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ABSTRACT

Recent research in industrial anomaly detection (IAD) has shifted beyond bi-
nary classification and segmentation, increasingly focusing on process-level, in-
terpretable reasoning about the type and cause of anomalies. While multimodal
large language models (MLLMs) have enabled this reformulation through visual
question answering, current anomaly detection methods still suffer from two ma-
jor limitations: the limited capacity of reward functions to capture intricate com-
plexities and the reliance on generating supervised fine-tuning (SFT) data. Hence,
we propose FAD-TQ, a lightweight reinforcement learning framework for fine-
grained anomaly detection with thinking quality. Built upon the Group Policy
Gradient paradigm, it eliminates the reference model and KL regularization to re-
duce rollout overhead and directly optimize the original reinforcement learning
objective. To enable fine-grained guidance over the reasoning process, we de-
sign a thinking quality reward composed of two components: an efficiency reward
that penalizes redundant reasoning, and a relevance reward that encourages task-
aligned, coherent thought trajectories. Furthermore, we introduce MVTec-LOCO-
AD-Pair3C, a principled evaluation protocol built on the existing dataset. By
defining three decision types—normal, structural anomaly, and logical anomaly,
rather than binary classification. Extensive experiments demonstrate that FAD-TQ
improves interpretability, accuracy, streamlined reasoning and training efficiency
with reduced computational costs. It demonstrates the potential of using small-
scale benchmarks to evaluate MLLM capabilities in IAD. We hope this framework
and evaluation protocol can serve as an example for future research on process-
level reasoning in anomaly detection.

1 INTRODUCTION

Industrial anomaly detection (IAD) aims to identify rare defects and irregularities in manufactur-
ing (Liu et al., 2024), playing a vital role in ensuring product quality and operational safety. Exist-
ing methods mainly fall into two paradigms: zero-shot and few-shot (Jeong et al., 2023). Zero-shot
methods (Zhou et al., 2023; Cao et al., 2024) leverage anomaly data from seen categories and use
prompt tuning to generalize to unseen object types and anomaly types, often without requiring fine-
tuning on the test category. In contrast, few-shot methods (Chen et al., 2023; Li et al., 2024) build
lightweight memory structures from a handful of normal samples within the same target domain, of-
ten combined with prompt adaptation. While effective, both zero-shot and few-shot approaches lack
step-by-step, interpretable reasoning. To address this limitation, recent works reformulate anomaly
detection as a visual question answering (VQA) problem using multimodal large language models
(MLLMs) (Zhang et al., 2025; Li et al., 2023). These models produce natural language explanations
alongside predictions, providing the first step toward interpretable anomaly detection. Building on
this, reasoning-augmented MLLMs exemplified by OpenAI o1 (Jaech et al., 2024) and DeepSeek-
R1 (Guo et al., 2025), and inspired by the Chain-of-Thought paradigm (Wei et al., 2022) explicitly
generate intermediate reasoning steps before producing final answers, enabling step-by-step fine-
grained reasoning. Despite the progress in reasoning-augmented IAD (Chao et al., 2025; Li et al.,
2025a), existing methods remain constrained by three critical limitations. First, they suffer from
reward insufficiency, where reinforcement learning only evaluates the final answer and format, of-
fering no guidance on the intermediate reasoning quality. This weakens credit assignment and leads
to inefficient training. Second, they rely on synthetically generated data for the initial Supervised
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Fine-Tuning (SFT) phase (Li et al., 2025b; Zhao et al., 2025). Such data are expensive to con-
struct and often domain-specific, limiting scalability. Third, their thinking processes are overlong
which are not concise enough. These lead to a critical question: Can we develop new approaches
that harness the benefits of reasoning ability while addressing these limitations of data scale and
computational efficiency?

To address these limitations, we propose FAD-TQ, a lightweight reinforcement learning frame-
work tailored for fine-grained anomaly detection with high-quality reasoning. First, we adopt the
Group Policy Gradient (GPG) paradigm (Chu et al., 2025), which removes both the reference model
and KL regularization. This simplification reduces GPU memory usage and rollout latency, while
directly optimizing the original reinforcement learning objective without relying on auxiliary reg-
ularization terms. Second, to improve the quality of intermediate reasoning, we introduce a novel
thinking-quality reward composed of two components: an efficiency reward that discourages redun-
dant or verbose reasoning, and a relevance reward that promotes task-relevant thinking behaviors
aligned with the ground truth. By jointly constraining conciseness and logical relevance, this reward
encourages the model to generate reasoning processes that are not only faithful to the task but also
streamlined and efficient. Third, we introduce MVTec-LOCO-AD-Pair3C, a structured evaluation
protocol built on top of the existing MVTec LOCO dataset (Bergmann et al., 2022). By defining
three decision types—normal, structural anomaly, and logical anomaly— this protocol supports ef-
ficient training and evaluation under limited data. Although MVTec-LOCO-AD-Pair3C is relatively
small in scale compared to MMAD (Jiang et al., 2025), it remains a principled and representative
benchmark for IAD tasks. Its lightweight design makes it a practical alternative for scenarios where
large-scale benchmarks like MMAD are prohibitively time-consuming to use, while still offering
meaningful evaluation for MLLMs.

In summary, our contributions are three-fold:

• We develop FAD-TQ, a lightweight and scalable reinforcement learning framework based
on the Group Policy Gradient (GPG) paradigm, which eliminates the reference model and
KL regularization, thereby directly optimizing the original RL objective while substantially
reducing memory footprint and rollout latency.

• We design a novel thinking-quality reward that jointly evaluates the conciseness and task
relevance of reasoning trajectories, encouraging the model to generate shorter yet more
effective reasoning chains. This provides fine-grained credit assignment and enhances both
interpretability and fidelity of model decisions.

• We propose MVTec-LOCO-AD-Pair3C, a principled and low-cost evaluation protocol
that defines three decision types and serves as a representative lightweight alternative to
MMAD. This protocol lowers the barrier to future research by enabling fast experimenta-
tion and fair comparison without relying on large-scale synthetic datasets.

Our code and implementation details are partly open-sourced here.

2 APPROACH

2.1 TASK DEFINITION

We recast industrial anomaly detection as a visual–language reasoning problem, a MLLM is ex-
pected to produce a natural-language verdict instead of conventional anomaly logits. Each instance
consists of a reference image Ir ∈ RH×W×3 representing a normal sample from a specific object
category, and a test image It ∈ RH×W×3 whose anomaly status is to be determined. The model
is tasked with determining whether the test image It is: (1) Normal (no anomaly), (2) Structurally
anomalous (e.g., missing parts, deformation, or defects), (3) Logically anomalous (e.g., count mis-
match or spatial inconsistency). Formally, we denote the multimodal model as πθ, parameterized by
θ. Given the input image pair (Ir, It) and the task prompt x, the model outputs a class label:

πθ(Ir, It, x) → y ∈ {ynormal, ystruct, ylogical} .

Only y is used for metrics computation. The reference Ir is guaranteed normal and sampled from
the same category as It.
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Table 1: Dataset statistics of MVTec-LOCO-AD-Pair3C showing counts for Good samples, Struc-
tural Anomalies (SA), and Logical Anomalies (LA), partitioned by training and test splits.

Category Total Good SA LA

Train Test Train Test Train Test Train Test

Breakfast Box 120 155 40 62 40 50 40 43
Juice Bottle 120 210 40 54 40 54 40 102
Pushpins 120 190 40 98 40 41 40 51
Screw Bag 120 221 40 82 40 42 40 97
Splicing Connectors 120 192 40 79 40 45 40 68

Total 600 968 200 375 200 232 200 361

2.2 BENCHMARK: MVTEC-LOCO-AD-PAIR3C

We introduce MVTec-LOCO-AD-Pair3C, a lightweight yet fine-grained benchmark designed to
evaluate multimodal reasoning capabilities for industrial anomaly detection.

Source Dataset. Our benchmark is built upon the MVTec LOCO AD dataset, which includes five
industrial object categories: breakfast box, juice bottle, pushpins, screw bag, and splicing connec-
tors. Each category provides training set, a validation set containing only normal samples, and test
setcontaining three fine-grained sub-classes: normal, structural anomaly (e.g., missing parts, surface
defects), and logical anomaly (e.g., incorrect object counts or spatial misconfigurations).

Balanced Training–Test Split. To construct a small yet representative training set, we perform
stratified sampling on the official test split. Specifically, for each object category and each sub-
class (i.e., Good, Structural anomalies, Logical anomalies), we randomly sample 40 images as the
training subset. The remaining images in each sub-class are reserved for evaluation. To adapt this
data to our pairwise setting, we generate ref–test pairs as follows: In the training set, each test
image It is paired with a reference image Ir sampled from the official training split (normal only).
In the test set, each test image It is paired with a reference image Ir sampled from the official
validation split (normal only). This protocol guarantees: (i) balanced coverage of all anomaly types
in training; (ii) strict disjointness between training and test images; (iii) no additional annotation
cost, as all labels are inherited from the original dataset. More details are shown in 1.

Pairwise Classification Protocol. We formulate the task as a 3-way classification over im-
age pairs. Each instance is represented as a pair (Ir, It): For training, Ir is randomly sam-
pled from the original training set (normal only). For testing, Ir is randomly sampled from
the original validation set (normal only). Given a pair (Ir, It), the model predicts a class label
y ∈ {good, structural, logical}. This extends the original binary anomaly detection setup into a
more challenging, interpretable, and fine-grained 3-class reasoning task, as shown in 1.

Breakfast Box Pushpins Screw Bag Splicing Connectors

Good

Logical
Anomalies

Structrual
Anomalies

Juice Bottle

Figure 1: Example samples from the MVTec-LOCO-AD-Pair3C benchmark. Each column cor-
responds to a distinct object category, while each row represents a different anomaly type: good
(top), structural anomaly (middle), and logical anomaly (bottom). This visualization highlights the
fine-grained anomaly detection rather than binary classification.
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Compare the test image with the reference image
and answer the question.

Question: Is there any anomaly in the test image?
Options:
A. No anomaly (Good)
B. Yes, Structural Anomaly
C. Yes, Logical Anomaly

ref img test img

Prompt

Rollouts

Policy Model MLLM

Reward
Function

Reward 1: Structure Reward

<think> ... <\think> + <answer> ... <\answer>

Reward 2: Predict Reward  Reward 3: Thinking Process Reward 

Prediction Thinking
Process

Efficiency
RewardRelevance

Reward
Ground
Truth

Accuracy
Reward

Group
Advantage

Thinking Process Answer1

Thinking Process Answer2

Thinking Process Answern

Group of Generated Paths

rollout

Reward Matching

Template as A Judge

LLM as A Judge

Legend

Figure 2: Overview of our proposed pipeline FAD-TQ. Given a reference–test image pair and a
multiple-choice question, the policy model samples a group of reasoning trajectories. Each trajec-
tory is assigned a composite reward based on structural coherence, answer correctness, and thinking
quality. This thinking qulity reward is derived from a dual-judge mechanism, as shown in the leg-
end: the final prediction’s accuracy is verified programmatically via template matching against the
ground truth (blue arrow), while the thinking process is evaluated semantically by an LLM-as-a-
Judge on its quality and efficiency (purple arrows). Advantages are then computed by normalizing
these rewards within the group.

2.3 METHOD

We introduce Fine-grained Anomaly Detection with Thinking Quality (FAD-TQ), a lightweight
group-based RL framework. Given (Ir, It, q), the policy samples a group of reasoning trajectories,
each containing a thinking process and a final answer. A process-aware reward evaluates format
compliance, prediction accuracy, and thinking quality (efficiency and task relevance), producing a
scalar return per trajectory. Returns are normalized within the group to form advantages, and the
policy is updated by a clipped objective without a reference model or KL regularization. Figure 2
provides an overview of the framework.

Group Policy Gradient Paradigm. For policy optimization, we adopt the Group Policy Gradient
(GPG) algorithm, a critic-free method that stabilizes learning by leveraging batch-level statistics
instead of a learned value function. Specifically, for a group of N trajectories sampled from the
current policy, the advantage A(τi) of a trajectory is computed by standardizing its return R(τi)
against the group’s empirical mean (µ) and standard deviation (σ):

A(τi) =
R(τi)− µ

σ + ε

4
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where ε is a small constant for numerical stability.

The policy parameters θ are then updated by ascending the gradient of the standard policy gradient
objective, weighted by this advantage:

LGPG(θ) = Eτ∼πθ
[log πθ(τ)A(τ)]

Crucially, GPG’s formulation is deliberately simpler than that of proximal methods like GRPO. By
forgoing a reference model and a surrogate objective, it avoids the computational overhead associ-
ated with importance sampling and directly optimizes the fundamental policy gradient objective.

Reward Function Definition. To enable fine-grained reasoning in anomaly detection, we define
three types of scalar rewards: (1) format reward that enforces response structure, (2) accuracy re-
ward that evaluates the final prediction correctness, and (3) thinking quality reward that supervises
the reasoning process. Each trajectory is scored by a weighted combination of these rewards, en-
abling fine-grained credit assignment across the reasoning trajectory. We describe each reward com-
ponent in detail below.

(1) Format Reward and Accuracy Reward. To ensure structural consistency in model responses,
we define a format reward and an accuracy reward. The format reward rformat(τ) checks whether
the model output strictly matches the required response format: a reasoning segment enclosed in
think tags followed by a final answer enclosed in answer tags. If both components are present and
properly ordered, the reward is 1; otherwise, it is 0:

rformat(τ) =

{
1, if output matches <think>...</think><answer>...</answer>
0, otherwise

The accuracy reward raccuracy(τ) compares the extracted answer span with the ground-truth class
label. A reward of 1 is assigned if the predicted choice matches the ground truth, and 0 otherwise:

raccuracy(τ) =

{
1, if predicted label matches ground truth
0, otherwise

(2) Thinking-Quality Reward. To provide fine-grained supervision over the intermediate reasoning
process, we design a thinking-quality reward rtq(τ) based on LLM evaluation. Specifically, we
extract the reasoning text enclosed by think tags from each trajectory τ , together with the predicted
answer from the answer segment. A frozen LLM is then used to assess reasoning quality along two
complementary dimensions:

• Conciseness: whether the reasoning avoids redundancy and unnecessary elaboration. A
frozen LLM judge scores this dimension on a 0–3 scale, with higher scores indicating
shorter, clearer, and more efficient reasoning.

• Relevance (Logical Relevance): whether the reasoning logically supports the final answer
and explicitly compares the reference and test images. A frozen LLM judge also scores
this on a 0–3 scale, reflecting coherence, structure, and visual grounding of the reasoning.

The scores are extracted and normalized to the range [0, 1]:

rconc(τ), rrel(τ) ∈ [0, 1].

The final reward is a weighted combination of the two components:

rtq(τ) = η · rconc(τ) + (1− η) · rrel(τ), η ∈ [0, 1],

where η balances the importance of conciseness and relevance. This design captures both structural
efficiency and semantic faithfulness of the reasoning trace, providing informative training signals
even when the final prediction is correct but the reasoning is suboptimal.

In summary, the final reward for each trajectory τ is computed as:

R(τ) = rformat(τ) + raccuracy(τ) + min
(
1, max(0, raccuracy(τ))

)
· rtq(τ)

where each component returns a scalar in [0, 1], and the total reward satisfies R(τ) ∈ [0, 3]. The rtq
component is only activated when the predicted answer is correct (i.e., accuracy reward equals 1).

5
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3 EXPERIMENTS

3.1 SETUP

Datasets and Metrics. We conduct experiments on the MVTec-LOCO-AD-Pair3C benchmark
described in Section 2.2. The benchmark transforms industrial anomaly detection into a challenging
multimodal reasoning task with 3-way classification (good, structural, logical) over reference-test
image pairs. Our training set contains 600 sampled pairs (40 per class across 5 categories), while
the test set comprises the remaining images from each category, totaling approximately 2,400 eval-
uation pairs. This balanced yet compact design enables efficient experimentation while maintaining
comprehensive coverage of industrial anomaly types.

We adopt Accuracy as the primary evaluation metric. For a three-class classification task with test
pairs {(Iref (i), Itest

(i), y(i))}Ni=1 and predictions ŷ(i), accuracy is defined as:

Accuracy =
1

N

N∑
i=1

1
[
ŷ(i) = y(i)

]
.

This metric is chosen for its straightforward interpretability and its appropriateness for the balanced
nature of our test set, providing a clear measure of the model’s overall performance in distinguishing
between normal, structural, and logical conditions. However, accuracy alone does not characterize
the distribution of the model’s outputs. For example, a model could achieve a non-trivial accuracy
score by consistently selecting a single, high-frequency option.

To provide a more complete picture of model behavior at the option level, we introduce a com-
plementary diagnostic metric named Balance Score. The premise is straightforward: given
that our benchmark is designed with a balanced distribution of correct answers across the three
classes, a well-behaved model should not produce an extremely skewed distribution of predictions
We calculate this by first computing the probability distribution of the model’s chosen options,
p = (pgood, pstructural, plogical). The score is the Shannon entropy of this distribution, normalized
by the maximum possible entropy, log(3):

Balance Score =
H(p)

log(3)
, where H(p) = −

∑
c

pc · log(pc + ε).

This score lies in the range [0, 1]. A score approaching 0 indicates a degenerate output pattern where
the model almost exclusively selects a single option. This metric is not intended as an optimiza-
tion target. Instead, it serves a diagnostic purpose: An extremely low score flags that the model’s
response behavior is pathologically low variance. It helps us verify that a high accuracy score is
not merely an artifact of a simplistic response bias. When reported alongside accuracy, the Balance
Score offers crucial insight into the diversity of a model’s outputs, ensuring a more rigorous and
transparent evaluation.

Implementation Details We adopt Qwen2.5-VL-3B as the base model and train it using rein-
forcement learning algorithms provided by the verl (Sheng et al., 2025) framework 1, which provides
support for reinforcement learning algorithms. We train the model for 10 epochs on the training set.
Each training batch samples 32 prompts, with 8 rollouts generated per prompt. All experiments are
run on 5 compute units, each equipped with 48GB of memory. We fix the random seed across all
experiments and keep hyperparameters consistent across folds and comparison settings. For LLM
as a judge, we take Qwen3-8B by vllm (Kwon et al., 2023) project2 to check models’ responses. η
is set to 0.5, and ε is set to 10−12.

3.2 MAIN RESULTS

To provide a comprehensive evaluation, we compare our method against two primary architectural
paradigms: dense models and Mixture-of-Experts (MoE) models. For dense models, we evaluate
the Qwen2.5-VL series (3B to 32B) and MiniCPM-V-4 (Yao et al., 2024). As shown in Table 2, per-
formance generally scales with model size, with Qwen2.5-VL-32B achieving the strongest overall

1https://github.com/volcengine/verl
2https://github.com/vllm-project/vllm
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Table 2: Comparison of different models on various tasks. We report two metrics: accuracy (Acc.)
and Balance Score (BS), both in percentage terms. For the accuracy metric, the best result is shown
in bold, and the second-best is underlined. Balance scores are shown in gray to indicate that they
serve as auxiliary indicators. Among them, scores below 15% are displayed in lighter gray to high-
light the presence of prediction bias or degenerate option selection.

Model Type Breakfast Box Splicing Juice Bottle Screw Bag Pushpins Overall
Acc. BS Acc. BS Acc. BS Acc. BS Acc. BS

Kimi-VL-A3B-Instruct

M
oE

41.94 29.68 45.83 27.88 32.38 65.42 40.72 16.79 51.58 17.36 42.25
Kimi-VL-A3B-Thinking 39.35 6.28 40.10 9.22 41.43 60.03 35.75 65.62 38.95 36.34 39.05
Gemma-3n-E4B-it 41.29 70.50 35.42 54.08 47.62 60.83 40.72 50.34 39.47 63.09 41.01

MiniCPM-V-4
D

en
se

40.65 14.44 41.15 0.00 25.71 0.00 37.10 0.00 51.58 11.08 38.84
Qwen2.5-VL-3B 42.58 10.91 41.67 5.27 25.71 8.58 37.56 2.63 53.68 12.28 39.77
Qwen2.5-VL-7B 46.45 38.94 46.35 44.74 27.62 9.79 42.08 49.98 55.26 14.36 43.08
Qwen2.5-VL-32B 60.00 99.16 44.27 74.58 47.62 87.60 42.08 87.02 48.95 81.82 47.93
FAD-TQ (Ours) 72.26 78.13 54.17 99.73 54.29 90.69 44.80 86.85 58.95 29.59 55.89

baseline score of 47.93. However, smaller dense models such as Qwen2.5-VL-3B, despite achiev-
ing reasonable accuracy, show much weaker balance performance. For Mixture-of-Experts (MoE)
models, we evaluate Kimi-VL-A3B (Team et al., 2025b) and Gemma-3n-E4B (Team et al., 2025a),
which demonstrate strong parameter efficiency. These models achieve performance competitive
with dense models of a comparable activated parameter scale, and in general maintain higher bal-
ance levels than the smaller dense models. This suggests that sparse activation mitigates choices
bias and encourages more robust decision-making even at smaller scales. Beyond raw accuracy, the
Balance Score provides an important diagnostic perspective on model behavior. As highlighted by
the gray-shaded entries in Table 2, some models achieve superficially reasonable accuracy while
producing extremely low entropy across their predictions. In such cases, the model overwhelmingly
favors a single option, revealing a degenerate output bias that undermines genuine reasoning ability.
This underlines the necessity of reporting accuracy together with Balance Score, ensuring that im-
provements reflect balanced and robust reasoning rather than statistical shortcuts. Importantly, our
FAD-TQ achieves the highest average accuracy of 55.89, representing improvements of approxi-
mately +13 points over Qwen2.5-VL-3B and +8 points over Qwen2.5-VL-32B. Performance gains
are consistent across categories, such as breakfast box and splicing connectors. Moreover, the bal-
ance scores remain high, implying that the improvements do not come from biased or degenerate
predictions. This combination of stronger accuracy and balanced reasoning behavior underscores
the efficacy of our approach.

3.3 ABLATION STUDY

Table 3: Ablation on training strategies. We evaluate the ef-
fect of reinforcement learning methods (GRPO, GPG) and
our full pipeline (FAD-TQ). Metrics include accuracy and
average reasoning length. Ref is used here as an abbrevia-
tion for ’reference model’.

Method +Ref Accuracy Gain Avg. Length

Qwen2.5-VL 3B 39.77 N/A
+ GRPO ✓ +8.99 52.02
+ GPG ✗ +13.64 44.04

FAD-TQ (Ours) ✗ 55.89 36.76

Ablation of Effect of Training
Strategies We begin by assess-
ing the effect of training strategies
on the MVTec-LOCO-AD-Pair3C
benchmark via a controlled ablation
across four configurations: (1) the
base model, Qwen2.5-VL-3B, with-
out reinforcement learning, (2) the
base model fine-tuned with GRPO,
(3) the base model trained using
GPG, and (4) our full method FAD-
TQ. We evaluate both overall ac-
curacy and the average reasoning
length. As shown in Table 3, FAD-TQ achieves the best accuracy while maintaining the shortest
reasoning length, indicating that our method effectively balances correctness and efficiency. We ob-
serve that compared to GRPO and GPG, our method avoids unnecessarily verbose reasoning steps,
indicating improved reasoning efficiency. This suggests that our reward formulation not only en-
hances output correctness, but also encourages the model to generate more concise and purposeful
reasoning trajectories. Moreover, prior works on IAD reasoning MLLMs (Chao et al., 2025; Li
et al., 2025b) typically exhibit much longer reasoning traces in their reported examples. In contrast,
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Reference Image Query Image MLLM ResponsesClass Name

<think> Upon comparing the reference image and the test image, the most noticeable difference is the color of the liquid inside the bottle. The 
reference image shows a white liquid, while the test image displays a pinkish liquid. This change in color suggests a potential anomaly in the 
test image, as it indicates a different substance or a different stage of the same substance. </think> 
<answer> B. Yes, Structural Anomaly </answer>

Juice Bottle
(Structural Anomaly)

<think> Upon comparing the reference image and the test image, it appears that there is an additional chocolate piece in the granola section of 
the test image. This is not present in the reference image, indicating a structural anomaly. </think> 
<answer> B. Yes, Structural Anomaly </answer>

Breakfast Box
(Structural Anomaly)

Pushins
(Good)

<think> Upon comparing the reference image and the test image, both images depict the same scene with yellow push pins arranged in a grid 
within a clear plastic container against a black background. The only difference observed is the position of one push pin in the bottom left corner 
of the reference image, which appears to be slightly tilted compared to its upright position in the test image. This minor positional variation 
does not affect the overall content or structure of the image. </think> 
<answer> A. No anomaly (Good) </answer>

<think> Upon comparing the reference image and the test image, it appears that the test image has one less bolt compared to the reference image.
The reference image shows two bolts, while the test image only shows one. This suggests a logical anomaly where one of the bolts is missing 
from the test image. </think> 
<answer> C. Yes, Logical Anomaly </answer>

Screw Bag
(Logical Anomaly)

<think> Upon comparing the reference image and the test image, it appears that the blue cable connecting the two orange connectors is 
missing in the test image. This indicates a logical anomaly where the expected object (the cable) is absent. </think> 
<answer> C. Yes, Logical Anomaly </answer>

Splicing Connectors
(Logical Anomaly)

Figure 3: Visualization of the results produced by FAD-TQ. For each class in the MVTec-LOCO-
AD-Pair3C, a representative test case is presented, including a reference image, a query image, and
a prompt inquiring whether an anomaly is present. The model’s output is composed of a thinking
process and the final answer.

our method encourages more concise and purposeful trajectories, avoiding unnecessarily lengthy
deliberations while maintaining effectiveness.

Table 4: Impact of thinking quality reward components in
FAD-TQ.

Model Accuracy

FAD-TQ (Full Model) 55.89
– Efficiency Reward -4.10
– Relevance Reward -2.27

Ablation of Thinking Components
Comparison. Table 4 reports the
contribution of each sub-reward in
the thinking-quality design. Remov-
ing either efficiency or relevance re-
ward consistently decreases accuracy,
confirming that both conciseness and
task-relevance are necessary for ef-
fective reasoning supervision. Fur-
thermore, the efficiency reward is explicitly designed to penalize redundant or verbose reasoning,
which regularizes the reasoning trajectory length and is expected to reduce unnecessary tokens dur-
ing inference. This design encourages concise yet effective reasoning, contributing to better resource
efficiency without sacrificing output quality. From the optimization perspective, the stability of pol-
icy updates is closely related to the reward distribution. When only a single sub-reward is applied,
the reward variance is larger, which weakens the effectiveness of advantage estimation. Among the
two, the relevance reward exhibits a relatively smoother distribution, which explains why it performs
better than the efficiency reward when used alone. When both rewards are combined, normalization
produces a more balanced and stable reward distribution, leading to smoother training dynamics
and more reliable gradient signals. This highlights the importance of designing complementary
sub-rewards rather than relying on a single dimension of reasoning quality.

4 RELATED WORK

Reinforcement Learning for Reasoning in Large Models. Reinforcement learning (RL) (Shao
et al., 2024) has become a key approach for enhancing reasoning in large language models
(LLMs) (Grattafiori et al., 2024) and multimodal LLMs (MLLMs) (Bai et al., 2025), moving be-
yond prompt engineering such as Chain-of-Thought (CoT) (Wei et al., 2022) to reward-driven fine-
tuning. Group Relative Policy Optimization (GRPO) (Guo et al., 2025) replaces the value-based
critic in PPO (Schulman et al., 2017) with group-based reward normalization, enabling stable RL
without heavy overhead. It serves as a strong baseline for CoT-style reasoning tasks. However,
GRPO suffers from instability in long sequences and reliance on reference models. Several meth-
ods address these issues with progressively improved designs. DAPO (Yu et al., 2025) introduces
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decoupled clipping, dynamic sampling, and overlength reward shaping to enhance stability and con-
vergence in long-form reasoning. GPG (Chu et al., 2025) eliminates both the critic and reference
model, directly optimizing the policy gradient with group-based, bias-corrected advantage estima-
tion, enabling fully reference-free training. GSPO (Zheng et al., 2025) redefines the objective at the
sequence level using likelihood-based importance weights and clipping. This significantly improves
robustness, especially for large-scale or Mixture-of-Experts models, where token-level gradients can
be noisy. Building on this line, our method introduces a reference-free RL framework that leverages
a reward model to guide multi-step reasoning, without relying on any critic or reference policy.
This design enables scalable, low-cost fine-tuning that generalizes well to new models and tasks,
especially in low-resource settings.

Anomaly Detection with Reasoning MLLM. A growing line of research investigates how
to equip vision-language models with reasoning capabilities for industrial anomaly detec-
tion (Bergmann et al., 2019), particularly in scenarios with limited labeled data and complex, logi-
cal anomaly patterns. AnomalyR1 (Chao et al., 2025) is an early attempt to integrate GRPO-based
reinforcement learning with a MLLM, using the Reasoned Outcome Alignment Metric (ROAM)
to guide precise anomaly localization and segmentation in data-scarce settings. LAD-Reasoner (Li
et al., 2025a) leverages a small-scale MLLM (Qwen2.5-VL 3B) and introduces a two-stage pipeline:
supervised fine-tuning (SFT) for basic visual understanding, followed by GRPO-driven reinforce-
ment learning for logical anomaly detection with interpretable reasoning steps. OmniAD (Zhao
et al., 2025) formulates anomaly detection as a unified multimodal reasoning problem. It combines
text-as-mask encoding and visual-guided textual reasoning, trained via a hybrid SFT and GRPO pro-
cedure, achieving strong few-shot performance through sophisticated reward design. IAD-R1 (Li
et al., 2025b) proposes a universal post-training framework combining perception-activated SFT
and structured-control GRPO (SC-GRPO), optimized with multi-dimensional rewards to enhance
anomaly interpretation and reasoning consistency. Together, these methods highlight the potential
of reinforcement learning for reasoning in industrial anomaly detection. However, these methods
often depend on expensive data generation. Our method bypasses this cost by training directly on ex-
isting tasks without additional data construction, achieving comparative performance with minimal
supervision.

5 CONCLUSION

We revisit industrial anomaly detection from a reasoning-centric perspective, and propose a fine-
grained formulation named MVTec-LOCO-AD-Pair3C, which moves beyond binary anomaly de-
tection between normal and abnormal samples to additionally identify anomaly types such as struc-
tural or logical defects. To support efficient evaluation, we construct a benchmark derived from
MVTec-LOCO, serving as an efficient and practical choice for evaluation while requiring signifi-
cantly fewer computational resources. To tackle this task, we introduce FAD-TQ, a reinforcement
learning framework built upon the GPG paradigm. Our method removes the reference model and
KL regularization, yielding a principled simplification that reduces memory and training overhead.
Moreover, we design a novel reward that supervises the thinking process, encouraging conciseness
and logical relevance in reasoning by penalizing redundancy and rewarding task-grounded outputs.
Extensive experiments demonstrate that FAD-TQ achieves competitive performance under designed
settings. Importantly, the approach can consistently yield performance gains and demonstrates broad
compatibility with diverse and evolving MLLMs, underscoring its potential as a general paradigm
for reasoning-enhanced anomaly detection.

6 STATEMENT OF LLM USAGE

During the preparation of this manuscript, we utilized LLMs to assist with grammar correction,
phrasing refinement, and overall readability. All suggestions provided by the LLM were carefully
reviewed, edited, and revised by the authors, and the authors retain full responsibility for the final
version of this paper.
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