
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING EFFICIENT POSITIONAL ENCODINGS WITH
GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Positional encodings (PEs) are essential for effective graph representation learning
because they provide position awareness in inherently position-agnostic trans-
former architectures and increase the expressive capacity of Graph Neural Net-
works (GNNs). However, designing powerful and efficient PEs for graphs poses
significant challenges due to the absence of canonical node ordering and the scale
of the graph. Here, we investigate PEs for graphs based on four key criteria:
stability, expressive power, scalability, and genericness. We find that existing
eigenvector-based PE methods often fall short of jointly satisfying these criteria.
To address this gap, we introduce PEARL, a novel framework of learnable PEs for
graphs. Our primary insight is that message-passing GNNs function as nonlinear
mappings of eigenvectors, enabling the design of GNN architectures for generating
powerful and efficient PEs. A crucial challenge lies in initializing node attributes
in a manner that is both expressive and permutation equivariant. We tackle this
by initializing GNNs with random node inputs or standard basis vectors, thereby
unlocking the expressive power of message-passing operations, while employing
statistical pooling functions to maintain permutation equivariance. Our analysis
demonstrates that PEARL approximates equivariant functions of eigenvectors
with linear complexity, while rigorously establishing its stability and high expres-
sive power. Experimental evaluations show that PEARL outperforms lightweight
versions of eigenvector-based PEs and achieves comparable performance to full
eigenvector-based PEs, but with one or two orders of magnitude lower complexity.

1 INTRODUCTION

Positional encodings (PEs) are a fundamental component of graph representation learning and play a
key role in the design of effective Graph Transformers (Dwivedi & Bresson, 2021; Rampášek et al.,
2022) and Graph Neural Networks (GNNs) (Kipf & Welling, 2016; Hu et al., 2020). Transformer
architectures (Vaswani, 2017) are inherently agnostic to structure and node identities, and PEs provide
a powerful mechanism to incorporate positional and structural information. On the other hand,
message-passing GNNs often struggle with low expressiveness, especially when node attributes
exhibit the same symmetries as the graph structure (Xu et al., 2019; Morris et al., 2019; Kanatsoulis
& Ribeiro, 2024). By integrating structural and positional information, PEs enhance GNNs’ capacity
to capture patterns that would otherwise be difficult to learn and generalize.

Several graph PE methods have been proposed in the literature, which can broadly be categorized into
two main types: absolute PEs and relative PEs. Absolute PEs assign an embedding to each node in the
graph, reflecting the node’s role within the graph structure. Common approaches include Laplacian
eigenvectors (Dwivedi & Bresson, 2021), substructure encodings (Tahmasebi et al., 2020; You et al.,
2021; Bouritsas et al., 2022), random walk encodings (Rampášek et al., 2022), and eigenvector-based
methods (Kreuzer et al., 2021; Lim et al.; Huang et al.). Relative PEs, on the other hand, assign
representations to pairs of nodes and typically utilize measures such as shortest-path and resistance
distances (Ying et al., 2021; Zhang et al., 2023), as well as random walk matrices (Ma et al., 2023;
Geisler et al., 2023). A thorough comparison between absolute and relative PEs can be found in
(Black et al., 2024).

In this paper, we study absolute PEs for graphs based on four key criteria: expressive power,
scalability, stability under perturbations, and generality. We find that PEs based on eigenvectors of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

graph Laplacian or other graph operators often struggle to satisfy all these criteria simultaneously.
To better understand this, we divide eigenvector-based approaches into two categories: those that
compute the full set of eigenvectors and those that only consider the K largest. Full eigenvector
approaches offer high expressive power but come with a computational complexity of O(N3) and
memory complexity of O(N2), which is prohibitive for even medium-sized graphs. The full set of
eigenvectors can also be used to learn spectral graph filters (Huang et al.), which result in stable PEs.
Note that stability is particularly crucial for out-of-distribution generalization.

However, when only a subset of eigenvectors is computed, several limitations arise. First, this intro-
duces an inductive bias, as different graphs encode different information across eigenvalues, especially
when they differ in size. Second, the expressive power and stability are reduced, becoming dependent
on the eigengap between the selected eigenvalues. These methods also face challenges in terms of
stability and generalization when applied to different or unseen graph structures. Consequently, this
approach often leads to significantly poorer performance. Substructure-based encodings face similar
challenges: while generally stable, they also introduce inductive bias and highly expressive versions
require combinatorial complexity. The aforementioned challenges raise a critical research question:

Question: Can we learn generic PEs that are simultaneously expressive, stable, and scalable?

In this work, we provide an affirmative answer by proposing PEARL, a powerful and efficient
framework for learnable PEs, entirely generated via message-passing GNNs. We begin by showing
that message-passing GNNs can be understood as nonlinear mappings of eigenvectors of the graph
Laplacian or other graph shift operators. This insight enables the computation of eigenvector-based
PEs efficiently with linear or quadratic complexity, leveraging message-passing operations. A central
challenge in developing effective PEs with GNNs lies in initializing node attributes to ensure both
expressiveness and permutation equivariance. We address this by initializing each node with a
set of M random samples, effectively breaking the symmetries between the graph structure and
node attributes. Each sample is processed independently by a GNN, and to guarantee permutation
equivariance, we design pooling functions based on statistics. Our analysis demonstrates that
PEARL surpasses the expressiveness of the Weisfeiler-Leman (WL) test (Weisfeiler & Leman, 1968),
and is capable of counting key substructures at the node level.

PEARL is provably stable, inheriting the stability guarantees of GNNs (Gama et al., 2020), which
are independent of the eigenvalue gap. Moreover, we analyze the sample complexity of PEARL and
show that the number of samples required for effective encoding is independent of graph size. This
enables the generation of powerful eigenvector-based PEs for large graphs with linear complexity.
For smaller graphs, where the number of samples is comparable to the graph size, we propose an
alternative model that initializes node attributes with basis vectors. This approach approximates
the PEs in (Huang et al.) with significantly lower computational and memory complexity. We
evaluate the proposed PEARL on graph classification and regression tasks on molecular graphs
and social network datasets, and compare it against eigen-based and structure-based absolute PEs.
The results demonstrate that PEARL consistently outperforms structure-based PEs and lightweight
variants of eigenvector-based PEs, achieving up to a 6% improvement on graph classification tasks.
In comparison to full eigenvector-based PEs, which have a computational complexity of O(N3),
PEARL delivers comparable performance with significantly reduced complexity, scaling at O(N) or
O(N2).

2 PRELIMINARIES

A graph G := (V, E), is represented by a set of vertices V = {1, . . . , N}, a set of edges E = {(v, u)},
and a graph shift operator (GSO) S ∈ RN×N . The GSO is typically sparse, with common choices
including the adjacency matrix, the Laplacian matrix, their normalized variants, or the random walk
transition matrix. The nodes (vertices) in the graph are often associated with node signals xv ∈ Rd,
each with d features, while edges can carry edge attributes x(u,v) ∈ Rde with de features.

An important operation in graph theory and network science is the spectral decomposition of the graph
and refers to the eigenvalue decomposition to the GSO, S = V ΛV T . Matrix V = [v1, . . . ,vn] is
the orthonormal matrix of eigenvectors, and Λ is the diagonal matrix of eigenvalues {λn}Nn=1. When
S represents the Laplacian matrix, V are the Laplacian eigenvectors that are commonly used as node
features or positional encodings for GNN architectures.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In this paper, we study standard message-passing GNNs, defined by the following recursive formula:

x(l)
v = g(l−1)

(
x(l−1)
v , f (l−1)

({
x(l−1)
u : u ∈ N (v)

}))
. (1)

Here, N (v) represents the neighborhood of vertex v, meaning that u ∈ N (v) if and only if (u, v) ∈ E .
The function f (l) aggregates information from the multiset of signals coming from neighboring
vertices, while g(l) combines the signal of each vertex with the aggregated information from its
neighbors. Common choices for f (l) and g(l) include the single- and multi-layer perceptron (MLP),
the linear function, and the summation function.

3 OUR WORK: LEARNABLE, EFFICIENT, AND POWERFUL PES WITH GNNS

3.1 GNNS ARE NONLINEAR FUNCTIONS OF GSO EIGENVECTORS

Our first observation is that message-passing GNNs are nonlinear functions of eigenvectors. To see
this, let f (l) be one of the following aggregation functions:∑

u∈N (v)

xu, dv · xv −
∑

u∈N (v)

xu,
∑

u∈N (v)

xu√
dvdu

, xu −
∑

u∈N (v)

xu√
dvdu

,
∑

u∈N (v)

xu

du
(2)

where dv is the degree of node v. Then the recursive formula in Eq. (1) can be written as X(l) =
g(l−1)

(
X(l−1),SX(l−1)

)
, where S represents the adjacency matrix, the Laplacian matrix, the

normalized adjacency, the normalized Laplacian, and the random walk matrix, for the five choices
of f (l) in 2 respectively, and X(l) ∈ RN×Fl represents the signals of all vertices at layer l. Now let
g(l) be an equivariant MLP operating on each node independently. Note that the MLP is a common
choice for function g(l) for the majority of effective GNN architectures due to its expressiveness
properties. Then Eq. (1) can be cast as:

X(l) = σ

(
K−1∑
k=0

SkX(l−1)H
(l)
k

)
, (3)

where K = 2, Hk ∈ RFl−1×Fl are the trainable parameters, and σ is a point-wise nonlinear activation
function. Note that Eq. (3) defines a single-layer graph perceptron, but it can be easily generalized to
a multi-layer graph perceptron by letting σ represent an equivariant MLP acting on the node signals.
Additionally, while we set K = 2 here, higher values of K can be considered for more generalized
GNN layers. It is worth emphasizing that Sk is never explicitly instantiated; instead, SkX(l−1) is
computed using recursive message-passing operations, as outlined in Eq. (2).

Proposition 3.1 (GNNs are nonlinear functions of eigenvectors) A GNN defined in Eq. (1) with
f (l) being one of the functions in Eq. (2) and g(l) being an MLP, is a nonlinear function of the
GSO eigenvectors i.e., X(l) = MLP (V). The trainable parameters of the first MLP layer are not
independent but depend on the eigenvalues {λn}Nn=1 and eigenvectors {vn}Nn=1 of the GSO, as well
as the initial node features X of the graph:

X(l) = MLP (V) = MLP(−1) (σ (V W))

W [n, f] =

Fl−1∑
i=1

K−1∑
k=0

λk
nH

(l)
k [i, f]⟨αn,X

(l−1) [:, i]⟩,

where αn = vn when the GSO is symmetric and αn = V −1[:, n] when it is not. MLP(−1) denotes
all the layers of the MLP except the first layer.

The proof is provided in Appendix B. Proposition 3.1 applies to most message-passing GNN models,
including, but not limited to, Graph Convolutional Networks (GCN) (Kipf & Welling, 2016), Graph
Isomorphism Networks (GIN) (Xu et al., 2019), and GraphSAGE (Hamilton et al., 2017).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: PEARL framework: The input graph undergoes anonymization by removing its node and
edge attributes. For each node, a set of M random or basis attributes is generated. Each sample is
then independently processed by a message-passing GNN, and a pooling function ρ is applied to
produce equivariant PEs. The graph structure, together with the generated PEs and any node or graph
attributes, is subsequently processed using either a GNN or a Graph Transformer.

3.2 PEARL: EXPRESSIVE AND EQUIVARIANT POSITIONAL ENCODING NETWORKS

Following the derivation of Proposition 3.1, a critical question arises: what is the optimal choice of
node attributes that allow a GNN to compute expressive and equivariant functions of the eigenvectors?
Equivariant structural features augment GNNs with valuable information, but they come at the
cost of increased computational complexity and inductive bias. Moreover, these features share the
same symmetries as the graph structure, limiting the expressiveness of message-passing GNNs.
Alternatively, unique identifiers, such as random node features, can break the structural symmetries
and improve expressiveness but at the expense of permutation equivariance, which limits the model’s
generalization capability. To address this trade-off between equivariance and expressiveness, we
propose to momentarily break the structural symmetries by initializing each node with a set of M
unique identifiers, while maintaining permutation equivariance in the model output via the use of
statistical pooling functions. The proposed PE framework (PEARL) is illustrated in Fig. 1 and, as
we see next, ensures both high expressiveness and strong generalization.

Consider a graph G = (V, E) with N nodes. For each node v ∈ V in G, we design a set of M
1−dimensional node signals

{
q
(1)
v , q

(2)
v , . . . , q

(M)
v

}
, where each q

(m)
v operates as a unique identifier.

Graph G is now associated with a set of M independent initial node attributes represented as{
q(m)

}M
m=1

, q(m) ∈ RN . Each pair of
{
G, q(m)

}
is independently processed via a GNN Φ(·),

which is described by Eq. (1) or (3), to produce a set of M independent outputs:

P (m) = Φ
(
G, q(m)

)
∈ RN×dp , m = 1, . . . ,M (4)

Since
{
q(m)

}M
m=1

operate as unique identifiers, they break the structural symmetries and unlock the
expressive power of message-passing operations. However, each P (m) is not permutation equivariant,
thus not generalizable. To address this, we leverage the independence among {P (m)}Mm=1 and design
an equivariant pooling function ρ to generate the final PE for each node:

P = ρ
[
Φ
(
G, q(1)

)
, . . . ,Φ

(
G, q(M)

)]
∈ RN×dp (5)

The PEARL framework can universally approximate any continuous basis invariant function.

Theorem 3.1 (Basis Universality) Let G be a graph with GSO S = V ΛV T , and f be a continuous
function such that f(V) = f(V Q), Q ∈ O (diag (Λ)), for any eigenvalues Λ. Then there exist
GNN Φ and a continuous pooling function ρ, such that f(V) = ρ

[
Φ
(
G, q(1)

)
, . . . ,Φ

(
G, q(M)

)]
.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The proof can be found in Appendix C. In the following sections, we explore options for the initial
node attributes

{
q(m)

}M
m=1

and pooling functions ρ. A key aspect of PEARL is designing M
independent initial attributes for each node, which enables permutation equivariance at the model’s
output through the use of pooling functions. This stands in contrast to classical methods, which
typically assign a single unique identifier per node.

4 OUR WORK: RANDOM POSITIONAL ENCODING NETWORK (R-PEARL)

Next, we present our Random PE Network (R-PEARL). In R-PEARL we define node attributes{
q(m)

}M
m=1

by sampling them randomly from a probability distribution. Specifically, let q =

[qv1 , qv2 , . . . , qvN]
T , where vn ∈ V , be a random vector with joint distribution fq(t1, . . . , tN). The

set
{
q(m)

}M
m=1

consists of M independent N -dimensional realizations of q, drawn from fq . In our
experiments and analysis, q is either a set of independent and identically distributed (i.i.d.) Gaussian
random variables or a set of i.i.d. random variables with E [qi] = 0 and E [qpi] = 1, where p ≥ 2.

When these samples are processed by a GNN Φ, the result is M (N × dp)-dimensional samples of the
random matrix output Φ(G, q). To ensure permutation equivariance, we note that the distribution of
Φ(G, q) is itself permutation equivariant, as are any statistics derived from it. Therefore, the function
ρ can be any empirical statistic computed from the samples

{
Φ(G, q(m))

}M
m=1

, each capturing
different characteristics. For instance, ρ could represent any statistical moment, such as the mean or
variance, or other measures as the empirical mode or median. In this paper, we choose ρ to be the
empirical mean due to its favorable convergence and stability properties, as well as its simplicity in
implementation and low computational and memory complexity:

P = Ê
[
Φ
(
G, q(1)

)
, . . . ,Φ

(
G, q(M)

)]
=

1

M

M∑
m=1

Φ
(
G, q(m)

)
=

1

M

M∑
m=1

P (m) (6)

In Appendix D, we explicitly analyze the equivariant functions learned by Eq. (6). We derive
nonlinear expressions both in the graph domain, using vertex and edge information, and in the
frequency domain, using the eigenvectors and eigenvalues of the GSOs. The key to this nonlinear
analysis involves studying the pointwise nonlinearities through their Taylor series expansion.

4.1 SAMPLE COMPLEXITY

In this section, we analyze the number of samples required to such that 1
M

∑M
m=1 P

(m) approximates
E [Φ (G, q)] with negligible error. To that end, we make the following two assumptions that will be
later used for the stability analysis as well.

Assumption 4.1 The pointwise nonlinearity σ is Lipschitz continuous with Lipschitz constant Cσ .

This is a common assumption in deep learning and is satisfied by the widely used nonlinearities. In
most cases, such as the Rectified Linear Unit (ReLU), hyperbolic tangent, and sigmoid, it holds that
Cσ = 1. Before introducing the second assumption, we first need to examine Eq. (3) more closely.
Notice that its linear component involves FL · Fl−1 graph filters of the form

∑K−1
k=0 hkS

k, which is
also explicitely shown in Appendix E, Eq. (46).

Assumption 4.2 The linear operators H (S) =
∑K−1

k=0 hkS
k involved in the projection of Eq. (3)

are bounded, i.e., ∥H (S)∥ ≤ β.

This is another common assumption in deep learning, where the value of β varies depending on the
architecture and task. We can now present Theorem 4.3, which characterizes the number of samples
M needed for our approach to converge to the true E [Φ (G, q)].

Theorem 4.3 (Sample Complexity) Let P denote the output of the architecture described in Eq.
(6), for a graph G with i.i.d. initial node attributes with unit variance. Also let Φ be an L−layer GNN
described by Eq. (3), with F hidden dimensions at each layer. If Cσ = 1 and β = 1/F , the number

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

of samples M required such that:∣∣∣∣∣ 1M
M∑

m=1

Φ
(
G, q(m)

)
− E [Φ (G, q)]

∣∣∣∣∣ < ϵ, with probability at least 1− δ, (7)

satisfies:

M ≤ 1

δ · ϵ2
. (8)

It is worth noting that the above bound is independent of the size of the graphs, which suggests that
our proposed PE framework is well-suited for large-scale graphs. In practice, we have observed that
10 ∼ 100 samples are typically sufficient.

4.2 EXPRESSIVE POWER

In this section, we establish the expressive power of our proposed R-PEARL.

Corollary 4.4 (Structure Counting) Let q = [q1, . . . , qN] be a set of N i.i.d. random variables
such that E[qi] = 0 and E[qpi] = 1 for p ≥ 2. Then, there exists a parametrization Φ, defined by Eq.
(3), such that E [Φ (·, q)] counts the number of 3-, 4-, 5-, 6-, and 7-node cycles in which each node
participates, for any given graph.

Corollary 4.4 not only highlights the expressive power of R-PEARL framework but also provides
valuable insights into its generalization ability. Essentially, R-PEARL framework can learn not just
the number of cycles each node in a given graph participates in, but also a counting function that
generalizes this capability to any node in any graph. The proof can be found in Appendix F, and is
based on the results in (Kanatsoulis & Ribeiro). In Corollary 4.5 we characterize the expressive power
of message-passing GNNs with our proposed PEs with respect to the folklore-Weisfeiler-Leman
(FWL) test (Cai et al., 1992; Morris et al., 2019; Huang & Villar, 2021).

Corollary 4.5 (Expressive Power) A GNN defined in Eq. (1), with PEs produced by Eq. (6) is
strictly more powerful than the 1-FWL test, when f, g are injective functions.

The proof of Corollary 4.5 is a consequence of Corollary 4.4 and the analysis in (Xu et al., 2019).
Note that the previous results can be improved (e.g., count cycles and cliques of higher order, go
beyond 2-FWL test) when the samples

{
q(m)

}M
m=1

are drawn from a structurally aware distribution,
but this will increase the number of computations and is outside of the scope of this paper.

4.3 STABILITY

The proposed PEs are purely generated by GNN architectures and as a result they inherit favorable
stability properties of GNNs. Any stability results for GNNs hold for R-PEARL as well. For instance,
let G̃ be a perturbed version of G such that S̃ = S +E. We can use the stability results in (Gama
et al., 2020) and derive the following proposition.

Corollary 4.6 (Stability) Let G̃ be a perturbed version of G such that S̃ = S +E with ∥E∥ ≤ ε.
Let Φ be an L−layer GNN described by Eq. (3), where each layer consists of F 2 Lipschitz continuous
filters [cf. Eq. (G.2)] with constant C. Under assumptions 4.1 and 4.2 with Cσ = 1 and β = 1/F , it
holds that:∥∥∥∥∥ 1

M

M∑
m=1

Φ (G, ·) [:, f]− 1

M

M∑
m=1

Φ
(
G̃, ·
)
[:, f]

∥∥∥∥∥
P

≤
(
1 + 8

√
N
)
Lε+O(ε2) (9)

where ∥·∥P is the distance modulo permutation [cf. G.1], and M is the number of samples.

We can further normalize the proposed PEs by
√
N · L to improve the stability bound. Notably,

our result remains independent of the eigengap δλ, which is the difference between consecutive
eigenvalues of the GSO. However, this independence does not hold for the stability of eigenvectors.
According to the Davis-Kahan Theorem (Davis & Kahan, 1970), even a small perturbation in the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

graph can lead to arbitrarily large differences between the eigenvector encodings of the original
and perturbed GSOs. This limitation also applies to the eigenvector-based PEs in (Lim et al.). The
stability bound of the PEs in (Huang et al.) is inversely proportional to the eigengap δλ between
the d-th and (d+ 1)-th smallest eigenvalues when using the first d eigenvectors. This dependence
is mitigated if all eigenvectors are computed, but doing so requires O(N3) complexity, which is
impractical for large graphs. Further details on stability results, are provided in Appendix G.

4.4 COMPUTATIONAL COMPLEXITY

To implement R-PEARL, we process each initial random attribute independently using a message-
passing GNN. Consequently, the computational complexity of the feed-forward pass is equivalent to
that of a message-passing GNN multiplied by the number of samples, i.e., Θ

(
MNF 2 +M |E|F

)
,

where F represents the hidden dimension of each GNN layer. The memory complexity of a serial
implementation is Θ(NF), while for a parallel implementation, it becomes Θ(MNF).

5 OUR WORK: BASIS POSITIONAL ENCODING NETWORKS (B-PEARL)

The previous approach R-PEARL is particularly advantageous for large graphs, where the number of
samples is much smaller than the number of nodes and edges, making the computational and memory
complexity approximately linear. However, for smaller-scale graphs, such as molecular graphs, the
computational complexity becomes quadratic. In these cases, we propose using standard basis vectors
{em}Nm=1 as the initial node attributes, where em[m] = 1 and em[i ̸= m] = 0, thus setting M = N .
Similar to the previous approach, when these samples are processed by a GNN Φ, the result is N
(N × dp)-dimensional outputs. To maintain permutation equivariance, any equivariant function ρ can
be applied, but in this paper, we choose the summation pooling for ρ. Overall, B-PEARL is cast as:

P = ρ [Φ (G, e1) , . . . ,Φ (G, eN)] =

N∑
m=1

Φ (G, em) =

N∑
m=1

P (m) (10)

5.1 RELATION TO EIGENVECTOR BASED ENCODINGS

The proposed B-PEARL framework is highly related to the stable and expressive positional
encodings (SPE) proposed in (Huang et al.). In particular SPE is defined as SPE (V ,Λ) =

ρ
([
V diag (α1 (Λ))V T , . . . ,V diag (αF (Λ))V T

])
, where {αi}Fi=1 is a set of continuous func-

tions and ρ is an equivariant function. The suggested SPE implementation is SPE (V ,Λ) =∑N
n=1 Φ ([V diag (α1 (Λ))V [n], . . . ,V diag (αM (Λ))V [n]]), where Φ is a GNN, and {αi}Fi=1 are

MLPs. The computational complexity is cubic with respect to the number of nodes and the memory
complexity is quadratic.

Remark 5.1 When {αi}Fi=1 in SPE (V ,Λ) are pointwise analytic functions, i.e., the pointwise
nonlinearities are differentiable, the SPE architecture is equivalent to the proposed B-PEARL archi-
tecture in Eq. (10). The proof can be found in Appendix H.

5.2 COMPUTATIONAL COMPLEXITY

To implement B-PEARL, we process each initial basis encoding independently using a message-
passing GNN. As a result, the computational complexity is Θ

(
N2F 2 +N |E|F

)
, where F represents

the hidden dimension of each GNN layer. The memory complexity for a serial implementation is
Θ(NF), while for a parallel implementation, it increases to Θ

(
N2F

)
.

6 EXPERIMENTS

In this section, we assess the performance of PEARL on graph classification and regression tasks.
All experiments were conducted on a Linux server with NVIDIA A100 GPU. Code can be found in
this repository1.

1https://github.com/codelakepapers/RPE-Framework

7

https://github.com/codelakepapers/RPE-Framework

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Graph classification accuracy on REDDIT-B and REDDIT-M (OOM stands for out-of-
memory). R-PEARL outperforms all light-weight baselines by at least 2.5% in REDDIT-B and
3.5 % in REDDIT-M. It also achieves better performance compared to SPE in RREDDIT-M and
comparable in in REDDIT-B, but with much lower complexity.

Method Computational Complexity Memory Complexity REDDIT-B REDDIT-M
GCN O (N) O (N) 50.0± 0.0 20.0± 0.0
GIN O (N) O (N) 91.8± 1.0 56.9± 2.0

GIN + rand id O (N) O (N) 91.8± 1.6 57.0± 2.1
GSN with cliques O

(
N2
)

O (N) 91.1± 1.8 56.2± 1.8

SignNet-8S O
(
N3
)

O (N) 94.5± 0.3 59.3± 0.5
SignNet-8L O (N) O (N) 89.0± 5.2 55.2± 2.9
SignNet-full O

(
N3
)

O
(
N2
)

OOM OOM
BasisNet O

(
N3
)

O
(
N2
)

OOM OOM
SPE O

(
N3
)

O
(
N2
)

OOM OOM

R-PEARL(ours) O (MN) O (N) /O (MN) 94.5± 0.4 60.6± 0.3

6.1 ARCHITECTURES

To generate the proposed PE, Φ is a 9−layer message-passing GNN with batch normalization layers
and skip connections. The first layer of Φ is a generalized GNN layer, as described in Eq. (3), and
K can be greater than two. All the remaining layers in Φ are GIN layers (Xu et al., 2019). When
K = 2 we omit this generalized GNN layer, and solely use GIN layers. We denote as R-PEARL the
architecture with random samples, described in Eq. (6), and B-PEARL the architecture with basis
vectors, described in Eq. (10).

In all experiments we evaluated our model on selected values of K ranging from 2 to 18, as well
as different sample sizes ranging from 10 to 200, and selected the best model accordingly. The
R-PEARL and B-PEARL encodings are fed to a GINE (Hu et al., 2020) architecture, which is a
message-passing GNN that processes node and edge attributes, as well as the graph structure and
PEs. More architectural and experimental details can be found in Appendices I and K.

6.2 BASELINES

The baseline models for comparison are grouped into four categories: i) GNNs without PEs: GCN
(Kipf & Welling, 2016), GIN (Xu et al., 2019); ii) GNNs with unique identifiers: GIN with random
IDs (Xu et al., 2019; Abboud et al., 2021; Sato et al., 2019); iii) GNNs with structural PEs: GSN
with cycles, GSN with cliques (Bouritsas et al., 2022); iv) GNNs with eigenvector-based PEs:
SignNet, BasisNet (Lim et al.), PEG (Wang et al., 2022), SPE (Huang et al.).

In addition, we implement SignNet-8S, BasisNet-8S and SPE-8S which are variants of the full
SignNet, BasisNet, and SPE models. These variants employ the eigenvectors corresponding to the 8
smallest eigenvalues of the normalized Laplacian that still need O(N3) computational complexity. In
SPE-8S and BasisNet-8S the memory complexity remains O(N2), but in SignNet-8S it reduces from
O(N2) to O(N). Furthermore, we implement SignNet-8L, utilizing only the 8 largest eigenvectors,
which reduces both the memory and computational complexity to O(N).

6.3 GRAPH CLASSIFICATION ON SOCIAL NETWORKS

We first evaluate our architecture on graph classification tasks using the REDDIT-B (2,000 graphs, 2
classes, 429.6 average nodes) and REDDIT-M (5,000 graphs, 5 classes, 508.5 average nodes) datasets
(Yanardag & Vishwanathan, 2015). Each graph represents an online discussion thread, with nodes
representing different users, and edges indicating whether one user responded to another’s comment.
In both datasets, the task is to predict the subreddit to which a particular discussion graph belongs.
To train the GNN models, we conduct 10-fold cross-validation. Table 1 summarizes the mean and
standard deviation of classification accuracy over the 10 folds. We report the best performance
observed during 350 epochs of training, as is the standard practice for this dataset. The results are
presented in Table 1.

We observe that R-PEARL outperforms all baselines on REDDIT-M and achieves the best per-
formance on REDDIT-B, alongside SignNet-8S, but with one to two orders of magnitude less

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: logP Prediction in ZINC. B-PEARL ouperforms all the baselines both in MAE and
Generalization gap. It is notable that B-PEARL achieves these results with quadratic complexity
compared to the second best (SPE) that operates with cubic complexity.

PE Method #PEs Test MAE Training MAE General. Gap
No PE N/A 0.1772± 0.0040 0.1509± 0.0086 0.0263± 0.0113
GCN N/A 0.469± 0.002 − −
GIN N/A 0.209± 0.018 − −
GSN with cycles 10 0.115± 0.012 − −
GIN + rand id 1 0.279± 0.023 − −
SignNet-8S 8 0.1034± 0.0056 0.0418± 0.0101 0.0602± 0.0112
SignNet Full 0.0853± 0.0026 0.0349± 0.0078 0.0502± 0.0103
BasisNet-8S 8 0.1554± 0.0048 0.0513± 0.0053 0.1042± 0.0063
BasisNet Full 0.1555± 0.0124 0.0684± 0.0202 0.0989± 0.0258
SPE-8S 8 0.0736± 0.0007 0.0324± 0.0058 0.0413± 0.0057
SPE Full 0.0693± 0.0040 0.0334± 0.0054 0.0359± 0.0087

R-PEARL(ours) N/A 0.0699± 0.002 0.0366± 0.006 0.0333± 0.007
B-PEARL(ours) N/A 0.0644± 0.001 0.0290± 0.003 0.0353± 0.002

computational complexity. Notably, SignNet-full, BasisNet, and SPE are unable to handle these
datasets due to their quadratic memory complexity.

6.4 GRAPH REGRESSION ON MOLECULAR GRAPHS

We also evaluate our model on the task of predicting the penalized water-octanol partition coefficient
(logP) for molecules from the ZINC dataset (Irwin et al., 2012; Dwivedi et al., 2023). We use the
standard split for this dataset, which entails 10,000 molecules for training, 1,000 for validation, and
another 1,000 for testing. We report the mean and standard deviation of the MAE for the model
achieving the highest validation accuracy, averaged over 4 different seeds. The results can be found
in Table 2. We observe that B-PEARL achieves the best results, and also the best generalization gap
between the competing methods. It is also notable that R-PEARL and B-PEARL also outperform
all the remaining competing methods.

Finally we conduct experiments on the DrugOOD dataset, a benchmark for out-of-distribution tasks
in AI drug discovery (Ji et al., 2022). The dataset evaluates models on their ability to generalize
across domains, focusing on three specific types of domain shifts: Assay, Scaffold, and Size. The
Assay splits test the model’s ability to generalize to different bioassays, the Scaffold splits evaluate
the model’s ability to generalize to molecules with different structures, and the Size splits test the
model’s ability to generalize to molecules of different sizes. Each of these types of splits contains
in-distribution train and validation datasets, as well as out-of-distribution train and test sets. We
record our results on all four of these datasets in Table 3. We observe that the impact of positional
encodings (PEs) is less pronounced in this dataset compared to the previous two. Across all scenarios,
R-PEARL performs similarly to SPE, while consistently outperforming SignNet and BasisNet in
the Scaffold and Size splits. This performance advantage of R-PEARL and SPE provides strong
empirical evidence of the enhanced stability of these two models.

6.5 LARGE-SCALE LINK PREDICTION ON RELATIONAL DATABASES (RELBENCH)

We also test the performance of the proposed PEARL on large-scale link prediction for Stack
Exchange Q&A Website Database. To that end we utilize the rel-stack dataset for the relational
deep learning benchmak (RelBench) Fey et al.; Robinson et al. (2024). Rel-stack is a temporal
and heterogeneous graph with approximately 38 million nodes. We consider two different tasks; i)
user-post-comment, where we predict a list of existing posts that a user will comment in the
next two years, and ii) post-post-related, where we predict a list of existing posts that users
will link a given post to in the next two years. The results for the two tasks can be found in Table 4.

The backbone model for this RelBench task a heterogeneous identity-aware GNN You et al. (2021)
and all methods are trained with batch size 20. From Table 4 we observe that PEARL has an 11%
benefit over the identity aware backbone model with no PE on the user-post-comment task and
a 2% benefit on the post-post-related task. PEARL works similarly to SignNet-8S but with

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: AUROC results (5 random seeds) on DrugOOD: The performance of R-PEARL falls
between the full version and the lightweight version of SPE, while maintaining lower computational
complexity. R-PEARL outperforms SignNet and BasisNet.

Domain PE Method ID-Val (AUC) ID-Test (AUC) OOD-Val (AUC) OOD-Test (AUC)

Assay

No PE 92.92±0.14 92.89±0.14 71.02±0.79 71.68±1.10
PEG 92.51±0.17 92.57±0.22 70.86±0.44 71.98±0.65
SignNet 92.26±0.21 92.43±0.27 70.16±0.56 72.27±0.97
BasisNet 88.96±1.35 89.42±1.18 71.19±0.72 71.66±0.05
SPE 92.84±0.20 92.94±0.15 71.26±0.62 72.53±0.66
SPE-8S 92.36±0.18 92.62±0.10 70.71±0.47 71.72 ± 0.71
R-PEARL(ours) 92.71±0.10 92.92±0.12 70.57±0.72 72.24±0.30
B-PEARL(ours) 90.54±0.89 90.81 ±0.79 70.53±0.67 71.22±0.42

Scaffold

No PE 96.56±0.10 87.95±0.20 79.07±0.97 68.00±0.60
PEG 95.65±0.29 86.20±0.14 79.17±0.97 69.15±0.75
SignNet 95.48±0.34 86.73±0.56 77.81±0.70 66.43±1.06
BasisNet 85.80±3.75 78.44±2.45 73.36±1.44 66.32±5.68
SPE 96.32±0.28 88.12±0.41 80.03±0.58 69.64±0.49
SPE-8S 96.44±0.079 87.88±0.45 79.34±0.50 68.72±0.63
R-PEARL(ours) 96.09±0.32 88.01±0.43 78.72±0.02 69.20±1.00
B-PEARL(ours) 96.06±0.29 87.56±0.81 79.86±0.58 69.51±0.62

Size

No PE 93.78±0.12 93.60±0.27 82.76±0.04 66.04±0.70
PEG 92.46±0.35 92.67±0.23 82.12±0.49 66.01±0.10
SignNet 93.30±0.43 93.20±0.39 80.67±0.50 64.03±0.70
BasisNet 86.04±4.01 85.51±4.04 75.97±1.71 60.79±3.19
SPE 92.46±0.35 92.67±0.23 82.12±0.49 66.02 ± 0.49
SPE-8S 93.68±0.20 93.86±0.12 83.04±0.63 65.74 ± 2.2
R-PEARL(ours) 93.32±0.34 93.92±0.20 82.09±0.44 65.89 ± 1.30
B-PEARL(ours) 93.18 ± 0.45 93.29 ± 0.46 83.14 ± 0.37 66.58 ± 0.67

Table 4: Validation and test mean average precision (MAP) on large-scale RelBench recom-
mendation tasks. PEARL has an 11% benefit over the backbone model with no PE on the
user-post-comment task and a 2% benefit on the post-post-related task.

Task Evaluation No PE SignNet-8L SignNet-8S B-PEARL(ours) R-PEARL(ours)

User-post-comment
Val. MAP 15.20 15.33 15.47 15.13 15.24
Test MAP 12.47 13.76 13.77 13.80 13.87

Post-post-related
Val. MAP 8.10 7.90 7.70 8.00 8.40
Test MAP 10.73 10.39 10.86 10.94 10.86

lower complexity and, and similarly to SignNet-8L on the user-post-comment task, but 5%
better than SignNet-8L on the post-post-related task.

7 RELATED WORK

The works that are mostly relevant to our work can be grouped in 4 categories: i) Eigenvector-based
Positional Encodings, e.g., (Dwivedi & Bresson, 2021; Rampášek et al., 2022; Kreuzer et al., 2021;
Mialon et al., 2021; Feldman et al., 2022; Huang et al.; Zhang et al.); ii) Graph Neural Networks
with unique node identifiers, e.g., (Loukas, 2019; Abboud et al., 2021; Sato et al., 2021; Abboud
et al., 2021; Sato et al., 2021; Eliasof et al., 2023); iii) Graph Representation Learning with Structural
Encodings, e.g., (Li et al., 2020; Ying et al., 2021; You et al., 2019; 2021; Dwivedi et al.; Ma et al.,
2023; Kanatsoulis & Ribeiro); iv) (Wang et al., 2022; Srinivasan & Ribeiro; Murphy et al., 2018). A
detailed discussion can be found in Appendix A.

8 CONCLUSION

In this paper, we proposed a novel framework for learnable positional encodings (PEs) that addresses
key limitations in existing eigenvector-based methods, particularly in terms of stability, expressive
power, scalability, and genericness. By leveraging message-passing GNNs as nonlinear mappings of
eigenvectors, we designed efficient PEs that maintain permutation equivariance through the use of
statistical pooling functions. Our approach not only ensures high expressiveness and stability but also
significantly reduces computational complexity. Experimental results demonstrate that our method
consistently outperforms lightweight eigenvector-based PEs and matches the performance of full

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

eigenvector-based methods, all while offering substantial improvements in computational efficiency.
These findings open new avenues for developing scalable, expressive, and robust graph representation
techniques, paving the way for advancements in graph-based learning tasks.

REFERENCES

Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power
of graph neural networks with random node initialization. In IJCAI, 2021.

Mitchell Black, Zhengchao Wan, Gal Mishne, Amir Nayyeri, and Yusu Wang. Comparing graph
transformers via positional encodings. arXiv preprint arXiv:2402.14202, 2024.

Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet. Concentration inequalities. In Summer
school on machine learning, pp. 208–240. Springer, 2003.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657–668, 2022.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identifications. Combinatorica, 12(4):389–410, 1992.

Chandler Davis and William Morton Kahan. The rotation of eigenvectors by a perturbation. iii. SIAM
Journal on Numerical Analysis, 7(1):1–46, 1970.

Mohammed Haroon Dupty, Yanfei Dong, and Wee Sun Lee. Pf-gnn: Differentiable particle filtering
based approximation of universal graph representations. In International Conference on Learning
Representations.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
2021.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24
(43):1–48, 2023.

Moshe Eliasof, Fabrizio Frasca, Beatrice Bevilacqua, Eran Treister, Gal Chechik, and Haggai Maron.
Graph positional encoding via random feature propagation. In International Conference on
Machine Learning, pp. 9202–9223. PMLR, 2023.

Or Feldman, Amit Boyarski, Shai Feldman, Dani Kogan, Avi Mendelson, and Chaim Baskin.
Weisfeiler and leman go infinite: Spectral and combinatorial pre-colorings. Transactions on
Machine Learning Research, 2022.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric, 2019.
URL https://arxiv.org/abs/1903.02428.

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson, Rex
Ying, Jiaxuan You, and Jure Leskovec. Position: Relational deep learning-graph representation
learning on relational databases. In Forty-first International Conference on Machine Learning.

Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability properties of graph neural networks.
IEEE Transactions on Signal Processing, 68:5680–5695, 2020.

Simon Geisler, Yujia Li, Daniel J Mankowitz, Ali Taylan Cemgil, Stephan Günnemann, and Cosmin
Paduraru. Transformers meet directed graphs. In International Conference on Machine Learning,
pp. 11144–11172. PMLR, 2023.

11

https://arxiv.org/abs/1903.02428

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Simon Geisler, Arthur Kosmala, Daniel Herbst, and Stephan Günnemann. Spatio-spectral graph
neural networks. arXiv preprint arXiv:2405.19121, 2024.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864, 2016.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Proceedings of the 31st International Conference on Neural Information Processing Systems,
pp. 1025–1035, 2017.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
generalization of vit/mlp-mixer to graphs. In International conference on machine learning, pp.
12724–12745. PMLR, 2023.

W Hu, B Liu, J Gomes, M Zitnik, P Liang, V Pande, and J Leskovec. Strategies for pre-training
graph neural networks. In International Conference on Learning Representations (ICLR), 2020.

Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman test and its
variants. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 8533–8537. IEEE, 2021.

Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan
Li. On the stability of expressive positional encodings for graphs. In The Twelfth International
Conference on Learning Representations.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc: a
free tool to discover chemistry for biology. Journal of chemical information and modeling, 52(7):
1757–1768, 2012.

Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Long-Kai Huang, Tingyang Xu, Yu Rong, Lanqing
Li, Jie Ren, Ding Xue, Houtim Lai, Shaoyong Xu, Jing Feng, Wei Liu, Ping Luo, Shuigeng Zhou,
Junzhou Huang, Peilin Zhao, and Yatao Bian. Drugood: Out-of-distribution (ood) dataset curator
and benchmark for ai-aided drug discovery – a focus on affinity prediction problems with noise
annotations, 2022. URL https://arxiv.org/abs/2201.09637.

Charilaos Kanatsoulis and Alejandro Ribeiro. Counting graph substructures with graph neural
networks. In The Twelfth International Conference on Learning Representations.

Charilaos I Kanatsoulis and Alejandro Ribeiro. Graph neural networks are more powerful than we
think. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 7550–7554. IEEE, 2024.

Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Seunghoon
Hong. Pure transformers are powerful graph learners. Advances in Neural Information Processing
Systems, 35:14582–14595, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In International
conference on machine learning, pp. 3744–3753. PMLR, 2019.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33:4465–4478, 2020.

12

https://arxiv.org/abs/2201.09637

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning. In
The Eleventh International Conference on Learning Representations.

Andreas Loukas. What graph neural networks cannot learn: depth vs width. In International
Conference on Learning Representations, 2019.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates, Philip
Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing. In
International Conference on Machine Learning, pp. 23321–23337. PMLR, 2023.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers, 2021. URL https://arxiv.org/abs/2106.05667.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: higher-order graph neural networks.
In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First
Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, pp. 4602–4609, 2019.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling for
graph representations. In International Conference on Machine Learning, pp. 4663–4673. PMLR,
2019.

Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy pool-
ing: Learning deep permutation-invariant functions for variable-size inputs. arXiv preprint
arXiv:1811.01900, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019. URL https://arxiv.org/abs/1912.01703.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social representations.
In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and
data mining, volume 2 of KDD ’14, pp. 701–710. ACM, August 2014. doi: 10.1145/2623330.
2623732. URL http://dx.doi.org/10.1145/2623330.2623732.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles, Matthias
Fey, Jan E Lenssen, Yiwen Yuan, Zecheng Zhang, et al. Relbench: A benchmark for deep learning
on relational databases. arXiv preprint arXiv:2407.20060, 2024.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural networks
for combinatorial problems. Advances in Neural Information Processing Systems, 32, 2019.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), pp.
333–341. SIAM, 2021.

Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node
embeddings and structural graph representations. In International Conference on Learning Repre-
sentations.

Behrooz Tahmasebi, Derek Lim, and Stefanie Jegelka. Counting substructures with higher-order
graph neural networks: Possibility and impossibility results. arXiv preprint arXiv:2012.03174,
2020.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

13

https://arxiv.org/abs/2106.05667
https://arxiv.org/abs/1912.01703
http://dx.doi.org/10.1145/2623330.2623732

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding for
more powerful graph neural networks. In International Conference on Learning Representations,
2022.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16, 1968.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 1365–1374, 2015.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In International
conference on machine learning, pp. 7134–7143. PMLR, 2019.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp.
10737–10745, 2021.

Bohang Zhang, Lingxiao Zhao, and Haggai Maron. On the expressive power of spectral invariant
graph neural networks. In Forty-first International Conference on Machine Learning.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of gnns
via graph biconnectivity. In The Eleventh International Conference on Learning Representations,
2023.

A RELATED WORK

Eigenvector-based Positional Encodings: Positional encodings are a crucial component in applying
transformers to graph data and further integrating structural information in graph neural networks
(GNNs). A notable approach for such positional encodings (PEs) is the use of Laplacian eigenvec-
tors. These eigenvector-based PEs have been shown to enhance performance in transformers on
graph-related tasks, as demonstrated in (Dwivedi & Bresson, 2021) and (Rampášek et al., 2022).
Additionally, they can be incorporated in attention mechanisms as seen in (Kreuzer et al., 2021),
(Mialon et al., 2021) and (He et al., 2023). Laplacian eigenvectors can also be used to improve
performance in the context of GNNs (Kim et al., 2022).

However, eigenvector-based positional encodings face challenges with stability and sign ambiguity.
Small structural changes in graphs can cause significant change in eigenvectors and their correspond-
ing positional encodings. In addition, the sign ambiguity of eigenvectors can introduce unwanted
inconsistencies in these positional encodings. Works such as Lim et al. and Huang et al. address these
issues by designing sign-invariant or basis-invariant models to produce these PEs, or by making the
PEs more robust and stable. (Zhang et al.) introduced expressive power of spectral invariant GNNs,
which are GNN architectures augmented with spectral projection matrices and provided a unified
theoretical framework to analyze the previous and their proposed approach. Feldman et al. (2022)
used eigenvector-based heat kernels to generate node embeddings the overcome the limitations of the
WL test. Geisler et al. (2024) combine spatial and spectral graph filters in a unified GNN architecture.

Randomized Graph Neural Networks Initializing GNNs with unique node identifiers to enhance the
expressive power has been first proposed by (Loukas, 2019; Abboud et al., 2021; Sato et al., 2021). In
particular, (Abboud et al., 2021) and (Sato et al., 2021) used random node features as inputs to GNNs,
leading to enhanced function approximation, though at the expense of permutation equivariance, a
key property in graph learning. Eliasof et al. (2023) proposed a method for generating PEs in graph
neural networks by leveraging random feature propagation, inspired by the power iteration method
and its generalizations. The core of their approach involves concatenating several intermediate steps

14

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

to compute the dominant eigenvectors of a propagation matrix. Dupty et al. proposed a randomization
method that approximates the individualization-refinement technique through particle filtering. The
particle filtering GNN (PF-GNN) employs a 1-WL-based initialization method, which is subsequently
refined using with particle filtering sampling to overcome the 1-WL limitations.

Graph Representation Learning with Structural Encodings: Structural encodings are also impor-
tant in capturing aspects of a graph’s structure, such as connectivity and neighborhood information.
(Li et al., 2020) uses distance PEs for GNNs (distance from an anchor node) using shortest paths and
random walks. One approach is using distance-based information between nodes through methods
like shortest paths or random walks, to captural structural information for transformers (Ying et al.,
2021) (You et al., 2019) (You et al., 2021). Other methods learn structural PEs directly. For instance,
(Dwivedi et al.) learn embeddings that are initialized with Laplacian eigenvectors or random walks.
Similarly, (Ma et al., 2023) learn a linear combination of the Laplacian for creating relative PEs.

Node Embedding Methods: One foundational approach to capturing meaningful graph represen-
tations is through node embeddings. DeepWalk (Perozzi et al., 2014) and node2vec (Grover &
Leskovec, 2016) are early instances of these approaches and leverage random walk strategies to learn
node embeddings on graphs. Although these methods show the significance of capturing structural
information, they lack expressivity and do not incorporate many learnable components.

Equivariant pooling: Similar techniques to ours have been introduced in (Wang et al., 2022), which
generate PEs by applying transformations on the Laplacian. On the other hand, Kanatsoulis & Ribeiro
recently analyzed the capability of GNNs to count substructures using expectation pooling functions.
Srinivasan & Ribeiro explored the equivalence between node embeddings and structural represen-
tations, showing that the expectation of node embeddings can serve as structural representations
of the graph, and proposed methods to sample informative node embeddings for enhanced graph
representation learning. Finally, Murphy et al. (2018) investigated models of permutation-invariant
functions as averages of permutation-sensitive functions applied to all reorderings of a group.

A.1 COMPARING PEARL TO STRUCTURAL PES

The proposed PEARL framework can provably count important substructures in any graph, such as
cycles, cliques, and quasi-cliques. More importantly, it can generalize the counting function to graphs
not seen during training, demonstrating the robust generalization ability of PEARL. This naturally
invites comparison with methods that explicitly compute these substructures independently. Below,
we summarize the key comparison points with such methods:

Expressivity: PEARL is not limited to pre-defined motifs, such as cycles or cliques. It can compute
other potentially important substructures, such as dense subgraphs, chordal cycles, or combinations of
motifs, that explicit counting methods might omit simply because they are not pre-specified. Notably,
the number of possible motifs in a graph grows combinatorially, highlighting the flexibility and
breadth of PEARL.

Complexity: Explicitly counting high-order motifs, especially at the node level, can be computation-
ally expensive. PEARL bypasses this challenge by learning to capture these structures implicitly,
making it more scalable to large and complex graphs.

Bias: Predetermining which motifs to count introduces bias into the model. For example, molecular
graphs often benefit from detecting cycles, while social networks emphasize cliques or dense sub-
graphs. In contrast, PEARL is task-agnostic and allows the data to guide which motifs are most
relevant, adapting to the specific requirements of the application. On the flip side, when the training
data have small sizes, learning can benefit by specific biases that structural PEs admit.

B PROOF OF PROPOSITION 3.1

Under the assumptions of Proposition 3.1 the GNN has the following recursive formula:

X(l) = MLP
(
X(l−1),SX(l−1)

)
= MLP(−1)

(
σ

(
K−1∑
k=0

SkX(l−1)H
(l)
k

))
, (11)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where MLP(−1) denotes the all the layers of MLP except the first layer, and K = 2. We know compute
the eigenvalue decomposition of Sk = V ΛkV T , and use some extra algebraic manipulations.

X(l) = MLP(−1)

(
σ

(
K−1∑
k=0

V ΛkV TX(l−1)H
(l)
k

))
(12)

= MLP(−1)

(
σ

(
K−1∑
k=0

N∑
n=1

λk
nvnv

T
nX

(l−1)H
(l)
k

))
(13)

= MLP(−1)

(
σ

(
K−1∑
k=0

N∑
n=1

λk
nvn

[
vT
nX

(l−1) [:, 1] , . . . ,vT
nX

(l−1) [:, Fl−1]
]
H

(l)
k

))
, (14)

where V [:, n] = vn and Λ[n, n] = λn. We now focus on the output of the first MLP layer X(l,1),
X(l) = MLP(−1)

(
X(l,1)

)
first layer only : Then each feature of X(l,1) can be written as:

X(l,1)[:, f] = σ

(
K−1∑
k=0

N∑
n=1

λk
nvn

[
vT
nX

(l−1) [:, 1] , . . . ,vT
nX

(l−1) [:, Fl−1]
]
H

(l)
k [:, f]

)
(15)

= σ

K−1∑
k=0

N∑
n=1

λk
nvn

Fl−1∑
i=1

H
(l)
k [i, f]vT

nX
(l−1) [:, i]

 (16)

= σ

 N∑
n=1

Fl−1∑
i=1

K−1∑
k=0

λk
nH

(l)
k [i, f] < vn,X

(l−1) [:, i] > vn

 (17)

= σ

(
N∑

n=1

W [n, f]vn

)
, (18)

where:

W [n, f] =

Fl−1∑
i=1

K−1∑
k=0

λk
nH

(l)
k [i, f] < vn,X

(l−1) [:, i] > . (19)

As a result X(l,1)σ (V W), which concludes the proof.

C BASIS UNIVERSALITY OF PEARL

We consider the general form of PEARL:

P = ρ
[
Φ
(
G, q(1)

)
, . . . ,Φ

(
G, q(M)

)]
∈ RN×dp , (20)

where ρ is a general pooling function and Φ is a message-passing GNN with skip connections. We
let q(m) = em and M = N . From Proposition 3.1 we get that:

X(l) = MLP (V) = MLP(−1) (σ (V W)) (21)

W [n, f] =

Fl−1∑
i=1

K−1∑
k=0

λk
nH

(l)
k [i, f]⟨vn,X

(l−1) [:, i]⟩, (22)

We ommit the nonlinearities from the GNN and for X(0) = em we get:

X(K) = V W , W [n, f] = ⟨vn, em⟩
K−1∑
k=0

hk[f]λ
k
n, (23)

As a result W [n, f] is a polynomial on the eigenvalues h̃f (λn) =
∑K−1

k=0 hk[f]λ
k
n scaled by

⟨vn, em⟩. We will then use the following lemma.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Lemma C.1 Let G be a graph with N nodes and GSO S ∈ RN×N . Also let S = {{λ1, . . . , λN}}
be the multiset of eigenvalues of S; S can have repeated elements (eigenvalues). Also, let M =
{µ1, . . . , µq} be the ordered set of all distinct (non-repeated) eigenvalues of S. We can always design
poynomial filter such that:

h̃ (λ) =

{
1, if λ = µf

0, if λ = µf ̸= µi
(24)

Proof: Let 
h̃ (µ1)

h̃ (µ2)
...

h̃ (µq)

 =


1 µ1 µ

2
1 . . . µ

K−1
1

1 µ2 µ
2
2 . . . µ

K−1
2

...
1 µq µ

2
q . . . µ

K−1
q




h0

h1

...
hK−1

 = Wh (25)

W is a Vandermonde matrix and when K = q the determinant of W takes the form:

det (W) =
∏

1≤i<j≤q

(µi − µj) (26)

Since the values µi are distinct, W has full column rank and there exists a polynomial h̃ with unique
parameters h = W−1ei such that h̃ (λ) = 1 if λ = µf , and h̃ (λ) = 0 if λ = µj ̸= µf .

Using Lemma C.1, we can design h̃f (λn) =
∑K−1

k=0 hk[f]λ
k
n such that:

h̃f (λn) =

{
1, if λn = µf

0, if λn = µj ̸= µf
(27)

Under this parametrization, X(K) takes the form:

X(K) =
[
Vµ1

V T
µ1
em, . . . ,Vµq

V T
µq
em
]
∈ RN×q, (28)

where Vµf
is the eigenspace (orthogonal space of the eigenvectors) corresponding to eigenvalue µf .

Since we independently feed e1, . . . , eN to the PEARL architecture, we will have N output samples
for each output feature. In particular, for the f−th output feature will have the following samples:

X(K)[:, :, f] =
[
Vµf

V T
µf
e1, . . . ,Vµf

V T
µf
eN
]
= Vµf

V T
µf
, (29)

We process the output samples of each feature via a pooling function ρ, to get the final output
embedding as:

Y = ρ
(
Vµ1

V T
µ1
, . . . ,Vµq

V T
µq

)
. (30)

Without loss of generality we can choose ρ to be a different function for each feature i.e.,

Y = ρ
(
g(1)

(
Vµ1V

T
µ1

)
, . . . , g(q)

(
VµqV

T
µq

))
. (31)

Equation (31) is the definition of BasisNet Lim et al.. BasisNet universally approximates all contin-
uous basis invariant function, which proves that PEARL is also a universal approximator of basis
invariant functions.

D VERTEX AND FREQUENCY DOMAIN ANALYSIS OF RPE

Let the input to the GNN encoder q = [q1, . . . , qN] be a set of N i.i.d. random variables such that
E[qi] = 0 and E[qpi] = 1 for p ≥ 2. As shown in Eq. (46) q is processed by a set of functions:

y = σ (z) = σ

(
K−1∑
k=0

hkq

)
= σ (H (S) q) . (32)

Now we assume that the pointwise nonlinearity is analytic and expand it as a Taylor series:

y = σ (z) =

∞∑
n=0

βnz
n =

∞∑
n=0

βn (H (S) q)
n
, (33)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where βn = σ(n)(0)
n! . If we only use one layer, each feature of our RPEs will be:

p =E [y] = E [σ (z)] =

∞∑
n=0

βnE [zn] =

∞∑
n=0

βnE [(H (S) q)
n
] (34)

=

∞∑
n=0

βn H (S) ∗ · · · ∗H (S)︸ ︷︷ ︸
n times

1 =

∞∑
n=0

∑
i1,i2,...,in

βnhi1 . . . hin

(
Si1 ∗ · · · ∗ Sin

)
1 (35)

where ∗ represents the Hadamard product. As a result, the produced PE is a linear combination of
the following features

(
Si1 ∗ · · · ∗ Sin

)
1. Using more layers to produce the proposed PEs yields

more complex functions. As we proved in Proposition 3.1, a GNN operates as a nonlinear function of
eigenvectors. To exactly analyze the proposed PEs as functions of eigenvectors let S = V ΛV T , be
the eigendecomposition of the GSO V . Then we can show that:

E [zn] =

K∑
i1,...,im=0

hi1,...,in

(
V iT1 ⊙ · · · ⊙ V iTn

)T (
ΛiT1 ⊗ · · · ⊗ΛiTn

)(
V iT1 ⊙ · · · ⊙ V iTn

)
1,

(36)

where ⊗ represents the Kronecker product and ⊙ represents the Khatri-Rao product (columnwise
Kronecker). The Equation in (36) is a linear combination of eigenvector “monomials”. In other words
Eq. (36) instantiates Hadamard products of different eigenvector combinations and linearly combines
them.

E SAMPLE COMPLEXITY

To characterize the sample complexity of our approach we will use this version of Chebychef’s
inequality (Boucheron et al., 2003) as:

P

(
1

M

∣∣∣∣∣
M∑

m=1

(
P (m) − E[Φ (G, q)]

)∣∣∣∣∣ ≥ ϵ

)
≤ var (Φ (G, q))

M · ϵ2
. (37)

To establish a bound for the variance of the output Φ(G, q), we begin by analyzing how pointwise
nonlinearity affects the variance of a random variable. Let X be a random variable with variance
Var(X), and let σ be a Lipschitz continuous function with Lipschitz constant Cσ. Our goal is to
examine the impact of applying σ to X , specifically focusing on how it influences the variance of the
transformed variable σ(X).

E.1 EFFECT OF POINTWISE ACTIVATION TO THE VARIANCE OF A RANDOM VARIABLE

Since σ is Lipschitz continuous with constant Cσ, for any values of X and E[X], we can apply the
Lipschitz condition:

|σ (X)− σ (E[X]) | ≤ Cσ|X − E[X]|.

Taking squares on both sides:

(σ (X)− σ (E[X]))
2 ≤ C2

σ (X − E[X])
2
.

Now, take the expectation of both sides:

E[(σ (X)− σ (E[X]))
2
] ≤ C2

σE[(X − E[X])
2
].

Since E[(X − E[X])
2
] = Var (X), this simplifies to:

E[(σ (X)− σ (E[X]))
2
] ≤ C2

σVar (X) .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Now let’s work on the left-hand side of the previous equation:

E[(σ (X)− σ (E[X]))
2
] = E

[
(σ (X)− E[σ (X)] + E[σ (X)]− σ (E[X]))

2
]

(38)

= E[(σ (X)− E [σ (X)])
2
] + (E[σ (X)]− σ (E[X]))

2 (39)
+ 2E[< (σ (X)− E[σ (X)]) , (E [σ (X)]− σ (E[X])) >] (40)

= E[(σ (X)− E [σ (X)])
2
] + (E[σ (X)]− σ (E[X]))

2 (41)

= Var (σ (X)) + (E[σ (X)]− σ (E[X]))
2
, (42)

Now let µ = (E[σ (X)]− σ (E[X])), then the variance of σ(X) is bounded by:

Var(σ(X)) ≤ C2
σVar(X)− µ2 ≤ C2

σVar(X). (43)

This shows that the Lipschitz constant Cσ acts as a scaling factor on the variance of the random
variable. If Cσ is large, the variance of σ(X) can be significantly larger, and if Cσ is small, it can
shrink the variance accordingly. For the majority of nonlinearities used in deep learning, as ReLU,
sigmoid, and hyperbolic tangent, Cσ = 1, and Var(σ(X)) ≤ Var(X).

E.2 EFFECT OF GRAPH CONVOLUTION TO THE VARIANCE OF A RANDOM NODE SIGNAL

The next step is to study the effect of graph convolution (linear message-passing) operations to a set
of node features. In particular, let X(l) ∈ RN×Fl−1 be the node input to the l − th GNN layer. Then
we define Z(l) ∈ RN×Fl as:

X(l) = σ
(
Z(l)

)
, Z(l) =

K−1∑
k=0

SkX(l−1)Hk (44)

After some algebraic manipulations, we can see that:

Z(l) =

K−1∑
k=0

Sk

Fl−1∑
f=1

X(l−1)[:, f]Hk[f, :]
T =

Fl−1∑
f=1

K−1∑
k=0

SkX(l−1)[:, f]Hk[f, :]
T , (45)

and each feature of Z(l) can be cast as:

Z(l)[:, d] =

Fl−1∑
f=1

K−1∑
k=0

Hk[f, d]S
kX(l−1)[:, f], d ∈ {1, . . . , Fl}. (46)

The above equation implies that each feature Z(l)[:, d] is generated by a summation over Fl−1 features
of type:

z =

K−1∑
k=0

hkS
kx = H (S)x (47)

We assume that norm of H (S) =
∑

k hkS
k is bounded, i.e., ∥H (S)∥ ≤ β.

As a result, we will first analyze the variance of z when the input x has covariance matrix:

E
[
(x− E [x]) (x− E [x])

T
]
= C (48)

The covariance of z is written as:

E
[
(z − E [z]) (z − E [z])

T
]
= H (S)QH (S) =

K−1∑
k=0

hkS
kC

K−1∑
m=0

hmSm (49)

=

K−1∑
k=0

K−1∑
m=0

hkhmSkCSm (50)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

and the variance for each individual variable z[i] is:

var (z [i]) =

K−1∑
k=0

K−1∑
l=0

hkhlS
k[i, :]TQSl[:,] (51)

=

K−1∑
k=0

K−1∑
l=0

hkhl

∑
m∈N (k)

i

∑
n∈N (l)

i

Sk[i,m]Sl[i, n]cov (x [m] ,x [n]) (52)

≤
K−1∑
k=0

K−1∑
l=0

hkhl

∑
m∈N (k)

i

∑
n∈N (l)

i

Sk[i,m]Sl[i, n] |cov (x [m] ,x [n])| (53)

≤
K−1∑
k=0

K−1∑
l=0

hkhl

∑
m∈N (k)

i

∑
n∈N (l)

i

Sk[i,m]Sl[i, n] max
i

(var (x [i])) (54)

≤
K−1∑
k=0

K−1∑
l=0

hkhldegkmaxdegl
max max

i
(var (x [i])) (55)

≤
K−1∑
k=0

hkdegk
max

K−1∑
l=0

hldeglmax max
i

(var (x [i])) ≤ β2 max
i

(var (x [i])) , (56)

where degk
max is the maximum degree of Sk, and is equal to degk

max = 1, when S is the normalized
adjacency matrix or the random walk matrix. The inequality in (54) comes from the Cauchy-Schwartz
inequality, the inequality in (55) comes from the definition of Sk, and the last inquality in (56) is due
the boundedness of the operator H (S).

Overall,
var (z [i]) ≤ β2 max

i
(var (x [i])) . (57)

The final step is to analyze the the variance of a random variable that is a sum of dependent random
variables, z[i] =

∑Fl−1

f=1 zf [i]. Then:

var (z [i]) = E


Fl−1∑

f=1

zf [i]

2
 =

Fl−1∑
f=1

Fl−1∑
g=1

E [zf [i], zg[i]] ≤
Fl−1∑
f=1

Fl−1∑
g=1

|E [zf [i], zg[i]]| (58)

≤ F 2
l−1 max

f
(var (zf [i])) , (59)

where the last inequality in (54) comes from the Cauchy-Schwartz inequality. which is quadratic with
respect to the length of the GNN layer. Combining Eq. (43), (57), and (58 we conclude that:

var
[
X(l)

]
≤ C2

σβ
2F 2

l−1 max
(

var
[
X(l−1)

])
, (60)

If we assume the Fl = F for all hidden layers, we get that:

var
[
X(L)

]
≤ (CσβF)

2L
max (var [X]) , (61)

In our proposed approach max (var [X]) = 1. If we further assume that Cσ = 1, which is usually
the case in practice, and that β = 1/F , which means that the magnitude of trainable parameters is
inversely proportional to the number of hidden dimensions in each layer, we get that:

var
[
X(L)

]
≤ 1. (62)

We can now derive the following Theorem

Proposition E.1 (Sample Complexity) Let P denote the output of the architecture described in Eq.
(6), for a graph G with i.i.d. initial node attributes with unit variance. Also let Φ be an L−layer GNN

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

described by Eq. (3), with F hidden dimensions at each layer. If Cσ = 1 and β = 1/F , the number
of samples required such that:∣∣∣∣∣ 1M

M∑
m=1

Φ
(
G, q(m)

)
− E [Φ (G, q)]

∣∣∣∣∣ < ϵ, with probability at least 1− δ, (63)

satisfies:

M ≤ 1

δ · ϵ2
. (64)

F PROOF OF COROLLARY 4.4

To prove Corollary 4.4, we assume that the pointwise nonlinearities σ are elementwise power
functions, i.e., σ (·) = (·)p for integer values of p ≥ 2. Using this assumption, we can apply Theorem
K.1 from (Kanatsoulis & Ribeiro) to establish the result. For approximate results, classical smooth
nonlinearities such as the hyperbolic tangent, the sigmoid, or the Swish function can be employed
and analyzed via their Taylor series expansion around zero:

σ(x) =

K−1∑
p=0

σ(p)(0)

p!
xp, (65)

where σ(p) represents the p-th derivative of σ(x) evaluated at 0. It is straightforward to observe that
elementwise power functions appear in this expansion, enabling approximate cycle counting. In any
case, the proposed PEs will contain rich information relevant to cycle counts.

G STABILITY ANALYSIS

Let G̃ be a perturbed version of graph G, with GSOs S̃ and S respectively. We consider two
perturbation models, i.e., additive and relative perturbation:

Additive perturbation model: S̃ = S +E (66)

Relative perturbation model: S̃ = SE + SE (67)

To measure the distance between S̃ and S, as well as the GNN outputs when the input graphs are
perturbed versions of each other we define the distance modulo permutation:

Definition G.1 (Linear operator distance modulo permutation) (Gama et al., 2020) Given linear
operators A and Ã we define the operator distance modulo permutation as∥∥A− Ã

∥∥
P = min

Π
max

x:∥x∥=1

∥∥ΠT (Ax)− Ã(ΠTx)
∥∥, (68)

where Π is a permutation matrix.

G.1 LIPSCHITZ AND INTEGRAL LIPSCHITZ FILTERS

Next, we need to define the notion of Lipschitz and Integral Lipschitz filters. First, we note that graph
filters are pointwise operators in the graph frequency domain, i.e.,

H (S) =

K−1∑
k=0

hkS
k =

K−1∑
k=0

hkV ΛkV T = V

(
K−1∑
k=0

hkΛ
k

)
V T . (69)

We can therefore define the graph frequency response of the filter as:

h(λ) =

K−1∑
k=0

hkλ
k. (70)

To continue our analysis we define the following filter types.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Definition G.2 (Lipschitz Filter) (Gama et al., 2020) Given a filter h = {hk}K−1
k=0 its frequency

response h(λ) is given by equation 70. We say the filter is Lipschitz if there exists a constant C > 0
such that for all λ1 and λ2, ∣∣h(λ2)− h(λ1)

∣∣ ≤ C
∣∣λ2 − λ1

∣∣. (71)

Definition G.3 (Integral Lipschitz Filter) (Gama et al., 2020) Given a filter h = {hk}K−1
k=0 its

frequency response h(λ) is given by equation 70. We say the filter is integral Lipschitz if there exists
a constant C > 0 such that for all λ1 and λ2,

|h(λ2)− h(λ1)| ≤ C
|λ2 − λ1|

|λ1 + λ2| / 2
. (72)

G.2 STABILITY BOUNDS FOR RANDOM AND BASIS PES

We can use any stability bounds for GNNs. To see that let:∥∥∥Φ (G, ·) [:, f]− Φ
(
G̃, ·
)
[:, f]

∥∥∥
P
≤ Γ (73)

Then∥∥∥∥∥ 1

M

M∑
m=1

Φ (G, ·) [:, f]− 1

M

M∑
m=1

Φ
(
G̃, ·
)
[:, f]

∥∥∥∥∥
P

≤ 1

M

∥∥∥∥∥
M∑

m=1

Φ (G, ·) [:, f]− Φ
(
G̃, ·
)
[:, f]

∥∥∥∥∥
P

≤ 1

M

M∑
m=1

∥∥∥Φ (G, ·) [:, f]− Φ
(
G̃, ·
)
[:, f]

∥∥∥
P

≤ Γ (74)

Using the previous definitions and Eq. (74) we can now use the analysis in (Gama et al., 2020) to
establish the stability of the proposed PEs.

Proposition G.1 (Stability to additive perturbations) Let G̃ be a perturbed version of G such that
S̃ = S + E with ∥E∥ ≤ ε. Let Φ be an L−layer GNN described by Eq. (3), where each layer
consists of Lipschitz filters with constant C. Under assumptions 4.1 and 4.2 with Cσ = 1 and
β = 1/F , it holds that:∥∥∥∥∥ 1

M

M∑
m=1

Φ (G, ·) [:, f]− 1

M

M∑
m=1

Φ
(
G̃, ·
)
[:, f]

∥∥∥∥∥
P

≤
(
1 + 8

√
N
)
Lε+O(ε2) (75)

Proposition G.2 (Stability to relative perturbations) Let G̃ be a perturbed version of G such that
S̃ = S + SE + ES with ∥E∥P ≤ ε. Let Φ be an L−layer GNN described by Eq. (3), where
each layer consists of Integral Lipschitz filters with constant C. Under assumptions 4.1 and 4.2 with
Cσ = 1 and β = 1/F , it holds that:∥∥∥∥∥ 1

M

M∑
m=1

Φ (G, ·) [:, f]− 1

M

M∑
m=1

Φ
(
G̃, ·
)
[:, f]

∥∥∥∥∥
P

≤ 2
(
1 + 8

√
N
)
Lε+O(ε2) (76)

H SPECTRAL FILTERS WITH GRAPH FILTERS

The suggested implementation in (Huang et al.) is:

SPE (V ,Λ) =

N−1∑
n=0

ρ
([
V diag (α1 (Λ))V [n]T , . . . ,V diag (αM (Λ))V [n]T

])
(77)

=

N−1∑
n=0

ρ
([
V diag (α1 (Λ))V Ten, . . . ,V diag (αM (Λ))V Ten

])
, (78)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

where ρ represents multiple GIN layers. If we assume that αm are analytic element wise functions,
then we can take the taylor series expansion and represent αm as a polynomial. Then SPE can be cast
as:

SPE (V ,Λ) =

N−1∑
n=0

ρ

([
V diag

(
K−1∑
k=0

h1
kΛ

k

)
V Ten, . . . ,V diag

(
K−1∑
k=0

hM
k Λk

)
V Ten

])
(79)

=

N−1∑
n=0

ρ

([
V

K−1∑
k=0

h1
kΛ

kV Ten, . . . ,V

K−1∑
k=0

hM
k ΛkV Ten

])
(80)

=

N−1∑
n=0

ρ

([
K−1∑
k=0

h1
kV ΛkV Ten, . . . ,

K−1∑
k=0

hM
k V ΛkV Ten

])
(81)

=

N−1∑
n=0

ρ

([
K−1∑
k=0

h1
kA

ken, . . . ,

K−1∑
k=0

hM
k Aken

])
=

N−1∑
n=0

ρ

(
K−1∑
k=0

Akenh
T
k

)
(82)

The expression in Eq. (82) coincides with the B-PEARL architecture, which concludes our proof.

I IMPLEMENTATION DETAILS

All results for the SPE, SignNet, and BasisNet models using only 8 eigenvectors were either sourced
from their original papers, when available, or obtained by retraining the original models with 8
eigenvectors corresponding to the 8 largest or smallest eigenvalues. All other baseline results
were sourced from their original papers. For both the R-PEARL and B-PEARL models, batch
normalization is applied within the Φ layers. Additionally, when K > 2, the output of the first Φ
layer is passed through a shallow MLP consisting of 1 or 2 layers before continuing through the
remaining layers.

For the REDDIT datasets, we use R-PEARL with 30 samples and K = 2, omitting the the first layer
described in Eq. (3). Both SignNet and R-PEARL use 4 GIN layers with batch normalization to
generate the positional encodings, followed by a base model consisting of 6 additional GIN layers. In
R-PEARL, skip connections are applied across those 4 GIN layers, followed by a linear layer at the
end. SignNet uses residual connections instead, and also uses MLP encoders for the eigenvectors, as
well as a Set Transformer Lee et al. (2019). For both models, we use a batch size of 70 and 100 on
REDDIT-BINARY and REDDIT-MULTI respectively.

On the ZINC datasets, R-PEARL, B-PEARL, and SPE use a batch size of 128. The base model for
each is a 4-layer GINE. Similar to the SPE model, we inject the original positional encoding into every
layer by passing it through an MLP and adding it to the layer’s input. Notably, our model employs 8
GIN layers with 40 hidden units for Φ, whereas SPE uses an 8-layer GIN with 128 hidden units, in
addition to 3 MLPs. For R-PEARL we use 50-120 samples and K = 12, while for B-PEARL we
use K = 4.

For the DrugOOD datasets, R-PEARL, B-PEARL, SPE, and SignNet all use 4-layer GINE base
models. Both R-PEARL and B-PEARL use a 3-layer GIN for Φ. To process positional encodings,
in addition to a 3-layer GIN, SPE uses 16 3-layer MLPs on the Scaffold and Size splits, while
SignNet uses a 3-layer MLP across all splits. At each layer of the base model, all models concatenate
the original positional encodings with the input features. In the Assay and Size splits we use R-
PEARL with K = 14 and 80 samples, while for the Scaffold split, we use K = 16 and 200
samples.

For the RelBench tasks, both R-PEARL and B-PEARL models use K = 7. The R-PEARLmodel
employs a 5-layer GIN with 40 hidden units and 120 samples. The B-PEARLmodel uses either
a 5-layer or a 7-layer GIN, depending on the task: 5 layers for post-post-related and 7 layers for
user-post-comment, both with the same number of hidden units. For the SignNet models, we use an
8-layer GIN with batch normalization to generate positional encodings. The positional encodings
from the models are incorporated as additional node features for each node. The original node
features are generated by a Tabular ResNet model, which learns representations over the various node
features. These combined features are then fed into the base GNN model. All models follow the

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

same setup as in RelBench for the base model, which employs a 2-layer HeteroGraphSAGE. Training
is conducted with a batch size of 20.

Table 5: Estimated runtime per epoch in Hours:Minutes for different models on RelBench.

Task No PE SignNet-largest SignNet-smallest B-PEARL R-PEARL
user-post-comment 00:03 00:07 01:22 00:13 00:17
post-post-related 00:01 00:08 00:26 00:05 00:01

Table 5 presents the runtime of our end-to-end PE models on the RelBench tasks. Notably, our
R-PEARLand B-PEARLachieve shorter runtimes compared to SignNet-smallest across both tasks.

For our experiments and model training pipeline we follow the codebases of (Huang et al.) and
(Lim et al.), using Python, PyTorch Paszke et al. (2019), and the PyTorch Geometric Fey & Lenssen
(2019) libraries. Our code can be found here: https://github.com/codelakepapers/
RPE-Framework.

J ADDITIONAL EXPERIMENTS

J.1 EXPERIMENTS ON GRAPH ISOMORPHISM

We conduct experiments on the Circular Skip Link (CSL) dataset (Murphy et al., 2019) which is the
golden standard when it comes to benchmarking GNNs for graph isomorphism (Dwivedi et al., 2020).
CSL contains 150 4-regular graphs, where the edges form a cycle and contain skip-links between
nodes. Each graph consists of 41 nodes and 164 edges and belongs to one of 10 classes. Message-
passing GNNs with WL-related PEs fail to classify these graphs and classification is completely
random. This is due to the inability of the WL algorithm to handle regular graphs.

The proposed PEARL architectures, however, have no issue in processing regular graphs and achieve
100% classification accuracy. In particular, let Φ be a two-layer GNN, where each layer is defined by
Eq. (3) with K = 5, F0 = F1 = 1, and σ(·) = ReLU(·). The generated node PE P is processed
by a summation graph pooling function to produce a scalar embedding for each graph. Then, both
B-PEARL and R-PEARL can perfectly classify the CSL graphs with 100% classification accuracy,
for any randomly generated trainable weights. This means that B-PEARL and R-PEARL can
perfectly classify the CSL graphs without any training. For example let Φ consist of two identical
layers with parameters (h0, h1, h2, h3, h4) = (0, 1,− 1

2 ,
1
3 ,−

1
4). The output 1TP of B-PEARL is

presented in Table 6. The output remains the same for all graphs within the same class, and differs
distinctly for graphs belonging to different classes. Consequently, perfect classification accuracy
can be achieved by feeding the B-PEARL encoding into a simple linear classifier or even a linear
assignment algorithm.

Table 6: B-PEARL PE for every class of the CSL graphs. B-PEARL can perfectly classify the CSL
graphs with 100% classification accuracy

CLASS
0 1 2 3 4 5 6 7 8 9

0 27351.6 8800.2 25779.9 20458.4 17197.2 15861.3 24055.6 4106.8 17667.0

K ABLATION STUDIES

K.1 ABLATION ON K

We also report our results on the ZINC dataset (Irwin et al., 2012) with alternate values of K for
R-PEARL and B-PEARL . In the case of K = 2 we omit the first layer described in Eq. (3), using
solely an 8-layer GIN for ϕ. These results are shown in Table7. We observe that even with K = 2
our model outperforms SignNet. Furthermore, even with a low K value of 4, B-PEARL outperforms
SPE.

24

https://github.com/codelakepapers/RPE-Framework
https://github.com/codelakepapers/RPE-Framework

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 7: logP Prediction in ZINC with different R-PEARL K values

PE Method #PEs K Test MAE Training MAE General. Gap
SignNet-8S 8 N/A 0.1034± 0.0056 0.0418± 0.0101 0.0602± 0.0112
SignNet Full N/A 0.0853± 0.0026 0.0349± 0.0078 0.0502± 0.0103
BasisNet-8S 8 N/A 0.1554± 0.0048 0.0513± 0.0053 0.1042± 0.0063
BasisNet Full N/A 0.1555± 0.0124 0.0684± 0.0202 0.0989± 0.0258
SPE-8S 8 N/A 0.0736± 0.0007 0.0324± 0.0058 0.0413± 0.0057
SPE Full N/A 0.0693± 0.0040 0.0334± 0.0054 0.0359± 0.0087

R-PEARL(ours) N/A 1 0.0699± 0.002 0.0366± 0.006 0.0333± 0.007
R-PEARL(ours) N/A 2 0.0831± 0.005 0.0725± 0.0125 0.0106± 0.008
R-PEARL(ours) N/A 12 0.0699± 0.002 0.0366± 0.006 0.0333± 0.007
B-PEARL(ours) N/A 1 0.0644± 0.001 0.0290± 0.003 0.0353± 0.002
B-PEARL(ours) N/A 4 0.0680± 0.0023 0.0381± 0.004 0.0299± 0.0033
B-PEARL(ours) N/A 12 0.0676± 0.0016 0.0403± 0.0104 0.0273± 0.0090

K.2 ABLATION ON NUMBER OF SAMPLES M

We conduct ablation studies on the number of samples used by R-PEARL across the REDDIT
datasets to examine the impact of sample size on model performance. These results are illustrated
in Fig. 2. For each dataset, we evaluate the original model with 200 samples on a single test
fold, varying the number of samples from 1 to 200. The test accuracy is then plotted, and Monte
Carlo simulation-based smoothing is applied to generate the plots. Notably, we observe that model
performance begins to converge with as few as 10 samples—an order of magnitude lower than the
graph size.

(a) Sample Ablation on REDDIT-BINARY (b) Sample Ablation on REDDIT-MULTI-5K

Figure 2: Ablation studies on the sample size for R-PEARL; It converges with only a few samples.

K.3 ABLATION ON THE NUMBER OF GNN LAYERS IN PEARL

Table 8: Ablation on the number of GIN layers in B-PEARL for the ZINC Dataset over 4 seeds.

GIN Layers 3 5 7 9

Test MAE 0.0701± 0.005 0.067± 0.003 0.069± 0.001 0.0644± 0.001

The results in Table 8 show that B-PEARL achieves strong performance on the ZINC dataset even
with less layers in the GNN producing the positional encodings. With only 5 layers, B-PEARL
outperforms SPE.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

K.4 ABLATION ON DIFFERENT PARAMETER SIZE

Table 9: logP Prediction in ZINC over number of parameters.

PE Method #Parameters Test MAE Training MAE General. Gap
SignNet 487k 0.0853± 0.0026 0.0349± 0.0078 0.0502± 0.0103
SPE 650k 0.0693± 0.0040 0.0334± 0.0054 0.0359± 0.0087
R-PEARL 644k 0.0699± 0.002 0.0366± 0.006 0.0333± 0.007
B-PEARL 644k 0.0644± 0.001 0.0290± 0.003 0.0353± 0.002
R-PEARL 487k 0.0721± 0.0045 0.0399± 0.001 0.0306± 0.0015
B-PEARL 487k 0.0679± 0.0026 0.0336± 0.008 0.0322± 0.004

Table 9 presents our ablation study on the number of parameters for the ZINC dataset. Notably,
all models outperform SignNet even within the 500k parameter budget. Furthermore, B-PEARL
achieves superior performance compared to SPE on full eigenvectors, even with fewer parameters.

26

	Introduction
	Preliminaries
	Our Work: Learnable, Efficient, and Powerful PEs with GNNs
	GNNs are nonlinear functions of GSO eigenvectors
	PEARL: Expressive and Equivariant Positional Encoding Networks

	Our work: Random Positional Encoding Network (R-PEARL)
	Sample Complexity
	Expressive Power
	Stability
	Computational complexity

	Our work: Basis Positional Encoding Networks (B-PEARL)
	Relation to Eigenvector based encodings
	Computational complexity

	Experiments
	Architectures
	Baselines
	Graph Classification on Social Networks
	Graph regression on Molecular Graphs
	Large-scale Link Prediction on Relational Databases (RelBench)

	Related work
	Conclusion
	Related Work
	Comparing PEARL to Structural PEs

	Proof of Proposition 3.1
	Basis Universality of PEARL
	Vertex and frequency domain analysis of RPE
	Sample Complexity
	Effect of pointwise activation to the variance of a random variable
	Effect of Graph Convolution to the variance of a random node signal

	Proof of Corollary 4.4
	Stability Analysis
	Lipschitz and Integral Lipschitz Filters
	Stability bounds for random and basis PEs

	Spectral filters with Graph Filters
	Implementation Details
	Additional Experiments
	Experiments on Graph Isomorphism

	Ablation Studies
	Ablation on K
	Ablation on number of samples M
	Ablation on the number of GNN layers in PEARL
	Ablation on different parameter size

