ness of individual slot predictions, providing355

a more detailed evaluation of the model’s abil-356

ity to extract parameters accurately.357

4.4 Hardware and Hyperparameters358

• Hardware: Experiments were performed on359

a system equipped with an NVIDIA RTX360

A5500 GPU.361

• Batch Size: 4362

• Learning Rate: 3e-5363

• Number of Epochs: 15364

• Weight Decay: 0.01 (used to mitigate overfit-365

ting)366

5 Results and Analysis 367

We evaluate two paradigms for converting nat- 368

ural language UAV commands into structured 369

MAVLink instructions: (i) fine-tuned Small Lan- 370

guage Models (SLMs), and (ii) prompting-based 371

Large Language Models (LLMs) using a RAG 372

framework. The performance is assessed using 373

command classification accuracy, slot extraction 374

metrics, and inference efficiency. 375

5.1 Classification and Extraction Performance 376

Table 1 and Table 2 summarize the performance 377

of all models on the intent classification and slot 378

extraction tasks, respectively. Among the SLMs, 379

DistilBERT achieved the highest classification 380

accuracy (99.22%), outperforming BART-Large 381

(98.83%), BART-Base (97.65%), and RAG + Phi-3 382

(97.42%). 383

While RAG + Phi-3 achieved the best slot-level 384

extraction performance, with 90.74% exact match 385

accuracy and 95.47% slot-wise accuracy (Table 2), 386

this improvement came at the cost of significantly 387

higher inference time, as discussed in the following 388

section. 389

Model Accuracy
(%) Precision Recall F1

DistilBERT 99.22 98.53 98.38 98.44
BART-Large 98.83 98.98 98.80 98.80
BART-Base 97.65 97.61 96.76 96.88
RAG + Phi-3 97.42 95.85 95.07 95.34
Prompt + Phi-3 49.18 - - -
Prompt + GPT-4o 59.43 - - -

Table 1: Intent classification performance: Performance
of various models on UAV command intent classifica-
tion. Metrics include accuracy, precision, recall, and
F1-score. DistilBERT achieves the highest overall ac-
curacy, while prompting-based LLMs underperform in
high-class cardinality settings.

Model EM
Accuracy (%)

Slot-wise
Accuracy (%)

DistilBERT 82.34 92.35
BART-Large 70.18 82.21
BART-Base 69.89 81.26
RAG + Phi-3 90.74 95.47

Table 2: Slot extraction performance across models.
RAG + Phi-3 achieves the highest exact match (EM)
and slot-wise accuracy, while DistilBERT provides a
strong balance between performance and efficiency.

While RAG + Phi-3 excelled in slot-level ex- 390

traction with 90.74% exact match accuracy and 391

95.47% slot-wise accuracy, it came at the cost of 392

significantly higher inference time, as discussed 393

below. 394
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5.2 Inference Time and Latency Behavior395

Figure 4 illustrates the normalized inference time396

distributions. DistilBERT exhibits a sharp, narrow397

peak indicating highly consistent and low-latency398

behavior. In contrast, prompting-based methods399

such as Phi-3 show greater variance and long-tail400

latency patterns. This highlights the practicality401

of SLMs for real-time UAV deployments where402

bounded inference time is critical. Table 3 shows403

the inference time analysis.404

Figure 4: Distribution of command lengths and corre-
sponding inference time by model.

5.3 Impact of Class Cardinality on Prompting405

Performance406

We further analyze prompting behavior in large la-407

bel space settings. While prompting methods such408

as few-shot CoT with Phi-3 or GPT-4o achieve409

near-human accuracy (up to 95%) on binary tasks410

like IMDb sentiment classification, their perfor-411

mance significantly degrades with high class cardi-412

nality. On our MAVLingo dataset, comprising 122413

unique intent classes, prompting accuracy dropped414

to 40.1%.415

This degradation stems from: (i) overlapping416

semantics between similar command types, (ii)417

in-context learning limitations in retaining a large418

number of classes, and (iii) lack of fine-tuned in-419

ductive bias in general-purpose LLMs. These find-420

ings emphasize that prompt-based LLMs are not 421

robust in complex industrial settings requiring fine- 422

grained classification. 423

Model Inference Time (mean± std) in seconds
DistilBERT 0.49 ± 0.02
BART-Large 0.16 ± 0.08
BART-Base 0.10 ± 0.05
RAG + Phi-3 5.78 ± 5.61

Table 3: Inference Time Analysis: Comparison of aver-
age inference times (in seconds) and their standard de-
viations across different language models. DistilBERT
and BART variants exhibit low and stable latency, while
RAG combined with Phi-3 shows significantly higher
and more variable inference time due to retrieval and
generation overhead.

5.4 End-to-End Analysis: Suitability for UAV 424

Applications 425

In practical UAV applications, both accuracy and 426

latency are essential. While RAG + Phi-3 provides 427

high slot-filling accuracy, its inference time is un- 428

predictable, making it unsuitable for time-sensitive 429

tasks. In contrast, DistilBERT offers a balanced 430

trade-off—strong classification accuracy, accept- 431

able slot performance, and highly predictable run- 432

time characteristics. 433

5.5 Conclusion of Findings 434

Our results indicate that while prompting-based 435

LLMs like Phi-3 show promise in structured slot 436

extraction, they fall short in multi-class intent clas- 437

sification tasks and are hindered by high latency 438

variance. Fine-tuned SLMs, especially DistilBERT, 439

demonstrate robustness, scalability, and real-time 440

efficiency—making them well-suited for industrial 441

drone command understanding and execution. 442

5.6 Limitation 443

We used GPT-4o for synthetic data generation 444

aligned with MAVLink schema. While the source 445

context and prompt formats for inference differ, 446

we acknowledge a partial overlap in model usage. 447

However, we ensured separation between training- 448

time generation and test-time evaluation to avoid 449

memorization artifacts. 450

6 Conclusions and future works 451

In this work, we presented a drone dataset, de- 452

signed for structured UAV command understand- 453

ing through intent classification and slot extraction. 454
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By integrating role-based and MBTI-informed lan-455

guage variations, the dataset captures diverse real-456

world expressions of MAVLink commands across457

122 categories. We benchmarked both fine-tuned458

Small Language Models (SLMs) and Large Lan-459

guage Model (LLM)-based prompting approaches,460

offering a detailed analysis of their performance461

and efficiency trade-offs. Our results demonstrate462

that SLMs like DistilBERT provide competitive463

accuracy with lower computational overhead, mak-464

ing them suitable for real-time UAV applications,465

while LLMs offer higher extraction precision at466

greater cost. We hope this dataset and evaluation467

benchmark will serve as a foundation for future468

research in language-grounded drone control.469
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