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Abstract

Accurately interpreting natural language com-
mands is crucial for deploying autonomous
unmanned aerial vehicles (UAVs) in indus-
trial environments. This study introduces the
UAVIntent dataset by systematically using 16
Myers-Briggs Type Indicator (MBTI) person-
ality types and drone operator roles for syn-
thesizing the dataset with One-Shot Chain-of-
Thought (CoT) based dataset pipeline. The
dataset consists of 122 distinct command types
derived from MAVLink documentation, total-
ing 19,088 data points.

We conducted extensive experiments on this
dataset, evaluating different approaches for
converting natural language instructions into
MAVLink-based commands and extraction
of parameters by fine-tuning multiple small
language models (SLMs) and a retrieval-
augmented generation (RAG) framework lever-
aging Phi-3.  Among SLMs, DistilBERT
achieves the highest command classification
accuracy (99.22%), outperforming BART-Base
(97.65%), BART-Large (98.83%) and RAG
+ Phi-3 (97.42%). For parameter extraction,
RAG + Phi-3 attains the highest exact match
accuracy (90.74%) and slot-wise accuracy
(95.47%), but at a significantly higher compu-
tational cost. DistilBERT , while less accurate
(82.34% exact match, 92.35% slot-wise), offers
a more time-efficient alternative for real-time
UAV command processing.

1 Introduction

Unmanned Aerial Vehicles (UAVs), commonly
referred to as drones, are being increasingly uti-
lized across domains such as defense, surveil-
lance, disaster response, and autonomous logis-
tics (Javaid et al., 2024). The ability to interpret
natural language commands accurately and effi-
ciently is critical for enabling autonomous UAV
operations in both structured and unstructured envi-
ronments (Sikorski et al., 2024). Traditional UAV

control pipelines rely on rigid, predefined scripting
interfaces, limiting adaptability and requiring man-
ual reconfiguration for different mission scenarios
(Javaid et al., 2024).

Recent advances in Natural Language Process-
ing (NLP) have made it increasingly feasible to
design UAV systems that respond to flexible hu-
man input rather than rigid control scripts (Tellex
et al., 2011; Brown et al., 2020). Leveraging pre-
trained language models helps reduce redundant
engineering efforts while enabling dynamic and
semantically rich command execution. However,
translating open-ended language into structured,
MAVLink-compatible instructions remains a key
challenge—particularly under constraints of real-
time execution and precision control (Wei et al.,
2022; Lewis et al., 2020).

Command Text:
"Switch relay instance 0 on and off 5 times,
with each cycle lasting 3 seconds."

Intent: CycleRelay

Slots:
Name Value | Description
instance | 0 Relay instance number
count 5 Number of cycles
time 3 Cycle time in seconds

Figure 1: Example of a structured data point from the
MAVLingo dataset, illustrating the mapping between a
natural language command and its corresponding struc-
tured representation. The "intent" field identifies the
high-level UAV command (e.g., CycleRelay), while
the "slots" capture essential parameters (e.g., instance
ID, repetition count, duration).

To address these limitations, we introduce a
dataset for UAV command understanding that en-
ables intent classification and slot filling for struc-



tured MAVLink command generation. Covering all
122 MAVLink command types with over 19,000
synthetic examples, the dataset includes role-based
and personality-aware language variations. We
benchmark four SLMs and LLMs using both fine-
tuning and prompting, offering one of the first sys-
tematic comparisons for joint intent-slot prediction,
and analyzing trade-offs in accuracy, computational
cost, and deployment efficiency.

The remainder of this paper is organized as fol-
lows: In Section 2, we review prior work on com-
mand interpretation and language modeling across
domains. Section 3 describes dataset generation
process, annotation strategy, dataset statistics, and
error analysis. Section 4 outlines the experimental
setup, including model configurations and evalua-
tion metrics. Section 5 presents a comprehensive
analysis of model performance on classification
and extraction tasks, inference efficiency, and real-
world applicability. Finally, Section 6 concludes
the paper with key findings and future research
directions.

2 Related Work

The task of translating natural language into struc-
tured, executable commands has been a longstand-
ing research challenge in fields like semantic pars-
ing and robotic instruction following. Early works
like GeoQuery (Zelle and Mooney, 1996) and ATIS
(Dahl et al., 1994) laid the groundwork for struc-
tured query generation. More recent efforts have
targeted physical domains. For instance, (Tellex
et al., 2011) mapped language to navigation goals
in robots, while (Misra et al., 2018) proposed a
neural model for parsing natural instructions with
visual observations for instruction execution. Simi-
larly, (Matuszek et al., 2012) worked on grounded
language understanding for robot perception and
action.

However, the focus of these efforts has been lim-
ited to general robotics or indoor navigation. Works
directly mapping to aviation control languages like
MAVLink remain sparse, with most studies relying
on fixed templates or hardcoded rules. Now we
will discuses the datasets and approaches used in
different domains.

Datasets for grounded command learning have
expanded from simple action domains to rich,
multi-step tasks involving visual and contextual
grounding. Dataset TEACh (Blukis et al., 2021),
and capture navigation in complex environments.

Synthetic datasets such as SCAN (Lake and Baroni,
2018) have been useful for compositional general-
ization. The approach used by (Chen et al., 2019)
for intent and slots classification over the snips
(Coucke et al., 2018) and ATIS (Dahl et al., 1994)
dataset.

Despite this progress, datasets combining opera-
tor context, psychological profiles, or role diversity
remain largely unexplored. While few works incor-
porate user roles in dialog systems, none leverage
MBTI-style (Myers, 2003) personality variation for
command expression diversity in UAV settings for
synthetic data generation. Our work addresses this
gap by systematically generating commands using
operator-role and personality-informed templates
aligned with MAVLink specifications (mav).

Slot filling and intent detection are foundational
tasks in task-oriented dialogue and command sys-
tems (Tur and De Mori, 2011). Joint modeling
approaches such as (Chen et al., 2019), SlotRefine
(Qin et al., 2020), and BERT-CRF () have been
shown to improve performance by sharing repre-
sentations between tasks.

However, most of these models are benchmarked
on standard NLP datasets like ATIS (Dahl et al.,
1994) or SNIPS (Coucke et al., 2018) and not
adapted to domains requiring precise numerical
and spatial parameter extraction, such as UAV con-
trol. The need for real-valued slot prediction with
strict accuracy constraints is largely absent in ex-
isting literature. We address this with a MAVLink-
grounded dataset, and compare SLM-based fine-
tuning with LLM-based multi-stage prompting for
UAV-specific slot filling. Now we will discuss the
latest Prompt Engineering based approaches for
solving the NLP tasks.

The rise of prompting-based techniques for
LLMs has revitalized interest in zero-shot and
few-shot learning (Brown et al., 2020). Chain-of-
thought (CoT) prompting (Wei et al., 2022) and
tool-augmented LLMs (Chen et al., 2023) have im-
proved structured reasoning. RAG architectures
(Lewis et al., 2020) and retrieval-augmented de-
coding (Izacard and Grave, 2021) allow LLMs to
better reason over external structured documents
such as APIs and manuals.

While these models have achieved success in
question answering and code generation, their ef-
fectiveness in interpreting and executing low-level
UAV control instructions remains underexplored.
Our work introduces CommandPrompt Cascade, a
novel multi-stage prompting pipeline combining



Phi-3.5 and GPT-40, and benchmarks it against
fine-tuned SLMs on command intent classification
and slot extraction.

To the best of our knowledge, no prior work has
provided a comprehensive dataset that combines
UAV-specific command structures, role-based op-
erator variation, and psychological typing (MBTI)
(Myers, 2003) for command classification from
text. Additionally, there has been little exploration
of the trade-offs between small model fine-tuning
and multi-stage prompting with LLMs for real-time
command interpretation. So there are various novel
contribution of current research in understanding
the effectiveness of prompting and there compari-
son with SLM for the UAV Command classification
from text in industrial settings.

A Novel, Personality-Aware Dataset for UAV
Command Understanding We present an ex-
tended version of the MAVLingo dataset, con-
sisting of 19,088 instances across 122 distinct
MAVLink command types, systematically gener-
ated using MBTI (Myers, 2003) personality types
and drone operator roles to simulate diverse linguis-
tic expressions in natural UAV command scenarios.

Synthetic Data Generation Pipeline Aligned
with MAVLink Standards We design a robust,
structured pipeline for synthetic data generation,
incorporating MAVLink command schemas, para-
phrased natural language templates, and command
slot annotations to bridge unstructured input and
executable MAVLink messages.

Comparative Evaluation of SLM Fine-Tuning
vs. LLM Prompting We conduct a detailed evalu-
ation of SLM-based fine-tuning approaches (Dis-
tilBERT, BART-base, BART-large) against LLM
prompting and RAG-based methods, analyzing per-
formance on both intent classification and slot fill-
ing.

Empirical Trade-off Analysis: Accuracy vs.
Efficiency We highlight the accuracy-efficiency
trade-offs between fine-tuned lightweight mod-
els and LLM pipelines, showing that DistilBERT
achieves 99.22% intent accuracy with minimal in-
ference cost, while RAG + Phi-3.5 achieves 95.47%
slot-wise accuracy at higher compute overhead.

3 Dataset

Our research aims to develop a command classifica-
tion dataset that enhances the operational efficiency
of drone users by accurately mapping user instruc-
tions to MAVLink commands. A well-structured

and high-quality dataset is essential for improving
the precision of command classification models, en-
suring reliable communication between users and
autonomous drone systems.
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Figure 2: Overview of the UAVIntent dataset generation
pipeline. The process begins by combining command
definitions (including command names and MAVLink-
compatible structures), drone operator characteristics
(role and MBTI-based personality type), and carefully
designed prompts (Few-Shot and Chain-of-Thought).
These inputs are fed into GPT 4(o) (OpenAl et al., 2024)
to generate natural language command instances.

3.1 Dataset Creation and Annotation

A systematic review of the MAVLink protocol
(MAVLink Contributors, 2024) yielded 157 com-
mands, of which 122 were retained (35 deprecated).
To enhance linguistic and behavioral diversity, we
incorporate operator roles and personality types of
MBTI (Myers, 2003) during data generation.

ChatGPT-40 was prompted using engineered
templates combining command details, role-
personality mappings, and output format con-
straints. Prompts produced natural language in-
structions with Chain-of-Thought reasoning, re-
turning structured JSON including intent, slots,
and descriptions. Each entry was annotated with
slot names, values, and intent. Figure 2 shows the
pipeline for the generation of the dataset.

Dataset Generation Phases:

* Phase 1: Initial Testing (n=38) — Identified
issues with missing parameters and format-
ting; 42% failure rate.

* Phase 2: Template Refinement — Enforced
parameter completeness, explicit enums, and
format clarification.

* Phase 3: Bulk Generation — Applied re-
fined prompts to systematically generate data
across command-role-MBTI combinations.



* Phase 4: Human Validation — Reviewed by
three annotators and one expert. Faulty entries
were regenerated.

Error Analysis

Two recurring issues were identified in the gener-
ated JSON outputs:

(1) missing values in the "commands" field (affect-
ing 4% of samples), and

(2) blank "Mav_cmd_name" entries due to misclas-
sification errors (impacting 40%). These issues
were traced to limitations in prompt design and
were resolved through improved template structur-
ing and post-processing logic, ensuring both se-
mantic accuracy and syntactic validity in the final
outputs.

3.2 Dataset Statistics

The dataset comprises a total of 19,088 samples,
generated from 122 unique MAVLink command
classes. For each command, we aimed to create ap-
proximately 160 samples (derived from 16 MBTI
personality types x 10 samples per type) to en-
sure linguistic diversity and behavioral variability.
However, due to occasional generation inconsisten-
cies—such as incomplete slot filling or incorrect
formatting—some instances (e.g., only 9 instead
of 10 per personality type) were either reduced or
discarded when errors could not be automatically
corrected. This pragmatic filtering ensured the fi-
nal dataset retained only high-quality, structurally
valid examples suitable for training and evaluation.
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Figure 3: Word cloud of slot descriptions extracted from
the MAVLingo dataset. Prominent terms such as alfi-
tude, meter, longitude, and degree highlight frequently
used parameters in UAV command instructions. This vi-
sualization reflects the common structure and semantics
of drone control vocabulary.

The dataset covers 281 unique slot types, with
0-7 slots per command (avg. 4.3). Common slots
include altitude, yaw, latitude, and delay,

spanning geospatial, temporal, and categorical di-
mensions. Slot descriptions are 85.2% textual and
14.8% numerical. Figure 3 represents a word cloud
of the slots present in the dataset.

4 Experiment and Methodology

This section presents the experimental setup,
methodologies, evaluation metrics, and results for
the task of command classification and parameter
extraction. Three different approaches were em-
ployed:

1. Fine-tuning a BART-based and BERT-based
Sequence Labeling Model (SLM)

2. Retrieval-Augmented Generation (RAG) with
Large Language Models (LLMs)

3. Prompt-Based Few-Shot Learning with LLMs

Each method follows a two-step process: (i)
identifying the command class from the given in-
struction and (ii) extracting relevant parameters,
followed by slot-filling to generate a structured
JSON output.

4.1 Experimental Setup

For fine-tuning, facebook/bart-base,
facebook/bart-large, and distilbert-base-
uncased were trained on the dataset using a
cross-entropy loss function. The training objective
was to classify (command types (CommandName)
and extract slot parameters with high accuracy.
Each model was optimized to effectively capture
the relationships between input commands and
their structured representations while maintaining
robust generalization across different command
variations.

The RAG-based approach integrated an exter-
nal retrieval mechanism with an LLM. This method
first retrieved relevant command descriptions be-
fore generating structured responses.

In the prompt-based approach, structured
prompts containing command descriptions, oper-
ator characteristics, and few-shot examples were
provided to the LLM. The model was instructed to
generate JSON-formatted outputs directly.

4.2 Dataset

Our dataset consists of textual input commands and
structured output containing slot values and a class
label, CommandName. The dataset is stored in
CSV format with two columns: Input (containing



natural language instructions) and Output (contain-
ing slot-value pairs and CommandName) in JSON
format. The dataset follows the format :

* Input: "Enable and reset the triggering sys-
tem for all connected cameras while avoiding
pause actions."

e QOutput: {"enable" : 1, "reset" : 1, "pause" :
-1, "target_camera_id": 0, "CommandName":
30}

The dataset comprises a total of 19,088 data points,
which are divided into training and testing sets us-
ing an 80:20 split. The training set consists of
15,255 samples, while the test set contains 3,833
samples. Additionally, the dataset includes 122
unique command labels (CommandName), repre-
senting different categories of commands.

4.3 Evaluation Metrics

The performance of all models was assessed using
the following evaluation metrics:

* Command Classification Metrics: Accu-
racy, precision, recall, and F1-score were used
to measure the effectiveness of predicting the
correct CommandName. These metrics eval-
uate the model’s ability to correctly classify
commands while maintaining a balance be-
tween precision and recall.

¢ Slot Filling Metrics:

Exact Match (EM): Measures the percentage
of predictions that exactly match the ground
truth JSON structure, ensuring the complete
correctness of extracted slots.

Slot-wise Accuracy: Assesses the correct-
ness of individual slot predictions, providing
a more detailed evaluation of the model’s abil-
ity to extract parameters accurately.

4.4 Hardware and Hyperparameters

e Hardware: Experiments were performed on
a system equipped with an NVIDIA RTX
AS5500 GPU.

* Batch Size: 4
* Learning Rate: 3e-5
¢ Number of Epochs: 15

* Weight Decay: 0.01 (used to mitigate overfit-
ting)

S Results and Analysis

We evaluate two paradigms for converting nat-
ural language UAV commands into structured
MAVLink instructions: (i) fine-tuned Small Lan-
guage Models (SLMs), and (ii) prompting-based
Large Language Models (LLMs) using a RAG
framework. The performance is assessed using
command classification accuracy, slot extraction
metrics, and inference efficiency.

5.1 Classification and Extraction Performance

Table 1 and Table 2 summarize the performance
of all models on the intent classification and slot
extraction tasks, respectively. Among the SLMs,
DistilBERT achieved the highest classification
accuracy (99.22%), outperforming BART-Large
(98.83%), BART-Base (97.65%), and RAG + Phi-3
(97.42%).

While RAG + Phi-3 achieved the best slot-level
extraction performance, with 90.74% exact match
accuracy and 95.47% slot-wise accuracy (Table 2),
this improvement came at the cost of significantly
higher inference time, as discussed in the following
section.

Model Ac?,;;;‘ Y Precision  Recall F1
DistilBERT 99.22 98.53 98.38 98.44
BART-Large 98.83 98.98 98.80 98.80
BART-Base 97.65 97.61 96.76 96.38
RAG + Phi-3 97.42 95.85 95.07 95.34
Prompt + Phi-3 49.18 - - -

Prompt + GPT-40

Table 1: Intent classification performance: Performance
of various models on UAV command intent classifica-
tion. Metrics include accuracy, precision, recall, and
F1-score. DistilBERT achieves the highest overall ac-
curacy, while prompting-based LLMs underperform in
high-class cardinality settings.

Model EM Slot-wise
Accuracy (%) Accuracy (%)
DistilBERT 82.34 92.35
BART-Large 70.18 82.21
BART-Base 69.89 81.26
RAG + Phi-3 90.74 95.47

Table 2: Slot extraction performance across models.
RAG + Phi-3 achieves the highest exact match (EM)
and slot-wise accuracy, while DistilBERT provides a
strong balance between performance and efficiency.

While RAG + Phi-3 excelled in slot-level ex-
traction with 90.74% exact match accuracy and
95.47% slot-wise accuracy, it came at the cost of
significantly higher inference time, as discussed
below.



5.2 Inference Time and Latency Behavior

Figure 4 illustrates the normalized inference time
distributions. DistilBERT exhibits a sharp, narrow
peak indicating highly consistent and low-latency
behavior. In contrast, prompting-based methods
such as Phi-3 show greater variance and long-tail
latency patterns. This highlights the practicality
of SLMs for real-time UAV deployments where
bounded inference time is critical. Table 3 shows
the inference time analysis.
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Figure 4: Distribution of command lengths and corre-
sponding inference time by model.

5.3 Impact of Class Cardinality on Prompting
Performance

We further analyze prompting behavior in large la-
bel space settings. While prompting methods such
as few-shot CoT with Phi-3 or GPT-40 achieve
near-human accuracy (up to 95%) on binary tasks
like IMDb sentiment classification, their perfor-
mance significantly degrades with high class cardi-
nality. On our MAVLingo dataset, comprising 122
unique intent classes, prompting accuracy dropped
to 40.1%.

This degradation stems from: (i) overlapping
semantics between similar command types, (ii)
in-context learning limitations in retaining a large
number of classes, and (iii) lack of fine-tuned in-
ductive bias in general-purpose LLMs. These find-

ings emphasize that prompt-based LL.Ms are not
robust in complex industrial settings requiring fine-
grained classification.

Model Inference Time (meanz std) in seconds
DistilBERT 0.49 +0.02
BART-Large 0.16 £ 0.08
BART-Base 0.10 £0.05
RAG + Phi-3 5.78 £5.61

Table 3: Inference Time Analysis: Comparison of aver-
age inference times (in seconds) and their standard de-
viations across different language models. DistilBERT
and BART variants exhibit low and stable latency, while
RAG combined with Phi-3 shows significantly higher
and more variable inference time due to retrieval and
generation overhead.

5.4 End-to-End Analysis: Suitability for UAV
Applications

In practical UAV applications, both accuracy and
latency are essential. While RAG + Phi-3 provides
high slot-filling accuracy, its inference time is un-
predictable, making it unsuitable for time-sensitive
tasks. In contrast, DistiIBERT offers a balanced
trade-off—strong classification accuracy, accept-
able slot performance, and highly predictable run-
time characteristics.

5.5 Conclusion of Findings

Our results indicate that while prompting-based
LLMs like Phi-3 show promise in structured slot
extraction, they fall short in multi-class intent clas-
sification tasks and are hindered by high latency
variance. Fine-tuned SLMs, especially DistilBERT,
demonstrate robustness, scalability, and real-time
efficiency—making them well-suited for industrial
drone command understanding and execution.

5.6 Limitation

We used GPT-40 for synthetic data generation
aligned with MAVLink schema. While the source
context and prompt formats for inference differ,
we acknowledge a partial overlap in model usage.
However, we ensured separation between training-
time generation and test-time evaluation to avoid
memorization artifacts.

6 Conclusions and future works

In this work, we presented a drone dataset, de-
signed for structured UAV command understand-
ing through intent classification and slot extraction.



By integrating role-based and MBTI-informed lan-
guage variations, the dataset captures diverse real-
world expressions of MAVLink commands across
122 categories. We benchmarked both fine-tuned
Small Language Models (SLMs) and Large Lan-
guage Model (LLM)-based prompting approaches,
offering a detailed analysis of their performance
and efficiency trade-offs. Our results demonstrate
that SLMs like DistilBERT provide competitive
accuracy with lower computational overhead, mak-
ing them suitable for real-time UAV applications,
while LLMs offer higher extraction precision at
greater cost. We hope this dataset and evaluation
benchmark will serve as a foundation for future
research in language-grounded drone control.
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