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Abstract
Neural operators have emerged as powerful data-
driven frameworks for solving Partial Differential
Equations (PDEs), offering significant speedups
over numerical methods. However, existing neu-
ral operators struggle with scalability in high-
dimensional spaces, incur high computational
costs, and face challenges in capturing continu-
ous and long-range dependencies in PDE dynam-
ics. To address these limitations, we introduce
the Latent Mamba Operator (LaMO), which inte-
grates the efficiency of state-space models (SSMs)
in latent space with the expressive power of ker-
nel integral formulations in neural operators. We
also establish a theoretical connection between
state-space models (SSMs) and the kernel inte-
gral of neural operators. Extensive experiments
across diverse PDE benchmarks on regular grids,
structured meshes, and point clouds covering
solid and fluid physics datasets, LaMOs achieve
consistent state-of-the-art (SOTA) performance,
with a 32.3% improvement over existing base-
lines in solution operator approximation, high-
lighting its efficacy in modeling complex PDE
solutions. Our code implementation is available
at https://github.com/M3RG-IITD/LaMO.

Continuum models describing physical systems are formu-
lated as PDEs across various disciplines, including physics,
chemistry, fluid mechanics, and robotics (Debnath & Deb-
nath, 2005). Traditionally, these PDEs are solved by clas-
sical numerical methods, such as finite element and spec-
tral methods (Ŝolı́n, 2005; Costa, 2004). However, these

1Department of Electrical Communication Engineering, Indian
Institute of Science, Bangalore, India 2Department of Computer
Science and Automation, Indian Institute of Science, Bangalore, In-
dia 3Yardi School of AI, Indian Institute of Technology, New Delhi,
India 4Department of Civil Engineering, Indian Institute of Tech-
nology, New Delhi, India. Correspondence to: Karn Tiwari <karn-
tiwari@iisc.ac.in>, N M Anoop Krishnan <krishnan@iitd.ac.in>,
Prathosh A P <prathosh@iisc.ac.in>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

approaches face significant computational challenges, are
elusive to real-time forecasting, are limited in handling di-
verse boundary conditions, and often require coarse grids
for stable solutions (El-metwaly & Kamal, 2024). Addition-
ally, many PDEs, including the Navier-Stokes equations,
lack closed-form solutions, posing significant challenges for
real-time weather modeling and robotics applications.

In recent years, scientific machine learning (SciML) has
introduced neural operators as a promising alternative for
solving PDEs through data-driven approaches. Neural op-
erators, an extension of neural networks, have emerged as
a powerful tool for mapping between infinite-dimensional
functional spaces, serving as universal functional approxi-
mations (Li et al., 2020). Unlike traditional methods, neu-
ral operators require no prior knowledge of the underlying
PDEs. Instead, they rely on data-driven training, enabling
faster inference and making them a compelling choice for
real-time and complex applications. Neural operators have
demonstrated remarkable success across diverse applica-
tions, including weather forecasting (Kurth et al., 2023;
Bedi et al., 2025), biomedical surrogate modeling (Guan
et al., 2021), accelerating sampling processes in diffusion
models (Zheng et al., 2023) and as foundation models for
solving PDEs (Hao et al., 2024; Herde et al., 2024).

Recent advances in neural operators for solving PDEs have
been propelled by transformer-based architectures, with
models such as GNOT (Hao et al., 2023), ONO (Xiao et al.,
2023), and Transolver (Wu et al., 2024) achieving SOTA
performance across diverse PDE tasks. Despite their suc-
cess, these methods face critical challenges in computational
efficiency and scalability, primarily when applied to high-
dimensional PDEs. In such cases, where they struggle to
parameterize kernel integral transforms (Guibas et al., 2021),
leading to overfitting, which limits their generalization. A
fundamental bottleneck lies in the quadratic complexity
of the self-attention mechanism inherent to conventional
transformers, which incurs prohibitive computational costs,
impedes the processing of continuous signals, and degrades
inference speed as spatial resolution increases (Hao et al.,
2023; Wu et al., 2024).

While recent efforts, such as Galerkin-type attention (Cao,
2021), address the issue of computational scaling by reduc-
ing the complexity to linear, this compromise significantly
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diminishes the expressive power of the self-attention mech-
anism, limiting the ability to capture intricate dynamical
interactions in complex PDE systems. Similarly, global
convolution-based paradigms like FNOs (Li et al., 2020)
leverage spectral convolution to encode global information
but encounter persistent challenges, including spectral de-
cay, vanishing gradients, and computational bottlenecks
when processing high-resolution inputs (Tran et al., 2021;
Fanaskov & Oseledets, 2022). These limitations underscore
a pressing need for a framework that balances expressive
power, computational efficiency, and scalability in PDE
learning, which can generalize better with limited data.

Structured state-space models (SSMs) have emerged as a
promising approach for sequence models, demonstrating ex-
cellent performance in language processing. These models
offer linear scaling with improved long-range dependency
modeling, efficient memory usage, and superior handling of
language and vision data (Gu & Dao, 2023; Zhu et al., 2024).
However, the application of such a framework toward PDEs
remains poorly explored. Here, we propose SSMs in op-
erator learning and introduce a unified framework, Latent
Mamba Operator (LaMO). LaMO leverages latent space
and bidirectional SSMs to address the limitations of exist-
ing Neural Operators, providing an efficient, scalable, and
effective solution for complex tasks in SciML. The main
contributions of our work are briefly summarized below.

1. LaMO: We propose Latent Mamba Neural Operator
(LaMO). This framework leverages a latent physical
space combined with bidirectional state-space models
(SSMs) to learn underlying solution operators.

2. Theoretical Insights: We provide a theoretical analy-
sis of LaMO from the operator’s perspective, demon-
strating its capability to act as a kernel integral for
learning underlying solution operators in Theorem 3.4.

3. Superior Performance: Extensive experiments are
conducted across various regular and irregular grid
datasets, showcasing an average improvement of 32.3%
over the SOTA models as presented in Table 1.

1. Related Work
1.1. Neural Operator (NO)

Neural operators have demonstrated significant success in
solving parametric PDEs through data-driven approaches
(Kovachki et al., 2021). Lu et al. (2021) introduced Deep-
ONet, which established the universal functional approxi-
mation capability of neural operators. DeepONet employs
two networks: the branch network, responsible for learning
the input function operator, and the trunk network, which
projects this operator onto the target function space. An-
other prominent neural operator, the FNO (Li et al., 2020),

leverages frequency domain techniques. FNO employs
Fourier kernel-based integral transformations facilitated by
fast Fourier transform and projection blocks. An enhanced
version, F-FNO (Tran et al., 2021), improves upon FNO
by incorporating advanced spectral mixing and residual
connections. Various kernel integral neural operators have
been proposed based on frequency kernel methods. For
instance, Fanaskov & Oseledets (2022) introduced spectral
methods based on Chebyshev and Fourier series to reduce
aliasing errors and improve the clarity of FNO outputs. In
contrast, CoNO (Tiwari et al., 2024) employs a Fractional
Fourier transform (FrFT)-based integral kernel. Interest-
ingly, Kovachki et al. (2021) showed that the self-attention
mechanism can be interpreted as a specific case of neural
operators learning an integral kernel for solving PDEs.

1.2. Transformer-Based Neural Operators

Recent work has sought to enhance the efficiency of
attention-based neural operators. Cao (2021) pioneered
this direction by replacing traditional softmax layers with
two novel self-attention operators, significantly reducing
computational overhead while grounding attention mecha-
nisms in kernel integral theory. Subsequent work by Hao
et al. (2023) introduced the GNOT operator, which lever-
ages a linear cross-attention block to improve geometric
encoding for irregular domains. Despite these advances,
transformer-based operators remain vulnerable to overfit-
ting in data-scarce regimes, limiting their generalization. To
mitigate this, Xiao et al. (2023) proposed orthogonal regular-
ization, enhancing robustness by enforcing orthogonality in
attention weights. Meanwhile, the SOTA Transolver opera-
tor (Wu et al., 2024) addresses scalability challenges in large
meshes through latent attention, decoupling computational
complexity from mesh resolution.

1.3. State Space Models (SSMs)

Structured State Space (S4) models, introduced by (Gu et al.,
2021a), provide a novel alternative to transformers for mod-
eling long-range sequences with linear scaling in sequence
length, unlike the quadratic complexity of transformers. (Gu
et al., 2021b) highlighted the potential of SSMs for captur-
ing long-range dependencies. Subsequent advancements
include complex diagonal structures, low-rank decomposi-
tions, and selection mechanisms (Dao & Gu, 2024). Re-
cently, Hu et al. 2024 proposed the integration of SSMs
in solving ordinary differential equations (ODEs) for time
series datasets, and MemNO (Buitrago et al.) introduced the
benefits of incorporating SSMs for time-dependent PDEs.
While SSMs have excelled in language (Gu & Dao, 2023;
Qu et al., 2024), audio (Erol et al., 2024), and computer
vision tasks (Zhu et al., 2024; Liu et al., 2024), their applica-
bility to solving parametric high-dimensional PDEs remains
largely unexplored in SciML.
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2. Preliminaries
2.1. Problem Statement

The main objective is to learn the nonlinear mapping be-
tween two infinite-dimensional spaces through observed
input-output pairs (Li et al., 2020; Lu et al., 2021). Let D
represent a open and bounded domain as D ⊂ Rd, with
A = A(D;Rda) and U = U(D;Rdu) as separable banach
spaces of functions representing elements in Rda and Rdu ,
respectively. Let G† : A→ U denotes a nonlinear mapping
arising from the underlying solution operator for parametric
PDEs.

In operator learning, we aim to construct an approximation
for G† via a parametric mapping G : A×Θ→ U , or equiv-
alently, Gθ : A → U, θ ∈ Θ, within a finite-dimensional
parameter space Θ via i.i.d. observations (aj , uj)

N
j=1, where

aj ∼ µ, drawn from the underlying measure µ supported
on A, and uj = G†(aj). The aim is to learn θ† ∈ Θ

such that G(·, θ†) = G†θ ≈ G†. It allows learning in
infinite-dimensional spaces as the solution to the optimiza-
tion problem in Eq. 1 constructed using a loss function
L : U × U → R.

min
θ∈Θ

Ea∼µ

[
L(Gθ(a),G†(a))

]
(1)

The optimization problem is solved using a data-driven
empirical risk minimization of the loss function, akin to the
supervised learning approach using train-test observations.

2.2. State Space Models

SSMs: Classical SSMs define a continuous system (Linear
Time-Invariant (LTI) system) that maps an input sequence
x(t) ∈ RL into a hidden representation h(t) ∈ RN , which
is then used to predict an output response y(t) ∈ RL. For-
mally, an SSMs can be formulated as ordinary differential
equations (ODEs) as follows:

h′(t) = Ah(t) +Bx(t), (2)
y(t) = Ch(t), (3)

where A ∈ RN×N , B ∈ RN×1, and C ∈ R1×N are learn-
able model parameters.

Discretization: To use continuous SSMs for integration into
neural networks, it is essential to apply discretization oper-
ations. By introducing a timescale parameter ∆ ∈ R and
using the zero-order hold (ZOH) method as the discretiza-
tion rule, the discrete counterparts of A and B (denoted as
A and B, respectively). Consequently, Equation 3 can be
rephrased into discretized form as:

h[k] = Ah[k − 1] +Bx[k], y[k] = Ch[k], (4)

where,

A = e∆A, B = (∆A)−1(e∆A − I)B ≈ ∆B, (5)

and I represents the identity matrix. Subsequently, the pro-
cess in Eq. 5 can be realized in a global convolution form:

y = x ∗K, K = [CB,CAB, . . . ,CAL−1B], (6)

where K ∈ RL represents the convolutional kernel.

Selective State Space Models: The Selective State Space
(S6) mechanism, proposed in Mamba (Gu & Dao, 2023),
introduces input-dependence for the parameters B,C, and
∆, significantly improving the performance of SSMs and
parallel scanning to make the training performance com-
parable with transformer-based models. By making these
parameters input-dependent, the global convolution kernel
in Equation 6 can be reformulated as follows:

K = {CLBL,CLAL−1BL−1, . . . ,CL

L−1∏
i=1

AiB1}. (7)

The reformulation highlights that integrating selective state-
space parameters (data-dependent parameters) enhances the
expressiveness of the SSMs for complex tasks. Better effi-
ciency is attained through an IO-aware implementation of as-
sociative scans, leveraging work-efficient parallel scanners
to enable parallelization on modern hardware. In LaMO, Gθ
is parameterized using the SSMs as an integral kernel.
Remark 2.1. The matrix A of Mamba has diagonal structure
i.e A = Diag(λ1, . . . , λp) with λi ∈ C ∀i.

3. Proposed Method
Transformers struggle to capture kernel integral transforms
efficiently in complex, high-dimensional continuous PDEs
(Guibas et al., 2021; Karniadakis et al., 2021). To address
this, we introduce LaMO (Latent Mamba Operator), in-
spired by structured state-space models like Mamba (Gu &
Dao, 2023). LaMO begins with a Latent Encoder inspired by
the Perceiver (Jaegle et al., 2021), which condenses PDE’s
physical tokens into a compact latent representation. These
tokens are then processed by an SSMs block (bidirectional),
utilizing SSM’s capability to learn data-dependent kernels,
thereby effectively modeling complex PDE dynamics.

3.1. Latent Mamba Operator (LaMO) Architecture

Overview: The LaMO operator takes the following form:

Gθ = Q ◦ D ◦ Ll ◦ . . .L2 ◦ L1 ◦ E ◦ P, (8)

where ◦ denotes composition. The operators P : Rd → Rd

and Q : Rd → Rd correspond to the lifting and projection
operations, encoding lower-dimensional spaces into higher-
dimensional spaces or vice versa, which helps in convert-
ing the non-linear dynamics into linear dynamics (Bevanda
et al., 2021) using the feed-forward neural network. The
operations E and D correspond to the encoder and decoder,
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Figure 1. Overview. (1) The input function a(x) is lifted to a higher-dimensional representation using the lifting operator P . (2) The
encoder E maps the input from the physical domain to the latent domain, where the latent block (Bottom Left) performs the kernel integral
via SSMs, applies channel mixing and decodes the latent tokens back to the physical domain using the decoder D. (3) A multi-headed
bidirectional SSMs (Bottom Right) is applied across the tokens within the latent SSMs block. (4) This process is repeated L times.
Finally, the channel dimensions are reduced to the desired output size using the projection operator Q, yielding the final output function
u(x).

transforming the input domain into latent tokens and vice
versa. These operators are constructed using l layers of
non-linear integral operators, denoted as Ll, consisting of
an integral kernel K, parametrized using the time-variant
SSMs. The design of Ll is inspired by the integral operators
(Green’s functions) commonly used for solving linear PDEs.

Encoder (E): The encoder module draws inspiration from
the design principles of Perceiver (Jaegle et al., 2021), which
efficiently reduces the number of tokens for computational
tractability. Unlike the Perceiver, where latent tokens corre-
spond to a fixed latent representation, this module derives
latent tokens directly from the input physical tokens. Let
X ∈ RN×D denote the input tokens, whereN is the number
of tokens and d is the embedding dimension. We project
physical N tokens into M latent tokens where M ≪ N
which can be described as follows:

W = Softmax(Linear(X)), (9)

Z = WTX, (10)

where Linear() projects the D channels into M channels
using a feed-forward neural network, W ∈ RN×M denotes
the latent weights which are adaptive as its function of input
tokens and Z denotes the latent tokens which correspond to
latent space which in contrast to a frequency-based method
such as FNO we learn the latent space depending on the
input tokens. The Softmax() operation, similar to that used
in Transolver and Perceiver, ensures that the latent weights
have a low entropy, resulting in an informative latent space.
Remark 3.1 (ViT Patches as Special Cases of Latent
Tokens (Alexey, 2020)). The latent encoder operation di-

vides the grid into M equal-sized square patches for regu-
lar computational grids. If a point Xi belongs to the j-th
patch, the patchify operation can be approximated by set-
ting Z = WTX and optimizing latent weights Wi such
that Wi,j ≈ 1 and Wi,k ≈ 0 for k ̸= j. Thus, the patch
operation is a special case of latent tokens for regular grids.

Latent Block: Inspired by the attention architecture, we
describe the LaMO block as a combination of a latent SSMs
operation, which defines the kernel integral operator, fol-
lowed by channel mixing. Suppose we are using L layers;
the l-th layer of the LaMO block can be expressed as:

Ẑl = Zl−1 + Latent-SSM
(
LayerNorm

(
Zl−1

))
, (11)

Zl = Ẑl + Linear
(
LayerNorm

(
Ẑl
))

, (12)

where l ∈ {1, · · · , L}, Linear() represent a feed-forward
neural network and LayerNorm() represent the layer nor-
malization (Lei Ba et al., 2016). Here, Zl ∈ RM×D denotes
the output of the l-th layer, and Z0 ∈ RM×D represents the
latent tokens embedded from the input physical tokens.

Latent SSM Block: SSMs are primarily designed for 1-
dimensional sequences, typically operating in a causal man-
ner, where the output at any step depends on the arrangement
of preceding tokens. However, accounting for the entire se-
quence in a non-causal setting for tasks involving PDEs is
essential. To address this, we use the bidirectional SSM
block, which leverages both forward and backward kernels
to process the sequence holistically.

The appendix Algorithm 1 provides the algorithm detailing
the operations performed. Specifically, the latent token
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sequence Z undergoes following operation as follows:

X̂ = Linear(Z),

Ẑ = Linear(Z),

(A,B,C)← Discretization(X̂),

Y =
∑

d∈Direction

SSM(Xd)⊗Act(Ẑ),

Z = Linear(Y).

(13)

where Linear() represents a feed-forward neural network,
while direction refers to the SSM recurrence applied in the
forward and backward directions. The activation function
Act() is implemented as SiLU (Elfwing et al., 2018), and
Discretization() denotes the process of converting continu-
ous dynamics into discrete dynamics using the zero-order
hold (ZOH). Finally, the block’s output is obtained by ap-
plying a gating mechanism followed by a linear projection.
Remark 3.2 (Multidirectional Scan on Regular Grid).
For latent tokens on a regular grid, the spatial arrangement
of tokens is crucial due to the inherent continuity in reg-
ular grids. Unlike irregular grids, we utilize a multidirec-
tional scan along four paths: (i) top-left to bottom-right, (ii)
bottom-right to top-left, (iii) top-right to bottom-left, and
(iv) bottom-left to top-right. Each direction is processed
in parallel, reducing the overall computational complexity
to linear, and has proven effective for regular grids. The
multidirectional scan is further analyzed and validated ex-
perimentally in the appendix Section E.1.

Decoder (D): Decoder can be defined as converting the
latent tokens back to physical tokens. We need to convert
the latent token Z ∈ RM×D into the physical tokens Y ∈
RN×D where M ≪ N . Formally, it can be described as:

W = Softmax(Linear(Z)), (14)

Y = WTZ, (15)

where Linear() projects the D channels into N channels
using a feed-forward neural network, W ∈ RM×N denotes
the latent weights and Softmax() operation, ensures that
the latent weights have a low entropy similar to the encoder.

Multihead: To enhance the model’s effectiveness, we em-
ploy a multihead architecture similar to the attention mecha-
nism (Vaswani, 2017) that captures information from differ-
ent representational subspaces. Specifically, a latent token
embedding dimension D is split into H heads, each with a
dimensionality of D/H . The latent tokens are processed as:

SSM(Z) = Concat(SSM(Z1
l ), . . . ,SSM(ZH

l )). (16)

To integrate features from different heads, the outputs of
all heads are concatenated and linearly projected, yielding
the final output. This architecture increases model diver-
sity while maintaining a compact size. Furthermore, our

experiments demonstrate that the multi-head mechanism
accelerates training convergence and reduces over-fitting.

Shared Weights: The transformation between latent and
physical tokens allows LaMO to build deeper models but
may limit its ability to fully capture physical space informa-
tion due to increased computational complexity. We share
encoder and decoder parameters between blocks to balance
performance and efficiency (Jaegle et al., 2021).

Computational Analysis: For simplicity, the above process
is summarized as Z′ = Latent-SSM(Z) with an overall
computational complexity of O(NMD + MD). Since
M is set as a constant and M ≪ N , the computational
complexity becomes linear with respect to the number of
mesh points. Keeping the mesh size constant, it is also linear
with respect to the number of latent tokens.

3.2. Theoretical Analysis

In this subsection, we present a theoretical analysis of the
components of the proposed method. Specifically, (i) we
establish the equivalence between the SSM and the Euler
method for solving PDEs, which is essential for understand-
ing the performance of SSM (Proposition 3.3). (ii) Next, we
prove that SSM serves as a Monte Carlo approximation of
a learnable integral kernel (appendix Lemma B.10). This
result is then used to prove that the latent SSM is equivalent
to a learnable kernel integral in Theorem 3.4. appendix
Section B provides a more detailed analysis.

Proposition 3.3. The Zero-Order Hold (ZOH) discretization
of continuous parameters is expressed as follows:

A = exp(∆A),

B = (∆A)−1
(
exp(∆A)− I

)
·B,

(17)

where ∆ denotes the time step, I is the identity matrix, and
A,B are continuous system matrices. The discretization
method aligns with the Euler method, approximating the
matrix exponential by truncating its Taylor series expansion
to the first-order term.

The complete proof is in the appendix Section B.4. The
above proposition establishes the equivalence between the
continuous and discrete SSM parameters and their relation
to the Euler method for solving the PDE. Understanding
SSM’s performance from the Euler method’s perspective is
crucial. The ZOH discretization method preserves higher-
order terms, making it more accurate for solving PDEs.

Next, we demonstrate that SSM functions as an integral
kernel, following prior works (Kovachki et al., 2021; Cao,
2021). The Lemma B.10 shows that the canonical SSM is
the Monte Carlo approximation of the integral kernel, used
iteratively to solve the solution operator. However, we apply
the kernel integral on latent tokens. For better understanding,
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Table 1. The main results across all benchmark datasets are presented using the mean relative ℓ2 error (Equation 21) as the evaluation
metric. A lower ℓ2 error signifies better performance. The ”INCREMENT %” quantifies the relative error reduction achieved by our
model compared to the second-best performer on each benchmark. For clarity, in the color legend, orange represents the best performance,
blue indicates the second-best performance, and violet signifies the third-best performance among the baselines.

OPERATOR
POINT CLOUD REGULAR GRID STRUCTURED MESH

ELASTICITY NAVIER–STOKES DARCY PLASTICITY AIRFOIL PIPE

C
L

A
S

S
IC UNET (2015) 0.0235 0.1982 0.0080 0.0051 0.0079 0.0065

RESNET (2016) 0.0262 0.2753 0.0587 0.0233 0.0391 0.0120
SWIN (2021) 0.0283 0.2248 0.0397 0.0170 0.0270 0.0109
DEEPONET (2021) 0.0965 0.2972 0.0588 0.0135 0.0385 0.0097

F
R

E
Q

U
E

N
C

Y

WMT (2021) 0.0359 0.1541 0.0082 0.0076 0.0075 0.0077
U-FNO (2022) 0.0239 0.2231 0.0183 0.0039 0.0269 0.0056
FNO (2020) 0.0229 0.1556 0.0108 0.0074 0.0138 0.0067
U-NO (2022) 0.0258 0.1713 0.0113 0.0034 0.0078 0.0100
F-FNO (2021) 0.0263 0.2322 0.0077 0.0047 0.0078 0.0070
LSM (2023) 0.0218 0.1535 0.0065 0.0025 0.0059 0.0050

T
R

A
N

S
F

O
R

M
E

R GALERKIN (2021) 0.0240 0.1401 0.0084 0.0120 0.0118 0.0098
HT-NET (2022) / 0.1847 0.0079 0.0333 0.0065 0.0059
OFORMER (2022B) 0.0183 0.1705 0.0124 0.0017 0.0183 0.0168
GNOT (2023) 0.0086 0.1380 0.0105 0.0336 0.0076 0.0047
FACTFORMER (2024) / 0.1214 0.0109 0.0312 0.0071 0.0060
ONO (2023) 0.0118 0.1195 0.0076 0.0048 0.0061 0.0052
TRANSOLVER (2024) 0.0064 0.0957 0.0059 0.0013 0.0053 0.0046

S
S

M LAMO (OURS) 0.0050 0.0460 0.0039 0.0007 0.0041 0.0038
INCREMENT % 21.8% 51.9% 33.9% 46.1% 22.6% 17.4%

we show that the latent SSM in our framework is a learnable
kernel integral in the latent domain in Theorem 3.4.

Theorem 3.4 (SSM as an equivalent integral kernel on
Ω). Let Ω ⊆ Rn be a bounded domain, a : Ω → Rd

be a given input function, and x ∈ Ω be a mesh point.
An latent-SSM layer approximates the integral operator
G : L2(Ω,Rd)→ L2(Ω,Rd), defined as follows:

G(a)(x) =
∫
Ω

κ(x, y)a(y) dy, (18)

where κ : Ω×Ω→ Rd×d is the kernel functioncharacteriz-
ing the operator G.

The appendix Theorem B.12 provides the complete proof.
In prior work, (Li et al., 2020) formalized the neural op-
erator as an iterative process, where the key component
is a linear kernel integral. This formulation consists of
an integral operator combined with a nonlinear activation
function, which enables the learning of a nonlinear surro-
gate mapping. Since the nonlinear activation function can
be efficiently parametrized using a feedforward neural net-
work, the above theorem demonstrates that the SSM can be
viewed as a linear kernel integral. This result implies that
an SSM-based operator can effectively learn the nonlinear
surrogate mapping for the underlying PDE solution. Now,
we show the connection of the proposed method with the
recent transformer-based baseline ONO (Xiao et al., 2023).

Connection with ONO (Xiao et al., 2023): ONO intro-
duces orthogonal attention to model the kernel update using
Cholesky Decomposition (Higham, 1990), ensuring the or-
thogonality and positive definiteness of the attention kernel.
The orthogonal attention kernel was defined as follows:

κ(x, y) = ψ′(x)Diag(µ)ψ(y), (19)

where ψ(·) : Ω → Rd maps the input to an embedding
space. As shown in the appendix Section B, this structure
resembles the inherent form of the SSM kernel:

κ(x, y) = C(x)Diag
(∏

A
)
B(y). (20)

By leveraging this inherent structure, LaMO avoids explicit
decomposition for orthonormalization, thereby mitigating
over-fitting and improving generalization.

4. Numerical Experiments
This section presents a comprehensive empirical evaluation
of LaMO against several neural operator baselines. We con-
duct extensive experiments on diverse standard benchmarks
to validate the proposed method.

4.1. Implementation Details

Benchmark: We evaluate LaMO’s performance on reg-
ular grids using the Darcy and Navier-Stokes (Li et al.,
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Figure 2. Model performance on the scalability of the Darcy Flow benchmark evaluated across various aspects: (Left) Data Efficiency,
measuring performance with varying amounts of training data; (Middle Left) Resolution, assessing the impact of different input spatial
resolutions; (Middle Right) Model Depth, analyzing performance with increasing layers; and (Right) Embedding Dimension, examining
the effect of varying latent space dimensionality. Lower relative l2 error (×10−3) indicates better performance.

2020) benchmarks. We then extend our experiment to ir-
regular geometries, including Airfoil, Plasticity, and Pipe
(Li et al., 2022a) with structured meshes and Elasticity (Li
et al., 2022a) represented as point clouds. Further details
are provided in the appendix Section C.

Baselines: We evaluate LaMO against over 15+ baselines,
ranging from frequency-based operators such as FNO (Li
et al., 2020), U-FNO (Wen et al., 2022), WMT (Gupta et al.,
2021), F-FNO (Tran et al., 2021), U-NO (Rahman et al.,
2022) to transformer-based operators such as GalerkinTrans-
former (Cao, 2021), HT-Net (Liu et al., 2022), GNOT (Hao
et al., 2023), Factformer (Li et al., 2024), OFormer (Li et al.,
2022b), ONO (Xiao et al., 2023), and Transolver (Wu et al.,
2024), representing SOTA neural operator.

Evaluation Metric (Relative l2) (Li et al., 2020): Mean Rel-
ative ℓ2 error is used as metric throughout the experiments.

L =
1

N

N∑
i=1

∥Gθ(ai)− G†(ai)∥2
∥G†(ai)∥2

(21)

The regular mean-squared error (MSE) is enhanced with a
normalizer ∥G†(ai)∥2 to take account of discrepancies in
absolute resolution scale across different benchmarks.

Implementation Details: We use the mean relative ℓ2 error
(Equation 21) as the training and evaluation metric. All mod-
els are trained for 500 epochs with the AdamW (Loshchilov
et al., 2017) optimizer and OneCycleLR scheduler (Smith
& Topin, 2019). To ensure a fair comparison, we have kept
our model parameters equal to or fewer than those of the
transformer-based baselines. Further details on implemen-
tation and hyperparameters are provided in the appendix.
Experiments are conducted on a Linux machine with Ubuntu
20.04.3 LTS, an Intel(R) Core(TM) i9-10900X processor,
and a single NVIDIA A100 40 GB GPU. More comprehen-
sive details are available in the appendix Section D.

4.2. Main Results

We benchmark LaMO against standard baselines and
various latest SOTA neural operators (Wu et al., 2023;
2024; Hao et al., 2023), ranging from frequency-based to
transformer-based neural operators. Table 1 shows that
LaMO outperforms these baselines across diverse physics
domains, including solid and fluid dynamics on various
geometries. On average, LaMO achieves a 32.3% im-
provement over the second-best baseline, with a remark-
able 49% gain on time-dependent PDEs like Navier-Stokes
(0.095→ 0.046) and Plasticity (0.0013→ 0.0007) bench-
mark. It demonstrates LaMO’s superior ability to han-
dle complex dynamics compared to transformer-based ap-
proaches. While transformer-based models such as GNOT
and Oformer apply attention directly to mesh points, they
struggle to capture complex fluid interactions, as evidenced
by the Darcy and turbulent Navier-Stokes flows (Foias et al.,
2001; Bungartz & Schäfer, 2006). In contrast, LaMO’s use
of latent tokens and SSM proves more effective for model-
ing the intricate dynamics of regular fluid datasets, despite
Transolver addressing some of these issues with physics-
informed attention. These results highlight the effectiveness
of our framework in operator learning for learning accurate
surrogate solution approximation.

4.3. Ablation Results

Ablations: In addition to the main result, we carry out the
ablations of the components in LaMO. Table 2 highlights the
impact of SSM’s varying numbers of latent tokens and state
dimensions (DState) on model performance. Increasing the
token number consistently yields lower errors, indicating
that finer partitioning provides finer input representation.
Increasing DState dimensions generally improves perfor-
mance, particularly with larger latent token sizes, though
it shows diminishing returns with a decrease in latent to-
kens. The best performance (0.0038) on Darcy is achieved
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with increasing the latent tokens and (DState = 64) with
expand dim = 2, underscoring the importance of balancing
fine-grained latent tokens and is crucial for achieving better
performance with balanced computation.

Table 2. Ablation Study on a Number of Latent Tokens and SSM
Parameters: We evaluate three variants on the Darcy, varying the
latent token number, SSM dstate, and SSM expanding dimensions.
Lower relative l2 error indicates better model performance.

RELATIVE L2 LOSS

LATENT TOKENS STATE DIMENSIONS OF SSM

1 16 32 64

E
X

PA
N

D
D

IM 1
1936 0.0045 0.0044 0.0041 0.0040
484 0.0053 0.0052 0.0047 0.0056
121 0.0068 0.0065 0.0070 0.0071

2
1936 0.0041 0.0042 0.0039 0.0038
484 0.0049 0.0048 0.0051 0.0047
121 0.0065 0.0067 0.0066 0.0066

Ablation Study on Bidirectional SSM: To further assess the
necessity of bidirectional SSM, we conducted experiments
with unidirectional SSM, which failed to perform consis-
tently across benchmarks (on Plasticity, it becomes worse
as 0.0007→ 0.0022). Thus confirming the significance of
capturing dynamics in a non-causal setting. More Ablation
can be found in the appendix, Subsection E.1.

Effect of Non-Periodic Boundary Condition: LaMO per-
forms well on challenging non-periodic boundary bench-
marks, including Darcy flow and Navier-Stokes, as evi-
denced by the results in Table 1. It demonstrates its ro-
bustness in handling complex real-world scenarios where
traditional periodic boundary assumptions fail.

Effect of the Number of Latent Tokens: As shown in
Table 3, we systematically increase the number of latent
tokens in the Airfoil benchmark. The results indicate that a
higher number of latent tokens allows both Transolver and
LaMO to capture finer details in the physical space, albeit at
the cost of increased computation. Moreover, performance
initially improves with an increasing number of latent to-
kens. Eventually, it deteriorates beyond a certain threshold,
suggesting the existence of an optimal number of latent to-
kens that balances accuracy and computational efficiency.
LaMO consistently outperforms Transolver across all tested
latent token configurations, demonstrating its robustness
and superior capability in capturing underlying physical
dynamics using LaMO.

4.4. Model Analysis

Scaling: To further investigate the scalability of LaMO as a
potential foundation model for PDE solvers, we analyzed
its performance under varying training data samples, res-

Table 3. Ablation on the number of latent tokens on the Airfoil
benchmark of LaMO compared with Transolver. Lower relative l2
error indicates better model performance.

ABLATIONS
RELATIVE L2

TRANSOLVER LAMO (OURS)

1 0.0085 0.0079
8 0.0058 0.0050

16 0.0057 0.0048
32 0.0055 0.0045

NUMBER 64 0.0054 0.0041
OF LATENT 96 0.0053 0.0040
TOKENS 128 0.0052 0.0039

256 0.0058 0.0043
512 0.0059 0.0048

olutions, depths, and embedding dimensions. As shown
in Figure 2(a), LaMO achieves superior performance on
the Darcy flow benchmark even with 40% of the training
data, demonstrating its remarkable efficiency in low-data
regimes compared to second-best baseline models (Wu et al.,
2024). This demonstrates LaMO’s efficiency in learning
meaningful representation with fewer data points, making
it ideal for real-world applications with limited data. Addi-
tionally, we evaluated LaMO under different benchmark res-
olutions (Figure 2 (b)), depth (Figure 2 (c)), and embedding
dimensions (Figure 2 (d)). The results indicate that the ini-
tial LaMO configuration maintains consistent performance
across varying resolutions, depths, and embedding dimen-
sions compared with the second-best operator, Transolver.
These findings suggest that LaMO exhibits robust scalability
properties and can serve as a large-scale pre-trained PDE
solver, paving the way for its use as a foundation model in
SciML applications. The appendix Subsection E.5 presents
more experiments across the benchmark.

Visual Demonstrations: To visualize the performance of
LaMO compared to Transolver, we plot heatmaps in Figure
3 for an intuitive performance comparison. It is observed
that LaMO significantly outperforms Transolver in captur-
ing medium boundaries in Darcy flow problems (Figure
3(a)). Specifically, LaMO excels at resolving discontinuity
boundaries and junctions with fewer artifacts than Tran-
solver (Figure 3(b)). Furthermore, in time-dependent PDEs,
such as the Navier-Stokes equations, LaMO demonstrates
superior performance in accurately capturing turbulent fluid
flow dynamics (Figure 3(c)). It handles boundaries and
medium transitions more effectively, showcasing its robust-
ness over Transolver in such scenarios. The appendix Sec-
tion F presents more heat map plots.

Performance on Turbulent Fluid Dynamics: As shown
in Table 1, LaMO demonstrates superior performance on
Navier–Stokes (Reynold number 105), a highly turbulent
flow, achieving an average gain of 51.9% over the second-
best baseline. For lower turbulence (Reynold number 104),
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Figure 3. Visual Comparison. The (Top Row) displays the ground truth, the (Middle Row) presents the error heatmap of Transolver, and
the (Bottom Row) presents the error heatmap for LaMO on (a) Darcy Flow, (b) Plasticity, and (c) Navier-Stokes benchmark.

LaMO achieves a relative l2 error improvement of 75%
(0.0454→ 0.0117) compared to Transolver. Thus validat-
ing it as consistent across the turbulent regions.

Latent Tokens: Using latent tokens formed on a regular
grid, as in Perceiver, we observed that while bidirectional
SSM marginally improved performance 0.0059→ 0.0050,
compared to patches (0.0039), it lacked scalability with data
resolution, with increased computation. It highlights the
significance of ViT-type latent tokens in scaling operators
to higher resolutions, making them an optimal choice for
foundational models, as demonstrated in transformer-based
foundation models (Poseidon (Herde et al., 2024)).
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Figure 4. Efficiency comparison of top five baselines on (a) Darcy
and (b) Airfoil benchmark per epoch, respectively.

Efficiency: To further analyze the performance of the pro-
posed model, we present its efficiency metrics in Figure 4
compared with transformer-based baselines. Specifically,
on the Darcy flow and Navier-Stokes benchmark, LaMO uti-
lizes 3× fewer parameters and is 1.8× faster than transformer-
based baselines. Compared to other baselines, such as

GNOT and ONO, LaMO exhibits an even more significant
improvement, requiring 5–7× fewer parameters and achiev-
ing a 3× speedup in running time. LaMO presents favorable
efficiency considering the running time, GPU memory con-
sumption, and model parameters compared to Transolver,
and it achieves better results. These results highlight the
efficiency of LaMO in solving PDEs.

Interpretability: To further interpret the performance, we
analyze inter-cosine similarity across layers. As shown in
the appendix Subsection E.6, LaMO demonstrates a reduc-
tion in inter-cosine similarity across layers compared to
Transolver, indicating better representation learning. This
improvement can be attributed to the absence of the softmax
operation, which in Transolver has been identified as caus-
ing over-smoothing issues affecting its ability to capture the
intrinsic relationship (Ali et al., 2023; Wang et al., 2022).

5. Conclusion and Future Work
In summary, we introduce a new approach to solving PDEs
by introducing the SSM-based Neural Operator. The pro-
posed method leverages SSMs to achieve superior perfor-
mance while ensuring practical efficiency. The theoretical
analysis reveals the equivalence of LaMO with kernel inte-
gration. Through extensive experiments, we demonstrate
that SSM-based operators outperform transformer-based
counterparts in performance and computational efficiency.
While the current work establishes the potential of SSM-
based neural operators, certain aspects remain unexplored.
For instance, compatibility with pretraining paradigms us-
ing SSM as a backbone has yet to be explored. Future work
aims to extend the application of SSM-based operators as
foundation models for PDE solutions.
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A. Table of Notations
Table 4 provides a comprehensive list of notations used throughout the main content for clarity and reference.

Table 4. The following table summarizes the notations and symbols used throughout the main text for consistency and clarity.

NOTATIONS DESCRIPTIONS

LaMO Latent Mamba Operator
PDEs Partial Differential Equations
ODEs Ordinary Differential Equations
SSMs State Space Models
ZOH Zero Order Hold
Linear Feedforward Neural Network
D ⊂ Rd Spatial Domain for the PDE
x ∈ D Spatial Domain Points
a ∈ A = (D;Rda) Input Functions Coefficient
da Dimension of Input Function a(x)
u ∈ U = (D;Rdu) Target Functions Solution
du Dimension of Output Function u(x)
Dj The Discretization of (aj , uj)
G† : A→ U Solution Operator
Gθ Neural Operator
µ A Probability Measure on A
L Loss Function
x(t) ∈ RH System Input Sequence
h(t) ∈ RN System State
y(t) ∈ RM System Output Sequence
x[k] ∈ RH Discrete Input Sequence
h[k] ∈ RN Discrete State
y[k] ∈ RM Discrete Output Sequence
A ∈ RN×N System Matrix in Continuous SSM
B ∈ RN×H Input Matrix in Continuous SSM
C ∈ RM×N Output Matrix in Continuous SSM
D ∈ RM×H Direct Transition Matrix in Continuous SSM
Ā ∈ RN×N System Matrix in Discrete SSM
B̄ ∈ RN×H Input Matrix in Discrete SSM
C̄ ∈ RM×N Output Matrix in Discrete SSM
D̄ ∈ RM×H Direct Transition Matrix in Discrete SSM
∆ ∈ R+ Discrete Time Step in Discrete SSM
K State Kernel in Convolutional SSM
κ Kernel Integral Operator
X Physical Tokens
Z Latent Tokens
N Number of Training Samples

B. Theoretical Insights
This section delves into a rigorous mathematical analysis of the state-space model (SSM) from the perspective of a neural
operator. We provide proof of its core properties and present new insights. This comprehensive examination will highlight
the theoretical foundations and unique advantages of leveraging SSMs in neural operators. We abuse the notations when
there is no misleading context.
Lemma B.1. (Williams et al., 2007) For any differential equation of the following form

h′(t) = Ah(t) +Bx(t), (22)
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Its general solution is given as follows:

h(t) = eA(t−t0)h(t0) +

∫ t

t0

eA(t−s)Bx(s) ds. (23)

Proof: Consider the n-dimensional dynamical system represented by the equation as follows:

h′(t) = Ah(t) +Bx(t), (24)

where h(t) ∈ Rn is the state vector, A ∈ Rn×n is the system matrix, B ∈ Rn×m is the input matrix, and x(t) ∈ Rm

represents the input. Rearranging the terms, we get the following:

h′(t)−Ah(t) = Bx(t). (25)

By multiplying both sides by the integrating factor e−tA, we obtain the following:

e−tAh′(t)− e−tAAh(t) = e−tABx(t). (26)

d

dt

(
e−tAh(t)

)
= e−tABx(t). (27)

Integrating both sides with respect to time over the interval [0, t], we have the following:∫ t

0

d

ds

(
e−sAh(s)

)
ds =

∫ t

0

e−sABx(s)ds. (28)

e−tAh(t)− h(0) =
∫ t

0

e−sABx(s)ds. (29)

h(t) = etAh(0) +

∫ t

0

eA(t−s)Bx(s)ds. (30)

This can be rewritten in convolutional form as follows:

h(t) = etAh(0) + (u ∗ x)(t), (31)

where u(t) = BeAt represents the impulse response function.

Thus, the above equation provides the analytical solution to the n-dimensional state-space equation.
Remark B.2. It is important to note that the solution consists of two components:

• Initial Response: etAh(0), which depends on the initial state.

• Forced Response:
∫ t

0
eA(t−s)Bx(s)ds, driven by the input x(t).

Both components involve the exponential matrix function, which encapsulates the system’s dynamics, and BetA denotes the
kernel of the SSM.

Assumption B.3. We discretize the input signal to incorporate the State Space Model (SSM) into a neural network to
obtain a discrete parameter representation equivalent to the continuous SSM. Specifically, the signal u(t) is sampled at
uniform intervals of ∆, such that the time t is represented as k∆, where k = 0, 1, . . . is a non-negative integer. Utilizing
the Zero-Order Hold (ZOH) method, we assume that the signal remains constant within each sampling interval, i.e.,
u(t) = u(k∆) for t ∈ [k∆, (k + 1)∆].

Proposition B.4. The Zero-Order Hold (ZOH) discretization of continuous-time system parameters can be represented as:

A = e∆A,

B = (∆A)−1
(
e∆A − I

)
B,

(32)

where ∆ denotes the discretization time step, I is the identity matrix, and A,B are the continuous-time system matrices.
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Proof: From the previous proposition, the general equation of the continuous state-space model (SSM) is given by:

h(t) = eA(t)h(t0) +

∫ t

t0

eA(t−s)Bx(s) ds. (33)

Assuming a zero-order hold (ZOH) on the input x(s) between t ∈ [k∆, (k + 1)∆], the system evolves as:

h((k + 1)∆) = eA∆h(k∆) +

∫ (k+1)∆

k∆

eA((k+1)∆−s)Bx(k∆) ds. (34)

By defining h((k + 1)∆) = hk+1, h(k∆) = hk, and x(k∆) = xk, the equation simplifies to following:

hk+1 = eA∆hk +

(∫ (k+1)∆

k∆

eA((k+1)∆−s)B ds

)
xk. (35)

This corresponds to the standard discrete state-space model with parameters as follows:

A = eA∆, B =

∫ (k+1)∆

k∆

eA((k+1)∆−s)B ds. (36)

Now, assuming A is invertible, we can simplify B as follows:

B =

∫ ∆

0

eAsB ds. (37)

B =

∫ ∆

0

A−1 d

ds
(eAs) dsB. (38)

B = A−1(eA∆ − I)B. (39)

Thus, under the assumption of A being invertible, the continuous SSM can be discretized with the parameters:

A = eA∆, B = A−1(eA∆ − I)B. (40)

Remark B.5. Further B = A−1(eA∆ − I)B can be further simplified by truncating higher order terms as follows:

B = A−1(eA∆ − I)B = A−1(I +A∆+O(∆2)− I)B = ∆B. (41)

Corollary B.6. The discretization method described above aligns with the Euler method, which approximates the matrix
exponential by truncating its Taylor series expansion to the first-order term.

Proof: By substituting the discrete parameters into the SSM equation, we derive the following:

h(t+∆t) = Ah(t) +Bx(t), (42)

= eA∆th(t) + ∆tBx(t), (43)

=
(
I +∆tA+O(∆t2)

)
h(t) + ∆tBx(t), (44)

= h(t) + ∆tAh(t) + ∆tBx(t), (45)

= h(t) + ∆t
(
Ah(t) +Bx(t)

)
, (46)

= h(t) + ∆th′(t). (47)

The above illustrates that the update step corresponds to the Euler method’s first-order approximation of the dynamics.
Remark B.7. The above corollary establishes the equivalence between the Euler and Zero-Order Hold (ZOH) methods in
solving PDEs. While the Euler method truncates higher-order terms from the Taylor series, the ZOH method retains them,
making it a more generalized and accurate approach for solving PDEs. This distinction is crucial for understanding SSMs’
performance from the Euler method’s perspective.
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Lemma B.8. (Williams et al., 2007) Any continuous nonlinear differentiable dynamical system described by

ḣ(t) = f(h(t), x(t), t), (48)

can be approximated by its linear state-space model (SSM) representation

ḣ(t) = Ah(t) +Bx(t) +O(h, x), (49)

where the Jacobian matrices A and B are given by:

A =
∂f

∂h
(h̃(t), x̃(t), t), B =

∂f

∂x
(h̃(t), x̃(t), t), (50)

and O(h, x) represents higher-order infinitesimal terms.

Proof: Using the Taylor series expansion around
(
h̃(t), x̃(t)

)
, we expand f(h(t), x(t), t) as follows:

f(h(t), x(t), t) = f(h̃(t), x̃(t), t) +
∂f

∂h
(h̃(t), x̃(t), t)

(
h(t)− h̃(t)

)
+
∂f

∂x
(h̃(t), x̃(t), t)

(
x(t)− x̃(t)

)
+ HOT, (51)

where HOT denotes higher-order terms.

By defining the Jacobian matrices as follows:

A(t) =
∂f

∂h
(h̃(t), x̃(t), t), B(t) =

∂f

∂x
(h̃(t), x̃(t), t), (52)

and rearranging terms, we obtain the following:

ḣ(t) = Ah(t) +Bx(t) +O(h, x). (53)

Thus, a linear SSM with higher-order corrections can approximate continuous nonlinear differentiable dynamics.
Remark B.9. (Alonso et al., 2024) A nonlinear continuous differential system with the above dynamics has long-range
memory, i.e., it captures information from past inputs if all eigenvalues of A are within the unit circle. Mathematically, it
should satisfy the following conditions:

|eig(A)| ≤ 1 and |eig(A)| ≈ 1 ∀ eig(A).

Lemma B.10. The SSM operator is a Monte Carlo approximation of an integral operator.

Proof: Let (Ω,F , µ) be a probability space, where Ω is a measurable space equipped with a probability measure µ. Let
u : Ω → RC be a function in the Hilbert space L2(Ω, µ;RC). Let define, the integral operator G : L2(Ω, µ;RC) →
L2(Ω, µ;RC) as follows:

G(u)(x) =
∫
Ω

κ(x, y)u(y)µ(dy), (54)

where κ : Ω× Ω→ R is a measurable kernel function.

Now let’s discretize the domain, i.e., consider a partition of Ω into N distinct mesh points {yi}Ni=1 in particular order
sequence, and approximate the measure µ by a uniform measure over these points. The integral operator G can then be
approximated via Monte Carlo integration as follows:

G(u)(x) ≈ |Ω|
N

N∑
i=1

κ(x, yi)u(yi), (55)

where |Ω| =
∫
Ω
1 dµ denotes the total measure of Ω.

In SSM, the integral kernel κ is parameterized as follows:

κ(yi, yj) = WC(yi)

 ∏
yk≤yi

A


︸ ︷︷ ︸
Relative Position

WB(yj) (56)
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the relative position denotes the matrix exponential of A depends on the position, yk ≤ yi denotes the relative distance
between the tokens and WC and WB denotes the SSM input dependent weights.

Substituting this parameterization into the Monte Carlo approximation, we obtain the following:

G(u)(x) ≈ |Ω|
N

N∑
i=1

WC(yi)

∏
yk≤x

A

WB(x)u(yi). (57)

This expression demonstrates that the SSM operator can be interpreted as a Monte Carlo approximation of the integral
operator G, where the state-space dynamics parameterize the kernel κ.

Lemma B.11. (Wu et al., 2024) If Ω is a countable domain, the latent domain Ωs is isomorphic to Ω.

Proof: Let xi ∈ Ω denote the i-th element in the input domain, and let zj represent the j-th latent token in the latent domain
Ωs. The latent weight of xi with respect to zj is denoted by wxi,zj ∈ R. Given a constant K ≥ 1 and K ∈ N, we define a
projection f : Ω→ Ωl as follows:

f(xi) = argmax
zj

wxi,zj , (58)

where the mapping is constrained such that:

⌊(i− 1)/K⌋ ·K < j ≤ (⌊(i− 1)/K⌋+ 1) ·K, (59)

and the j-th latent token zj has not been assigned a projection previously.

This construction guarantees a bijective mapping between elements of the input domain Ω and latent token in the latent
domain Ωs, ensuring that the cardinalities of the two domains are equivalent. Hence, Ω is isomorphic to Ωs, i.e., Ω ∼ Ωs.

Using the above results, we will show that SSM is an integral kernel on Ω similar to transformer-based operator (Wu et al.,
2024; Cao, 2021; Wu et al., 2023).

Theorem B.12 (SSM as an equivalent integral kernel on Ω). Let Ω ⊆ Rn be a bounded domain, a : Ω→ Rd be a given
input function and x ∈ Ω be a mesh point. An SSM (Structured State-Space Model) layer approximates the linear integral
operator G : L2(Ω,Rd)→ L2(Ω,Rd), defined as follows:

G(a)(x) =
∫
Ω

κ(x, y)a(y) dy, (60)

where κ : Ω× Ω→ Rd×d is the kernel function characterizing the operator G.

Proof: According to Lemma A.3, we can obtain an isomorphic projection f between a countable input domain Ω and the
latent domain Ωz . Suppose that the latent weight w∗,∗ : Ω× Ωz → R is smooth in both Ω and Ωz , where Ω and Ωz denote
the continuation of Ω and Ωz , respectively. Then, we can obtain f as a diffeomorphism projection.

Then, we define the value function us on the latent token domain Ωz as follows:

u(z) =

∫
Ω

wx,zu(x) dx (61)

which corresponds to the latent token definition in Eq. (2). Based on the above assumptions and definitions, we have:
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G(u)(x) =

∫
Ω

κ(x, y)u(y) dy (62)

=

∫
Ωz

κmz
(
x, yz

)
uz (yz) df

−1(yz) (κmz(·, ·) : Ω× Ωz → RC×C is a kernel function) (63)

=

∫
Ωz

κmz
(
x, yz

)
uz (yz) |det(∇yzf

−1(yz))|d(yz) (64)

=

∫
Ωz

(∫
Ωz

wx,y′
s
κzz
(
y′z, ys

)
dy′z

)
uz (yz) |det(∇yzf

−1(yz))|d(yz) (65)

=

∫
Ωz

(∫
Ωz

wx,y′
z
κzz
(
y′z, yz

)
dy′z

)
uz (yz) |det(∇yzf

−1(yz))|d(yz) (66)

=

∫
Ωz

wx,y′
z︸ ︷︷ ︸

Decoder

∫
Ωs

κzz
(
y′z, yz

)︸ ︷︷ ︸
SSM among the latent tokens

uz (yz)︸ ︷︷ ︸
Latent token

|det(∇yzf
−1(yz))|d(yz)dy

′
z (Lemma B.10) (67)

≈
M∑
j=1

wi,j︸ ︷︷ ︸
Eq. (15)

M∑
t=1

(WCuz(zz,j))

 ∏
k:zz,j≤zz,t

Diag(A)

 (WBuz(zz,t))


︸ ︷︷ ︸

Eq. (13)

(
N∑

p=1

wp,tu(xp)︸ ︷︷ ︸
Eq. (10)

)
(68)

=

M∑
j=1

wi,j

M∑
t=1

Cj

∏
j≤t

Diag(A)

 (Bt)

zt, (69)

where κmz denotes the kernel function between mesh points and latent tokens, and κzz is the kernel defined among latent
tokens. For simplicity, we take |det(∇yz

f−1(yz))| = 1 for simplification. Different from the kernel integral among mesh
points, the usage of Lemma B.10 here is based on the Monte-Carlo approximation in the latent domain.
Remark B.13. The kernel function κ(x, y) encapsulates the interactions between the evaluation point x and the domain
points y ∈ Ω. The SSM layer implements a numerical approximation of the integral operator using a finite-dimensional
representation of the input function a over the discretized domain Ω. Specifically, the SSM architecture constructs a learned
representation of κ and combines it with the discretized function a to approximate the integral.

In the subsequent section, we comprehensively analyze the learning mechanism underlying the State-Space Model (SSM)
kernel and explore its theoretical and empirical connections to transformer-based architectures.

Matrices in Structures State Space models: Given an input sequence X := [x1, · · · , xL] ∈ RL×D consisting of N feature
vectors, the hidden state of each vector is denoted as follows:

h1 = B1x1, (70)

h2 = A2h1 +B2x2 = A2B1x1 +B2x2, (71)

h3 = A3h2 +B3x3 = A3A2B1x1 +A3B2x2 +B3x3, (72)

· · ·

hL = ALhL−1 +BLxL = ALAL−1 · · ·A2B1x1 +ALAL−1 · · ·A3B2x2 + · · ·+BLxL. (73)

The above recurrence can be rewritten in matrix form as:

H = [h1, h2, h3, · · · , hL]⊤ =


B1 0 0 · · · 0
A2B1 B2 0 · · · 0
A3A2B1 A3B2 B3 · · · 0

...
...

...
. . .

...∏L
j=2AjB1

∏L
j=3AjB2

∏L
j=4AjB3 · · · BL




x1
x2
x3
...
xL

 . (74)
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For the output sequence Y := [y1, · · · , yL]⊤, each vector yi (i = 1, · · · , L) is expressed as follows:

yi = Cihi, (75)

where and in matrix form, the above equation can be compactly rewritten as follows:

Y =


C1 0 0 · · · 0
0 C2 0 · · · 0
0 0 C3 · · · 0
...

...
...

. . .
...

0 0 0 · · · CL




h1
h2
h3
...
hL

 = CH. (76)

Substituting H from the Eq, we obtain the following relation:

Y = C


B1 0 0 · · · 0
A2B1 B2 0 · · · 0
A3A2B1 A3B2 B3 · · · 0

...
...

...
. . .

...∏L
j=2AjB1

∏L
j=3AjB2

∏L
j=4AjB3 · · · BL




x1
x2
x3
...
xL

 . (77)

In general, t = 1, · · · , L we have following recurrence for hidden states and output,

ht =

t∑
j=1

t∏
k=j+1

Ak Bjxj (78)

yt = Ct

t∑
j=1

t∏
k=j+1

Ak Bjxj . (79)

which can be further simplified and written as follows:

Y =


C1B1 0 0 · · · 0
C2A2B1 C2B2 0 · · · 0
C3A3A2B1 C3A3B2 C3B3 · · · 0

...
...

...
. . .

...
CL

∏L
j=2AjB1 CL

∏L
j=3AjB2 CL

∏L
j=4AjB3 · · · CLBL




x1
x2
x3
...
xL

 . (80)

This can be compactly written as:

Y =MX = SSM(A,B,C) (81)

where M ∈ RL×L represents the matrix. Hence, the M can be seen as a controlled linear operator. The above Equation can
be seen as a variant of self-attention, specifically, the casual version of attention. The element of M are as follows:

Mi,j = Ci

i∏
k=j+1

AkBj (82)

Remark B.14. Linear SSM is linear shift-invariant and thus is a causal system.

Similarity with Attention: The input sequence X ∈ RL×D are linearly projected into Query Q ∈ RL×D, Key K ∈ RL×D,
and Value V ∈ RL×D.

Q = XW⊤
Q , K = XW⊤

K , V = XW⊤
V , (83)

with WQ,WK ∈ RD×D and WV ∈ RD×D as the corresponding weight matrices. More specifically, Q :=
[q1, . . . ,qL]

⊤,K := [k1, . . . ,kL]
⊤,V := [v1, . . . ,vL]

⊤, where qi,ki,vi (for i = 1, . . . , L) represent the query, key, and
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value vectors, respectively, for input xi. Based on Q and K, the attention matrix S ∈ RL×L contains the correlations
between all query and key vectors, with a softmax function applied to each row of S which reduce it to transition matrix
(row stochastic matrix):

S = softmax
(
QK⊤
√
D

)
. (84)

where the above matrix can be written as follows (for clarity, we have ignored the normalization constant
√
(d)):

S =



exp(q1·k1)
L∑

j=1
exp(q1·kj)

exp(q1·k2)
L∑

j=1
exp(q1·kj)

· · · exp(q1·kL)
L∑

j=1
exp(q1·kj)

...
...

. . .
...

exp(qL·k1)
L∑

j=1
exp(qL·kj)

exp(qL·k2)
L∑

j=1
exp(qL·kj)

· · · exp(qL·kL)
L∑

j=1
exp(qL·kj)


. (85)

Each element Si,j (for i, j = 1, . . . , L) represents the attention score between qi and kj .

For the output sequence Y := [y1, · · · , yL]⊤, is calculated based on Attention Matrix (S) as follows:

Y = SV (86)

which can be rewritten in term of X as follows:
Y = SXWT (87)

It follows that each output vector yi (for i = 1, . . . , L) can be written in vector form as:

yi =

L∑
j=1

Si,jvj (88)

which implies the output yi is linear combination of vectors vj(j = 1, ..., L) with coefficient Si,j . The greater the attention
score, the larger its influence on the output.
Remark B.15. From both the matrix form of SSM and attention, we observe that both of them satisfy the pseudo-linear
form, i.e as follows:

Y =M(X)X (89)

we can observe that both are linear equations, but the weight matrix is data-dependent.

Interpreting the Hidden Matrices of SSM: From Equation 82 of SSM, we have the element of the matrix as follows:

Mi,j = Ci

i∏
k=j+1

Ak︸ ︷︷ ︸
Discount Factor

Bj (90)

Let abbreviate Hi,j =
∏i

k=j+1Ak above equation can be written as,

Mi,j = CiHi,jBj (91)

In Structured State-Space Models (SSMs), the softmax normalization typically used in transformers is removed. Additionally,
SSMs incorporate a masking mechanism that introduces input-dependent relative positional encodings (denoted as Hi,j), in
contrast to transformers, where positional encodings are typically fixed. This masking mechanism can be interpreted as a
”discount factor” that modulates interactions based on the relative distance between positions i and j, formulated as:

Hi,j =

i∏
k=j+1

Ak. (92)

which in the context of attention mechanisms, this input-dependent positional mask plays a crucial role in encoding the
”selectivity” of SSMs in neural operator (data-dependent kernel), thereby influencing their ability to capture dependencies in
modeling in PDEs solution (Katsch, 2023; Dao & Gu, 2024).
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C. Details of Benchmark
This section provides a detailed overview of the benchmark datasets and the specific tasks associated with each benchmark.

INPUT: Past
Velocity

OUTPUT: Future
 Velocity

INPUT: Porous
Medium

Regular Grid

INPUT: Airfoil
Structure

OUTPUT: Fluid
Velocity

OUTPUT: Airfoil
velocity

INPUT: Pipe
 Structure

Structured Mesh Point Cloud

Structured Mesh

INPUT: Material
 Structure

OUTPUT: Inner
Stress

INPUT: External
Force

OUTPUT: Mesh
Displacement

OUTPUT: Fluid
Pressure

FLUID PHYSICS SOLID PHYSICS

Darcy

Navier-Stokes Pipe

Airfoil Elasticity

Plasticity

Figure 5. The diagram presents an overview of the Neural Operator learning task benchmark PDEs classified as Fluid Physics and Solid
Physics. (Top Row) showcases three specific PDEs: Darcy Flow, Airfoil, and Elasticity. (Bottom Row), an additional set of three PDEs
is shown: Navier Stokes, Pipe, and Plasticity.

Table 5. The benchmark details follow the settings from (Li et al., 2022a), with input-output resolutions presented as (temporal, spatial,
variate). The “/” denotes the absence of that dimension.

OVERVIEW
SOLID PHYSICS FLUID PHYSICS

ELASTICITY PLASTICITY NAVIER–STOKES AIRFOIL PIPE DARCY

P
H

Y
S

IC
S TASK ESTIMATE STRESS MODEL DEFORMATION MODEL VISCOUS FLOW ESTIMATE VELOCITY ESTIMATE PRESSURE

INPUT MATERIAL STRUCTURE EXTERNAL FORCE PAST VELOCITY STRUCTURE POROUS MEDIUM

OUTPUT INNER STRESS MESH DISPLACEMENT FUTURE VELOCITY MACH NUMBER FLUID VELOCITY FLUID PRESSURE

D
A

TA

GEOMETRY POINT CLOUD STRUCTURED MESH REGULAR GRID STRUCTURED MESH REGULAR GRID

DIMENSION 2D 2D + TIME 2D

TRAIN SET SIZE 1000 900 1000 1000 1000 1000

TEST SET SIZE 200 80 200 100 200 200

INPUT TENSOR (/, 972, 2) (/, 101× 31, 2) (10, 64× 64, 1) (/, 221× 51, 2) (/, 129× 129, 2) (/, 85× 85, 1)

OUTPUT TENSOR (/, 972, 1) (20, 101× 31, 4) (10, 64× 64, 1) (/, 221× 51, 1) (/, 129× 129, 1) (/, 85× 85, 1)

Table 5 and Fig. 5 provide a comprehensive overview of the benchmark details. The categorization of the generation details
is based on the governing PDEs, which are as follows:

Elasticity (Li et al., 2022a): This benchmark aims to estimate the internal stress of an elastic material based on its structure,
discretized into 972 points. For each sample, the input is a tensor with a shape of 972× 2, representing the 2D position of
each discretized point. The output is the stress at each point, formatted as a tensor of shape 972 × 1. In the experiment,
1000 samples with varying structures are generated for training, while 200 samples are used for testing.

Plasticity (Li et al., 2022a): This benchmark focuses on predicting the future deformation of a plastic material impacted
from above by a die with an arbitrary shape. For each sample, the input is the die’s shape, discretized into a structured mesh
and represented as a tensor with a shape of 101 × 31. The output is the deformation of each mesh point over 20 future
timesteps, recorded as a tensor of shape 20× 101× 31× 4, capturing deformation in four directions. In the experiment, 900
samples with varying die shapes are used for training, while 80 additional samples are reserved for testing.

Navier-Stokes (Li et al., 2020): 2D Navier-Stokes equation mathematically describes the flow of a viscous, incompressible
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fluid in vorticity form on the unit torus as follows:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ] (93)

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ] (94)

w(x, 0) = w0(x), x ∈ (0, 1)2 (95)

where, u represents the velocity field, w = ∇× u is the vorticity, w0 is the initial vorticity, ν is the viscosity coefficient, and
f is the forcing function. In this dataset, the viscosity (ν) is fixed at 10−5, and the 2D field has a resolution of 64× 64. Each
sample within the dataset comprises 20 consecutive frames. The objective is to predict the subsequent ten frames based on
the preceding ten. The experiment uses 1000 fluid samples with different initial conditions for training, while 200 additional
samples are reserved for testing.

Pipe (Li et al., 2022a): This benchmark aims to estimate the horizontal fluid velocity based on the structure of the pipe. The
governing equations are as follows:

∇ ·U = 0, (96)

∂U

∂t
+U · ∇U = f−1 1

ρ
∇p+ ν∇2U. (97)

Each sample represents the pipe as a structured mesh with dimensions 129×129. The input tensor, shaped as 129×129×2,
encodes the position of each discretized mesh point. The output tensor, with a shape of 129× 129× 1, provides the velocity
value at each point. For training, 1000 samples with varying pipe shapes are generated, while 200 additional samples,
created by altering the pipe’s centerline, are reserved for testing.

Airfoil (Li et al., 2022a): This benchmark pertains to transonic flow over an airfoil. Due to the negligible viscosity of air, the
viscous term ν∇2U is omitted from the Navier-Stokes equation. Consequently, the governing equations for this scenario are
expressed as follows:

∂ρf

∂t
+∇ · (ρfU) = 0 (98)

∂(ρfU)

∂t
+∇ · (ρfUU + pI) = 0 (99)

∂E

∂t
+∇ · ((E + p)U) = 0, (100)

where ρf represents fluid density, and E denotes total energy. The input shape is discretized into a structured mesh with
dimensions 221 × 51, and the output represents the Mach number at each mesh point. All shapes are derived from the
NACA-0012 case provided by the National Advisory Committee for Aeronautics. In the training, 1000 samples from various
airfoil designs are used for training, while the remaining 200 samples are reserved for testing.

Darcy Flow (Li et al., 2020): This benchmark represents the flow through porous media. 2D Darcy flow over a unit square
is given as follows:

∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2, (101)

u(x) = 0, x ∈ ∂(0, 1)2. (102)

where a(x) is the viscosity, f(x) is the forcing term, and u(x) is the solution. This dataset employs a constant value of
forcing term F (x) = β. Further, Equation 101 is modified in the form of a temporal evolution as follows:

∂tu(x, t)−∇ · (a(x)∇u(x, t)) = f(x), x ∈ (0, 1)2, (103)

In this dataset, the input is represented by the parameter a, and the corresponding output is the solution u. The process is
discretized into 421× 421 regular grid and then downsampled to a resolution of 85× 85 for main experiments. For training,
1000 samples are used, 200 samples are generated for testing, and different cases contain different medium structures.

D. Implementation Details
This section presents a comprehensive overview of the experimental setup, covering benchmark datasets, evaluation metrics,
and implementation details to ensure a rigorous and reproducible analysis.
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Table 6. Training and model configurations of LaMO. Training configurations are directly from previous works without extra tuning. For
the Darcy dataset, we adopt an additional spatial gradient regularization term lgdl following ONO work.

CONFIGURATION
BENCHMARKS

DARCY NAVIER–STOKES ELASTICITY PLASTICITY AIRFOIL PIPE

T
R

A
IN

IN
G

LOSS FUNCTION l2 + 0.1lgdl RELATIVE l2

EPOCHS 500

INITIAL LR 5× 10−4 10−3

OPTIMIZER ADAMW

BATCH SIZE 4 2 1 8 4 4

SCHEDULER ONECYCLELR

A
R

C
H

IT
E

C
T

U
R

E

LAYERS 8

EMBEDDING DIM 64 256 128

LATENT TOKENS 1936 1024 64

DSTATE 64

HEADS 1 4

D.1. Training Detail

As detailed in Table 5 and Table 6, the datasets were split into training and testing sets by configurations adopted from prior
works. Each dataset corresponds to a specific task and follows these established settings. We employed the Adam optimizer
with the OneCycleLR scheduler to optimize model performance for training. The relative l2 error metric evaluated and
reported results across all benchmarks. Further specifics on the dataset splits, tasks, and training configurations are available
in the respective tables for additional clarity for each benchmark dataset.

D.2. Hyperparameters Details

Table 6 shows that all baselines and benchmarks were trained using consistent configurations, ensuring that LaMO maintains
fewer or comparable parameters relative to transformer-based baselines. The table provides an overview of the training
and model configurations for LaMO across multiple benchmark datasets. The training configurations include the use of a
relative l2 loss term across all datasets, with an additional spatial gradient regularization term lgdl incorporated for the Darcy
dataset as l2 + 0.1lgdl following ONO (Xiao et al., 2023). The model is trained for 500 epochs using the AdamW optimizer,
with a OneCycleLR scheduler employed for learning rate adjustment.

On the architectural details of the LaMO, all benchmarks utilize an 8-layer latent architecture, with a fixed state dimension
(DState) 64 and a convolutional kernel size of 3 across all datasets. SSM heads are configured as 1 for Darcy and 4 for
the remaining benchmarks. These configurations align with prior works and ensure robust training without additional
hyperparameter tuning. For regular grids, a single encoder-decoder pair is used. In contrast, the encoder and decoder share
parameters for other cases for irregular mesh and point cloud and are applied to each latent block.

D.3. Baselines Details

All baseline models have been extensively validated in prior work. For our experiments, we utilized the official codebase for
each operator, ensuring all settings were implemented as prescribed in prior work.

Typical Neural Operator: We rely on widely recognized baselines, reporting performance metrics for most operators based
on the results provided in their respective official papers for fair comparison. For models that cannot directly handle irregular
datasets, we applied the transformation method outlined in the GeoFNO paper to evaluate and report their performance on
the corresponding benchmarks.

Transformer Neural Operator: For GNOT, OFormer, and ONO, the performance metrics reported on the benchmark were
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Algorithm 1 Latent SSM (Multidirectional Latent SSM)
1: Input: Latent tokens Zl−1 ∈ RB×M×D

2: Zl−1 ← LayerNorm(Zl−1)

3: Ẑ← Linear(Zl−1)

4: X̂← Linear(Zl−1)

5: ∆, B,C ← Linear(X̂)
6: Ā, B̄← Discretization(∆, A,B)
7: Y ← 0
8: for d in Direction-Scan do
9: Y += Multihead-SSM(X̂d)

10: end for
11: Y ← Y ⊙Activation(Ẑ)
12: Zl ← Linear(Y)
13: Output: Latent tokens Zl ∈ RB×M×D

directly taken from their respective official publications. In the case of Transolver, recognized as the state-of-the-art (SOTA)
operator, we conducted additional evaluations by running the official codebase three times. This ensured consistency and
accuracy in reporting the benchmark results. We conducted experiments for the remaining baseline models using their
official codebases on GitHub. For reproducibility, we have provided our implementation codebase as a supplementary.

D.4. Evaluation Metric

Our experimental evaluation focuses on standard PDE benchmarks, utilizing the mean relative ℓ2 error (Li et al., 2020) as
the primary metric to assess the accuracy of the predicted physics fields. This metric is consistently reported across all
experiments and is defined as follows:

L =
1

N

N∑
i=1

∥Gθ(ai)− G†(ai)∥2
∥G†(ai)∥2

, (104)

where N represents the number of samples, Gθ(ai) denotes the predicted solution, and G†(ai) is the ground truth. The
inclusion of the normalizing term ∥G†(ai)∥2 ensures the metric accounts for variations in absolute resolution scales across
different benchmarks, enhancing comparability.

D.5. Algorithm

In this subsection, we introduce the latent SSM algorithms. In Algorithm 1, the direction scan refers to the axis along which
the SSM operates. Experimentally, we employ a bidirectional scan for irregular mesh data. At the same time, for regular
grids, we utilize a multidirectional scan as shown in Figure 6 along four paths: (i) top-left to bottom-right, (ii) bottom-right
to top-left, (iii) top-right to bottom-left, and (iv) bottom-left to top-right. Each direction is processed in parallel, reducing the
overall computational complexity to linear. The multidirectional scan ensures a non-causal kernel, enhancing the model’s
ability to capture the underlying latent dynamics more effectively.

Figure 6. Visualization of multidirectional scan for regular grid benchmark dataset.
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E. Additional Experiments
This section presents additional experimental results to evaluate our proposed method comprehensively. This includes
ablation studies to assess the impact of key components, scaling experiments to analyze performance across different
problem sizes, standard deviation analysis to quantify robustness, and interpretability studies for deeper insights.

E.1. Ablations

Ablation on Bidirectional SSM and Weight Sharing: Table 7 demonstrates the impact of different scanning strategies
on LaMO’s performance across various datasets. The unidirectional scan consistently underperforms compared to the
bidirectional setting, emphasizing the necessity of a non-causal bidirectional scan. This is particularly evident in the Airfoil
dataset, where the error worsens from 0.48 → 0.91. Furthermore, employing a multidirectional scan leads to further
performance gains for regular grid data, underscoring the advantages of incorporating directional diversity (for Navier
Stokes, it improves from 0.10 → 0.04). Additionally, sharing encoder and decoder parameters across blocks effectively
reduces model complexity while maintaining competitive performance, as seen in the improved results for Airfoil and
Elasticity and comparable accuracy in Plasticity and Pipe.

Table 7. Comparison of different LaMO configurations with different scanning directions and weight sharing across all the benchmarks.
w/ denotes the with, and w/o denotes the without settings. Lower relative l2 error indicates better model performance.

OPERATOR (×10−2)
POINT CLOUD REGULAR GRID STRUCTURED MESH

ELASTICITY NAVIER–STOKES DARCY PLASTICITY AIRFOIL PIPE

LAMO (UNIDIRECTIONAL) 0.97±0.044 16.24±0.320 1.33±0.033 0.22±0.022 0.91±0.028 0.88±0.041

LAMO (BIDIRECTIONAL W/O WEIGHTS SHARED) 0.54±0.026 10.1±0.252 0.64±0.022 0.07±0.008 0.48±0.018 0.38±0.023

LAMO (BIDIRECTIONAL W/ WEIGHTS SHARED) 0.50±0.021 12.2±0.108 0.77±0.015 0.08±0.01 0.41±0.013 0.41±0.027

LAMO (MULTIDIRECTIONAL) 0.62±0.030 4.60±0.108 0.39±0.015 0.12±0.014 0.50±0.016 0.48±0.031

E.2. Standard Deviations

In this section, we report the standard deviation of all benchmarks while presenting the mean values in the main results
table. We repeat all experiments across multiple independent runs and compute the standard deviation to ensure statistical
rigor. Table 8 shows that LaMO consistently outperforms all baselines within a 95% confidence interval. We also run
the second-best baselines three times for a fair comparison and report their standard deviations. Given the variability in
their results across different benchmarks, achieving superior performance across all previous models is challenging. This
consistency further validates the robustness and effectiveness of our proposed model.

Table 8. The standard deviations of LaMO are reported across all experiments. For comparison, the performance of the second-best
operator is also included. Each experiment was conducted over five independent runs to calculate the standard deviation. Lower relative l2
error indicates better model performance.

OPERATOR (×10−2)
POINT CLOUD REGULAR GRID STRUCTURED MESH

ELASTICITY NAVIER–STOKES DARCY PLASTICITY AIRFOIL PIPE

SECOND-BEST MODEL
0.64±0.02 9.57±0.20 0.59±0.01 0.13±0.01 0.53±0.01 0.46±0.02

(TRANSOLVER) (TRANSOLVER) (TRANSOLVER) (TRANSOLVER) (TRANSOLVER) (TRANSOLVER)

LAMO (OURS) 0.50±0.021 4.60±0.108 0.39±0.015 0.07±0.008 0.41±0.013 0.38±0.023

E.3. Efficiency

As shown in Figure 7, we compare the training time, inference time, and memory consumption of LaMO against Transolver
across all datasets and in Table 9, we compare the model parameter count range across the benchmark compared with
baselines. Our results indicate that LaMO demonstrates comparable performance in terms of efficiency metrics. Furthermore,
LaMO exhibits significantly better performance across all efficiency metrics for time-dependent PDEs such as Navier-Stokes
and Darcy. This advantage makes it well-suited for scaling over regular grids, facilitating the development of foundation
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Table 9. Comparison of models’ parameters count of LaMO with baselines.

OPERATOR FNO U-FNO LSM GNOT GALERKIN TRANSOLVER LAMO

PARAMETER(IN M) 0.9-18.9 1.0-19.4 4.8-13.9 9.0-14.0 2.2-2.5 2.8-11.2 1.1-4.0

models for PDEs.
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Figure 7. Efficiency comparison between LaMO and Transolver (Left) Training Time, (Middle) Inference Time and (Right) Memory
consumption per epoch on all the benchmark dataset.

E.4. Time Complexity

Table 10 compares the computational complexity of different neural operator models. The models are characterized by
their kernel range (Global or Global + Local), kernel type (Fixed or Data-Dependent), and computational complexity for
the number of sampling points N in a continuous function. FNO achieves O(N logN) complexity with a fixed global
kernel, Transformers incur O(N2) complexity due to their global, data-dependent kernel, and LaMO balances efficiency
and flexibility with O(N) complexity by leveraging both global and local, data-dependent kernels.

Table 10. Computational complexity of neural operators. N represents the number of sampling points of a continuous function.
MODEL KERNEL RANGE KERNEL TYPE COMPLEXITY

FNO GLOBAL FIXED O(N logN)
TRANSFORMER GLOBAL DATA DEPENDENT O(N2)
LAMO GLOBAL + LOCAL DATA DEPENDENT O(N)

E.5. Model Scalability

From Figure 8, we observe that LaMO consistently outperforms Transolver across all six benchmarks, with a notable error
margin in most cases, except for Airfoil, where the improvement is marginal. LaMO achieves a lower relative l2 error than
Transolver, with only 40% of the training data for the Darcy and Navier-Stokes benchmarks. In the Plasticity benchmark,
LaMO surpasses Transolver with just 20% of the training samples, exhibiting minimal performance degradation despite the
reduced dataset size. This is particularly valuable in practical scenarios where collecting large-scale PDE datasets is costly,
emphasizing the importance of models that maintain high accuracy with limited training samples.

Furthermore, as presented in Table 11, we evaluate the performance of neural operators in comparison with Transolver
across varying network depths on the Navier-Stokes (NS) dataset, which presents significant challenges due to its complex,
nonlinear fluid dynamics. Our experiments focus on assessing how the number of layers in the operator architecture
influences predictive accuracy. We observe a consistent improvement in performance as the depth of the operator increases,
indicating that deeper architectures are better able to capture the intricate temporal and spatial correlations inherent in
turbulent flow regimes. Remarkably, even with a relatively shallow configuration of just four layers, LaMO outperforms
Transolver, demonstrating its superior efficiency and representational capacity in modeling complex physical systems.

26



Latent Mamba Operator for Partial Differential Equations

200 400 600 800 1,000

50

100

150

200

250

Number of training samples

R
el

at
iv

e
L

2
(×

1
0
−

3
)

(a) Navier-Stokes

200 400 600 800 1,000
0

5

10

15

20

25

Number of Training Samples

R
el

at
iv

e
L

2
(×

1
0
−

3
)

(b) Darcy

200 400 600 800 1,000

5

10

15

20

25

Number of Training Samples

R
el

at
iv

e
L

2
(×

1
0
−

3
)

(c) Airfoil

200 400 600 800 1,000

4

6

8

10

Number of Training Samples

R
el

at
iv

e
L

2
(×

1
0
−

3
)

(d) Pipe

180 360 540 720 900

0.5

1

1.5

2

Number of Training Samples

R
el

at
iv

e
L

2
(×

1
0
−

3
)

(e) Plasticity

200 400 600 800 1,000

5

10

15

20

25

30

Number of Training Samples

R
el

at
iv

e
L

2
(×

1
0
−

3
)

(f) Elasticity

LaMO (Ours) Transolver

Figure 8. Data Efficiency for different benchmarks for LaMO with Transolver (Top) (a) Navier Stokes, (b) Darcy (c) Airfoil, (Buttom) (d)
Pipe, (e) Plasticity and (f) Elasticity benchmark respectively.

Table 11. Comparison of relative l2 error on Navier-Stokes benchmark of LaMO with second best baseline model Transolver. Lower
relative l2 error indicates better model performance.

NUMBER OF LAYERS 2 4 6 8

TRANSOLVER 0.1601 0.1518 0.1241 0.0957
LAMO 0.1038 0.0608 0.0524 0.0460

E.6. Interpretability

In Figures 9 and 10, we present the hidden attention matrices of Transolver and LaMO across all layers. For LaMO, we plot
the bidirectional attention maps for the Airfoil and Elasticity benchmarks to facilitate an intuitive comparison. As observed,
Transolver’s attention maps exhibit values concentrated on a few tokens, whereas LaMO’s attention is more diffused across
tokens, thus establishing a better representation with more diverse latent tokens. The difference can likely be attributed to
using softmax in Transolver, which sharpens the attention maps and is known to cause over-smoothing issues.

To further analyze LaMO’s performance compared to Transolver, we examine the inter-cosine similarity across layers for
both models as shown in Figure 11. LaMO significantly reduces inter-cosine similarity across layers compared to Transolver,
indicating better representation learning through SSM. This improvement can be attributed to the absence of the softmax
operation, which in Transolver has been identified as causing over-smoothing issues (Ali et al., 2023; Wang et al., 2022).

F. Visualization
This section presents a comparative analysis of model predictions for Transolver and LaMO across all benchmark datasets.
For each dataset, we visualize the predicted outputs alongside their corresponding ground truth values to assess the
performance of both models. Additionally, we include heatmaps to highlight the spatial distribution of errors and deviations,
providing deeper insights into the strengths and weaknesses of each approach. These visualizations demonstrate the
effectiveness of LaMO in capturing intricate patterns within the data while benchmarking it against the existing state-of-the-
art model, Transolver.
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Figure 9. Hidden Attention Matrices comparison of Transolver (Top) with LaMO (Bottom) across the layers on Airfoil benchmark.
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Figure 10. Hidden Attention Matrices comparison of Transolver (Top) with LaMO (Bottom) across the layers on Elasticity benchmark.
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Figure 11. Intercosine similarity of tokens across layers for LaMO and Transolver on (a) Airfoil and (b) Elasticity benchmark, respectively.

G. Limitations and Future Work
LaMO demonstrates promising results in solving parametric PDEs, but its efficiency in an unsupervised setting remains un-
explored. Investigating unsupervised training methods and improved token scanning techniques could enhance performance.
Additionally, evaluating LaMO’s scalability and optimizing its training strategies are key areas for research. For future work,
we plan to investigate the potential of using SSM-based operators as foundation models for more efficient PDE solving,
focusing on unsupervised learning to achieve better representations. However, the compatibility of existing pretraining
methods with SSM-based architectures for operators and developing pretraining techniques specifically tailored for these
models remains an open area of exploration. Additionally, we aim to explore improved training strategies for SSM-based
operators, including enhanced scanning methods for regular grid PDEs, to optimize their performance further.
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Figure 12. Model Prediction Comparison: The figure compares Transolver and LaMO on the Darcy dataset. The (Top) row represents
the ground truth, the (Middle) row shows the predictions from Transolver and LaMO, and the (Bottom) row illustrates the error heatmap,
capturing the differences between the ground truth and the predicted results.

2

0

2

2

0

2

2

0

2

2

1

0

1

2

2

1

0

1

2

G
ro

un
d 

tr
ut

h
Pr

ed
(T

ra
ns

ol
ve

r)
Pr

ed
(O

ur
s)

Er
ro

r(
Tr

an
so

lv
er

)
Er

ro
r(

O
ur

s)

Figure 13. Model Prediction Comparison: The figure compares Transolver and LaMO on the Navier Stokes dataset. The (Top) row
represents the ground truth, the (Middle) row shows the predictions from Transolver and LaMO, and the (Bottom) row illustrates the
error heatmap, capturing the differences between the ground truth and the predicted results.
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