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ABSTRACT

Developing intelligent agents capable of seamlessly cooperating and coordinating
with other agents in shared environments, including humans, has become a critical
research challenge in the field of Al This requires agents to understand environ-
ment dynamics and anticipate other agents responses’ to each action. Current
research approaches Human-AlI coordination through model-free policies for op-
timality and population-based training for robustness. However, these approaches
are brittle and can fail when collaborating with people due to the diverse and
unpredictable nature of human behavior, which cannot be comprehensively cap-
tured by the training distribution. Striving for a solution that balances robustness
and optimality, we introduce DIZCO', the first framework that leverages gener-
ative models to enable real-time, search-based planning in a complex human-Al
cooperative task. We first train a generative model to predict future world trajec-
tories conditioned on current state, ego actions, and partner identity, serving as
our world model. Then we train a generative action proposer that proposes plau-
sible ego action candidates based on the world state. At test time, we identify
the optimal future trajectory by searching through outcomes of all proposed ac-
tion candidates passed into our world model. Offline evaluations indicate that the
D1ZCo framework outperforms state-of-the-art model-free policies in joint re-
ward. To validate that this method can be feasible for real-time human interaction,
we engineer a system that enables model-based planning and search to operate
at speeds fast enough to cooperative live with humans. A preliminary user study
resulted in positive feedback, collectively underscoring its practical effectiveness
for real-time human-Al collaboration.

1 INTRODUCTION

Human collaboration is a real-time negotiation, in which partners continuously infer intentions, re-
solve conflicting objectives, and adapt to differences in skill, timing, and behavior. Success depends
on interpreting implicit signals while pursuing an explicit, shared goal. Therefore, building predic-
tive models that can support effective collaboration is a major challenge for Al systems, as they must
account for the wide variability in human skills, goals, and behavior patterns across individuals and
contexts. These Al systems must be able to anticipate how the world and their partners evolve in re-
sponse to each action, both immediately and over extended horizons, to effectively collaborate with
humans. Unlocking this would enable a future where intelligent robots would become an integral
part of our day-to-day lives, assisting and adapting alongside us.

Current state-of-the-art approaches for human-Al cooperation are predominantly comprised of
model-free reinforcement learning (RL) approaches, augmented with population-based training
(PBT) (Liang et al., 2024; Zhao et al., 2023). While these have proved able to generalize to in-
distribution partners, they are fundamentally limited. These methods learn a reactive policy that
implicitly memorizes responses to partner behaviors seen within the training population, struggling
to coordinate with partners exhibiting novel strategies or behaviors that lie outside of the distribution.
This lack of explicit reasoning and planning makes them brittle when faced with online adaptation
a truly unseen partner. Given the level of diversity of human behaviors, brittle methods are funda-
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mentally ill-suited to the problem, and fail to scale and generalize well. Our work addresses this gap
by moving towards a model-based approach allowing for test-time inference and planning.

We introduce DiZCo, a Diffusion-based framework for Zero-shot Coordination that achieves real-
time adaptation through online planning. At its core, diffusion models are capable addressing two
key challenges in multi-agent settings: generalization to an arbitrary number of agents and adap-
tation to novel partners. Our approach uses two complementary diffusion models: 1) an action
proposal model, conditioned on historical context and reward-to-go, generates candidate ego-action
sequences, and 2) a partner-conditioned world model simulates the future outcomes for each can-
didate sequence. We search over these simulated rollouts, selecting the plan that maximizes the joint
reward. For real time evaluation, DIZ CO searches over the simulated rollouts to select a high reward
plan given the partner 1. Employing a diffusion model as the simulator, we effectively disentangle
the problem of modeling complex partner and environment dynamics from the separate problem
of planning. This separation of search, plan generation and evaluation, allows our agent to reason
about partner behavior, resulting in more robust and adaptive strategies than common model-free
approaches.

The effectiveness of allocating additional compute at inference time via search is recognized in
recent work on large language models (LLMs), where test-time reasoning substantially improves
performance (Snell et al., 2024; Liu et al., 2025; Beeching et al.). Analogously, our framework
leverages test-time compute using our partner-conditioned world model by allowing the agent to
explore potential futures under a given partner behavior, evaluates their expected outcomes, and
selects strategies that are robust to variations in partner behavior. Importantly, because DIZCO uses
search as its optimization procedure during test time, it does not need to memorize a brittle optimal
strategy for all possible partner policies, as is often seen in model-free approaches. Each partner
is modeled and searched over individually, respecting the unique differences between partners and
enabling true personalized coordination.

Model based approaches have often been overlooked in the human-Al coordination space, due to
its computational challenges and potential impracticability for real-time live interaction. However,
D1ZCo, the first framework of its kind, leverages diffusion generative models to enable real-time,
search based planning in a complex human-AlI cooperative task, outperforming current state-of-
the-art methods in offline evaluation.

In sum, our contribution includes:

* We introduce DIZCO, the first framework leveraging diffusion generative models to enable real-
time, search based planning in a complex human-AI cooperative task, overcoming long-
standing concerns about computational tractability.

* We design a two-model architecture: (1) an action proposer conditioned on history and reward-
to-go, and (2) a partner-conditioned world model that simulates futures given candidate actions.

* We show how test-time search over simulated rollouts enables personalized partner model-
ing, avoiding the need to memorize brittle strategies across diverse partners, yields robust and
adaptive coordination.

* We empirically show that DIZCO outperforms state-of-the-art model-free baselines in offline
evaluation on complex cooperative tasks including Overcooked and Autonomous Driving.
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Figure 1: The D1ZCo online planning loop: The Action Proposer generates candidate actions, which are passed
to a Search module. The Search module then uses the World Model to simulate and score future trajectories,
selecting the optimal plan for execution.
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2 RELATED WORKS

2.1 COOPERATION WITH GENERATIVE MODELS

Cooperation with Generative Models Developing cooperative agents that generalize effectively to
human partners remains a long-standing problem in Al, known as ad-hoc team-play (Stone et al.,
2010), or zero-shot coordination (Hu et al., 2020). A central challenge in human-AlI cooperation is
adapting to the diverse and unpredictable nature of human behavior. Grover et al. (Grover et al.,
2018) pioneered the work of generative representation of partner policy through a latent vector.
Since then, generative modeling has become a nascent tool to generate a valid and diverse popula-
tion of training partners for effective human-Al cooperation in various domains (Liang et al., 2024;
Chaudhary et al., 2025; Wang et al., 2022) due to the heterogeneous and unpredictable nature of
human behavior. However, the entire paradigm of offline population generation faces a fundamen-
tal limitation: since it relies on model-free reinforcement learning to train cooperative agents, its
effectiveness heavily depends on the diversity of the synthesized population, making it challenging
to adapt to out-of-distribution partners. DIZCO proposes a fundamental shift in the role of the gen-
erative model. Instead of using it offline to generate a static training population, we use it online as
a partner-conditioned world model for search.

Planning with Generative Models Generative models, particularly diffusion models, have recently
emerged as a powerful paradigm for planning in complex, high-dimensional domains like robotic
manipulation and autonomous driving (Chi et al., 2023; Li et al., 2025). A key challenge for these
methods is ensuring that the generated plans are not just plausible, but also optimal, especially in
out-of-distribution scenarios. Prior work has largely explored two ways to bridge this gap. One
way is to guide the sampling process with model-free methods. For instance, Diffuser (Janner et al.,
2022) pioneers planning with a diffusion model by training a separate model to predict the cu-
mulative trajectory reward and uses its gradient to guide the trajectory sampling procedure, while
Decision Transformer outputs optimal action sequences by conditioning an auto regressive model on
the desired return, past states, and actions (Chen et al., 2021). Another, approached outlined by Ne-
tanyahu et al. approaches adapting to out-of-distribution tasks by inversely learning a concept from
offline demonstrations (Netanyahu et al., 2024). These prior works focus only on single-agent tasks,
whereas we focus on multi-agent coordination. Furthermore, our method allows real-time adaption
rather than learning from offline demonstrations. We take inspiration from reward-conditioned dif-
fusion policies by training our reward-to-go-conditioned action proposer and combine it with the
world model to generate future trajectories.

Multi-agent World Modeling Learned world models—generative models that capture an environ-
ment’s dynamics have shown great promise capabilities for planning and reasoning (Kaiser et al.,
2019; Hao et al., 2023; Alonso et al., 2024). While approaches based on reinforcement learning (RL)
can find an optimal policy, they suffer from sample inefficiency. In contrast, world models provide
an alternative with better sample efficiency which has demonstrated promising outcomes in single-
agent tasks. Extending this paradigm to multi-agent scenarios, however, is a significant challenge,
as the model must learn to predict not just the environment’s physics, but also the behavior of other
agents. Recent work has begun to tackle this. For instance, MADIff uses a diffusion-based model for
multi-agent trajectory prediction to learn a decentralized policy (Zhu et al., 2025). while COMBO
learns a compositional world model by generating video conditioned on joint actions (Zhang et al.,
2024). To our knowledge, DIZCO is the only framework that applies the idea of generative world
model to zero-shot coordination, realizing the first ever real time adaptation to novel partners utiliz-
ing a combination of a partner-conditioned diffusion-based world model and search.

3 PRELIMINARIES

Multi-agent Coordination. In cooperative multi-agent environments, effective performance de-
pends not only on an agent’s ability to act optimally, but also on its capacity to coordinate with
diverse partners, especially with novel partners in the environment. The behavior of the partner ef-
fectively becomes part of the dynamics of the environment, requiring the ego agent to reason about
its partner’s intentions.

A standard way to formalize this is through a Markov game (Littman, 1994), defined by (n, S,
{A;}, {0}, T, R). n denotes the number of agents; S as the set of state space; A; is the action
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Figure 2: Overview of the DIZCO framework. Left: the action proposal model that generates candidate
sequences. Right: The world model works with the action proposer to search over trajectories.

space for agent i; O; is the observation space for agent i; T € S x Ay x ... x A, — A(S) is the
joint transition model, defining the probability distribution of the next state after taking joint action
a€ A X...x Ay instate s; R € S x A X ... x A, — R is the shared reward function, denoting
reward the team receives after taking joint action a € A; X ... X A,, in state s. In this setting the ego
agent controls only its action @Geg, While @parmer 15 determined by an external partner policy Tpartner
which may vary across time and interactions, with the objective of maximizing the expectation of

discounted cumulative reward ZtT:O ~tr; starting from an initial state sg.

Planning and Generalizing to N agents Diffusion models are generative models that can learn
distributions over sequences conditioned on context Ho et al. (2020).

Given an initial state so and a set of conditioning variables ¢ = {c¢y, ¢, ..., ¢k}, a diffusion model
learns to approximate the distribution over possible future sequences pg(x1.7 | xo,c. This is
achieved by training a network €y to predict the injected noise at diffusion step ¢ by minimizing
the objective:

Lust = |leo(z1.7,t | m0,¢) — €| (D
where € ~ N(0, 1) and ¢ is sampled uniformly over diffusion steps. At inference time, we em-
ploy classifier-free-guidance (CFG) Ho & Salimans (2022) to steer the generation process towards

specific condition c¢. The effective noise prediction at each step is the guided combination of a
conditional and unconditional prediction:

€o(xe,t,¢) = eg(xy,t | D) + wleg(as, t | ¢) — eg(ae,t | D)), 2)

where w is the guidance scale, €y(x,t | ¢) is the conditional prediction, and ey(z¢,t | &) is the un-
conditional prediction with the conditions dropped. Liu et al. (2022); Netanyahu et al. (2024) shows
that we can further combine multiple conditions at once by sampling from the effective composed
noise prediction,

€g(xs,t,c) = €gay,t | @) + Zwk(ee(xut | k) — eo(ws,t | D)). 3)
%

enabling us to sample a trajectory xi.p that jointly satisfies all conditioning variables ¢ =
{c1,c¢a,...,ck}, allowing our model to simulate at test time a trajectory x1.7 conditioned with a
larger number of conditions than those seen at training time, such a larger number of opponents.

4 DIZCO: DIFFUSION-BASED ZERO-SHOT COORDINATION

We introduce D1Z.Co, a diffusion based framework for real time zero-shot coordination. The frame-
work is built around two complementary diffusion models operating directly on high-dimensional,
image-based observations.

Offline Dataset Both diffusion models are trained on an offline dataset of joint trajectories. We
generate a dataset by rolling out an expert Cooperator policy (i.e. policy that best cooperates with a
partner) {Tegpert } trained using reinforcement learning (Liang et al., 2024) with a set of simulated
Population-based Training agents as partners. For the simulated agent population {m1,...,7x},
we test two conditions: 1) using the same PBT training dataset based on MEP agents as in prior
work (Liang et al., 2024) to facilitate comparison, and 2) using a larger dataset with PBT data
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from several baseline methods, including Fictitious Co-Play (FCP) (Strouse et al., 2021), maximum
entropy population (MEP) (Zhao et al., 2023) and CoMeDi (Sarkar et al., 2023), to test how well
our approach scales to larger datasets.

4.1 DizZCo

Partner Conditioned World Model: The core of DIZCO is a diffusion based world model,
Gp, that learns the joint dynamics of the environment and a partner. Our world model operates
directly on image-based observations, learning to predict future frames conditioned on the ego-
agent’s actions and a partner policy. This disentangles the environment’s transition function from
any single partner’s behavior, a critical advantage over model-free methods that often conflate the
two. We model the ego-agent’s transition under a fixed partner policy Tpartner S

p(sl | 5, Uego; 7Tpartner) = Z T(sl | S, Gegos a'parmer) T partner (aparmer ‘ S),

Qpartner

where T is the true environment transition conditioned on the joint actions. Our world model Gy is
trained to approximate this distribution across time steps generating videos of future trajectories:

gO (5t+1:t+H | Sty aego,t:t+H; Ipartner) ~ p(5t+1:t+H | St aego,t:t+H7 ’/Tpamler)a

where s; is the current image, Gego ¢+ 1S the H-step action plan, Ipamer 1S the partner identity
embedding and s, ..+ g is the predicted video sequence. During training we drop the conditioning
elements on the world model, encouraging the model to learn the underlying environment dynamics
invariant to any partner policy Tpartner-

Action Proposal Model: To generate high-quality action candidate plans for evaluation, we train
a separate action diffusion model, Ay, to serve as our action proposer. This model is trained on
the same offline dataset to generate plausible future ego-action sequences as.¢+x. The model is
conditioned on a history of IV prior states, the current state s;, and reward to go r,.;4. Conditioning on
historical states allows the model to propose actions that are coherent with recent partner behavior,
while the reward-to-go conditioning steers proposals towards high-reward outcomes.

Search Over Trajectories: Search begins with the action proposer .44 generating M/ candidate
ego-action sequences. For each candidate plan, the world model Gy rolls out J video trajectories.
Each simulated trajectory 7 is scored using a deterministic reward function R(s;, s¢1) that operates
on pairs of image states. The trajectory 7* with the highest cumulative joint partner reward is chosen
as the agent’s plan.

Inverse Dynamics Planner: The final step is to translate the selected visual plan, 7* = (s1, ..., sH)
into discrete environment actions. For this, we utilize an inverse dynamics planner similar to Ajay
et al. (2023), that finds the best fit joint action that transitions from an initial state s; to s;1. The
module identifies the action agg, that when executed results in closest successor state s;3; that
matches the true s;,;. We convert the full 7 trajectories into sequences of ego actions and execute
it into our environment. The complete, multi-stage planning process is formalized in Algorithm 1.

Compositional Generalization to N-Agent Scenarios. A critical challenge in multi-agent model-
ing is scalability, as training a unique model for every possible number of agents, N is intractable.
Our framework addresses this by leveraging the compositional properties of diffusion models. Our
world model ¢y is trained to approximate noise of a future trajectory of the controlled vehicle con-
ditioned on on the composite state of all agents in the same environment.

2
E(r ) Dy 1€ = (€0(@1(F), 50, 812) + D (cole(7), 50,8) — eo(@4(7), 50, t|2)) 7] (4)
k=1

Given a trained denoising network ey, we adapt this model to environment with N vehicles (N > 2)
by composing the conditions of N vehicles.

N
é(ee) = 60(£t7807t|® + Z €9 xta807 - €0($t,50,t‘®))) (5)
N=1
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We evaluate the behavior it generates by initializing z7(7) ~ N(0, al), and compute x; iteratively
as a function of the estimated denoising function é(ey) until generating xy = 7 representing the
trajectory of the controlled vehicle. We use an inverse planner to produce an action given a current
state and a future state in the predicted trajectory.

4.2 REAL-TIME PLANNING ARCHITECTURE

A fundamental barrier to using large, generative video models for real-time interaction is simply
their significant computational cost. In a dynamic, real-time interactive environment, a naive ‘“stop-
and-plan” approach is simply non-viable. While the agent pauses to compute its next move, the
partner continues to act and the world continues to change, rendering the resulting plan obsolete
before it can even be executed. To solve this critical problem, we designed DIZCO to be completely
capable of executing asynchronously, detaching planning from execution.

As shown in Figure 8, an Agent Interface manages the the system’s core component: an Action
Queue, enabling the following two parallel processes:

* The Execution Loop (Low-Latency): On every environment tick, the interface immediately
dequeues a pre-computed action from the buffer. This ensures the agent is always acting on the
most recent plan and remains responsive to the live game state.

* The Planning Loop (Asynchronous): In a separate background process, the full DIZCO plan-
ning engine runs continuously. It takes the latest available state, proposes candidate plans, and
uses its world model to search for an optimal action sequence. This newly generated plan then
entirely replaces the previous action buffer, ensuring the agent’s strategy is continually refreshed
based on up-to-date information.

Validating Real-Time Performance. This architecture is a practical and elegant solution that
proved highly effective on our testbed (a single NVIDIA RTX 4090 GPU shared between models).
Despite the high temporal resolution of our evaluation domain, our asynchronous design success-
fully hides the planner’s latency, allowing us to deploy our world model (133.46M parameters) and
action proposal model (168.89M parameters) at their full capability, while ensuring the agent’s ac-
tions were always based on a recently computed and relevant plan. Our architecture demonstrates
a robust solution for deploying computationally intensive generative planners in dynamic, real-time
interactive settings.

5 EXPERIMENTS

Our experiments are designed to validate the two core capabilities of diffusion models outlined in
our introduction: 1) adaptation to novel partners in complex, human-Al coordination tasks, and
2) generalization to an arbitrary number of agents. We first detail our experimental setup before
presenting the results that substantiate these two central claims.

Generalization of the World Model to N Agents: To isolate and evaluate the compositional
generalization of our world model, we use the Autonomous Driving domain (Leurent, 2018a), an
agent acts in a challenging multi-agent environment to complete a driving task. For this experiment,
We test this capability by training our world model exclusively on two-agent interactions and then
evaluating its zero-shot planning performance in more crowded environments with N > 2 agents.
The world model, ¢y, is trained on a dataset of interactions where each scene contains a fixed number,
K, of other agents. The offline expert dataset was collected using a deterministic tree search planner
provided in Leurent (2018b) . Each vehicle is represented by a 7-tuple, including whether it is
presented on the road, its x and y positions and velocities, and cosine and sine heading directions.
The agent’s task is a high-speed highway merge, with performance assessed via quantitative metrics
(mean reward, total distance, and collision rate). This setup provides a benchmark to quantify a
world model’s ability to scale its reasoning to more complex multi-agent interactions.

Adaptation To Novel Partners: We evaluate DIZCO in the Overcooked domain, a standard
benchmark for human-AlI cooperation. The environment requires two players to coordinate to com-
plete cooking tasks, demanding the anticipation of partner goals and adaptive behavior to succeed.
We focus on two challenging layouts: Counter Circuit, which tests coordination in navigation and
object passing, and Multi-Strategy (Diverse Counter Circuit) which features a combinatorially ex-
panded strategy space that makes accurate partner inference essential to success. Our main offline
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Performance Comparison

== DiZCo
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Method Counter Circuit Multi-strategy = e
D1ZCo 122.0 + 40.93 104.0 + 51.22 =
Action Proposal Model Only 56.8 £ 30.03 39.2 £35.32

GAMMA HA FFT 91.84 + 26.03 34.05 £ 17.98

CoMeDi 69.62 + 29.61 32.02 + 16.90

MEP 7619 :t 1690 6402 :IZ 1851 Counter Circuit Layout Multi-strategy
FCP 32.11 +13.42 44.22 +£19.23

Figure 3: DIZCO0’s State-of-the-Art Performance and Component Analysis. Main performance table com-
paring D1ZCo variants against prior SOTA methods on the held-out human proxy.

evaluation is conducted against a held out Human Proxy model, a behavior-cloned (BC) policy from
human game play data as in prior work (Carroll et al.,, 2019). The Human Proxy model allows
for automatic and cheap evaluation of agents’ performance. Our results demonstrate that the per-
formance of the full DIZCO significantly outperforms prior state-of-the-art baselines in zero shot
coordination.

5.1 EVALUATION CRITERIA

We further analyze the performance of DIZCO according to the following criteria:

* Generalization to Multiple Agents. How well does the world model adapt to environments with
different numbers of agents in the Autonomous Driving Domain ?

* End-to-End Agent Performance. How well does the full DIZCO perform against prior baselines
when paired with the human proxy model ?

* World Model Accuracy & Controllability. How faithfully does the world model simulate
partner-conditioned video trajectories compared to ground truth roll outs ?

» Action Proposal. How effective is the action proposer at generating high-quality, cooperative
plans as measured by the performance against the human proxy model?

6 RESULTS

Compositional Generalization to N-Agent Scenarios: A key advantage of our generative ap-
proach is the potential for compositional generalization. To test this, we evaluate whether our world
model, trained exclusively on two-agent scenarios in the Autonomous Driving Domain, can success-
fully simulate and plan in more crowded environments with N > 2 agents. As shown in Figure 0,
the world model is demonstrates impressive and consistent generalization. Despite having never
seen multi-agent scenarios during training, it maintains high performance across all three evaluation
metrics (mean reward, total distance traveled, and average speed) even as the number of vehicles
increases to eight. This result serves as a strong proof-of-concept for the compositional reasoning
capabilities of our generative world model, a promising feature for scaling up to more complex,
real-world coordination tasks.

Coordinating with a Novel, Held-Out Partner: Having validated the generalization capabilities
of our world model, we now turn to our primary evaluation: DIZCO’s ability to coordinate with
a novel, held-out partner in a true zero-shot setting. We test this against the human proxy model
trained on held-out test data, 7,04y as our partner like prior work. The results (Table ??) clearly
demonstrate that DIZCO establish a new state-of-the-art, outperforming 4 competitive baselines,
including GAMMA, the prior state-of-the-art. Notably, DIZCO0’s performance is most pronounced
on the complex Multi-strategy layout. This layout features a significantly larger and more am-
biguous strategy space, which seems to be a major failure point for the purely reactive, model-free
baselines. In contrast, we hypothesize DIZCO was better able to navigate this complexity, identify
higher-rewarding joint plans, and thereby coordinate more effectively than baselines.

6.1 LIVE HUMAN EVALUATION

We conducted a preliminary user study designed to test the validity of the asynchronous architecture
in a live interactive setting and further understand how humans perceive the agent’s model-based
behavior.
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World Model Coherency: State Match Accuracy vs. Timestep

(a) Action Proposer Ablation (b) Rollout vs. Ground Truth (c) Action Conditioning Accuracy

Figure 4: Action Proposer and World Model Ablation Study. (a) Action Proposer Effectiveness: Ablation
study showing the contribution of a learned action proposer compared to simpler heuristic alternatives. (b)
Long-Horizon Consistency: Predictive error (state mismatches vs. ground truth) over a 32-step rollout. The
model maintains high accuracy over short horizons, generating plausible, non-collapsing futures across the full
trajectory. (c) Action Controllability: The model’s accuracy in producing a successor states that correctly
corresponds to a given conditioning actions, confirming its reliability as a simulator for planning.

User Feedback: The feedback indicated that DIZCo0 was a fairly effective and cooperative partner.
From all the feedback received in C, we identified two primary themes:

* Reliability: Participants described the agent as being a dependable contributor, using phrases like
“a steady partner” and remarking it “contributed reliably without needing constant correction.”

» Adaptiveness: More importantly, users viewed DIZCO as being adaptive to their intents, with
one user remarking “It wasn’t perfect, but it showed signs of adapting as the game progressed”
and another: “The agent was cooperative, and that made everything entertaining”.

6.2 ABLATIONS

To understand the key drivers of DIZCO0’s performance, we conducted a series of targeted evalua-
tions on its core components.

World Model Accuracy & Controllability: The entire DIZCO framework is contingent on the
quality of its learned world model. If the simulator is inaccurate, the search process will optimize
for the wrong futures. To validate this, we evaluate the world model on two criteria: its long-horizon
consistency with reality and its controllability via action conditioning.

As shown in Figure 4, our world model demonstrates high fidelity. The roll-out consistency (Fig-
ure 4b) is nearly perfect over short horizons (1-8 steps). While predictive errors naturally accu-
mulate, the model still generates plausible, non-collapsing trajectories over the full 32-step horizon.
Furthermore, the model proves to be highly controllable (Figure 4c), reliably producing future states
corresponding to its given conditioning action. These evaluations confirm our world model serves
as an effective and trustworthy simulator, providing a solid foundation for search-based planning.

Search Budget: As shown in Figure 5a, performance scales directly with the search budget, the
number of candidate plans and simulations per plan. A minimal budget results in poor performance,
but we see significant immediate gains as we increase the number of candidates, allowing for more
diverse plans to be considered. Increasing the number of simulations per candidate, further increases
performance but it is best paired with more action candidates. Performance gains eventually plateau,
indicating there is a point of diminishing returns with search.

Planning Horizon: Figure 5b reveals a crucial insight: shorter planning horizons (e.g. 8-16
steps) consistently outperform longer ones for all evaluation partners. This result does not imply
that planning is fundamentally unsuited for highly dynamic, real-time domains; rather it highlights
a common failure mode of long open-loop plans when partner actions are stochastic.

6.3 THE IMPORTANCE OF A LEARNED ACTION PROPOSER

The success of the DIZCo0 framework relies on the synergy between its search procedure and action
proposer. We conduct two experiments to validate the contribution of the diffusion-based proposer.

Performance in Isolation: We first establish a baseline performance by evaluating the Action
Proposal Model in isolation from world model simulation or search. As shown in Table ??, the
performance of the proposer alone is modest. While it is able to generate plausible strategies, it is
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Effect of Search Parameters on Team Performance Effect of Plannin

(a) Impact of Search Budget (b) Impact of Planning Horizon

Figure 5: Hyperparameter Sensitivity Analysis. (a) Search Budget vs. Performance: Team reward scales
with the number of candidate plans and simulations but plateaus, revealing a point of diminishing returns.
(b) Planning Horizon vs. Performance: Shorter planning horizons consistently outperform longer ones,
highlighting frequent re-planning is a more robust strategy than long-term commitment.

not competitive with top-performing baselines like GAMMA HA FFT on its own, indicating that
the proposer’s role is not to be a perfect standalone policy, but to provide a diverse set of candidates
for the search process to evaluate. The immense performance leap with the world model and search
showecases that the explicit process of simulating partner conditioned futures, and performing search
over them is the true engine of DIZCoO, transforming the modest proposer into a state-of-the-art
coordination agent.

Other Proposer Methods: Second, to test the quality of our action candidates, we evaluate the full
D1ZCo framework with two simpler alternative proposers: a deterministic “go to onion” heuristic
and a random action policy. As shown in Figure 4a, this substitution leads to dramatic collapse in
performance, confirming that the search procedure requires diverse and strategically plausible set of
candidate plans to explore.

7 LIMITATIONS AND FUTURE WORK

Reliance On True Reward Functions and Inverse Planners: The current implementation of
D1Z Co relies on two non-learned components: a deterministic reward function to score simulated
trajectories and a brute-force inverse dynamics function to translate visual plans into actions. This
design choice was made to improve reliability with search, however further work will be needed to
extend the results to environments where ground-truth functions are not available.

Challenges of the Asynchronous Architecture: Leveraging large, computationally intensive dif-
fusion models for planning necessitates our asynchronous design. However, this introduces its own
fundamental trade-off. While the architecture successfully hides planning latency, it creates a tem-
poral gap between when a plan is computed and when it is fully executed. This can lead to moments
of coordination friction, where the agent is committed to a pre-computed plan that has become stale
due to a partner’s split-second action, as observed by one of our users in the study: ‘DIZC0 was able
to recognize when I was going to grab the soup or pick up onions I had placed down, but there were
still moments of conflict or inefficiency.” Improving the core efficiency of the generative models to
shrink this temporal gap is a critical challenge for future of real-time, model-based agents.

8 CONCLUSION

We introduced DIZCoO, a framework that recasts zero-shot coordination as a problem of online,
search-based planning with generative models. Our method achieves state-of-the-art performance
by explicitly inferring a partner’s policy and simulating future outcomes to select an optimal plan,
revealing that a model-based approach, which can reason about partner uncertainty, is fundamentally
more robust than prior model-free methods. We believe this paradigm of generative planning and
inference is a critical step towards creating truly adaptive agents capable of human-Al coordination.
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9 ETHICS STATEMENT

This research aims to develop the next generation of Al agents capable of zero-shot coordinate
with novel partners in real-time, addressing an important challenge in the field of Cooperative Al
(Dafoe et al., 2020). To evaluate our approach, we conduct human evaluation of our method with
human participants recruited from the Prolific, an online crowdsourcing platform following an IRB-
approved protocol. Our work seeks to develop the first open-sourced framework that leverages
generative models to enable real-time, search-based planning in a complex human-Al cooperative
task. By releasing this framework, we aim to facilitate its adaptation to other cooperative domains,
helping to further improve the collaborative capabilities of Al agents.

10 REPRODUCIBILITY

To promote reproducibility, we provide our source code and corresponding configuration files used
for running the experiments in open source. The details about installation and sample code for
running the experiment will be included at the project page.
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11 APPENDIX

A  AUTONOMOUS DRIVING DOMAIN RESULTS

Mean Reward by Algorithm and Vehicle Count
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Figure 6: Autonomous Driving domain comparison. Performance of diffusion-based world model general-
ization comparing to baseline algorithms. We report standard errors over 5 trajectories. Overall, our method
learns to generalize to environments with increasing number of agents with competitive mean reward, total
distance traveled and average speed.
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(c) Vehicle count = 6 (Generalization) (d) Vehicle count = 8 (Generalization)
Figure 7: Screenshots of training and generalization of autonomous driving domain. Our world model is
trained on the environment with vehicle count as 2, and we generalize to environments with 3-8 vehicles. Some

vehicles are not visible in the screenshot due to screen width limitation.

B REAL TIME EVALUATION ARCHITECTURE

4 Real Time Evaluation R

Action
Queue

Get | Add Actions

Agent Interface
Request A Plan -

i I
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Figure 8: The DIZCoOArchitecture for Real-Time Human Interaction. To overcome the high latency of the
generative planner, we use an asynchronous design managed by an Agent Interface. (1) A buffered Action
Queue stores a sequence of pre-computed actions. (2) On every environment step, the interface immediately
dequeues the next action for a low-latency response. (3) In the background, when the queue falls below a
threshold, the full DIZCoOPlanner is triggered to generate a fresh, updated plan, which then replaces the
buffer.

A

Actions

C QUALITATIVE RESULTS OF HUMAN EVALUATION

As mentioned in 6.1, individuals consistently reported that DIZC0 demonstrated sign of adapatibil-
ity and responsiveness. We provide additional participant feedback for DIZCo0 agents from the user
study as follows:

* “I found this agent to be a steady partner. It made an effort to sync with my movements and stuck
to a predictable rhythm, which helped me plan ahead. While it occasionally lingered near key
areas, it didn’t cause major disruptions. Its behavior felt somewhat human-like, and I enjoyed the
collaboration overall. It contributed reliably without needing constant correction.”

* “Inoticed this agent made a few attempts to sync with my movements, especially when I was at the
pot or serving counter. It wasn’t perfect, but it showed signs of adapting as the game progressed.
Genuinely, my experience with this agent was solid — it played its role reliably, let me take the
lead on strategy, and didn’t overcomplicated things, which worked well for a fast-paced kitchen.”
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* “The agent was responsive and made the game interaction smooth and engaging.”
* “The agent was cooperative and that made everything entertaining.”
* “I had a good interaction with the agent and that was awesome.”

* “Able to grab onions I put down, recognize when I was going to grab the soup, etc. However, still
felt it did not exactly coordinate with me, still end up in situations where we are in conflict or both
stuck.”

D Di1ZCo ALGORITHM

Algorithm 1 The D1ZCo0 Online Planning Algorithm

1: Input: State s, history h:, world model Gy, action proposer A, number of candidate /, number
of simulations per candidate .J, fixed future state horizon H f;;.q, planning horizon Hp;,, <
H ¢izeq, reward function R(s, s'), inverse-dynamics function D(s, s’), partner ID Ipqr¢ner-

2: Propose a set of candidate action plans of horizon H¢;;cq
{a(1)7 seey a(l)} «— ‘Ad?(stv htv rrtga H)

ol

Search: Simulate and Evaluate Trajectories
Initialize T < ()
for: =1to I do
for j = 1to.J do _
T(Z’j) — gO (Sta a(l)a Ipanner)
9: RG.5) Zf;ol F(Tlim), ’r,i:’_jl)) where Tém) = 8¢
10: T <« T U{(r®9), RGI)}
11: end for
12: end for

A A

13: Select Plan and Ground Action
14: 7% < argmax(; pyeT R
15: af « D(s¢,7*)

16: Execute only first ., actions of the best plan
17: return aj,

E HYPER-PARAMETERS

Below we outline our selected hyper-parameters for DIZCO’s use cases.

E.1 ARCHITECTURE

Table 1: Architecture Parameters.

Hyperparameter World Model (Overcooked) Action Proposer World Model (Driving)

Num. Parameters 133.46M 168.89M 11.69M
Input Resolution 9x5 9x5 7x1
Output Resolution 9x5 1x32 7x1
Base Channels 256 128 128
Num. Res. Blocks 3 2 2
Attention Resolutions (1,2) (4,8) (4,8)
Channel Multipliers (1,2) (1,2,4,8) (1,2,4,8)
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E.2 TRAINING

Table 2: Training evaluation parameters for DIZCo

Hyperparameter World Model (Overcooked) Action Proposer World Model (Driving)
Batch Size 64 64 64
Learning Rate le~* le™* le™*
CFG Dropout 0.1 0.1 0.1
Training Steps 600,000 600,000 800,000
Num Partner Policies 27 27 NaN
Compute NVIDIA H200 NVIDIA H200 NVIDIA L40
E.3 ONLINE PLANNING
Table 3: Hyper-parameters for DIZCO Online Planning.
Parameter Symbol Value Description
Number of candidates I 10 Number of action plans proposed by Ag.
Simulations per candidate J 5 Number of forward simulations per candidate plan.
Fixed future horizon Hiixed 32 Maximum horizon length for action proposals.
Planning horizon Hpjan 8 Number of executed steps (< Hiixed)-
Reward-to-Go Trg 150.0 Reward-To-Go Target for Action Proposer
E.4 REAL-TIME EVALUATION
Table 4: Hyperparameters for DIZCO real-time evaluation.
Parameter Symbol Value Description
Number of candidates I 5 Number of action plans proposed by A.
Simulations per candidate J 2 Number of forward simulations per candidate plan.
Action queue size Hived 32 Maximum length of the action queue.
Planning horizon Hyjan 8 Number of executed steps (< Hixed)-
Reward-to-go target Trg 150.0  Target reward-to-go for action proposer.

F USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used solely for language polishing and improving the clarity of writing in this paper.
They were not involved in the research design, ideation, analysis, or generation of scientific content.
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