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Abstract—A large body of work shows that machine learning
(ML) models can leak sensitive or confidential information about
their training data. Recently, leakage due to distribution inference
(or property inference) attacks is gaining attention. In this attack,
the goal of an adversary is to infer distributional information
about the training data. So far, research on distribution in-
ference has focused on demonstrating successful attacks, with
little attention given to identifying the potential causes of the
leakage and to proposing mitigations. To bridge this gap, as
our main contribution, we theoretically and empirically analyze
the sources of information leakage that allows an adversary
to perpetrate distribution inference attacks. We identify three
sources of leakage: (1) memorizing specific information about
the E[Y |X] (expected label given the feature values) of inter-
est to the adversary, (2) wrong inductive bias of the model,
and (3) finiteness of the training data. Next, based on our
analysis, we propose principled mitigation techniques against
distribution inference attacks. Specifically, we demonstrate that
causal learning techniques are more resilient to a particular type
of distribution inference risk termed distributional membership
inference than associative learning methods. And lastly, we
present a formalization of distribution inference that allows for
reasoning about more general adversaries than was previously
possible.

I. INTRODUCTION

Machine learning (ML) has conquered many applications
where data is available, including applications with sensitive
or confidential data. This is problematic if the trained ML
models are exposed to other parties, since it has been shown
that models leak information about their training data [4], [31].
Exposure to other parties happens due to various reasons. For
example, the models are deployed in user software such as
for image processing or next-word-prediction on smartphones
[2], [16], or they are shipped with medical devices [5]. They
are often shared online or made available via API access
as well [6], [25]. Exposing the model to other parties can
further be a side effect of the training, such as in federated
learning [20], where the model is trained by multiple data
owners collaboratively, who need access to the model in order
to provide updates based on their local data.
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Recently, a rising privacy concern is the problem of distri-
bution inference (also called property inference) attacks [4],
[14], [33], [39]. These attacks assume an adversary who has
access to a model that was trained on confidential data and
wants to use their access to the model to infer information
about the training distribution. That is, the adversary is not
interested in individual records or small sets of records in the
training dataset, but in distributional properties such as the
proportion of males or the mean age of individuals in the
training distribution. For example, an e-commerce company
might try to learn which of a competitor’s products are the
most popular from a recommender system that this competitor
has built. Or an attacker might try to determine whether an
organization’s systems are vulnerable to Meltdown or Spectre
attacks by analyzing a model that this organization has trained
to detect cryptomining activity on their systems, as showcased
in experiments by Ganju et al. [14]. Of course, an ML
model needs to capture some information about the training
distribution in order to fulfill its task, thus certain information
about the training distribution necessarily needs to be encoded
in the model parameters. However, this does not mean that
the model has to memorize all information about the training
distribution. For estimating the expected value of a label Y
given features X , it is not necessary to learn the entire joint
distribution (X,Y ), and in particular not necessary to learn
the marginal distributions of X and Y . It is therefore at least
in principle possible to defend against distribution inference
attacks aimed at certain properties of the training distribution,
while still learning a useful model.

The problem of distribution inference was first identified
by Ateniese et al. [4]. Since then various attacks for both
the white-box setting (the adversary has access to the model
parameters) and the black-box setting (the adversary only has
query access to the model) have been proposed. These attacks
have been shown to be successful against support vector
machines and hidden Markov models [4], fully connected
neural networks [14], convolutional neural networks [33]
and generative adversarial networks [40]. However, defenses
against distribution inference have received little attention, and
the few proposed solutions have shortcomings that limit their



use. For instance, some of them do not protect against the most
common setting of black-box adversaries. (See Sec. VII-A for
an overview.) We ascribe this partly to the lack of a systematic
study of why the attacks are successful, i.e., what makes
models leak information about their training distribution. This
is crucial for understanding in which settings such distribution
leakage is unavoidable and in which settings it can be pre-
vented, and ultimately building defenses against distribution
inference attacks by closing the sources of leakage.

Our approach. In this paper, we ask the question: Why do ML
models leak information about their training data distribution?
We answer this question both theoretically and empirically.
We first identify the different possible sources of leakage: (1)
memorizing pieces of information about the function E[Y |X]
that the adversary is interested in, (2) inductive biases in the
specification of the architecture or the training algorithm of
the target model that do not agree with the training data,
and (3) the finiteness of the training dataset. Our theoretical
analysis (Sec. IV) then relies on existence proofs by example:
for each of the possible sources of leakage we show that there
exists at least one ML model and one data distribution such
that the model leaks information about its training distribution
via this source. This implies that any defense mechanism that
aims at offering protection in the worst-case has to take all of
these sources into account. We further perform state-of-the-art
distribution inference attacks on neural networks trained on
synthetic data that is carefully crafted to isolate the different
possible sources of leakage (Sec. VI-A)1. Our experiments
show that information about the training distribution is leaked
via all of these sources not only in theoretical examples, but
also in more realistic settings, and that distribution inference
attacks can pick up on the signal from all of these sources.
With our insights about the different sources of leakage, we
are able to propose systematic defense strategies that are each
aimed at closing one of the sources of leakage (Sec. V-A).

We further introduce an attack scenario termed distribu-
tional membership inference, which combines distribution
inference and membership inference (Sec. III-B). It assumes
an adversary that wants to know whether a particular party
has contributed records to the training dataset, but instead of
knowing the specific records of each party only knows the
distributions that these records were drawn from. Based on
our insights from the leakage analysis, we show that in some
cases there is potential for protecting against such an adversary
without a loss in utility when training the model via causal
learning techniques such as invariant risk minimization (IRM)
[3] as opposed to the traditional associational learning methods
(Sec. V-B and VI-B).

Along the way, we generalize the formalization of binary
distribution inference by Suri and Evans [33] to adversaries
with arbitrary hypotheses, which allows, e.g., for a formal
treatment of adversaries that perform regression instead of
binary classification attacks (Sec. III-A). We further release

1The code for reproducing all experiments in this paper can be found at
https://github.com/epfl-dlab/distribution-inference-risks.

a Python library that implements state-of-the-art white-box
and black-box distribution inference attacks [21]. We hope
that both of these contributions will serve as tools for future
analyses of the distribution inference setting and for the
development of new attacks and defenses.

Contributions. In summary, our contributions are these:
• We theoretically and empirically identify the sources of

distribution leakage. Based on our analysis we propose
principled mitigation strategies against distribution infer-
ence attacks.

• We introduce distributional membership inference and
show how causal techniques can help protect against it.

• We present a more general formalization of distribution
inference.

• We release a Python library that implements state-of-the-
art distribution inference attacks.

II. BACKGROUND

We introduce some background that we will need later.

A. Distribution inference attacks

The problem of distribution inference has first been de-
scribed by Ateniese et al. [4] as a problem of binary inference:
there exist two possible training distributions D0 and D1. The
adversary knows that the target model was trained on one of
them, and tries to figure out on which one. Typically, these two
distributions differ in the proportion of a binary attribute that
may or may not be one of the features used during training.
The binary setting is the one considered in most prior work,
with the exception of the work by Zhang et al. [39], which also
considers a finite set of possible training distributions, and the
works by Zhou et al. [40] and Suri and Evans [33], which
perform regression attacks on continuous properties of the
training distribution. To also cover these more general settings,
we will index the training distribution Dr by a variable r ∈ R,
which in the regression setting denotes the regression target.
and in the binary setting can take the value 0 or 1.

Many attacks rely on meta-classifiers whose output is a
guess for r. In the white-box setting, the input to these meta-
classifier are the weights of the target model. In the black-
box setting, the input are outputs of the target model. To
generate training data for the meta-classifiers, the adversary
trains so-called shadow models. These are models with the
same architecture and training parameters as the target model
that are trained on samples from Dr for different values of r,
and labeled by that value, akin to the shadow models used
for membership inference attacks [31]. A white-box meta-
classifier can then be trained by using the weights of the
shadow models as training features, and a black-box meta-
classifier by using outputs of the shadow models.

B. Invariant representation learning

Classic associational ML models trained via empirical risk
minimization (ERM) predict a label Y from a list of features
X whilst trying to minimize the prediction error on their
training set. This is achieved by taking all features from X
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that are predictive of Y into account. However, the relationship
of some of these features with Y might be different in
the train than in the test distribution. Take the example by
Arjovsky et al. [3] of a model that is supposed to distinguish
pictures of cows from pictures of camels. It might very well
happen that in the training data the vast majority of cows is
shown in front of a grassy background, whereas most camels
are shown in a sandy desert. A classic ERM model might
then base its predictions purely on the background of the
picture and thereby achieve high accuracy on the training
data. However, the correlation between the background and
the type of animal is a spurious one: there exist camels that
do not stand in a desert. This is why at test time the model
might be confronted with pictures of cows in front of sandy
backgrounds and camels in front of grassy backgrounds, for
which its predictions will then be completely wrong.

Recently, works on the theory of causality [26], [30] have
argued that out-of-distribution generalization must consider the
causal nature of the underlying data generation mechanism.
Causal relationships are the ones expected to be robust and
generalizable [27], since they are not spurious artifacts of
the data. In our previous example, the property of having a
hump would be a causal feature of a camel. Unfortunately,
for problems of interest the underlying causal model is often
unknown. Causal ML is a field aiming to develop techniques
that can still capture some causal properties of the data. An
important idea of causal ML is the invariance principle, which
states that only relationships stable across different training
distributions should be preserved [24], [27]. Indeed, under
certain assumptions the invariant relationships are expected
to be the ones between the target variable and its causal
parents [3]. The different training distributions alluded to
earlier correspond to data collected in different environments
e ∈ Etr, e.g., data contributed by people living in different
geographical regions. Each environment e ∈ Etr induces i.i.d.
samples from a distribution that is specific to this environment.

An implementation approach for the abstract invariance
principle is proposed by Arjovsky et al. [3]. The authors
introduce invariant risk minimization (IRM), an alternative to
ERM, and a practical training objective enforcing invariance
in a learned latent representation. IRM aims at finding a
predictor f(X) ≈ Y that performs well across the set of
environments E∗, only part of which were seen during training:
Etr ⊊ E∗. To achieve this, the authors decompose f into a
representation learning component Φ and a model w, such
that f = w ◦ Φ, where ◦ denotes function composition. The
feature representation Φ is deemed invariant if the same model
w is simultaneously optimal for all environments e ∈ Etr.
Intuitively, Φ is an invariant representation if its representation
is equally useful for all environments.

Thus, IRM solves the following optimization problem:

min
Φ,w

∑
e∈Etr

Re(w ◦ Φ),

subject to w ∈ argmin
w′

Re(w′ ◦ Φ), for all e ∈ Etr,

Symbol Meaning
Φ Representation learner of IRM
w Prediction model on top of Φ
R Set of distribution indices
r Index of the training distribution
Dr Training distribution
Xr, Y r Feature and label random variables dis-

tributed according to Dr

M Target model
d Function on R×R to asses the quality of the

guess r̂
Di

p Distribution of party i’s data in the member-
ship inference setting

β Vector of linear regression parameters

TABLE 1: Glossary for the symbols used in this paper.

Trainer T Adversary A

r ∼ U(R)

D ∼ Dr

M
train←−− D

M

r̂ = H(M)

Fig. 1: Distribution inference game. The training distribu-
tions are indexed by a value r. The trainer T first samples a
distribution index r and then samples a training set D from
Dr, on which they train a model M . By applying an algorithm
H to M , the adversary computes a guess r̂ = H(M) for r.

where Re is the empirical risk computed within environment
e. In this paper we show that IRM can leak less distributional
information about its training data than ERM.

III. DEFINITIONS

We begin by defining the problems of distribution infer-
ence and distributional membership inference, with the most
frequent symbols used in this paper explained in Fig. 1.

A. Distribution inference

We define distribution inference as a cryptographic game
between the adversary A and the model trainer T (Fig. 1)
as a generalization of the binary definition by Suri and Evans
[33]; below we describe how their definition relates to ours. We
allow for an arbitrary, even uncountable number of potential
training distributions Dr indexed by a set R. The trainer
samples an index r from R uniformly at random and then
samples a training set D from Dr. Finally, the model M is
trained on D. The adversary applies an algorithm H to the
model M that returns a guess r̂ about the training distribution.
We explicitly write r̂|r for the guess when the true index is r
to avoid ambiguities in the following formulas.

Let d be a (not necessarily symmetric) function that mea-
sures distances between objects in R. The goal of the adversary



is to minimize d(r, r̂|r), the distance between the true index r
and the guess r̂|r. A natural measure for the performance of
an attack algorithm is thus the expected distance

E[d(r, r̂|r)].

The expectation is taken over the random sampling of r, over
the random sampling of D, and over the potential randomness
in the training of M and in H. We define the advantage of the
adversary A using algorithm H as the expected improvement
over the optimal guess without access to M :

AdvH = E[d0 − d(r, r̂|r)],

where
d0 = inf

r′∈R
E[d(r, r′)].

We can recover Suri and Evans’ definition of the crypto-
graphic game and of the adversarial advantage (up to a sign)
by setting R = {0, 1} and d(r, r′) = |r−r′|. In the rest of this
paper, whenever we work in a binary setting with two distri-
butions, we mean this choice of d. We further use the notation
(Xb, Y b) ∼ Db for the random variables corresponding to the
features and the label distributed according to distribution Db,
for b = 0, 1.

However, our definition goes beyond the binary case. For
instance, it also covers adversaries that perform regression
to infer a continuous property of the training distribution.
Consider, e.g., the task of inferring the ratio of females
among the customers of the e-commerce company that builds
a recommender system in the example from the introduction.
This ratio lies in the interval [0, 1] and thus we set R = [0, 1].
For d we can, e.g., again choose the absolute difference
d(r, r′) = |r − r′| (one alternative would be the squared
distance). For these choices, we have d0 = 1

4 , where the
infimum is attained at r′ = 1

2 .
Note that our definition also allows for arbitrary sets of

distributions {Dr}r∈R. We can define d as

d(r, r′) = d̃(Dr,Dr′),

where d̃ is a divergence or metric on the space of distributions,
such as the KL divergence or the Wasserstein distance.

B. Distributional membership inference

Many training datasets in ML consist of data that was
generated by multiple parties: each transaction in a financial
dataset was initiated by one legal entity, each post in a social
network was created by one individual, each bike ride in a
location dataset was done by one individual. We can view the
data points contributed by a given party as samples from a
distribution specific to this party. We consider an adversary
that wants to learn whether one particular party contributed to
the training dataset or not.

Formally, we assume that there are n parties. For some
fixed index i0, the adversary wants to know whether party i0
contributed to the training dataset. To each party i corresponds

one distribution Di
p, and one dataset Di

p that is sampled from
Di

p. We define the following two datasets:

D0 =

n⋃
i=1

Di
p, D1 =

n⋃
i=1,i̸=i0

Di
p.

Thus, D0 and D1 are such that they differ only in the
contribution of party i0: one dataset contains party i0’s data
and the other does not. Implicitly, D0 is sampled according to
a distribution D0 and D1 is sampled according to a distribution
D1. The model trainer T and the adversary A now play the
distribution inference game in Fig. 1 with the two distributions
D0 and D1: T trains a model M either on data sampled from
D0 or on data sampled from D1, and A tries to determine on
data from which of the two distributions M was trained. We
call this problem distributional membership inference. If there
is no party i, i ̸= i0, with the same distribution as party i0
(i.e., Di

p ̸= Di0
p for all i ̸= i0), then this problem equivalent

to determining whether party i0 contributed to the training
dataset or not.

Comparison with record-based membership inference.
Typically, membership inference in ML is investigated on a
record level [31]. That is, each party is assumed to have
contributed at most one record to the training dataset. By
observing the model, the adversary tries to learn whether a
particular party, whose record they know, has contributed to
the dataset or not. In distributional membership inference each
party might have contributed multiple records. Even though
it is not the standard setting in membership inference, some
works such as those on DP can also be extended to allow for
multiple records per party [10] (see also Sec. VII). The other
difference between distributional membership inference and
most prior work on membership inference is that distributional
membership inference assumes a weaker adversary that does
not know the exact records contributed by the target party,
but only the distribution that they were sampled from. One
example for such a setting is the following: Consider an
adversary that wants to know whether a particular person
has contributed to a database of cancer patients, and thus
has cancer. The records contributed by each person consist
of measurements of this person’s weight, blood pressure (and
potentially other health markers) over multiple days. The
adversary might have information about the target person’s
weight and blood pressure. Since weight and blood pressure
fluctuate from day to day within the same individual, it is
reasonable to assume that the adversary does not know the
person’s exact weight and blood pressure on the different days,
but only the distribution of these values. The distribution of the
weight could, e.g., be estimated by an estimated mean based
on the visual appearance of the person plus Gaussian noise,
and the distribution of the blood pressure by an estimated mean
based on the (estimated) weight and the person’s fitness level
plus Gaussian noise.

Relation to the work by Suri et al. [34]. In concurrent
and independent work, Suri et al. [34] propose the notion of



subject membership inference. They consider the same attack
objective as us, but study it in the context of subject-level
membership inference in a cross-silo federated learning (FL)
setting. The term ’subject’ usually refers to individual people.
The authors assume an adversary that wants to determine
whether a particular subject’s data was used in the federated
training of an ML model, where each subject can have
contributed to the datasets of multiple parties that participate
in the training. We note that our proposed defense against
distributional membership inference based on IRM (Sec. V-B)
also extends to the FL setting.

IV. REASONS FOR DISTRIBUTION LEAKAGE

What are the reasons why models leak information about
their training distribution? We answer this question theoreti-
cally and show how all of the different potential sources of
leakage can in fact leak distributional information. We show
that this is already the case for such a simple model as linear
regression, and thus all of these sources have to be taken into
account even in simple cases. In Sec. VI-A we additionally
show, for the case of neural networks, that not only theoretical
attacks, but also the practical attacks proposed in prior work
can exploit all of these sources of leakage.

For simplicity we will assume throughout this section the
binary setting where R = {0, 1}, i.e., an adversary that wants
to know whether the training distribution was either D0 or
D1, for two distributions D0, D1. Our results extend to the
regression case; see the end of this subsection.

The distribution Db, for b = 0, 1, can be written as
the joint distribution Pr(Xb, Y b) of features Xb and labels
Y b. We can factorize this distribution as Pr(Xb, Y b) =
Pr(Xb|Y b) Pr(Y b) and Pr(Xb, Y b) = Pr(Y b|Xb) Pr(Xb).
From this we get the relationship

Pr(Xb|Y b) =
Pr(Y b|Xb) Pr(Xb)

Pr(Y b)
,

which implies that if D0 and D1 differ, they have to differ in
at least one of Pr(Y |X), Pr(X) or Pr(Y ). These are known
in the ML literature as concept shift, covariate shift, and label
or prior probability shift [23], respectively. The first source of
distribution leakage that we identify — differences between
E[Y 0|X0] and E[Y 1|X1] — requires a change in Pr(Y |X).
But, as we show below, even if Pr(Y 0|X0) = Pr(Y 1|X1),
distribution leakage can occur, because optimal model param-
eters can change in the presence of covariate and label shift
[23]. Distribution inference attacks can thus even work if only
covariate and label shift are present.

Since we base our examples on linear regression target
models, we give some background on linear regression. The
assumption underlying linear regression is that the relationship
between the features X = (X1, . . . , Xd) and the label Y takes
the form

Y = β0 + β1X1 + · · ·+ βdXd + ε

for a fixed vector β and a Gaussian error term ε ∼ N(0, σ2).
For an n × (d + 1)-matrix X̃ whose rows are independent

samples of (1, X1, . . . , Xd), a vector of independent error
terms εi, i = 1, . . . , n, and the corresponding vector of labels
Ỹ , a least-squares linear regression model consists of the
minimizer β̂ of the loss ∥X̃β̂ − Ỹ ∥2, given by

β̂ = (X̃T X̃)−1X̃T Ỹ .

Under the aforementioned assumption on the data distribution,
β̂ converges to β when increasing the number of samples,
which implies that

E[β̂] = β.

Further,

Var[β̂] = EX̃

[
σ2(X̃T X̃)−1

]
.

In the one-dimensional case d = 1 we get for this variance:

Var[β̂1] = EX̃

[
σ2

ns(X̃)2

]
,

where

s(X̃)2 =
1

n

n∑
i=1

X̃i1 −
1

n

n∑
j=1

X̃j1

2

is the sample variance of the features. Note that in these
variances the expectation w.r.t. the error terms εi, which are
by assumption normally distributed, has been computed —
resulting in the factor σ2 —, whereas the expectation w.r.t.
the features X̃ depends on the feature distribution.

Proof technique. The vector β̂ is a random variable, where
the randomness comes from the sampling of the training data
(X̃, Ỹ ). In the following analyses we will show for different
pairs D0, D1 that the distribution of β̂ differs when sampling
the training data from D0 vs. sampling it from D1. Denote by
D0

β̂
the distribution of β̂ when sampling the training data from

D0, and by β̂0 the corresponding random variable. Define D1
β̂

and β̂1 analogously. In the different settings that we analyze
we will either show that the means of D0

β̂
and D1

β̂
differ or

that their variances differ. This implies that there is a non-
null set V of β̂ values that have a different likelihood under
D0

β̂
than under D1

β̂
. The adversary in Fig. 1 receives a sample

β̂b. If this sample comes from V , they can predict with an
accuracy that is strictly better than random guessing whether
the sample came from D0

β̂
or D1

β̂
. Thus, the advantage of the

optimal adversary is strictly greater than 0 and hence the model
leaks distributional information.

For simplicity we focus on the binary classification setting.
However, our results can easily be extended to the regression
setting where for instance R = [0, 1] and the first regression
parameter of Dr is βr

1 = r in the example in Sec. IV-A, or
the parameter c in the examples in Sec. IV-B is c = 1+ r for
distribution Dr, r > 0.



A. Reason 1: Differences in E[Y |X]

The setting in which it is maybe not surprising that the target
model can leak information about the training distribution
is the one in which E[Y 0|X0] ̸= E[Y 1|X1], i.e., where
there exists a feature vector x such that E[Y 0|X0 = x] ̸=
E[Y 1|X1 = x]. Consider the e-commerce company from the
beginning, and assume that it sells sports products, including
surfboards. As part of its recommender system it builds a
model to predict how likely a particular client is to buy
a particular product, where one of the features is the time
of year. A competing company might want to determine
which region of the world their competitor’s customers are
located in. If we expect that people are more likely to buy
surfboards in summer than in winter, then for customers in
the northern hemisphere the months June, July and August
would have a positive correlation with the label, whereas
for customers in the southern hemisphere they would have
a negative correlation with the label.

Assume that D0 and D1 fulfill the linear regression assump-
tions with vectors β0 and β1. Since E[Y 0|X0] ̸= E[Y 1|X1]
and the error terms are assumed to have zero mean, we have
that β0 ̸= β1. Hence, E[β̂0] = β0 ̸= β1 = E[β̂1].

B. Reasons 2 & 3: Imperfect models

In this subsection we assume that E[Y 0|X0] = E[Y 1|X1].
In order for the distributions D0 and D1 to differ, the
marginal distributions of the features Pr(X0), Pr(X1) and/or
the marginal distributions of the label Pr(Y 0), Pr(Y 1) need
to differ. In the following examples both the distribution of
the features and the distribution of the labels differs between
D0 and D1. Consider again the example of the e-commerce
company that sells sports products. A competitor might be
interested in knowing whether that company has many or
few young customers. If the age of the user is one of the
features that the model uses and we assume that surfboards
are more popular among younger than among older users, then
in this example both the distribution of the features and the
distribution of the label would differ between D0 and D1.

If E[Y 0|X0] = E[Y 1|X1], a model that perfectly learns the
relationship between features and label — i.e., a model that
learns exactly the function g(x) = E[Y 0|X0 = x] — would
not leak any information about whether it was trained on D0

or D1. However, models in the real world are not perfect.
There are two reasons for this: the fact that there are only
finitely many training samples and a wrong inductive bias,
i.e., assumptions made in the choice of model architecture or
training algorithm that are not fulfilled by the data and lead to
a model that does not learn the correct function E[Y |X]. As
we show in this section, both of these sources of imperfection
can cause a model to leak information about its training
distribution, even if E[Y 0|X0] = E[Y 1|X1].

1) Reason 2: Wrong inductive bias: Consider distributions
D0, D1 with one-dimensional feature vectors and labels

Y b = Xb
1 + 1 + ε,

for b = 0, 1. Assume that D0 and D1 only differ in the
marginal distribution of X1 (and therefore also of Y ): assume
that X0

1 has a probability density f0, and define the density
f1 of X1 as f1(cx) = f0(x) for a factor c > 1; informally,
X1

1 ∼ cX0
1 . We assume that the target model is a linear

regression model without an intercept term, i.e.,

Y = β1X1 + ε.

It thus induces a wrong bias and cannot correctly model the
data distribution. The minimizer β̂ for the loss of a one-
dimensional linear regression model without an intercept term
is given by

β̂1 =

∑
i X̃i1Ỹi∑
i X̃

2
i1

.

We have

E[β̂1
1 ]

= E{X̃i1,Ỹi}n
i=1∼D1E{εi}n

i=1∼N(0,σ2)(β̂1)

= E{X̃i1,Ỹi}n
i=1∼D1E{εi}n

i=1

(∑
i X̃i1Ỹi∑
i(X̃i1)2

)

= E{X̃i1,Ỹi}n
i=1∼D1E{εi}n

i=1

(∑
i X̃i1(X̃i1 + 1 + εi)∑

i(X̃i1)2

)
E[εi]=0
= 1 + E{X̃i1,Ỹi}n

i=1∼D1

( ∑
i X̃i1∑

i(X̃i1)2

)
+ 0

= 1 + E{X̃i1,Ỹi}n
i=1∼D0

( ∑
i cX̃i1∑

i(cX̃i1)2

)

= 1 + cE{X̃i1,Ỹi}n
i=1∼D0

( ∑
i X̃i1∑

i(X̃i1)2

)
= E{X̃i1,Ỹi}n

i=1∼D0E{εi}n
i=1

(β̂1)

+ (c− 1)E{X̃i1,Ỹi}n
i=1∼D0

( ∑
i X̃i1∑

i(X̃i1)2

)

= E[β̂0
1 ] + (c− 1)E{X̃i1,Ỹi}n

i=1∼D0

( ∑
i X̃i1∑

i(X̃i1)2

)
.

Hence, unless X0
1 ≡ 0 (and therefore also X1

1 ≡ 0), the
expected value of the model parameter β̂1 under D0 and D1

differs. The parameter of a model trained on D0 converges to
a different value than the parameter of a model trained on D1

when increasing the size of the training dataset, and therefore
leaks information about the training distribution.

2) Reason 3: Finite amount of training data: Assume that
a training set of size n is sampled from Db, for b = 0 or b = 1.
Assume that Db has one-dimensional features, and labels

Y b = β0 + β1X
b
1 + ε,

where, using the notation from the previous subsection,
f1(cx) = f0(x) for some c > 1. As we have seen earlier,
the variance of the parameter β̂1 is Var[β̂1] = EX̃

[
σ2

ns(X̃)2

]
,

where s(X̃)2 is the sample variance of the feature. We write



X̃ ∼ f b to denote a data matrix whose rows are sampled ac-
cording to the density f b, for b = 0, 1. Since f1(cx) = f0(x),
we have that

Var[β̂1
1 ] = EX̃∼f1

(
σ2

ns(X̃)2

)
= EX̃∼f0

(
σ2

ns(cX̃)2

)
=

1

c2
EX̃∼f0

(
σ2

ns(X̃)2

)
=

1

c2
Var[β̂0

1 ].

The lower variance of β̂1
1 means that more extreme values of

β̂1 are more likely under D0 than under D1. Hence the model
parameters leak information about the training distribution.
However, when increasing the amount of training data n, the
variance of β̂0

1 and β̂1
1 will go to 0 both for D0 and for D1.

With the case E[Y 0|X0] ̸= E[Y 1|X1], the problem of
finitely many samples and the problem of a wrong inductive
bias we have now covered all potential sources of leakage and
shown they are actual sources or leakage.

V. DEFENSES

In this section we use the insights from Sec. IV to identify
ways in which the leakage of information about the training
distribution may be prevented, but also identify settings in
which such a mitigation is impossible without sacrificing
model performance. We do this both for classic distribution
inference (Sec. V-A) and for distributional membership infer-
ence (Sec. V-B).

A. Mitigating distribution inference risks

1) Reducing the number of cases where E[Y 0|X0] ̸=
E[Y 1|X1]: As we have seen in Sec. IV-A, differences between
E[Y 0|X0] and E[Y 1|X1] can lead to distribution leakage.
This might arguably be the worst source of leakage, since
in a setting where E[Y 0|X0] ̸= E[Y 1|X1], a model that
perfectly learns E[Y b|Xb], i.e., a perfect model from a pure
ML perspective, exhibits the highest amount of leakage. This
means that the prevention of leakage and the goal of training
a model that fits the data well, e.g., by improving the model’s
inductive bias or increasing the amount of training data, are
directly opposed — a no-free-lunch situation. It gets even
worse when considering that both improving the model’s
inductive bias and increasing the amount of training data in
themselves are in isolation ways to decrease the amount of
leakage (see Sec. V-A2 and V-A3).

It is therefore worth to first think about whether an adversary
of interest, i.e., one trying to infer information that the model
trainer considers as confidential, exists for which E[Y 0|X0] ̸=
E[Y 1|X1]. If this is not the case, then the model might still
leak distributional information via this mechanism, but just
information that is not considered confidential.

If the model trainer cannot rule out adversaries of interest
for which E[Y 0|X0] ̸= E[Y 1|X1], then they may defend
against them, or at least against some of them, by reducing the
number of features that the model relies on for its predictions.
If, for instance, the model relies only on the first k of d
features, for k < d, then an adversary with E[Y 0|X0] ̸=
E[Y 1|X1] but E[Y 0|X0

1 , . . . , X
0
k ] = E[Y 1|X1

1 , . . . , X
1
k ] does

not pose a problem anymore. Similar statements hold for
models that do take all features into account, but reduce the
dimensionality in a latent space, such as when performing
preprocessing via principle component analysis. Even though,
given enough training data, taking all features into account
should give the best performing model, such dimensional-
ity reduction methods often improve the model fit, e.g., by
reducing overfitting. And even methods that do reduce the
model fit on the available test data may be desirable for
out-of-distribution generalization. Causal learning methods as
discussed in Sec. VII-C fall into this category: they aim to
learn models that only rely on those features that have a
causal effect on the label Y , and ignore features that are only
spuriously correlated with the label. Let XC denote the causal
parents of Y . Then one may even argue that no adversary of
interest exists for which E[Y 0|X0

C ] ̸= E[Y 1|X1
C ], since causal

relationships can be seen as laws of the universe [28], and thus,
if E[Y 0|X0

C ] ̸= E[Y 1|X1
C ], either D0 or D1 is not a realistic

distribution. A causal learning method that learns the function
E[Y b|Xb

C ] would thus offer protection against the source of
leakage discussed in this paragraph.

2) Correcting a wrong inductive bias: The example in
Sec. IV-B1 shows that a wrong inductive bias — there in the
form of a wrong model architecture — can be a source of
distribution leakage. This wrong bias may be corrected by
thinking more carefully about the assumptions that are made
by the choice of model architecture and training algorithm
(including data preprocessing); by testing some of these as-
sumptions on the available training data; and by consulting
with domain experts. All of these measures will then hopefully
lead to a new set of assumptions that better match the data
distribution and therefore reduce the distribution leakage of
the resulting model. We note that obtaining an inductive bias
that closely matches the data distribution is also a goal in a
classic ML setting where one simply wants to improve the
model fit. Thus, here the goals of model performance and of
training distribution protection are aligned.

3) Increasing the amount of training data: In Sec. IV-B2
we show that the finiteness of the training dataset can cause
the model trained on this dataset to leak information about
the training distribution. A natural way to reduce this leakage
is to collect more training data or to use data augmentation
[12], [32]. However, this should not be done as an isolated
measure. Increasing the amount of training data will usually
improve the model fit. But in the case where E[Y 0|X0] ̸=
E[Y 1|X1], a better fitted model will leak more information
about the training distribution rather than less. Similarly, in
the case of a wrong inductive bias a better fitted model can
leak more information than a worse fitted one; see our example
in Sec. IV-B2. It is thus important to first address these other
sources of leakage before collecting more training data.

B. Mitigating distributional membership inference risks via
causal learning

As described in Sec. III-B, in the distributional membership
inference setting we assume that there are n parties and that



the adversary knows that n − 1 of them — w.l.o.g. parties
1, . . . , n − 1 — have contributed data to the training dataset.
The adversary wants to determine whether the n-th party has
contributed data as well or not.

For the discussion in this subsection we focus on the
problem of reducing the leakage from E[Y 0|X0] ̸= E[Y 1|X1],
since this is the most challenging and the most interesting
problem in this setting, and since the problems of a wrong
inductive bias and of the finiteness of the training data can be
tackled using more standard ML techniques (see Sec. V-A).

In order for E[Y 0|X0] ̸= E[Y 1|X1] to hold, it is necessary
that Dn

p differs from Di
p for at least one i. If the target model

should be useful and achieve a low error on each of the
distributions Di

p — we will call them training environments —
or even generalize beyond the training environments, one has
to make certain assumptions on how the environments Di

p may
differ; arbitrarily differing training environments could lead to
a model that performs arbitrarily badly on at least one of the
training environments. One such assumption is made by IRM
(see Sec. VII-C). This assumption is made to achieve out-of-
distribution generalization of the trained model. In this section
we are not interested in out-of-distribution generalization, but
we rather show that this assumption at the same time also
helps protect against distributional membership inference. The
assumption is that for all i, j it holds that

E(X,Y )∼Di
p
[Y |Φ(X)] = E(X,Y )∼Dj

p
[Y |Φ(X)], (1)

where Φ denotes an encoder that maps the set of all features
to the causal parents of Y . In the simplest case, these causal
parents are a subset XC of the features X , and Φ is a binary
matrix that selects the features XC . If the IRM training works
as intended, then it learns the encoder Φ and on top of it
the optimal model w that outputs a prediction Ŷ of the label
from the encoded features Φ(X), i.e., Ŷ = (w ◦ Φ)(X).
Because of Assumption 1 the optimality of w is invariant
w.r.t. the environment, i.e., it is the optimal predictor on
top of Φ in every environment Di

p, since it only depends
on the distribution E[Y b|Φ(Xb)] and not on the distribution
E[Y b|Xb]. Assumption 1 also implies that E[Y 0|Φ(X0)] =
E[Y 1|Φ(X1)]. Hence, w does not leak anything through the
mechanism E[Y 0|X0] ̸= E[Y 1|X1] — at least in the black-
box case, since it might still be that adding or removing one
environment changes the way that w computes the prediction
function internally. If IRM works as intended and Φ indeed
computes the causal parents of Y (see Arjovsky et al. [3] for
sufficient conditions in the linear case), then the composition
w◦Φ also leaks nothing through this mechanism in the black-
box case. In our experiments in Sec. VI-B we show that IRM
can even provide a defense in the white-box case. This is
as opposed to a standard ERM model that learns a model
on top of the original features X: Since we assume that
E[Y 0|X0] ̸= E[Y 1|X1], the optimal model — the one that
computes the function E[Y b|Xb] — would be different for
D0 and D1.

VI. EXPERIMENTS

In this section we investigate experimentally whether the
different sources of leakage that we identified in Sec. IV
are exploited by state-of-the-art distribution inference attacks.
We also test whether the defenses proposed in Sec. V have
the desired effect of reducing the performance of attacks.
In Appendix B we analyze which sources of leakage were
exploited by attacks in experiments in prior work.

Data. For being able to isolate the different sources of
leakage, we perform the experiments on synthetic data that is
individually crafted for each experiment. Synthetic data also
has the advantage that it allows us to directly sample from the
possible training distributions Dr instead of having to rely on
resampling from a finite dataset, which, e.g., typically leads
overlap between the training datasets of the different shadow
models. What is common for all experiments except from
the one on distributional membership inference (Sec. VI-B)
is that the feature vectors X are independently sampled from
a 4-dimensional normal distribution. In these experiments the
label for each feature vector X is computed by a neural
network M as Y = M(X). We generated M as a fully-
connected network with one hidden layer with 32 neurons
and random weights that are sampled independently from the
normal distribution N(0, 1). Except for the experiments in
Sec. VI-A3 regarding the finiteness of the training data, we
use 2048 training samples for each target and shadow model.
We perform both regression and classification experiments,
i.e., we consider adversaries that want to infer the value of
a continuous property (R = [0, 1]) and adversaries that want
to infer a binary property (R = {0, 1}). The value r ∈ R is a
parameter of the distributions from which we sample (X,Y ).

Target model. The target model in all experiments is a neural
network with the same architecture as the model M that
generates the labels. In each experiment we train 1024 target
models, each with newly sampled data. In the regression case
we split the interval [0, 1] evenly and train one model for each
r = k/1023, where k = 0, . . . , 1023. In the classification case
we train 512 models with r = 0 and 512 models with r = 1.

Attacks. We perform each experiment with the white-box
attack developed by Ganju et al. [14] and the black-box
attack proposed by Zhang et al. [39], which are implemented
in our new Python library [21]. The white-box attack uses
DeepSets [38] to learn permutation-invariant representations of
the models’ weights from shadow models, and a classifier or
regressor on top of these representations. The black-box attack
uses a simple multi-layer perceptron trained on the responses
of shadow models to a set of 1024 random queries. For each
attack we train 2048 shadow models. From this pool we
sample 100 times 1024 shadow models without replacement
to train 100 meta-classifiers. We compute the mean accuracy
(classification) or mean average error (MAE; regression) of the
attack models on the 1024 target models, and average these
values over the 100 attack models. In addition to the means, we
show the 95% confidence intervals w.r.t. the 100 performance
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Fig. 2: First experiment regarding differences in E[Y |X]
(Sec. VI-A1). ε determines how far apart the weights of the
two models generating Y 0 and Y 1 are. Error bars represent
95% confidence intervals.

values of the attack models. An optimal attack that does not
take into account the target model would achieve an accuracy
of 0.5 for classification and an MAE of 0.25 for regression.

A. Distribution inference

1) Differences in E[Y |X]: We randomly generate a neural
network M0 that computes the value of Y 0 given X0 as
Y 0 = M0(X0), as described above. We then generate a
neural network M1 that computes Y 1 = M1(X1), where for
M1 we take the same architecture, weights and biases as for
M0, but, for a value ε ∈ R, add independent noise N(0, ε2)
to every weight and bias term. We generate the features
Xb, for b = 0, 1, as X ∼ N4(0, 2I4), where N4 denotes
the four-dimensional normal distribution and I4 the four-
dimensional identity matrix. Fig. 2 shows the attack accuracy
for different values of ε. We see that larger differences between
the functions that compute Y 0 and Y 1 lead to a higher attack
accuracy.

We further investigate the influence of the performance of
the target model on the attack performance in this setting. To
produce models with a predefined performance, we perform
early stopping: we only train the model as long as the training
MSE lies above the target MSE, and stop training after the first
epoch where the training MSE falls below the target MSE. We
perform the same early stopping in the training of the shadow
models. Fig. 3 shows the results for different target MSE’s at a
fixed perturbation level ε = 0.05. As expected, target models
that better fit the function E[Y b|Xb] are more susceptible to
distribution inference attacks than those that fit it more poorly,
in the setting where this function differs between D0 and D1.

2) Wrong inductive bias: With 14 denoting the four-dimen-
sional vector of ones, we generate the features Xr of distri-
bution Dr as X ∼ N4((−1 + 2r)14, 2I4) and the labels Y r

via a random neural network M as described earlier. In order
to simulate the result of a wrong inductive bias, we perform
early stopping in the same way as in the previous experiment
(Sec. VI-A1). The results in Fig. 4 for the regression case
show that the worse the model fits the data, the better the
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Fig. 3: Second experiment regarding differences in E[Y |X]
(Sec. VI-A1). The training of the target model is stopped early
after it has reached the predefined training MSE. Error bars
represent 95% confidence intervals.
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Fig. 4: Experiment regarding wrong inductive biases
(Sec. VI-A2). The training of the target model is stopped early
after it has reached the predefined training MSE. Error bars
represent 95% confidence intervals.

distribution inference attack performs. There is a small uptick
in the attack MAE for the white-box case for poorly fitted
models, which might be due to a larger variance in the target
model early in the training, which makes the learning task for
the meta-classifier harder. We repeat the same experiment for
the classification case (Fig. 7), but find no interesting trends
since both attacks perform almost perfectly in all cases.

3) Finiteness of the training data: We generate the data
in the same way as in the previous experiment (Sec. VI-A1).
However, instead of using 2048 training record for the target
and the shadow models, we vary this number between 512 and
2048. In Fig. 5 we see that a larger training set provides more
protection against distribution inference attacks. We perform
the same experiment for the classification case (Fig. 8), where
we observe the same behavior in the black-box attack, whereas
the white-box attack always performs perfectly.

B. Distributional membership inference

In Sec. V-B we showed how perfect IRM protects against
distributional membership inference attacks if the parties’
distributions do not differ in terms of the relationships of
the causal parents XC of the label Y with Y . We set up an
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Fig. 5: Experiment regarding finiteness of training data
(Sec. VI-A3). The target model gets trained with datasets of
different sizes. Error bars represent 95% confidence intervals.

experiment to see whether such a protection is also possible
with existing implementations of the IRM concept. For this,
we generate features X = (X1, X2) and a label Y according
to the causal graph X1 → Y → X2. The feature X1 is a
causal parent of Y , whereas X2 is spuriously correlated with
Y . Concretely, we sample data for party i as follows:

X1 ∼ N (0, 1)

Y ∼ X1 +N (0, 1)

X2 ∼ Y +N (0, 0.5 + i).

We use four parties with indices 0, 1, 2, 3, and sample 512
records from each party’s distribution. We assume that the
adversary wants to determine the presence or absence of the
data of party 3 in the training data, which means that D0

consists of the data of all four parties, whereas D1 only
consists of the data of parties 0, 1 and 2. Hence, the correlation
between X2 an Y is larger in D1 than in D0 and therefore
E[Y 0|X0

1 , X
0
2 ] ̸= E[Y 1|X1

1 , X
1
2 ]. A perfect associational ERM

model that takes both X1 and X2 into account for its prediction
would thus leak distributional information, whereas a perfect
causal model would not leak distributional information, since
by design E[Y 0|X0

1 ] = E[Y 1|X1
1 ].

We perform distribution inference attacks on three models
that are all fully-connected neural networks with one hidden
layer with two neurons: (1) an ERM model, which takes X1

and X2 as input; (2) an optimal causal ERM model, which
only takes X1 as input; and (3) an IRM model, where Φ is
the fully-connected neural network described above with X1

and X2 as input and a one-dimensional output, and w is the
constant 1, as proposed by Arjovsky et al. [3].

We first assess the in-distribution performance and out-of-
distribution generalization capabilities of the different models.
For this, we sample new records from the training distributions
D0 and D1 to create validation sets. We further create test sets
from the same distributions, except with the spurious correla-
tion between X2 and Y inverted: X2 ∼ −Y +N (0, 0.5 + i).
A model that learns to ignore the spurious correlation with
X2 will perform worse on data from the train, but better on

data from the test distribution than a model that leverages
X2 for its predictions. And indeed, as shown in Fig. 6a, the
ERM model, which is expected to use both X1 and X2 for its
predictions, is that model among the three that performs best
on the validation set and worst on the test set. For the causal
ERM model, which only uses X1, the situation is reversed.
IRM lies between the two, which shows that it achieves a
certain level of out-of-distribution generalization, though it is
still not as good as the optimal causal model.

Next, we investigate the resistance to distribution inference
attacks. Fig. 6b shows the distribution of the attack perfor-
mance of 100 meta-classifiers for each of the three models.
As expected, the attacks perform much worse on the optimal
causal model than on the ERM model. We can further see
that IRM, despite having to learn the causal structure by
itself, nearly matches the protection of the optimal causal
model against a white-box adversary. In the black-box case the
protection is still much better than that of the ERM model, but
the gap to the optimal causal model is bigger. We conjecture
that this is the result of the higher variance of the IRM model
as compared to the causal ERM model, as seen in Fig. 6a,
which could make the learning task for the white-box meta-
classifier harder. Note how neither the optimal causal model
nor IRM provide perfect protection, which would correspond
to an attack accuracy of 0.5. The reason for this is the
finiteness of the training data, due to which the models cannot
learn the exact relationship between X1 and Y . However, the
dataset D0 is larger than D1, and hence the expected deviation
from the correct regression parameter is larger when training
on D1, which the attacks can exploit.

VII. FURTHER RELATED WORK

A. Distribution inference

We give an overview of the existing distribution inference
attacks and of the proposed defenses.

1) Attacks: Ateniese et al. [4] are the first to show the rel-
evance of the problem of distribution inference by performing
successful distribution inference attacks. The attacks operate
in the white-box setting and consist of a meta-classifier trained
on top of shadow models (see Sec. II-A). The authors show the
success of their attacks against support vector machines and
hidden Markov models. Ganju et al. [14] show that a simple
meta-classifier that takes a flattened representation of the target
model’s weights as input does not work well against complex,
fully connected neural networks (FCNNs). They make the
observation that FCNNs are invariant w.r.t. layer-wise node
permutations. Based on this observation they propose two
ways to encode this information in the meta-classifier: via
permutation-invariant representations or via a representation of
the layers of the target model as sets via DeepSets [38]. Zhang
et al. [39] consider distribution inference in the black-box
setting and propose a meta-classifier attack based on shadow
models.

Zhang et al. also show how their attack can be applied
in a secure multi-party ML setting, where multiple parties
jointly train an ML model with their local data, and one of the
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Fig. 6: Experiments in the distributional membership inference setting (Sec. VI-B). The plots show densities based on (a)
1024 target models of each type and (b) 100 attacks, respectively.

parties wants to gain information about the data distribution
of another party that participates in the training. Mahloujifar
et al. [19] show that data poisoning — which may happen in
multi-party learning as well — can be used to increase the
effectiveness of distribution inference attacks. Their method
introduces maliciously labeled data points into the training
set that cause E[Y 0|X0] to differ from E[Y 1|X1], leading to
distribution leakage via the first source identified in this paper.

Suri and Evans [33] formalize distribution inference as a
cryptographic game. They relate the accuracy of an attack to
the number of training records that an adversary with sampling
access to the training distribution would have to draw to obtain
the same amount of information. Further, the authors develop
new black-box attacks that are based on the error that the target
model makes when performing inference on D0 and D1. They
also extend the white-box attack by Ganju et al. [14] based
on DeepSets to convolutional neural networks. The authors
compare the new and existing attacks on different datasets
and show that attacks that aim to infer the ratio of a binary
target attribute are more successful the further apart the two
ratios considered by the adversary are.

Zhou et al. [40] develop distribution inference attacks
against generative adversarial networks (GANs) for black-
box settings. Their attacks are the first to perform regression,
i.e., they directly output the estimated value of the attacked
attribute instead of only distinguishing between two possible
values. Zhou et al. further show how distribution inference
attacks can be used to enhance membership inference attacks
by calibrating the output of the membership inference attacks
to the attributes of the target record in combination with the
inferred property of the training distribution.

2) Defenses: While the majority of the work on distribution
inference focuses on attacks, two papers also discuss possible
defenses.

Ganju et al. [14] propose three defenses and report prelim-
inary results on the first and the third one. 1) They observe
that in a neural network with ReLu or LeakyReLu activation
functions scaling the weights and bias of a neuron by a factor
and scaling the weights connecting it to the next layer by

the inverse factor does not change the computed function.
A defense that does not affect the model performance can
thus consist of performing such scaling and inverse scaling
in the target model in a randomized way. However, since this
defense does not change the computed function, it does not
work against black-box attacks, and might also be overcome
by more sophisticated white-box attacks that, e.g., perform
the same kind random scalings in the training of the shadow
models. 2) Another defense proposed by the authors is to
encode additional, arbitrary information in the model param-
eters to make them look different from those of the shadow
models. This defense has similar shortcomings as the first one:
it does not work against black-box attacks and might also be
overcome by adapted white-box attacks. 3) Finally, the authors
propose randomly flipping labels in the training data. However,
this directly impacts the model performance and, as the authors
themselves write, is therefore unlikely to be implemented in
real-world applications.

Zhou et al. [40] propose two defenses without investigating
them empirically. 1) The first defense is specific to GANs.
Instead of releasing all samples generated by a GAN, the
model owner could release only a specific subset of the
generated samples that is less susceptible to the attacks.
However, this would mean changing the output distribution
of the GAN, which would make it less closely resemble the
training distribution. 2) The second defense can also be applied
to other models. The authors propose to modify the training
dataset w.r.t. the target property prior to training, either by
removing or by adding records so that the ratio of a targeted
binary property has a fixed predetermined value, e.g., 0.5, no
matter the original ratio. This may mean expensive acquisition
of new data or reducing the size of the dataset, potentially
significantly. Both of these defenses also assume that the
defender knows the property that the attacker wants to attack.

As we can see, all proposed defenses come with significant
drawbacks and lack thorough experimental evaluation. We
hope that the insights from this paper can support the de-
velopment of new, practical defenses. Our Python library [21]
that implements state-of-the-art distribution inference attacks



will be particularly useful for evaluating such defenses.

B. Membership inference

In this section we describe previous settings for membership
inference and position our definition of distributional member-
ship inference in this space of definitions.

ML models have been shown to be susceptible to record-
level membership inference attacks [31], that is, an adversary
with access to the model may be able to determine with good
accuracy whether a particular record was part of the training
dataset or not. Multiple attacks have been developed [18], [29],
[31], [37], some of them relying on the idea of shadow models
that is also used by many distribution inference attacks.

A common defense against membership inference attacks
is differential privacy (DP) [11], which guarantees that the
output distribution of a randomized function does not change
too much when changing one record in the database that it is
invoked on. Yeom et al. [37] formalize record-level member-
ship inference as an adversarial game and show that when the
training algorithm fulfills DP, the adversary’s advantage can
be bounded by a function of the privacy parameter ε.

To achieve DP for an ML model, one can for example
randomly perturb the learning objective or the parameters
of the model [7]. For neural networks trained via SGD,
instead a perturbation of the gradients is used [1], [22]. Such
perturbations usually lead to a loss in utility.

Classic DP assumes that each individual that contributed
to the database contributed exactly one record. Under this
assumption, preventing an adversary from inferring the mem-
bership of one record is equivalent to preventing the adversary
from inferring whether one individual has contributed to the
database. However, in many cases there might be individuals
who have contributed multiple records. E.g., each visit of the
same patient to a hospital might lead to a new record in the
hospital’s database, or each visit by the same user to a website
might lead to a new log file entry. DP can be extended to these
settings by increasing the standard deviation of the noise added
in the function computation by a factor of the maximal number
of records contributed by one individual [10], which will
decrease utility. Furthermore, such a bound on the maximal
number of contributed records may not even be known. Most
variants of DP cannot handle this last setting, whereas it poses
no problem for distributional membership inference.

There exist numerous variants of DP [8], [17]. Some of
them are related to our setting of distributional membership
inference insofar as they also assume an adversary that only
has distributional information about (some of) the potential
records in the database instead of knowing their precise values.

Hall et al. [15] propose random differential privacy, where
the dataset is assumed to consist of i.i.d. samples from the
same distribution, and they consider an adversary that wants
to distinguish between two datasets that are identical except
for one record that is drawn independently in the datasets.
Triastcyn and Faltings [36] define Bayesian differential pri-
vacy, where they only consider a single record in the data as
random, and assume that this record is present in one dataset

but absent in the other. Duan’s [9] work is closer to ours in that
it assumes that no random noise is added in the computation
of the function whose result is supposed to fulfill a privacy
guarantee. Duan assumes that the adversary only has access to
some of the records in the dataset, but that there are n records
for which the adversary only knows the distribution that they
were sampled from. Duan shows that due to the central limit
theorem in this setting sum queries fulfill DP for large enough
n even without adding external noise.

In recent work, Suri et al. [34] study subject membership
inference where, like us, they assume an adversary with
only distributional information about the different individual’s
datasets that make up the training data. They develop attacks
for a federated learning (FL) setting where each subject may
have contributed to the data of multiple parties that participate
in the training.

C. Causal learning

The connection between causal learning and privacy has
been explored in prior work. Tople et al. [35] investigate the
resilience of causal models to membership inference attacks.
They show that such models provide better protection than
associational models and achieve stronger DP guarantees for
the same amount of noise. Similarly, Francis et al. [13]
experimentally show that models trained via an FL version
of IRM are more resilient to membership inference attacks
than associational models trained via FL.

VIII. CONCLUSION

This paper provides the first in-depth study of the reasons
for the leakage of information about the training distribution
of ML models. We have identified the three sources of leakage
via theoretical analysis — memorization of information about
E[Y |X], a wrong inductive bias, and the finiteness of the
training data —, and corresponding defense strategies. Our
experiments show that state-of-the-art distribution inference
attacks exploit all of these sources, and that our defense
strategies can reduce the attack performance. We have further
introduced a new, general definition of distribution inference
that allows for handling a broader class of adversaries. Beyond
this generalization, we have introduced and analyzed the
new, specialized attack scenario of distributional membership
inference and shown how causal learning methods can provide
protection against such attacks. We hope that our uncovering
of the mechanisms behind distributional leakage, along with
our Python library for distribution inference attacks, can help
in the development of new attacks and especially defenses.
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APPENDIX

A. Additional experiments

We repeat the experiments from Sec. VI-A2 and Sec. VI-A3
with classification instead of regression attacks. Since this
is a much easier task, the attacks perform very well in any
case, making the experiments less suitable to investigate the
influence of a wrong inductive bias and of finite datasets on
the attack performance.

B. Analyzing subsampling-based experiments

In Sec. VI-A we have presented the results of controlled
experiments that each focus on one of the three sources of
training distribution leakage. Prior to our paper, these different
sources had not been identified and therefore experiments,
which were typically used for comparing the performance of
different attacks, did not deliberately include or exclude some
of the sources of leakage. If an experiment, however, does not
include one source of leakage and a particular attack’s strength
is picking up exactly on this source of leakage, then the attack
performance might be underestimated. For real datasets, the
inductive bias of a model is almost never completely correct,
and the amount of training data is always finite. Therefore
these two sources of leakage are almost always present in
experiments on real data. However, it is not always the case
that E(Y 0|X0) ̸= E(Y 1|X1). We will hence investigate in
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Fig. 7: Experiment regarding wrong inductive biases
(Sec. VI-A2); classification attack. The training of the target
model is stopped early after it has reached the predefined
training MSE. Error bars represent 95% confidence intervals.
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Fig. 8: Experiment regarding finiteness of training data
(Sec. VI-A3); classification attack. The target model gets
trained with datasets of different sizes. Error bars represent
95% confidence intervals.

which experiments in the prior work on distribution inference
this source of leakage is present and in which not.

In most of these experiments D0 and D1 are generated by
taking one dataset and conditionally subsampling from it to
generate two datasets that have different marginal distributions
of a target attribute T whose distribution the adversary wants
to learn. Sampling from D0 and D1 is then defined as sampling
from these two datasets. T can be one of the features X (e.g.,
the sex of an individual in a census dataset [14]), but does not
have to be (e.g., the age of the displayed person in an image
dataset [14] whose features are pixel colors). Typically T is a
binary attribute — which we, too, assume in this section for
simplicity — and D0 and D1 therefore differ in the probability
that the target attribute takes the value 0 (or 1). Analogous to
Xb and Y b, let T b be the random variable corresponding to
the target attribute with marginal distribution according to Db.
The data generation process has the properties

Pr(Y 0|X0, T 0) = Pr(Y 1|X1, T 1)

and
Pr(T 0 = 0) ̸= Pr(T 1 = 0).

For fixed x, y, we have

Pr(Y b = y,Xb = x)

=
∑

t∈{0,1}

Pr(Y b = y,Xb = x|T b = t) Pr(T b = t).

We distinguish between the case where T b is one of the
features Xb and the case where it is not one of the features.

T is a feature. Suppose that Xb is a feature vector of length
m and that T b is one of the features in Xb, w.l.o.g. the last
feature Xb

m: Xb = (Xb
<m, T b). Let x be an instance of Xb

with xm = 0. Then Pr(Xb = x|T b = 1) = 0 and Pr(Y b =
y,Xb = x|T b = 1) = 0. We thus have

Pr(Y 0 = y|X0 = x)

=

∑
t∈{0,1} Pr(Y

0 = y,X0 = x|T 0 = t) Pr(T 0 = t)∑
t∈{0,1} Pr(X

0 = x|T 0 = t) Pr(T 0 = t)

=
Pr(Y 0 = y,X0 = x|T 0 = 0)Pr(T 0 = 0)

Pr(X0 = x|T 0 = 0)Pr(T 0 = 0)

=
Pr(Y 0 = y,X0 = x|T 0 = 0)

Pr(X0 = x|T 0 = 0)

=
Pr(Y 1 = y,X1 = x|T 1 = 0)

Pr(X1 = x|T 1 = 0)

= Pr(Y 1 = y|X1 = x).

Hence, in the case where T is one of the features, it does
not hold that E(Y 0|X0) ̸= E(Y 1|X1), and therefore in
such experiments this potential source of leakage cannot be
exploited.

T is not a feature. This is not necessarily the case if T b is
not one of the features Xb. Consider the case where Xb and
Y b are binary scalar random variables. For p0 ̸= p1, let

Pr(Y b = 0|Xb = 0, T b = 0) = p0,

Pr(Y b = 0|Xb = 0, T b = 1) = p1.

We have

Pr(Y b = 0|Xb = 0)

=
∑

t∈{0,1}

Pr(Y b = 0|Xb = 0, T b = t) Pr(T b = t)

= p0 Pr(T
b = 0) + p1 Pr(T

b = 1).

Assume that Pr(T 0 = 0) = p0 and Pr(T 1 = 0) = p0. Then
Pr(Y 0 = 0|X0 = 0) ̸= Pr(Y 1 = 0|X1 = 0) and therefore
E(Y 0|X0) ̸= E(Y 1|X1), because

Pr(Y 0 = 0|X0 = 0)− Pr(Y 1 = 0|X1 = 0)

= [p0 ∗ p0 + p1(1− p0)]− [p0 ∗ p1 + p1(1− p1)]

= p20 − 2p0p1 + p21

= (p0 − p1)
2

> 0,

since by assumption p0 ̸= p1.
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