
MIXTURE OF COMPLEMENTARY AGENTS FOR ROBUST LLM ENSEMBLE

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Multi-AI collaboration—such as ensembling or debating large language models
012 (LLMs)—is a promising paradigm for aggregating information and boosting per-
013 formance. A foundational step in these pipelines is to feed the responses of sev-
014 eral *proposer* LLMs into a *summarizer* LLM, which synthesizes a better answer.
015 However, choosing which proposers to include is non-trivial. Existing approaches
016 primarily focus either on accuracy (picking the strongest models) or diversity (en-
017 suring variety), and often overlook the interactions among proposers and with
018 the summarizer. We introduce *complementary-MoA*, a principled framework for
019 proposer selection built on the notion of complementarity: the value of a pro-
020 poser lies not only in its individual performance, but in how it improves the joint
021 performance of the ensemble. Leveraging a small training set with ground truth
022 answers, we propose several greedy-based algorithms that explicitly optimize for
023 complementarity while offering accuracy–efficiency trade-offs for proposer selec-
024 tion. Empirically, we demonstrate why accuracy- and diversity-seeking heuristics
025 are fundamentally flawed in LLM ensembles, and validate the robustness and su-
026 periority of our complementarity-based methods.

1 INTRODUCTION

030 As today’s Large language model (LLM) ecosystem fragments into numerous models with diverse
031 expertise, collaboration among LLMs has become promising and sometimes necessary for tackling
032 emerging tasks such as mathematical reasoning (Du et al., 2023), code generation (Mahmud et al.,
033 2025), and complex decision-making (Wu et al., 2023). A convenient instantiation is *ensemble*
034 *after inference*, which aggregates the LLM outputs after the generation of full responses. This
035 includes well-studied frameworks such as *LLM debating* (Du et al., 2023; Estornell & Liu, 2024;
036 Chan et al., 2023), in which multiple models iteratively exchange arguments before a final decision
037 is reached, and *mixture-of-agents (MoA)* (Wang et al., 2024; Li et al., 2025), which uses layered and
038 summarization schemes to combine diverse model outputs.

039 A fundamental step in the ensemble framework is inputting N LLM responses—the *proposers*—into
040 an aggregating LLM—the *summarizer*—which synthesizes a potentially better answer. Selecting
041 which proposers to include is therefore critical: for a large proposer pool, it is impractical and
042 inefficient to input responses from every available model due to context-window limits and the
043 degraded inference ability (Liu et al., 2023). Existing methods often choose a small set of proposers
044 based on their independent performance, following two heuristics: (i) *accuracy-seeking*—prioritize
045 high-accuracy proposers or even a single top model with multiple samples (Li et al., 2025; Jiang
046 et al., 2023), and (ii) *diversity-seeking*—explicitly mix heterogeneous outputs or prompts to avoid
047 reinforcing similar mistakes (Lau et al., 2024; Wang et al., 2024).

048 However, both heuristics overlook team effects, a key determinant of LLM ensemble performance.
049 In particular, accuracy-seeking methods rank proposers only by their individual performance, while
050 diversity-seeking methods reward variance regardless of quality. We instead propose *mixture-of-*
051 *complementary-agents (complementary-MoA)*—a framework that selects proposers for how well
052 they work together as a team and with the summarizer. The importance of complementarity can
053 be observed from Fig. 1, which compares summarizer accuracy when inputting (i) the individually
054 most accurate proposer versus (ii) the proposer that most complements the summarizer. In this
055 example, we consistently observe a nontrivial gap between the two choices, and furthermore, the

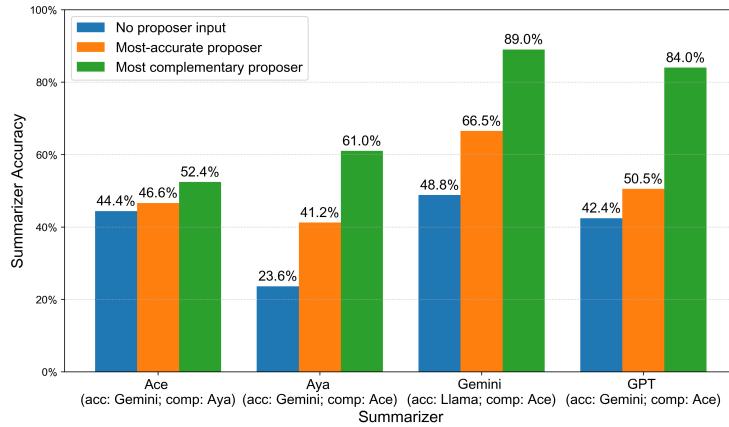


Figure 1: Summarizer accuracies on AIME (dolbokostya, 2025) when inputting the **most accurate** proposer vs. the **most complementary** proposer. For each summarizer s , the proposer pool is $\{$ Qwen3-32B, Sky-T1-32B-Preview, Aya-expansive-32B, Gemini-1.5-Pro, Llama-3.3-70B-Instruct, AceReason-Nemotron, and GPT-4o $\}$, excluding s itself.

most-complementary proposer is often weak on its own. The upshot is both promise and challenge: as the ensemble size k (the number of proposers selected for input) grows, complementarity-based selection can yield substantial gains, yet it also complicates the search, since optimal teams cannot be inferred from individual performance alone.

In this paper, we seek efficient algorithms that select complementary proposers for better ensembling, using multiple-choice QA as an example. Exhaustively searching over all proposer combinations is often infeasible, especially considering the earlier observation that inputting responses from the same LLM under multiple prompts can boost performance (Li et al., 2025; Lau et al., 2024). To incorporate both intra-model and cross-model diversity, we pair each LLM with multiple instruction prompts and treat each model–prompt pair as a proposer. Formally, given a small labeled validation set, an LLM summarizer (oracle), and a target ensemble size k , our goal is to select k out of N proposers that maximize the ensemble accuracy while minimizing sample complexity, measured by summarizer calls.

Motivated by the analogy to feature selection with a black-box objective $\text{Acc}(S)$ (the ensemble accuracy given selected proposer set S), we develop proposer-selection algorithms that navigate the accuracy-efficiency trade-offs. First, we introduce a wrapper-style method that keeps the summarizer in the loop, called the *model-first greedy*. At each step, we first select the model whose prompt variants have the largest marginal contribution to $\text{Acc}(S)$ on average, and then add the best prompt instance from that model to S . Model-first greedy reduces sample complexity by prioritizing the selection of the most complementary model, rather than the model-prompt pair. To further reduce sample complexity, we propose two algorithms that consider label-level complementarity. *Truth-prediction greedy* selects proposers based on how well their reported labels help predict the ground truth; *oracle-surrogate greedy* first fits a simple surrogate of the oracle and then selects proposers based on their marginal contributions measured by the surrogate model. Both methods rely only on label-level statistics and therefore require no—or only light—summarizer calls.

We run extensive experiments across two task families (a multi-choice math dataset (dolbokostya, 2025) and a binary-choice causal-reasoning dataset (Jin et al., 2023)), spanning multiple proposer pools (a dominating-LLM regime and a mixed-crowd regime), various summarizers and ensemble sizes k . Our results confirm the fundamental limitations of the discussed baselines—for each baseline, we find settings where it performs poorly. In contrast, our complementarity-guided methods, including the truth-prediction greedy which requires no summarizer call, are consistently robust across all scenarios. Moreover, we frequently observe substantial gains from model-first greedy over the strongest baseline, underscoring that explicitly optimizing for complementarity is crucial in ensemble frameworks.

In summary, our main contributions are threefold:

108 • We identify complementarity as a key, yet overlooked objective in agent-level LLM ensembles and propose a more principled proposer-selection framework, called complementary-
 109 MoA, that explicitly optimizes it.
 110
 111 • We instantiate complementary-MoA for multiple-choice QA with three algorithms that real-
 112 ize different accuracy–efficiency trade-offs. Depending on task needs and computation bud-
 113 gets, these methods offer practical options for building more trustworthy and robust multi-AI
 114 collaboration systems.
 115
 116 • We validate the framework through extensive experiments on various datasets, proposer
 117 pools, summarizers, and ensemble sizes against a rich set of baselines. The results clar-
 118 ify when and why baseline heuristics succeed or fail, and demonstrate the robustness and
 119 effectiveness of our proposed methods across all tested settings.

120 2 PROBLEM STATEMENT

123 We consider a dataset of multiple-choice questions \mathcal{Q} , and each question $q \in \mathcal{Q}$ has a ground-truth
 124 label $Y_q \in \mathcal{Y}$. We assume true labels are available on a validation subset $\mathcal{Q}_T \subset \mathcal{Q}$ of size $m = |\mathcal{Q}_T|$,
 125 while the remaining questions require inference (test data).

126 There are N *proposers*. Proposer i provides for question q a response $R_{i,q} = (X_{i,q}, Z_{i,q})$, where
 127 $X_{i,q} \in \mathcal{Y}$ is a proposed label and $Z_{i,q}$ is textual supporting reasoning (e.g., chain-of-thought rea-
 128 soning). In our setting, we permit multiple proposers to originate from a single LLM by vary-
 129 ing the prompt. This is inspired by prior studies (Li et al., 2025; Lau et al., 2024), showing that
 130 feeding multiple responses from the same model to the summarizer can benefit the ensemble. Let
 131 n_{prompt} and n_{LLM} be the number of prompts and models; the total number of proposers is then
 132 $N = n_{\text{prompt}} \cdot n_{\text{LLM}}$.

133 To improve accuracy, a *summarizer* aggregates multiple proposer responses, and outputs a poten-
 134 tially more accurate label. Due to practical constraints (e.g., LLMs often have strict input con-
 135 text limits), we aim to select a (small) subset of proposers for the ensemble. Formally, given the
 136 ensemble size k and a subset $S \subseteq [N]$ with $|S| = k$, the summarizer outputs $f(\mathbf{R}_{S,q})$, where
 137 $\mathbf{R}_{S,q} = (R_{i,q})_{i \in S}$. Both proposer and summarizer outputs are stochastic, and the key design choice
 138 is which proposers to select as input to the summarizer.

139 We evaluate a selection S by the summarizer accuracy test data:

$$140 \quad \text{Acc}_f(S) = \frac{1}{|\mathcal{Q} \setminus \mathcal{Q}_T|} \sum_{q \in \mathcal{Q} \setminus \mathcal{Q}_T} \Pr[f(\mathbf{R}_{S,q}) = Y_q].$$

143 The central problem is to choose k out of N proposers to maximize accuracy, given summarizer f :

$$145 \quad S^* = \arg \max_{S \subseteq [N], |S|=k} \text{Acc}_f(S). \quad (1)$$

147 We study the trade-offs introduced by the choice of k , though for clarity, most of our analysis
 148 proceeds while supposing k is fixed.

150 2.1 PREVIOUS IDEAS

152 **Label-only aggregation.** The simplest approach aggregates only the discrete answers and ignores
 153 textual rationales. A common choice is (weighted) majority voting over all proposers or a selected
 154 subset. When proposers are conditionally independent with known accuracies, decision theory im-
 155 plies that a weighted majority rule (with weights proportional to log-odds of correctness) is optimal
 156 (Nitzan & Paroush, 1982). Our setting departs from these assumptions: LLM proposers exhibit
 157 strong dependencies, and their rationales carry additional signal. Empirically, aggregation schemes
 158 that leverage an LLM summarizer to use rationales outperform simple majority vote on labels alone
 159 (Lau et al., 2024; Tekin et al., 2024). Our experiments further confirm this point (see Appendix B.1).

160 **Accuracy-seeking aggregation.** A widely used heuristic in LLM ensembling is to select proposers
 161 by their estimated individual accuracy, where the intuition is that proposers with higher accuracy
 162 contribute more reliable evidence on new instances. For example, one idea, called the *self-MoA*, is

162 to sample multiple diverse responses from the single best model and feed them to a summarizer (Li
163 et al., 2025).

164 **Diversity-seeking aggregation.** A parallel line in the LLM ensemble literature argues that accuracy
165 alone is insufficient: ensembles can benefit from diverse views. This intuition inspired several sug-
166 gestions that explicitly encourage diversity or strike an accuracy–diversity trade-off (e.g., maximize
167 diversity conditioned on an accuracy bar) (Lau et al., 2024; Tekin et al., 2024; Wang et al., 2024).
168 However, for LLM ensembles, such diversity-first strategies can be counterproductive: by admitting
169 weak proposers in the name of variety, they often introduce low-quality or correlated errors that
170 depress the final aggregation performance.
171

172 3 METHODS

173 Our central idea is to select proposers based on their collaborative performance with each other and
174 with the summarizer—the selected proposers should complement their teammates. In principle, one
175 could exhaustively evaluate all size- k teams and pick the subset that maximizes summarizer accu-
176 racy. In practice, searching over all $\binom{N}{k}$ subsets is typically infeasible—e.g., even with $N = 20$ and
177 $k = 5$ there are 15,504 candidate teams—especially given the high inference cost of summarizing
178 multi-rationale inputs.
179

180 An immediate idea is a **greedy algorithm**: we can iteratively find the proposer with the largest
181 marginal contribution to the summarizer accuracy until we find k proposers. In particular, we ini-
182 tialize $S_0 = \emptyset$, and for $t = 1, \dots, k$, choose
183

$$i_t \in \arg \max_{i \in [N] \setminus S_{t-1}} [\text{Acc}(S_{t-1} \cup \{i\}) - \text{Acc}(S_{t-1})],$$

184 then update $S_t = S_{t-1} \cup \{i_t\}$.
185

186 The performance of the greedy algorithm depends on the submodularity of the accuracy function,
187 which in turn depends on the summarizer. It turns out that for LLM summarizers, the accuracy
188 function is not even monotone (and thus not submodular)—including a low-accuracy proposer in
189 the pool can actually reduce overall summarization performance. This observation is supported by
190 prior work (Li et al., 2025) and our experiments in Appendix B.2. Therefore, in principle, the greedy
191 algorithm can be far from the optimum in the worst case. However, as we will see, the empirical
192 performance of the (simplified versions of) the greedy algorithm is generally robust and significantly
193 outperforms the baselines.
194

195 A more detailed discussion of related work is deferred to Appendix A.
196

197 Although the greedy algorithm is conceptually simple, it can be computationally demanding: it
198 requires evaluating the accuracy function $O(kN)$ times, which entails $O(kNm)$ calls to the sum-
199 marizer. It is thus important to explore the trade-off between ensemble accuracy and efficiency via
200 some heuristic variants. In our experiments, we implement only the simplified methods rather than
201 the full greedy algorithm.
202

203 3.1 MODEL-FIRST GREEDY

204 Recall that a model and an instruction prompt determines a proposer. However, responses generated
205 by different prompts of the same model are typically more similar than responses generated by dif-
206 ferent models under the same prompt (see Appendix B.1). Inspired by hierarchical feature selection
207 (Ristoski & Paulheim, 2014), we introduce a simplification called *model-first greedy*. Unlike stan-
208 dard greedy—which estimates the marginal gain of every proposer using all m questions at each
209 iteration—model-first greedy scores all n_{prompt} proposers from the same model using the common
210 set of m questions, then chooses a proposer only within the best model. Concretely, in iteration t :
211

- 212 1. For each model $i \in [n_{\text{LLM}}]$, estimate its average accuracy by randomly assigning each question
213 in \mathcal{Q}_T to one of its associated proposers and averaging over m questions.
214
- 215 2. Select the model with the highest average accuracy, then pick the proposer associated with this
model with the highest estimated accuracy in the previous step.

216 Intuitively, the procedure prioritizes model selection while allowing more randomness in proposer
217 selection. This reduces summarizer calls per iteration from $N \cdot m$ to $n_{LLM} \cdot m$.
218

219 3.2 LABEL-LEVEL COMPLEMENTARITY
220

221 Model-first greedy estimates each proposer’s marginal contribution via direct calls to the summarizer.
222 However, the proposers’ labels themselves carry predictive signals: the summarizer is more
223 likely to answer correctly when it receives more correct inputs. This motivates the idea of selecting
224 proposers based on their *label-level* information, which can improve scalability by avoiding extensive
225 calls to the summarizer oracle. This idea is related to *filter-based* feature selection methods,
226 e.g. (Peng et al., 2005; Urbanowicz et al., 2018), which remove likely weak features without re-
227 training the predictor based on correlations between features. In particular, we use an alternative
228 set function \widehat{Acc} , defined with respect to a label-based summarizer g , and use it to guide proposer
229 selection. This yields the following two methods.
230

231 **Truth-Prediction Greedy** Built on the intuition that labels from a set of complementary proposers
232 can predict the true label more accurately, we can train a light-weight machine learning model to
233 predict Y_q , and use it to select informative proposers. Given a set of proposers S and a family of
234 models parametrized by $\theta \in \Theta$, we compute a value $\widehat{Acc}_{g_\theta}(S)$ using the following procedure:
235

1. Partition \mathcal{Q}_T into a training set \mathcal{Q}_T^{tr} and a validation set \mathcal{Q}_T^{val} for cross validation.
2. **Fit g_θ .** Use the data in the training set, $((X_{i,q})_{i \in S}, Y_q)_{q \in \mathcal{Q}_T^{tr}}$ to fit a model g_θ that maps $|S|$
labels on a question to a (hard) prediction of the ground truth label. Here, proposers’ generated
labels are viewed as features.
3. **Score proposer set S .** On the validation set, evaluate the accuracy of g_θ using responses from
 S and return $\widehat{Acc}_{g_\theta}(S)$.

236 Next, we select proposers using a variant of the greedy algorithm, called the k -greedy (Alg. 1),
237 using \widehat{Acc}_{g_θ} as the set function. We first initialize a set of proposers $S_0 = \emptyset$. Then, in round
238 $t \in \{1, \dots, k\}$, unlike standard greedy—which estimates a candidate’s marginal gain relative to the
239 current selected set S_{t-1} — k -greedy’s estimation always conditions on a set of k proposers. The
240 intuition is that LLM summarizers are non-monotone, so an element that looks promising early can
241 hurt performance at the final team size k . Concretely, given S_{t-1} , we randomly select $k - t + 1$
242 proposers, to form a team of size k , denoted as L . Then, we measure candidate i ’s contribution
243 ($i \notin S_{t-1}$) as the accuracy difference with and without i (replacing one randomly chosen proposer
244 in L). Averaging this difference over several random completions yields a more faithful estimate of
245 i ’s value at the final team size. We refer to this method as *truth-prediction greedy*, which applies the
246 k -greedy algorithm to the set function \widehat{Acc}_{g_θ} . We emphasize that truth-prediction greedy relies on a
247 lightweight ML model to guide proposer selection, but the final ensemble is still formed by feeding
248 the chosen proposers into the summarizer.
249

250 **Oracle-Surrogate Greedy** Proposer selection under truth-prediction greedy does not depend on
251 the summarizer, so it may diverge from the ensemble’s true test performance. As an alternative
252 approach, we propose *oracle-surrogate greedy*, where the idea is to fit a simple surrogate model to
253 simulate the summarizer’s behavior using a small number of oracle queries on the training set, then
254 use the surrogate to score and select proposers. Although this method requires some summarizer
255 calls for training, the surrogate model is kept simple as we only focus on label-level information,
256 making it more sample-efficient than model-first greedy in practice.
257

258 We consider a surrogate model \tilde{g} based on the assumption that the summarizer’s accuracy depends
259 primarily on how many of the k input labels are correct. Specifically, $\tilde{g} : \{0, \dots, k\} \rightarrow [0, 1]$ maps
260 a count c of correct labels to the expected summarizer accuracy when exactly c out of k inputs
261 are correct. This implies that our surrogate model greatly reduces the sample complexity by not
262 distinguishing the proposer ID. Given a set of proposers S , the following procedure returns a value
263 $\widehat{Acc}_{\tilde{g}}(S)$ for set S :
264

1. Partition \mathcal{Q}_T into a training set \mathcal{Q}_T^{tr} and a validation set \mathcal{Q}_T^{val} for cross validation.

Algorithm 1: k -Greedy Proposer Selection w.r.t. Acc

Input: ground set $[N]$, target size k , set function Acc, repetitions M
Output: selected set S_k

$S_0 = \emptyset$; // initialize the set of selected proposers

for $t = 1$ to k **do**

for $i \in [N] \setminus S_{t-1}$ **do**

$\Delta_i = 0$;

for $\tau = 1$ to M **do**

Sample $L \subseteq [N] \setminus (S_{t-1} \cup \{i\})$ uniformly with $|L| = k - |S_{t-1}|$;

Pick $j \in L$ uniformly at random and set $L' \leftarrow (L \setminus \{j\}) \cup \{i\}$;

$\Delta_i += \text{Acc}(S_{t-1} \cup L') - \text{Acc}(S_{t-1} \cup L)$;

$\hat{\Delta}_i(S_{t-1}) = \Delta_i/M$; // estimated marginal via random completions

Choose $i^* \in \arg \max_{i \in [N] \setminus S_{t-1}} \hat{\Delta}_i(S_{t-1})$;

$S_t = S_{t-1} \cup \{i^*\}$;

return S_k ;

288 2. **Fit \tilde{g} .** For each $c \in \{0, \dots, k\}$, repeat $T_{\tilde{g}}$ times: (i) sample a question from Q_T^{tr} and a size- k
 289 set of proposers whose responses contain exactly c correct labels; (ii) query the summarizer on
 290 these k responses. Define $\tilde{g}(c)$ as the empirical accuracy—i.e., the average correctness of the
 291 summarizer across the $T_{\tilde{g}}$ queries.

3. **Score proposer set S .** For each $q \in \mathcal{Q}_T^{val}$, compute $c_q(S)$, the number of correct labels in S , and assign $\widehat{\text{Acc}}_{\tilde{g}}(S) = \frac{1}{|\mathcal{Q}_T^{val}|} \sum_{q \in \mathcal{Q}_T^{val}} \tilde{g}(c_q(S))$.

296 Next, we select a set of k agents by calling Alg. 1 with $\widehat{\text{Acc}}_{\tilde{g}}(S)$ as the set function.

298 4 EXPERIMENTS

300 In this section, we first introduce the experimental setups, then we validate the proposed
301 complementary-MoA framework, diagnose the failure modes of baseline selectors, quantify effi-
302 ciency-accuracy trade-offs, and finally study prompting strategies for the summarizer that yield
303 stronger ensembles.

305 4.1 EXPERIMENT SETUPS

Dataset We look for datasets with multi-choice reasoning questions. We choose two popular reasoning datasets: AIME (dolbokostya, 2025) and CLadder (Jin et al., 2023). AIME comprises about 1,600 curated mathematical problems and their answers sourced from prestigious competitions such as the American Invitational Mathematics Examination (AIME) and the International Mathematical Olympiad (IMO). The dataset was originally open-ended, with all true answers being integers. For each question, we randomly pick four integers between 0 and 1,000 to serve as additional incorrect answers, resulting in a five-choice QA dataset. CLadder contains 10k causal reasoning questions that translate queries from causal graphs into natural-language yes/no questions spanning association, intervention, and counterfactual levels. We sample 500 questions from AIME and 1k questions from CLadder for our experiments.

Models We consider a diverse set of LLMs: QwQ-32B (Team, 2025b), Qwen3-32B (Team, 2025c), Sky-T1-32B-Preview (Team, 2025a), aya-expans-32B (et al., 2024b), Gemini1.5-Pro (et al., 2024a), Llama-3.3-70B-Instruct (Dubey et al., 2024), AceReason-Nemotron (Chen et al., 2025a), GPT-4o (et al., 2024c). Each model is operated with a default temperature of 0.7. For each of the LLMs, we consider $n_{\text{prompt}} = 5$ different prompts which are presented in Appendix C, and each model-prompt pair is viewed as a proposer.

322 We evaluate ensemble performance across four factors—dataset, proposer pool, summarizer, and
 323 ensemble size k —using two datasets (CLadder, AJME), two pools (with/without QwQ), multiple

324 summarizers, and several choices of $k \leq 5$. Because QwQ typically has dominant performance, we
325 use the “with QwQ” setting to simulate a dictator-style scenario, while the “without QwQ” reflects
326 a mixed field. For example, “(AIME, with QwQ, Aya, $k = 3$)” denotes the AIME dataset, a pool
327 including QwQ, Aya as summarizer, and selecting three proposers. We limit k to 5 because larger
328 ensembles show diminishing returns (Lau et al., 2024), while the cost of searching for the optimal
329 team grows quickly.

330 4.2 A COMPARISON OF PROPOSER SELECTION METHODS

331 Based on previous ideas in Section 2.1, we consider the following baselines:

- 332 • **Input-all**: input all N proposers.¹
- 333 • **Best-model**: identify the most accurate model and select all proposers associated with it, in
334 line with (Li et al., 2025).
- 335 • **Top-accuracy**: select the most accurate k proposers overall.
- 336 • **MoA (per-model top-1)**: for each model, select the single most accurate proposer, inspired by
337 the original mixture-of-agents framework (Wang et al., 2024).
- 338 • **Conditioned-diversity**: start with the most accurate proposer, then greedily add the proposer
339 that maximizes average disagreement with the selected set, subject to an accuracy threshold τ .
340 This is inspired by (Lau et al., 2024).

341 We randomly select $m = 400$ questions for proposer selection and use the remaining questions for
342 accuracy computing. For each LLM, we iteratively use $n_{\text{prompt}} = 5$ prompts to solicit responses
343 for all the sampled questions, which returns $N = 40$ proposers’ responses for each question. We
344 randomize proposer order and include their individual accuracies in the instructions while inputting
345 into the summarizer. For methods that require training, we feed the m proposer-selection data into
346 the selection algorithm, which returns a set of k proposers that are evaluated on the test data. To
347 further reduce the variance of the ensemble accuracy (due to the randomness caused by the default
348 temperature of LLMs), we repeatedly call the summarizer ten times for each question and take the
349 average.

350 Table 1 and 2 compare two settings with and without QwQ as proposers. The former reflects a
351 “dictator” scenario in which QwQ dominates; the latter represents a mixed field with comparable
352 proposers. For each method, we also report per-model selection counts, indicating the number of
353 proposers selected from each model. We defer the results for other settings to the appendix.

354 **Importance of Complementarity** First, our results suggest that the accuracy-seeking or diversity-
355 seeking baselines are not robust. On AIME, accuracy-seeking methods (Top-accuracy, Best-model)
356 perform well when a single proposer is both the most accurate and the best collaborator with the
357 summarizer (e.g., QwQ with Aya); their performance greatly drops when QwQ is removed from
358 the proposer pool (Table 2). On the other hand, diversity-seeking methods (MoA, Conditioned-
359 diversity) degrade when there is a dominant collaborator with the summarizer, as in Table 1.

360 In contrast, the label-level, complementarity-aware methods, Truth-prediction Greedy and Oracle-
361 surrogate Greedy, while not always the top performers, deliver consistently strong performance
362 across all settings. Furthermore, Model-first Greedy yields particularly large gains over all base-
363 lines—with almost 10% accuracy gain compared with the best baseline. These findings provide
364 strong evidence that selecting proposers while explicitly considering complementarity is crucial for
365 effective LLM ensembles.

366 *What explains this performance discrimination?* Figure 2 presents the empirical distributions of
367 the number of correct labels $c \in \{0, \dots, k\}$ obtained by the selected proposers under three repre-
368 sentative methods in the setting without QwQ as proposers. The overlaid curve shows the sum-
369 marizer accuracy conditioned on c correct labels.² Clear patterns emerge: accuracy-seeking baselines,
370 such as Best-model, induce a U-shaped distribution of c , while diversity-seeking baselines, such as

371 ¹To fit the token limit, we truncate the responses from each proposer before summarizing.

372 ²To reduce variance, we pool samples from all proposers to estimate the conditioned accuracy. Hence, the
373 curve is identical across methods within the same setting.

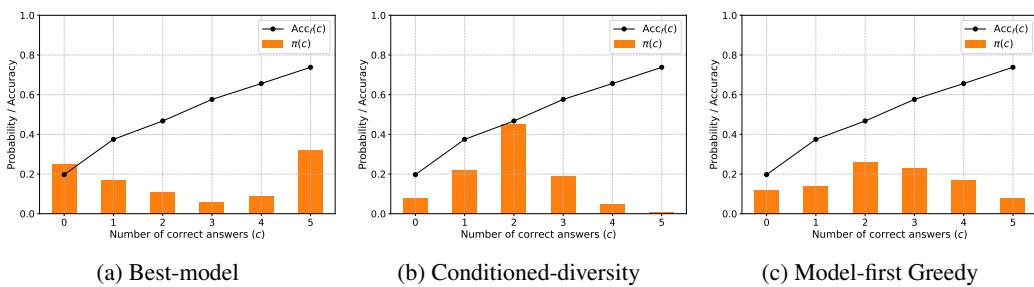
378 Table 1: A comparison of methods in the (AIME, with QwQ, Aya, $k = 5$) setting.
 379

380 381 382 Method	Average counts of selected proposers								383 384 385 386 387 388 389 390 391 Accuracy
	383 384 385 386 387 388 389 390 391 QwQ	383 384 385 386 387 388 389 390 391 Qwen	383 384 385 386 387 388 389 390 391 Llama	383 384 385 386 387 388 389 390 391 Gemini	383 384 385 386 387 388 389 390 391 GPT	383 384 385 386 387 388 389 390 391 Sky	383 384 385 386 387 388 389 390 391 Aya	383 384 385 386 387 388 389 390 391 Ace	
Input-all	5	5	5	5	5	5	5	5	0.646
Best-model	5	—	—	5	—	—	—	—	0.341
Top-accuracy	1	1	—	3	—	—	—	—	0.380
MoA	1	1	1	1	1	1	1	1	0.591
Conditioned-diversity	1	—	1	1	—	—	1	1	0.477
Truth-prediction Greedy	3	1	—	1	—	—	—	—	0.5975
Oracle-surrogate Greedy	2	1	—	1	—	—	—	1	0.573
Model-first Greedy	2	1	—	—	—	—	—	2	0.830

392 Table 2: A comparison of methods in the (AIME, without QwQ, Aya, $k = 5$) setting.
 393

394 395 396 Method	Average counts of selected proposers							397 398 399 400 401 402 403 404 405 Accuracy
	397 398 399 400 401 402 403 404 405 Qwen	397 398 399 400 401 402 403 404 405 Llama	397 398 399 400 401 402 403 404 405 Gemini	397 398 399 400 401 402 403 404 405 GPT	397 398 399 400 401 402 403 404 405 Sky	397 398 399 400 401 402 403 404 405 Aya	397 398 399 400 401 402 403 404 405 Ace	
Input-all	5	5	5	5	5	5	5	0.722
Best-model	—	—	5	—	—	—	—	0.369
Top-accuracy	1	—	—	—	1	2	1	0.614
MoA (mixed)	1	1	1	1	1	1	1	0.616
Conditioned-diversity	1	1	—	—	1	2	—	0.662
Truth-prediction Greedy	3	—	1	1	—	—	—	0.637
Oracle-surrogate Greedy	1	1	1	—	1	—	1	0.685
Model-first Greedy	3	—	—	—	—	—	2	0.815

406
 407 Conditioned-diversity, exhibit a bell-shaped distribution. This indicates that Best-model tends to se-
 408 lect proposers who make similar mistakes, which can be problematic when the summarizer accuracy
 409 curve is concave—i.e., when the marginal benefit of additional correct answers diminishes. How-
 410 ever, Conditioned-diversity concentrates mass around $c = \lfloor k/2 \rfloor$ by seeking different proposers,
 411 which can be suboptimal when the summarizer requires a strong majority to achieve a significant
 412 accuracy boost. In contrast, complementarity-based methods yield distributions that lie between
 413 these two extremes, illustrating their robustness across different summarizer behaviors. Analogous
 414 figures for other methods are deferred to the appendix.



425 Figure 2: Distribution of the number of correct answers (bars) and summarizer accuracy $Acc_f(c)$
 426 (line) for three exemplary methods in the (AIME, without QwQ, Aya, $k = 5$) setting.
 427

428 We report additional results on the binary-answer dataset CLadder in the appendix. Across methods,
 429 performance is largely similar—there are about 20% questions that no aggregation method is able
 430 to answer—with Model-free Greedy yielding only a marginal improvement. This reflects a regime
 431 where ensembling offers limited upside and underscores the need for robustness: while simple base-
 432 lines may sometimes perform well, we demand methods that perform reliably across all settings.

432 **Efficiency-Accuracy Tradeoff** We quantify the efficiency of each method based on the **number of summarizer calls** made during proposer selection (i.e., the sample complexity). All baselines, as well as Truth-Prediction Greedy, rely on proposers' individual reported labels and thus incur zero summarizer calls. Oracle-Surrogate Greedy approximates the summarizer's accuracy using a training set and requires $(k+1)T_{\tilde{g}}$ calls, where $k+1$ indexes the possible counts of correct inputs and $T_{\tilde{g}}$ denotes the number of Monte Carlo samples per case; in our experiments $T_{\tilde{g}} = 200$, this leads to 1,200 calls in total. Model-First Greedy queries calling the summarizer in each round to iterate all models, which scales as $n_{\text{LLM}} \cdot m \cdot k$; in our experiments, this leads to $8 \cdot 400 \cdot 5 = 16,000$ calls.

445 4.3 PROMPTING SUMMARIZER

447 In this subsection, we evaluate how (i) the order of proposer inputs and (ii) whether we include their 448 individual accuracies influence the summarizer accuracy.

449 We pick five proposers with relatively large accuracy differences, and input their responses to a summarizer based on ascending, descending, and randomized order in their individual accuracies. For 450 each case, we further distinguish two settings depending on whether the accuracy of each proposer 451 is input to the summarizer as a part of the prompt.

452 Table 4 presents an example with two key takeaways. First, **inputting accuracy matters**. Providing 453 per-proposer accuracies affects performance in opposite ways across datasets—improving on AIME 454 yet degrading on CLadder. This suggests that the LLM summarizer can respond to the “reliability” 455 information, but the net effect is heavily context-dependent. Second, **ordering matters**. Placing 456 stronger proposers later in the prompt—i.e., using ascending accuracy order—outperforms descending 457 order. This pattern is consistent with recency bias in long-context LLM inference (Peysakhovich 458 & Lerer, 2023): earlier content tends to receive less attention relative to later content. These findings 459 help clarify why our main experiments adopted a randomized ordering with per-proposer accuracies.

460 Table 4: Summarizer accuracies under different proposer orderings and whether individual 461 accuracies are input in the (AIME or CLadder, \cdot , Ace, $k = 5$) setting with proposers: QwQ, Gemini, 462 Llama, GPT, Aya, under instruction prompt 1 (Appendix C).

466 Ordering	467 AIME		468 CLadder	
	469 Without accuracy	470 With accuracy	471 Without accuracy	472 With accuracy
473 Ascending	0.524	0.526	0.806	0.773
474 Descending	0.500	0.496	0.792	0.759
475 Randomized	0.498	0.538	0.798	0.774

476 5 CONCLUSION AND DISCUSSION

477 In this paper, we propose **complementary-MoA**—a proposer-selection framework for post- 478 inference LLM ensembles that explicitly optimizes team effects between proposers and the summarizer. 479 Focusing on multiple-choice QA, we connect the problem to feature selection over a black-box 480 objective and instantiate three algorithms that realize different accuracy–efficiency trade-offs. 481 Experiments confirm the robustness of our methods, clarify when and why accuracy- or diversity- 482 based baselines fail, and suggest prompting strategies that further strengthen multi-AI collaboration. 483 Nonetheless, we acknowledge several limitations and future directions. First, our label-level 484 complementary algorithms work under multiple-choice scenarios, while the framework extends to 485 open-ended tasks whenever a reliable evaluation metric is available. Second, the efficiency–accuracy 486 frontier is not yet fully charted—hybrid designs (e.g., carefully choosing the first $k' < k$ proposers, 487 then filling the remainder by accuracy) may further reduce sample complexity.

Table 3: Sample complexity of considered methods, measured as the number of summarizer queries during proposer-selection.

Method	Complexity
All baselines	0
Truth-Prediction Greedy	0
Oracle-Surrogate Greedy	$(k+1) T_{\tilde{g}}$
Model-First Greedy	$n_{\text{LLM}} m k$

486 **ETHICS STATEMENT**
487

488 Our study evaluates post-inference LLM ensembling on public, non-personal benchmarks and in-
489 volves no human subjects or sensitive data; IRB approval was not required. Potential risks of the
490 ensemble framework include amplifying biases present in base proposer models and misuse of en-
491 sembles; we mitigate these by explaining the mechanisms behind various methods, avoiding sensi-
492 tive deployment claims, and providing new methods with significant improvements in robustness.
493 The authors report no conflicts of interest or sponsorship that could inappropriately influence this
494 work.

495
496 **REPRODUCIBILITY STATEMENT**
497

498 We commit to enabling independent verification and the reproducibility of our experiments. In the
499 paper, we specify the objective and detailed procedures for every proposed method, and all LLM
500 usage, datasets, and experiment setups are included. In terms of the computation environment, all
501 experiments run on non-proprietary models used 4x Nvidia RTX 4500 Ada GPUs or 1x Nvidia RTX
502 4500 Ada GPU and 3x Nvidia A100 Ampere.

503
504 **REFERENCES**
505

506 Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
507 Zhiyuan Liu. Chateval: Towards better LLM-based evaluators through multi-agent debate. *arXiv*
508 preprint [arXiv:2308.07201](https://arxiv.org/abs/2308.07201), 2023.

509 Lingjiao Chen, Matei Zaharia, and James Zou. FrugalGPT: how to use large language models while
510 reducing cost and improving performance. *arXiv preprint arXiv:2305.05176*, 2023.

512 Yang Chen, Zhuolin Yang, Zihan Liu, Chankyu Lee, Peng Xu, Mohammad Shoeybi, Bryan Catan-
513 zaro, and Wei Ping. Acereason-nemotron: Advancing math and code reasoning through rein-
514 forcement learning. *arXiv preprint arXiv:2505.16400*, 2025a. URL <https://arxiv.org/abs/2505.16400>.

516 Zhijun Chen, Jingzheng Li, Pengpeng Chen, Zhuoran Li, Kai Sun, Yuankai Luo, Qianren Mao,
517 Dingqi Yang, Hailong Sun, and Philip S. Yu. Harnessing multiple large language models: A
518 survey on LLM ensemble, 2025b.

520 dolbokostya. Math problems with answers (AIME, IMO). <https://www.kaggle.com/datasets/dolbokostya/math-problems-with-answers-aime-imo>, 2025.
521 Kaggle dataset; accessed 2025-09-23.

523
524 Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving fac-
525 tuality and reasoning in language models through multiagent debate. In *Forty-first International*
526 *Conference on Machine Learning*, 2023.

527 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
528 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
529 *arXiv e-prints*, pp. arXiv-2407, 2024.

531 Andrew Estornell and Yang Liu. Multi-LLM debate: Framework, principals, and interventions.
532 *Advances in Neural Information Processing Systems*, 37:28938–28964, 2024.

533
534 Gemini Team et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of
535 context. *arXiv preprint arXiv:2403.05530*, 2024a. URL <https://arxiv.org/abs/2403.05530>.

537 John Dang et al. Aya expanse: Combining research breakthroughs for a new multilingual frontier.
538 *arXiv preprint arXiv:2412.04261*, 2024b. URL <https://arxiv.org/abs/2412.04261>.

539 OpenAI et al. Gpt-4o system card, 2024c. URL <https://arxiv.org/abs/2410.21276>.

540 Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. LLM-Blender: Ensembling large language models
541 with pairwise ranking and generative fusion, 2023.

542

543 Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng Lyu, Kevin Blin, Fer-
544 nando Gonzalez Adaucto, Max Kleiman-Weiner, Mrinmaya Sachan, and Bernhard Schölkopf.
545 Cladder: Assessing causal reasoning in language models, 2023.

546 Ron Kohavi and George H John. The wrapper approach. In *Feature Extraction, Construction and*
547 *Selection: a data mining perspective*, pp. 33–50. Springer, 1998.

548

549 J. Zico Kolter and Andrew Y. Ng. Regularization and feature selection in least-squares tempo-
550 ral difference learning. In *Proceedings of the 26th Annual International Conference on Ma-*
551 *chine Learning*, ICML '09, pp. 521–528, New York, NY, USA, 2009. Association for Com-
552 puting Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553442. URL <https://doi.org/10.1145/1553374.1553442>.

553

554 Gregory Kang Ruey Lau, Wenyang Hu, Diwen Liu, Jizhuo Chen, See-Kiong Ng, and Bryan
555 Kian Hsiang Low. Dipper: Diversity in prompts for producing large language model ensembles
556 in reasoning tasks, 2024. URL <https://arxiv.org/abs/2412.15238>.

557

558 Wenzhe Li, Yong Lin, Mengzhou Xia, and Chi Jin. Rethinking mixture-of-agents: Is mixing dif-
559 ferent large language models beneficial?, 2025. URL <https://arxiv.org/abs/2502.00674>.

559

560 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
561 Percy Liang. Lost in the middle: How language models use long contexts, 2023.

562

563 Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
564 Routing to the expert: Efficient reward-guided ensemble of large language models, 2023. URL
565 <https://arxiv.org/abs/2311.08692>.

566

567 Tarek Mahmud, Bin Duan, Corina Pasareanu, and Guowei Yang. Enhancing LLM code generation
568 with ensembles: A similarity-based selection approach. *arXiv preprint arXiv:2503.15838*, 2025.

569

570 Shmuel Nitzan and Jacob Paroush. Optimal decision rules in uncertain dichotomous choice situa-
571 tions. *International Economic Review*, pp. 289–297, 1982.

571

572 Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual information criteria
573 of max-dependency, max-relevance, and min-redundancy. *IEEE Transactions on pattern analysis*
574 and machine intelligence

575 27(8):1226–1238, 2005.

576

577 Alexander Peysakhovich and Adam Lerer. Attention sorting combats recency bias in long context
578 language models, 2023.

579

580 Petar Ristoski and Heiko Paulheim. Feature selection in hierarchical feature spaces. In *International*
581 *conference on discovery science*, pp. 288–300. Springer, 2014.

582

583 NovaSky Team. Sky-T1: fully open-source reasoning model with o1-preview performance in \$450
584 budget. <https://novasky-ai.github.io/posts/sky-t1>, 2025a. Accessed: 2025-
585 01-09.

586

587 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, 2025b.

588

589 Qwen Team. Qwen3 technical report, 2025c. URL <https://arxiv.org/abs/2505.09388>.

590

591 Selim Furkan Tekin, Fatih Ilhan, Tiansheng Huang, Sihao Hu, and Ling Liu. LLM-TOPLA: Efficient
592 LLM ensemble by maximising diversity. *arXiv preprint arXiv:2410.03953*, 2024.

593

594 Robert Tibshirani. Regression shrinkage and selection via the LASSO. *Journal of the Royal Statis-*
595 *tical Society Series B: Statistical Methodology*, 58(1):267–288, 1996.

596

597 Ryan J Urbanowicz, Melissa Meeker, William La Cava, Randal S Olson, and Jason H Moore. Relief-
598 based feature selection: Introduction and review. *Journal of biomedical informatics*, 85:189–203,
599 2018.

594 Boshi Wang, Xiang Yue, and Huan Sun. Can ChatGPT defend its belief in truth? evaluating LLM
595 reasoning via debate, 2023a. URL <https://arxiv.org/abs/2305.13160>.
596

597 Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik Kundu, Eric Xing, and Mikhail Yurochkin.
598 Fusing models with complementary expertise. *arXiv preprint arXiv:2310.01542*, 2023b.

599 Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
600 large language model capabilities. *arXiv preprint arXiv:2406.04692*, 2024.
601

602 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
603 Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
604 Chi Wang. AutoGen: Enabling next-gen LLM applications via multi-agent conversation, 2023.
605

606 A ADDITIONAL RELATED WORK 607

608 **Agent-Level Ensemble.** LLM ensembles can be constructed at multiple stages of the inference
609 pipeline (Chen et al., 2025b). We focus on *agent-level* ensembling, which treats each LLM as a
610 black box. A closely related paradigm is *mixture-of-agents* (MoA) (Wang et al., 2024), a layered
611 collaboration scheme in which, at a given layer, multiple proposers submit responses that are then
612 aggregated by a summarizer. Wang et al. (2024) show that MoA effectively aggregates complemen-
613 tary signals, often yielding more reliable outputs than a single stronger model. A follow-up study
614 challenges this design by demonstrating that repeatedly querying a single powerful LLM can also
615 boost MoA-style performance (Li et al., 2025). Another line of related work is *LLM debate* (Du
616 et al., 2023; Estornell & Liu, 2024; Chan et al., 2023; Wang et al., 2023a), where multiple models
617 iteratively critique and refine one another’s that can often result in a consensus outperforming a sin-
618 gle model. However, as Estornell & Liu (2024) point out, sharing all agents’ responses is not always
619 optimal, where they observe that select a subset of LLMs that maximizes the mutual information
620 between agents can be more effective. Our work targets the foundational step in the above frame-
621 works—the $N \rightarrow 1$ summarization—with particular emphasis on proposing a more principled way
622 to decide which proposers to select for the summarizer.

623 **Training-Based Ensemble.** Prior literature has also explored the idea of training parametric meta-
624 models to decide, per query, which LLM (or which LLM’s output) to trust. For example, fusion
625 methods train a small network on features from multiple LLMs—e.g., concatenated probabilities or
626 last-layer embeddings—to predict the true label (Jiang et al., 2023; Wang et al., 2023b). Routing
627 methods learn a delegator that selects the most suitable agents for various tasks, e.g., RouteLLM uses
628 human preference data to better trade off cost and quality (Lu et al., 2023), and ZOOTER learns a
629 router based on distilling rewards on training queries Lu et al. (2023). Similarly, cost-aware cascades
630 like FrugalGPT focus on learning when to use stronger but more expensive models (Chen et al.,
631 2023). Unlike prior training-based ensembles, our framework avoids substantial supervised datasets:
632 a few hundred examples suffice to learn the summarizer’s behavior for better proposer selection.
633 This light training also makes it compatible with closed-source LLM summarizers, whereas past
634 work either does not use an LLM summarizer or requires open-source access (e.g., logits/weights).

635 **Feature-Selection.** Our problem is naturally relevant to feature selection, where the goal is to
636 select a small subset of features that optimize the performance of an ML model. One of the most
637 classic example is Wrapper (Kohavi & John, 1998), which evaluates features by repeatedly training
638 a model—using forward/backward search. The selection of features can also be implemented by
639 inducing sparsity during training, with examples like LASSO (Tibshirani, 1996) and LARS (Kolter
640 & Ng, 2009). Furthermore, it is often beneficial to filter likely weak features without retraining a
641 predictor based on information-theoretic (e.g., mRMR (Peng et al., 2005)) or neighborhood criteria
642 (e.g., Relief (Urbanowicz et al., 2018)). However, two challenges limit applicability to our setting.
643 First, wrapper-style methods demand extensive retraining, while filter/embedded approaches operate
644 only at the label level and thus ignore the LLM summarizer’s error-correcting behavior.³ Second, the
645 summarizer’s performance is often non-monotone in the set of agents, making standard marginal-
646 gain scoring unreliable; this motivates new evaluation metrics for agent contribution—e.g., our k -
647 greedy algorithm in Section 3.2.

648 ³That said, in Section 4.2 we show that even label-level selection can produce more robust ensembles than
649 existing baselines.

648 **B ADDITIONAL RESULTS**
649

650 **B.1 LABEL-LEVEL AGGREGATION**
651

652 In Table 5 and 6, we first present the accuracy of each proposer while answering the questions
653 independently. As we can see, QwQ is an outstanding model in comparison to others; Aya is a weak
654 model as a proposer, while we observe that it is a fast and accurate summarizer.
655

656 Table 5: Independent accuracy for each proposer with rows indicating models, columns indicating
657 prompt IDs on the AIME dataset.
658

Model	1	2	3	4	5
GPT-4o	0.424	0.418	0.366	0.390	0.436
AceReason-Nemotron-14B	0.444	0.482	0.468	0.452	0.442
Llama-3.3-70B-Instruct	0.484	0.476	0.460	0.466	0.450
QwQ-32B	0.500	0.502	0.480	0.536	0.578
Qwen3-32B	0.452	0.506	0.460	0.468	0.494
Sky-T1-32B-Preview	0.408	0.430	0.420	0.410	0.416
aya-expanse-32b	0.236	0.264	0.252	0.242	0.266
Gemini1.5-pro	0.488	0.480	0.490	0.496	0.490

669 Table 6: Independent accuracy for each proposer with rows indicating models, columns indicating
670 prompt IDs on the CLadder dataset.
671

Model	1	2	3	4	5
GPT-4o	0.681	0.680	0.682	0.677	0.685
AceReason-Nemotron-14B	0.708	0.726	0.692	0.707	0.726
Llama-3.3-70B-Instruct	0.507	0.595	0.502	0.538	0.532
QwQ-32B	0.775	0.789	0.803	0.802	0.797
Qwen3-32B	0.678	0.717	0.710	0.707	0.742
Sky-T1-32B-Preview	0.599	0.587	0.591	0.583	0.575
aya-expanse-32b	0.526	0.548	0.527	0.511	0.519
Gemini1.5-pro	0.707	0.704	0.718	0.734	0.748

684 We further test label-level aggregators against LLM summarizer aggregation, aiming to show that
685 leveraging proposers' textual reasoning can boost accuracy. We evaluate three majority-vote variants:
686 (i) over all proposers, (ii) over the best prompt per model, and (iii) over the best model per
687 prompt. We also include weighted majority vote, using the classic log-odds weights $w_i \propto \log \frac{p_i}{1-p_i}$
688 derived for independent binary voters by Nitzan & Paroush (1982). Although our setting involves
689 multiclass labels and correlated voters, we adopt this weighting as a heuristic baseline. Finally, we
690 consider a learning-based baseline that trains a decision tree on the N proposers' labels (features) to
691 predict the ground truth, and report test accuracy.
692

693 As shown in Tables 7 and 8, majority-vote baselines perform competitively with the LLM summarizers
694 on the binary CLadder dataset (a setting that prefers simple majority vote), yet they are sub-
695 substantially outperformed by LLM summarizers on the multichoice AIME dataset. The decision-tree
696 baseline is dominated by majority voting on both datasets. These results underscore the importance
697 of incorporating textual evidence from proposers' reasoning, rather than relying solely on label-level
698 aggregation.
699

700 **B.2 COMPARING PROPOSER SELECTION METHODS (CONTINUED)**
701

702 Here, we present the comparison of methods in other settings, aiming to show the robustness of our
703 methods. To be consistent, we present all results in the same format as Table 1 and 2.
704

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
Table 7: Label-level aggregation baselines on CLadder.

Method	Accuracy	
	Unweighted	Weighted
Majority	0.795	0.814
Majority (best prompt per model)	0.816	0.816
Majority (best model per prompt)	0.793	0.805
Decision Tree	0.737	

Table 8: Label-level aggregation baselines on AIME.

Method	Accuracy	
	Unweighted	Weighted
Majority	0.726	0.734
Majority (best prompt per model)	0.632	0.628
Majority (best model per prompt)	0.67	0.676
Decision Tree	0.612	

Ensemble Size Table 10 and 9 report results for the (AIME, with QwQ, Aya) setting at $k \in \{3, 4\}$ settings. Note that the results for Input-all, Best-model, and MoA remain the same, as their performance does not depend on k . Our results confirm the robustness of our complementary-MoA framework, as it remains competitive with the strongest baselines; the only notable exception is that *Top-accuracy* is unusually strong at $k = 3$. Overall, we do not observe a monotonic improvement in summarizer accuracy as the ensemble size increases.

Table 9: A comparison of methods in the (AIME, with QwQ, Aya, $k = 3$) setting.

Method	Average counts of selected proposers								Accuracy
	QwQ	Qwen	Llama	Gemini	GPT	Sky	Aya	Ace	
Input-all	5	5	5	5	5	5	5	5	0.746
Best-model	5	—	—	—	—	—	—	—	0.766
Top-accuracy	2	1	—	—	—	—	—	—	0.792
MoA	1	1	1	1	1	1	1	1	70.0
Conditioned-diversity	1	—	—	—	—	1	1	—	0.519
Truth-prediction Greedy	1	2	—	—	—	—	—	—	0.714
Oracle-surrogate Greedy	1	—	1	—	1	—	—	—	0.728
Model-first Greedy	2	1	—	—	—	—	—	—	0.744

Summarizer and Dataset Here, we present the analogous results on the binary QA dataset CLadder, with Ace being the summarizer. In addition to proving the robustness of our methods, we highlight the following observations. First, as we have seen in the main body, Input-all has been a baseline that works well with Aya being the summarizer. However, our results with AceReason being the summarizer challenge its robustness (see Table 11). We further emphasize that Input-all requires significantly long-context inputs, and thus requires much longer inference time.

Second, as discussed in the main text, all methods perform similarly on the Cladder dataset, so seeking complementary proposer teams yields only modest gains. Two factors likely explain this: (i) the binary label space leaves little room for error correction, and (ii) roughly 20% of questions are difficult and are missed by most of the proposers, which caps the potential benefit of aggregation.

756 Table 10: A comparison of methods in the (AIME, with QwQ, Aya, $k = 4$) setting.
757

758 759 760 Method	761 762 763 764 765 766 767 768 769 Average counts of selected proposers								770 771 772 773 774 775 776 777 778 779 780 781 782 783 Accuracy
	770 771 772 773 774 775 776 777 778 779 780 781 782 783 QwQ	770 771 772 773 774 775 776 777 778 779 780 781 782 783 Qwen	770 771 772 773 774 775 776 777 778 779 780 781 782 783 Llama	770 771 772 773 774 775 776 777 778 779 780 781 782 783 Gemini	770 771 772 773 774 775 776 777 778 779 780 781 782 783 GPT	770 771 772 773 774 775 776 777 778 779 780 781 782 783 Sky	770 771 772 773 774 775 776 777 778 779 780 781 782 783 Aya	770 771 772 773 774 775 776 777 778 779 780 781 782 783 Ace	
Input-all	5	5	5	5	5	5	5	5	0.746
Best-model	5	—	—	—	—	—	—	—	0.766
Top-accuracy	3	1	—	—	—	—	—	—	0.740
MoA	1	1	1	1	1	1	1	1	0.660
Conditioned-diversity	1	—	1	—	1	1	—	—	0.620
Truth-prediction Greedy	2	2	—	—	—	—	—	—	0.740
Oracle-surrogate Greedy	2	1	—	1	—	—	—	—	0.728
Model-first Greedy	1	1	—	—	—	—	—	2	0.796

770 Table 11: A comparison of methods in the (AIME, with QwQ, Ace summarizer, $k = 5$) setting.
771

772 773 774 Method	775 776 777 778 779 779 780 781 782 783 Average counts of selected proposers								784 785 786 787 788 789 790 791 792 793 794 795 796 797 Accuracy
	772 773 774 775 776 777 778 779 780 781 782 783 QwQ	772 773 774 775 776 777 778 779 780 781 782 783 Qwen	772 773 774 775 776 777 778 779 780 781 782 783 Llama	772 773 774 775 776 777 778 779 780 781 782 783 Gemini	772 773 774 775 776 777 778 779 780 781 782 783 GPT	772 773 774 775 776 777 778 779 780 781 782 783 Sky	772 773 774 775 776 777 778 779 780 781 782 783 Aya	772 773 774 775 776 777 778 779 780 781 782 783 Ace	
Input-all	5	5	5	5	5	5	5	5	0.339
Best-model	5	—	—	—	—	—	—	—	0.540
Top-accuracy	3	1	—	1	—	—	—	—	0.559
MoA	1	1	1	1	1	1	1	1	0.481
Conditioned-diversity	1	—	1	—	—	1	2	—	0.507
Truth-prediction Greedy	1	3	—	—	—	1	—	—	0.542
Oracle-surrogate Greedy	2	1	1	—	—	1	—	—	0.561
Model-first Greedy	—	—	2	—	—	—	—	3	0.553

784 Table 12: A comparison of methods in the (AIME, **without** QwQ, Ace summarizer, $k = 5$) setting.
785

786 787 788 Method	789 790 791 792 793 794 795 796 797 Average counts of selected proposers								798 799 800 801 802 803 804 805 806 807 808 809 Accuracy
	786 787 788 789 790 791 792 793 794 795 796 797 Qwen	786 787 788 789 790 791 792 793 794 795 796 797 Llama	786 787 788 789 790 791 792 793 794 795 796 797 Gemini	786 787 788 789 790 791 792 793 794 795 796 797 GPT	786 787 788 789 790 791 792 793 794 795 796 797 Sky	786 787 788 789 790 791 792 793 794 795 796 797 Aya	786 787 788 789 790 791 792 793 794 795 796 797 Ace		
Input-all	5	5	5	5	5	5	5	5	0.399
Best-model	—	—	5	—	—	—	—	—	0.564
Top-accuracy	1	1	2	—	—	—	—	—	0.508
MoA	1	1	1	1	1	1	1	1	0.452
Conditioned-diversity	1	1	—	—	1	2	—	—	0.522
Truth-prediction Greedy	3	—	1	1	—	—	—	—	0.534
Oracle-surrogate Greedy	1	1	2	—	—	—	1	0.564	
Model-first Greedy	—	1	2	—	—	—	2	0.594	

798
799
800
801
802
803
804
805
806
807
808
809
Distribution of Correct Answers Figure 3 presents the analogous illustrative example for the remaining methods.

802 B.3 PROMPTING SUMMARIZERS

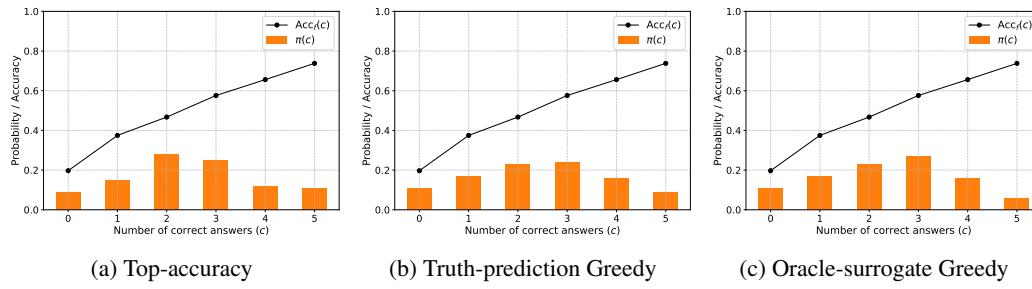
804 Here, we present the results analogous to Table 4 with Aya being the summarizer. As we can observe,
805 the same patterns hold.

810 Table 13: A comparison of methods in the (Cladder, with QwQ, Ace, $k = 5$) setting.
811

812 Method	813 Average counts of selected proposers								814 Accuracy
	815 QwQ	816 Qwen	817 Llama	818 Gemini	819 GPT	820 Sky	821 Aya	822 Ace	
815 Input-all	5	5	5	5	5	5	5	5	0.804
816 Best-model	5	—	—	—	—	—	—	—	0.736
817 Top-accuracy	3	—	—	—	—	—	—	—	0.739
818 MoA	1	1	1	1	1	1	1	1	0.766
819 Conditioned-diversity	1	—	—	—	—	—	2	—	0.742
820 Truth-prediction Greedy	3	—	—	—	—	—	—	—	0.734
821 Oracle-surrogate Greedy	3	—	—	—	—	—	—	—	0.742
822 Model-first Greedy	—	—	—	3	2	—	—	—	0.811

824 Table 14: A comparison of methods in the (Cladder, without QwQ, Ace, $k = 5$) setting.
825

826 Method	827 Average counts of selected proposers							828 Accuracy
	829 Qwen	830 Llama	831 Gemini	832 GPT	833 Sky	834 Aya	835 Ace	
829 Input-all	5	5	5	5	5	5	5	0.792
830 Best-model	—	—	5	—	—	—	—	0.796
831 Top-accuracy	1	—	2	—	—	—	2	0.718
832 MoA	1	1	1	1	1	1	1	0.772
833 Conditioned-diversity	—	1	1	—	—	—	1	0.760
834 Truth-prediction Greedy	—	1	1	—	1	—	—	0.756
835 Oracle-surrogate Greedy	1	—	1	—	—	—	1	0.763
836 Model-first Greedy	—	—	3	2	—	—	—	0.792



848 Figure 3: Distribution of the number of correct answers (bars) and summarizer accuracy $Acc_f(c)$ (line)
849 for the remaining methods, complementing Fig. 2, in the (AIME, without QwQ, Aya, $k = 5$)
850 setting.

851 Table 15: Summarizer accuracies under different proposer orderings and whether individual ac-
852 curacies are input in the (AIME or CLadder, \cdot , Aya, $k = 5$) setting under instruction prompt 1
853 (Appendix C).

855 Ordering of proposers	856 AIME		857 CLadder	
	858 Without accuracy	859 With accuracy	860 Without accuracy	861 With accuracy
858 Ascending	0.574	0.618	0.693	0.605
859 Descending	0.578	0.596	0.658	0.591
860 Randomized	0.526	0.568	0.683	0.587

864 C PROMPTS
865

866 **Multi-choice — Proposer Prompt**
867

868 You will solve a multiple choice question. Format your answer to include:
869

- 870 1. A full response
- 871 2. A concise step-by-step reasoning
- 872 3. The single letter choice

873 **Binary-choice — Proposer Prompt**
874

875 You will answer a yes or no question. Format your answer to include:
876

- 877 1. A full response
- 878 2. A concise step-by-step reasoning
- 879 3. The yes or no answer

880 **Multi-choice — Summarizer Prompt**
881

882 I will give you a multiple choice question and potential solutions that may be correct or incor-
883 rect. Your task is to analyze the reasoning of the potential solutions step by step.

884 If there are any errors, correct them and update your answer.

885 If there are no errors, answer the question matching those solutions.

886 Your answer must be in the format of a full response, then a letter choice.

887 **Binary-choice — Summarizer Prompt**
888

889 I will give you a yes or no question and multiple potential solutions that may be correct or
890 incorrect. Your task is to analyze the reasoning of the potential solutions step by step.

891 If there are any errors, correct them and update your answer.

892 If there are no errors, answer the question matching those solutions.

893 Your answer must be in the format of a full response, then a yes or no answer.

894 **Instruction Prompt 1**
895

896 Divide the question into smaller, manageable parts and tackle each part individually before
897 synthesizing the overall answer.

898 **Instruction Prompt 2**
899

900 Use mathematical principles and logic to solve the problem, even if it's not a math question.

901 **Instruction Prompt 3**
902

903 Relate the question to a familiar concept or situation to better understand and solve it.

904 **Instruction Prompt 4**
905

906 Think about what the answer would be if the opposite were true, to gain a different perspective.

907 **Instruction Prompt 5**
908

909 Eliminate the obviously incorrect answers first and then choose the most likely correct answer.

918 **D LLM USAGE**
919

920 Large language models (LLMs) were used in this paper only as a general-purpose writing assistant.
921 Specifically, they supported adjusting phrasing for clarity, polishing grammar, shortening sentences,
922 and reformatting text. LLMs were also used to generate and refine tables (e.g., aligning multi-
923 column headers and converting between LaTeX table styles). At no point did LLMs contribute to
924 research ideas, conceptual framing, or experimental design. All substantive intellectual contributions
925 are solely those of the authors.

926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971