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ABSTRACT

Recently, representations learned by self-supervised approaches have significantly
reduced the gap with their supervised counterparts in many different computer vi-
sion tasks. However, these self-supervised methods are computationally challeng-
ing. In this work, we focus on accelerating contrastive learning algorithms with
little or even no loss of accuracy. Our insight is that, contrastive learning con-
centrates on optimizing similarity (dissimilarity) between pairs of inputs, and the
similarity on the intermediate layers is a good surrogate of the final similarity. We
exploit our observation by introducing additional intermediate contrastive losses.
In this way, we can truncate the back-propagation and updates only a part of the
parameters for each gradient descent update. Additionally, we do selection based
on the intermediate losses to filter easy regions for each image, which further re-
duces the computational cost. We apply our method to recently-proposed MOCO
(He et al., 2020), SimCLR (Chen et al., 2020a), SwAV (Caron et al., 2020) and no-
tice that we can reduce the computational cost with little loss on the performance
of ImageNet linear classification and other downstream tasks.

1 INTRODUCTION

Recently, self-supervised learning has been shown a promising approach for unsupervised and semi-
supervised learning in computer vision (Oord et al., 2018; Kolesnikov et al., 2019; Zhai et al., 2019;
He et al., 2020; Chen et al., 2020b;a; Grill et al., 2020). These methods learn unsupervised rep-
resentation that can perform well on both ImageNet (Deng et al., 2009) linear classification and
other down-stream tasks, e.g. pose estimation, detection, and semantic segmentation (He et al.,
2020; Caron et al., 2020). A major type of self-supervised learning is contrastive learning, which
constructs similar and dissimilar pairs over the dataset and minimize a constrative loss to learn a
mapping that yields similar (resp. dissimilar) pairs with similar (resp. dissimilar) representations.

Despite the recent successes, contrastive learning was found to practically incur longer training time
and higher computational cost compared with supervised learning (He et al., 2020; Grill et al., 2020).
For example, He et al. (2020) and Chen et al. (2020a) requires 5 × time than standard supervised
learning on ImageNet. The enormous time and computational cost makes large-scale contrastive
learning out of reach for many of the researchers and applications.

This work focuses on speed up contrastive learning. Our key observation is, because contrastive
learning focuses on optimizing similarity (dissimilarity) between pairs of inputs, the similarity on the
intermediate layers provide a good surrogate of the final similarity, and computing the intermediate
representation requires less computational cost. This is in contrast with supervised learning, which
requires to match the output of the final layer with a label and hence it is essential to calculate the
final outputs.

We exploit the observation by introducing additional contrastive losses in the middle layers of the
neural network. Instead of measuring only the contrastive loss of the representation in the last
layer, we compute the contrastive loss in the intermediate blocks. The intermediate losses enable
the following two strategies that accelerates contrastive learning. (1) Partial Back-propagation: We
start back-propagation randomly from one of all the contrastive losses. Compared with doing full
back-propagation in every optimization step, an intermediate starting point only requires computing
the gradients for a part of the parameters. (2) Block-wise Hard Pair Selection: The intermediate
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contrastive losses can serve as indicators of the similarity between the representations in early layers.
These indicators can be used to filter out the simple pairs, thus reducing unnecessary computation.

We test the proposed method upon several recent self-supervised learning algorithms, MOCO (He
et al., 2020), SwAV (Caron et al., 2020), simCLR(Chen et al., 2020a) and MOCO V2 (Chen et al.,
2020b). We empirically show that our method can save the training time with almost no loss on
the final performance of the downstream tasks, e.g. ImageNet linear classification, PASCAL VOC
object detection and segmentation. Our method largely reduces the training cost for contrastive
learning methods by over 30%, and can serve as an alternative to standard self-supervised learning
training pipeline if the computation resources is limited.

2 METHOD

We first give a brief introduction about contrastive learning in Sec. 2.1, and then introduce our
method in Sec. 2.2 and Sec. 2.3. Our method is composed of two major components: (1) using
randomly early stopping for different mini-batch (2) using random crop and selecting hard regions
on hidden states.

2.1 CONTRASTIVE LEARNING

Given an unlabeled set of images D = {xi}, we want to learn a representation map f that extracts
useful low-dimensional representations from the high-dimensional images x. In contrastive learning,
for each x ∼ D, we use data augmentation or other techniques to construct a positive example x+
that is similar x and a set of negative examples {x−k}Kk=1 that are less similar to x than x+. Then we
train the map f to maximize the similarity between f(x) and f(x+), while minimizing the similarity
between f(x) and f(x−k). A popular choice of contrastive loss is InfoNCE (Oord et al., 2018),

Linfo(f(x), f(x+)) = − log
exp

(
1
τ f(x)

>f(x+)
)∑K

k=1 exp
(
1
τ f(x)

>f(x−k)
)
+ exp

(
1
τ f(x)

>f(x+)
) (1)

The encoder aims to minimize the InfoNCE for all the images in the dataset,

L(f) = Ex∼D [Linfo(f(x), f(x+))] , (2)

where τ is a temperature hyper-parameter, Intuitively, Eq. 2 is the log loss of a (K+1)-way softmax-
based classifier that tries to classify f(x) into the same class as f(x+).

There are many different methods to construct the positive and negative examples. In practice,
people use context (Oord et al., 2018), data augmentation (Chen et al., 2020a; He et al., 2020; Hénaff
et al., 2019), colorization (Oord et al., 2018), clustering (Caron et al., 2020; 2018), etc., to construct
the positive pair {x, x+}. More generally, each image x can have multiple positive examples (Tian
et al., 2019). Previous works have used in-batch data (Chen et al., 2020a), memory bank (He et al.,
2020), or different regions of one given image (Oord et al., 2018) to generate {x−k}Kk=1 for each x.

2.2 ACCELERATED TRAINING BY PARTIAL BACK-PROPAGATION

Our approach stems from a fundamental property of contrastive representation learning: contrastive
loss measures the similarity between representations. Due to the hierarchical nature of deep neural
networks, similar representation pairs from early layers are still similar even after being processed
by the later layers. Therefore, we argue that full back-propagation is not necessary for contrastive
representation learning. Rather, partial back-propagation is enough for learning useful representa-
tions in the final layer. Intermediate loss has been widely used in deep learning, from Inception
Network (Szegedy et al., 2015) to DARTs (Liu et al., 2019).

We consider a deep neural network f = fn ◦ fn−1 ◦ · · · f1, where fi refers to the i-th building
block of the network. For feed-forward neural networks, the building block can be one hidden layer.
For more complex network, e.g. ResNet (He et al., 2016), the building block can be a sequential of
convolutional layer, batch normalization layers (Ioffe & Szegedy, 2015), and activation functions.
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Figure 1: Demonstration of our partial back-propagation framework during training. The network
in the figure has 4 blocks. For each block, we introduce additional projection head and contrastive
loss. In this optimization step, we randomly choose to start back-propagation from the contrastive
loss of the second block.

Algorithm 1 Accelerated Training by Partial Back-Propagation
Input: A network f = fn ◦ fn−1 ◦ · · · f1, a dataset D.
repeat

Randomly sample a mini-batch {xk}mk=1 from D.
Randomly sample Li from Sloss.
Update fj , j ∈ {1, ..., i} by mini-batch gradient descent on the loss 1

m

∑m
k=1 Li.

until Convergence

Instead of using a single contrastive loss L at the end of network, we propose to add auxiliary
contrastive losses Li after each building block fi, obtaining a set of losses Sloss = {L1, . . . ,Ln}.
Expanding Li yields,

Li = L(f1:i) = Ex∼D [Linfo(f1:i(x), f1:i(x+))] (3)

Here, f1:i(x) is the intermediate representation after block fi, f1:i(x) = fi ◦ · · · ◦ f1(x). Note that
we ignore the auxiliary projection head here for simple notation. In every optimization step, we
randomly choose a loss Li from Sloss, and start back-propagation from Li.
Because back-propagation from Li does not involve blocks fi+1 to fn, our method can reduce the
computational burden from two aspects. (1) Reduction in the number of Multiply-Accumulation
operations (MACs). For example, consider the backward pass of a standard ResNet-50 for one
iteration, in the average case, our method can reducing the 8.2G MACs (He et al., 2016) to 3.6G
MACs. (2) Reduction in the storage and other additional costs. When training a convolutional
network, a great proportion of the cost is the layer-wise storage and callback of the intermediate
outputs and gradients (Chen et al., 2016; Yu et al., 2014; Kusumoto et al., 2019). Our method
decreases the depth of the back-propagation chain, and consequently decreases the additional storage
and callback cost. Overall, both aspects ensure our method to speed up the backward process in
training.

2.3 BLOCK-WISE HARD PAIR SELECTION

Besides reducing the burden in back-propagation, the auxiliary losses enable us to judge whether
the representations of x and x+ are similar in early stages of the forward pass. We can filter out the
simple pairs to further reduce the size of the computational graph, and in the meanwhile render the
network focus on the difficult pairs. Our strategy not only significantly decreases the training time,
but also helps recover the performance of standard training process, as demonstrated in Sec. 4.

For x and x+, let their intermediate representations after the i-th block be f1:i(x), f1:i(x+) ∈
RC×H×W , where C,H,W denote the number of channels, height, and width. We crop f1:i(x)
and f1:i(x+) to obtain smaller patches and select the difficult pairs from them. We apply two-
dimensional random crop on f1:i(x) and f1:i(x+) forM times, yielding two sets of smaller patches,
B = {f11:i(x), . . . , fM1:i(x)} and B+ = {f11:i(x+), . . . , fM1:i(x+)}. Here, f j1:i(x), f

j
1:i(x+) ∈
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Figure 2: Demonstration of hard pair selection when M = 2. From all the four pairs, the pair with
the highest contrastive loss is selected and passed to the following blocks. The procedure introduces
little computational overhead except for a forward pass through the projection head. In comparison,
a smaller feature map significantly decreases the computational cost of the whole network.

RC×Ĥ×Ŵ are cropped patches, and Ĥ < H, Ŵ < W . We select the hard pair as follows,

f∗1:i(x), f
∗
1:i(x+) = argmax

fp
1:i(x)∈B,f

q
1:i(x+)∈B+

Linfo(f
p
1:i(x), f

q
1:i(x+)), p, q ∈ {1, 2, . . . ,M}. (4)

The above criterion picks the pair of representations with the largest contrastive loss. We then feed
only f∗1:i(x) and f∗1:i(x+) to the later blocks in the network. Here, we only process the positive pairs,
and do nothing for the negative pairs. Taking the properties of convolutional neural networks into
account, our method can be viewed as progressively reducing the resolution of the original input
images. We adopt standard image resolution for the first block, and apply our strategy in the others.

As noted in prior works (e.g., Chen et al., 2020a; Misra & Maaten, 2020), applying random crops on
an image plays an essential role in self-supervised learning. Caron et al. (2020) uses multiple crops
of given images to do clustering, outpeforming standard SimCLR (Chen et al., 2020a) and other
baselines (e.g. He et al., 2020; Chen et al., 2020b; Hénaff et al., 2019). People also use multiple
random crops and select the hard examples (Gong et al., 2020) to boost the performance. However,
selecting the hard augmentation examples or using multi-crop will increase the computational cost,
because they require multiple forward passes of the whole network for multiple input images. Our
method, in contrast, acts on the feature map and filters the simple pairs in every intermediate block,
resulting in both performance improvement and reduction of training time.

3 RELATED WORKS

Training a deep neural network usually requires high computation costs. Therefore, a long line
of works have been devoted to accelerating the training process of deep neural networks. Unlike
efficient inference, methods for efficient training have been developed case by case (Han et al.,
2016b;a; Ye et al., 2020) Typically, researchers use domain knowledge to design different strategies
for different tasks to accelerate the training (Wu et al., 2020; Singh et al., 2018). In this work, we
also leverage the special property of contrastive learning to develop the method.

Runtime Pruning Runtime Pruning removes redundant channels during training and uses the whole
network with all removed channels for inference Lin et al. (2017) uses an RNN controller to remove
useless filters during training. the controller decides if a channel should be removed based on the
feature map as inputs. Gao et al. (2018) replaces the RNN controller with another neural network
The runtime pruning method can be applied to many of the supervised learning tasks. However,
using the controller will introduce additional computation cost (Wang et al., 2019), and therefore
usually could not accelerate the training by a large margin in practice. Moreover, the tuning of the
controller is still an ongoing problem.

Early skipping Early skipping techniques reduce computation by skipping part of the neural net-
work whenever it is unnecessary For example, in Figurnov et al. (2017), an adaptive number of
ResNet layers are skipped within a residual block for unimportant regions in object classification.
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The skipping mechanism is controlled by a halting scores predicted at the output branch of each
residual unit. Li et al. (2017) handles easy regions in the early stages and harder cases are progres-
sively fed forward to the next sub-model for further processing. These approaches are usually useful
for specific tasks, e.g. segmentation, detection, which can take benefits from low-level features. For
more general tasks, e.g. classification, it fails to achieve good performance (Li et al., 2017).

Multi-scale training Multi-scale training is a general approach in computer vision community, e.g.
segmentation (He et al., 2017), detection (Singh et al., 2018), video (Wu et al., 2020). However, the
inevitable challenge is that the strategy is task-dependent or dataset-dependent. However, finding a
general dynamic schedule for different cases to adjust resolution is extremely difficult (Wu et al.,
2020; Simonyan & Zisserman, 2014). Usually, the strategy is a bit complicated. For example, Wu
et al. (2020) proposes to schedule the batch size with both long and short cycles.

Summary and Discussion All these works are mainly based on two techniques: reducing resolution
and skipping layers. Most of these methods are developed by either hand design or learning-based
method, e.g. reinforcement learning (Lin et al., 2017). Compared to hand-designed method, the
learning-based method introduces more hyper-parameters (which is not easy to tune) while the de-
sign of search space still highly dependents on human knowledge. Therefore, in practice, it usually
cannot find solution as good as hand-crafted method or grid search. In this work, we design the
acceleration method without the help of learning-based approach.

4 EXPERIMENTS

In experiments, we verify whether our proposed method can accelerate recent self-supervised learn-
ing approaches with no loss on the performance on different tasks. We choose MOCO (He et al.,
2020), simCLR (Chen et al., 2020a), SwAV (Caron et al., 2020) and MOCO V2 (Chen et al., 2020b)
as our benchmark, and test the performance on object detection, segmentation and classification.
Our results are averaged over 5 trials for all the experiments.
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Figure 3: Linear classification on ImageNet. The x-axis
shows the training time (days), and the y-axis shows the top-
1 accuracy for the linear classifier.

Training Settings We train the self-
supervised methods on ImageNet
(Deng et al., 2009) training set that
has 1.28 million images in 1000
classes. This dataset is well-balanced
in its class distribution, and is the
most commonly-used benchmark to
train self-supervised representations.

We implement all the baseline al-
gorithms and our methods all on
the most widely-used ResNet-50 (He
et al., 2016). For the hyper-
parameters used in the training pro-
cess, we keep almost all the hyper-
parameters the same as their reporting in the paper, except batch size and learning rate. As our
method can save GPU memory by selecting hard pair, we can use a larger batch size. In practice,
we set the batch size as large as possible and linearly scale the learning rate (He et al., 2019). We
train all the methods and models on 8 GPUs 1 and compare with all the baselines trained in the same
settings and machines.

For the layer-wise loss on ResNet-50, we set three auxiliary head (loss) after the three blocks. The
projection head is several linear transformations followed by a softmax layer and the contrastive loss
(Chen et al., 2020a). For the hard region pair selection, we select hard pairs after the first and second
block. The size of the selected regions is 3/4 of the original size.

Downstream Settings After training the self-supervised representations, we verify the performance
on several downstream tasks. The main goal of unsupervised learning is to learn transferrable fea-
tures, therefore we test the performance on different tasks except for the simple linear classification.
We first verify the performance on ImageNet linear classification task with frozen features, which

1We use NVIDIA TITAN V VOLTA 12GB, and record the training time for this setting.
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is the most used benchmark. Then, we verify the performance on segmentation and detection tasks,
with both frozen features and unfrozen features.

4.1 IMAGENET LINEAR CLASSIFICATION

We evaluate the representations trained with various methods on ImageNet. We train all the models
with 200, 400 or 800 epochs. For SwAV, we do not apply the multi-crop strategy described in their
paper. We run the linear classification three times and report the final results.

We show the primary result in Table 1. It shows that applying to different self-supervised learning
algorithms and different epochs, our method can always accelerate the training with little loss of
accuracy. For simCLR and SwAV, we can even boost the top-1 accuracy (e.g. from 61.7% to 62.9%
for simCLR and from 70.1% to 70.7% for SwAV) with less training time. We further show the
relationship between training time and top-1 accuracy in Figure 3. With the same time budget, the
proposed algorithm can improve the performance of the linear classifier. Especially when the time
budget is limited (e.g. 3 days on 8 GPUs), the proposed accelerating training method can boost
the performance with a large margin. For example, as shown in Figure 3, we can improve the
MOCO V2 performance from 64% to 66.5% when the training time is limited to 3 days. When
more computation resources are given, our proposed method will converge to the same performance
as the standard version.

Method Epoch Top-1 Time (Days)
simCLR 200 61.7±0.2 4.3

Accel-simCLR 200 62.9±0.2 2.8
MOCO 200 60.6±0.2 4.3

Accel-MOCO 200 60.5±0.1 2.8
MOCO V2 200 67.5±0.1 4.3

Accel-MOCO V2 200 67.3±0.1 2.8
MOCO V2 800 71.1±0.1 17.2

Accel-MOCO V2 800 71.0±0.2 10.9
SwAV 400 70.1±0.1 8.1

Accel-SwAV 400 70.7±0.1 5.3

Table 1: Linear classification on ImageNet. Top-1 accuracy for linear models trained on frozen
features from different self-supervised methods.

4.2 TRANSFERRING FEATURES

Since the main propose for self-supervised learning is to get a universal representation, it is necessary
to check whether the learned representations can be transferred to more downstream tasks. We
compare our accelerating method and the standard versions, transferred to various tasks including
PASCAL VOC 2007 and PASCAL VOC 2012. Followed MOCO (He et al., 2020), we use an
additional BN layer after the backbone, and synchronize the BN statistics across GPUs. We test the
following models: simCLR trained with 200 epochs, MOCO trained with 200 epochs, MOCO V2
trained with 800 epochs and SwAV trained with 400 epochs.

VOC 2012 Segmentation We first evaluate all the models on PASCAL VOC 2012 segmentation
tasks, and show the results in Table 2. We test two different settings: freezing the backbone or not,
and report two metrics: mean IoU (Intersection-Over-Union) and pixel-wise accuracy. We use PSP-
Net (Zhao et al., 2017) as the decoder. Table 2 shows that for all these settings and different models,
our proposed accelerating method would not drop the performance on VOC 2012 segmentation task.
Because of the small standard deviation (e.g. < 0.1), we do not list them in the table. We notice that
although our accelerated MOCO V2 performs worse than standard MOCO V2 on ImageNet linear
classification, they achieve the same performance on this task. On the other hand, the accelerated
SwAV is no longer better than standard SwAV on this task. It indicates that we should test the
algorithm on various tasks to verify whether it would cause a drop in the performance.
VOC 2007 Object Detection We further test all these models on the VOC 2007 object detection
task. The detector is Faster R-CNN with R50-C4 (He et al., 2017), using Detectron2 (Wu et al.,
2019). The image scale is [480, 800] pixels during training and [800, 800] at inference. We evaluate

6

Detectron2


Under review as a conference paper at ICLR 2021

Method Freeze mean IoU Accuracy Freeze mean IoU Accuracy
Supervised

√
76.9±0.1 85.0±0.0 × 79.1±0.1 87.1±0.2

simCLR
√

72.4±0.1 82.0±0.0 × 74.8±0.1 83.4±0.1
Accel-simCLR

√
72.9±0.0 82.3±0.1 × 75.2±0.1 83.7±0.1

MOCO
√

75.1±0.1 83.2±0.1 × 77.2±0.1 84.8±0.1
Accel-MOCO

√
75.2±0.2 83.3±0.1 × 76.9±0.1 84.6±0.1

MOCO V2
√

78.6±0.2 86.6±0.2 × 79.4±0.2 87.3±0.2
Accel-MOCO V2

√
78.6±0.2 86.5±0.2 × 79.3±0.2 87.3±0.2

SwAV
√

72.7±0.1 80.7±0.0 × 74.4±0.2 83.5±0.1
Accel-SwAV

√
72.7±0.1 80.8±0.0 × 74.5±0.2 83.5±0.1

Table 2: Image segmentation on PASCAL VOC 2012. The data is per-processed with (Hariharan
et al., 2011). For ‘freeze’,

√
denotes we freeze the backbone parameters, while × denotes the

parameters is not frozen. We report mean IoU (Intersection-Over-Union) and pixel-wise accuracy
to measure the performance.

the default VOC metric of AP50 (i.e., IoU threshold is 50%) and the more widely-used metrics,
COCO-style AP. We do training on VOCtrainval2007 and do valuation on the VOCtest2007.
We display the experiment results in Table 3. On VOC 2007 object detection tasks, our accelerated
versions do not have worse performance compared to the standard version for all the tested methods.

Method Freeze AP50 AP Freeze AP50 AP
Supervised

√
72.8±0.0 39.5±0.1 × 74.4±0.0 42.4±0.1

simCLR
√

71.2±0.0 37.4±0.2 × 73.3±0.1 40.1±0.2
Accel-simCLR

√
71.4±0.0 37.8±0.1 × 73.6±0.0 40.6±0.1

MOCO
√

73.6±0.1 40.5±0.1 × 77.9±0.0 46.6±0.1
Accel-MOCO

√
73.6±0.0 40.5±0.1 × 78.0±0.1 46.7±0.1

MOCO V2
√

77.7±0.1 46.5±0.2 × 80.2±0.0 50.5±0.1
Accel-MOCO V2

√
77.5±0.1 46.2±0.1 × 80.1±0.0 50.2±0.1

SwAV
√

74.2±0.1 42.1±0.2 × 78.2±0.0 46.8±0.1
Accel-SwAV

√
74.3±0.1 42.3±0.2 × 78.4±0.1 46.9±0.1

Table 3: Object detection on PASCAL VOC 2007. For ‘freeze’,
√

denotes freezing the backbone
parameters, while × denotes the parameters is not frozen. We report AP (average precision) and
AP50 to measure the performance.

4.3 FURTHER STUDY

We further do some study to empirically understand how each part of the proposed accelerating
method contributes to the final result.

Updated Layer Un-Updated Layer 

Figure 4: The three update scheme de-
scribed in context.

Layers Close to the Input are Important We first
study which part of a given neural network is impor-
tant or even necessary for the representation learning
during training.

Shown in Table 4, we test which layer could be
skipped during training. We test three different set-
tings: 1) randomly selecting some not adjacent lay-
ers to do backward, and pass the information through
the not selected layers with skip connection 2) stop-
ping forward at one certain layer, and then doing backward to the input 3) selecting several nearby
blocks to do backward and not do always backward to input. We display these three approaches in
Figure 4. We test these methods on MOCO V2 and simCLR, and report the results in Table 4. Table
4 displays that doing backward to input achieves best performance, whle the other two approaches
achieve worse results. It indicates that for these self-supervised algorithms, the blocks close to the
input need more updates and gradient information. Recent work (Zhang et al., 2019) also shows that
for supervised image classification, the layers close to the input are important for many different
neural architectures.
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Method Accuracy Time (GPU Days) Method Accuracy Time (GPU Days)
MOCO V2 67.5±0.1 4.3 simCLR 61.7±0.2 4.3
Skipping 65.3±0.2 2.8 Skipping 61.5±0.3 2.8
BP-to-Input 67.3±0.1 2.8 BP-to-Input 62.9±0.2 2.8
Nearby-Block 65.5±0.2 2.8 Nearby-Block 61.3±0.2 2.8

Table 4: Tested on ImageNet linear classification task, we empirically study which layer is important
for self-supervised learning.

Hard Pairs v.s. Easy Pairs v.s. Hard Examples In our framework, we filter easy regions (i.e.
regions with lower contrastive loss) in the hidden states. To fully understand the role of the operation,
we compare to two baselines under the same computation budget: 1) select easy region, 2) select
hard examples in each mini-batch.

We show the performance of all these three approaches in Table 5. It demonstrates that selecting easy
pairs drops the performance (e.g. for MOCO V2, compared to selecting hard pairs, selecting easy
pairs will break top-1 accuracy from 67.3% to 65.3%). We also notice that selecting hard examples
would be a bit worse than selecting hard region pairs. This is reasonable for contrastive learning
since many researchers have found that using multi-crop is helpful for contrastive learning, and can
even boost the performance in downstream tasks in some cases (Grill et al., 2020; Chen et al., 2020a;
Misra & Maaten, 2020). Moreover, selecting hard region pairs seize out the meaningful hard context
for each given image. Predicting meaningful context itself can be useful for self-supervised learning
(Oord et al., 2018).

Method Accuracy Method Accuracy
MOCO V2 67.5±0.1 simCLR 61.7±0.2
Hard Pair 67.3±0.1 Hard Pair 62.9±0.2
Easy Pair 65.3±0.3 Easy Pair 60.3±0.4
Hard Example 66.1±0.2 Hard Example 61.6±0.2

Table 5: We demonstrate an study of the role of selecting hard region pairs. Compared to selecting
hard examples or easy regions, selecting hard region pairs can achieve better performance.

Ablation Study Finally, we conduct an ablation study on simCLR and MOCO V2 to see the ad-
vantages of each part for our proposed algorithm. As displayed in Table 6, for MOCO V2, both the
partial back-propagation and the block-wise hard pair selection can achieve similar accuracy as the
standard version while using fewer computation resources. For simCLR, hard pair selection can even
boost the performance of the original version with less training time, while partial back-propagation
achieves similar performance as the standard simCLR. Combining these two approaches together
can further save training time while having no loss of accuracy for both MOCO V2 and simCLR.

Method Accuracy Time (GPU Days) Method Accuracy Time (GPU Days)
MOCO V2 67.5±0.1 4.3 simCLR 61.7±0.2 4.3
+ PB 67.3±0.2 3.7 + PB 61.8±0.1 3.7
+ HP 67.1±0.1 3.4 + HP 63.1±0.2 3.4
+ PB + HP 67.3±0.1 2.8 + PB + HP 62.9±0.2 2.8

Table 6: ‘PB’ denotes partial back-propagation, ‘HP’ denotes hard pair selection for each image
pair.

5 CONCLUSION AND DISCUSSION

Recent self-supervised learning has achieved great success in computer vision, e.g., matching or
even outperforming the supervised learning model on some vision tasks. However, the huge com-
putation cost prevents many researchers from using it on their research topics. In this paper, we
focus on accelerating the training of self-supervised learning based on contrastive loss. Empirically,
we show that our proposed method can achieve the same performance as several recent proposed
self-supervised learning methods, with far less training time. In the future, we plan to further study

8
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the theoretical property of these self-supervised approaches, to see whether it has some inherent
property to achieve better performance or faster convergence. Furthermore, we will test our method
on more tasks to see whether it is a more general approach.
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A IMPLEMENT DETAILS

For the training of self-supervised learning algorithm, we use the open-source platforms 2 to im-
plement and keep almost all the hyper-parameters the same, except learning rate and batch size.
For simCLR, we use 256 batch size, which achieves sightly worse result than Chen et al. (2020a)
reported. For SwAV which use cluster centers as positive examples, we keep additional block-wise
cluster centers for the loss. For MOCO and MOCO V2 which use memory bank, we keep additional
layer-wise queen (memory bank), which costs additional memory but does almost no hurt to training
time.

For detection and segmentation, we use open-source code base 3 and keep the hyper-parameters the
same. We add an additional BN layer after the backbone for this setting.

B ABLATION STUDY

In the section, we do more ablation study to show the impact of different parts of our approach. We
mainly show the result on simCLR and SWAV.

B.1 DIFFERENT NUMBERS OF SELECTED REGION

In Eq (4), we select hard pair over M candidates. In practice, we notice that for simCLR trained
with 200 epochs, the number of candidates M does not impact the final performance a lot. We show
the results in Table 7.

M 1 2 4 10
Accuracy 62.4±0.2 62.8±0.1 62.9±0.2 62.9±0.2

Table 7: Top-1 accuracy for linear models trained on frozen features on ImageNet. We change the
number of candidates for selecting hard pairs in this table.

B.2 INTERMEDIATE REPRESENTATIONS

We use the intermediate representations of simCLR and Accel-simCLR to do the linear classification
task for ImageNet. As shown in Table 8, the intermediate representations are improved when inter-
mediate loss is used. Compared to the final layer representations, the intermediate representations
of simCLR and Accel-simCLR have a larger gap on ImageNet top-1 accuracy.

2https://github.com/open-mmlab/OpenSelfSup, https://github.com/
facebookresearch/moco, https://github.com/facebookresearch/swav

3Detectron2 and https://github.com/yassouali/pytorch_segmentation
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Feat1 Feat2 Feat3 Feat4 Final
simCLR 17.6±0.2 31.6±0.2 41.9±0.2 54.1±0.2 61.7±0.2

Accel-simCLR 19.4±0.2 33.5±0.3 43.5±0.2 55.6±0.2 62.9±0.2

Table 8: Top-1 accuracy for linear models trained on frozen features on ImageNet. ‘Feat n’ repre-
sents the hidden after n-th block in ResNet-50, and ‘Final’ denotes the final-layer representations.

Method Epoch Top-1 Time (Days)
2× 224 400 70.1±0.1 8.1

Accel-2× 224 400 70.7±0.1 5.3
2× 160 + 4× 96 400 74.2±0.1 8.8

Accel-2× 160 + 4× 96 400 74.1±0.1 5.7

Table 9: We conduct different multi-crop settings for SwAV.

B.3 MULTI-CROP FOR SWAV

For SwAV, we test two different settings, using 2 × 224 and 2 × 160 + 4 × 96 during training for
a given image. 2 × 224 denotes for one image, we generate two 224 × 224 augmented images.
2× 160 + 4× 96 denotes for one image, we generate two 160× 160 and four 96× 96 augmented
images. Table 9 denotes that, for both settings, we can accelerate the original version without loss
on accuracy.

resolution 224 196 128
Accuracy 67.3±0.1 60.6±0.2 53.5±0.2

Table 10: Top-1 accuracy for linear models trained on frozen features on ImageNet. We change
the resolution for selecting hard pairs in this table. We do the experiments on MOCO V2, using the
official implementation5.

B.4 REDUCING RESOLUTION HURTS PERFORMANCE

A straightforward way to accelerate the training process is to use smaller image resolution. Shown
in Table 10, for MOCO V2, reducing the image resolution hurts the performance of the ImageNet
linear classification by a large margin. For example, using 128×128 resolution only achieves around
53.5% top-1 accuracy on ImageNet.
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