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ABSTRACT

Positional encodings (PEs) are essential for effective graph representation learning
because they provide position awareness in inherently position-agnostic trans-
former architectures and increase the expressive capacity of Graph Neural Net-
works (GNNs). However, designing powerful and efficient PEs for graphs poses
significant challenges due to the absence of canonical node ordering and the scale
of the graph. Here, we investigate PEs for graphs based on four key criteria:
stability, expressive power, scalability, and genericness. We find that existing
eigenvector-based PE methods often fall short of jointly satisfying these criteria.
To address this gap, we introduce PEARL, a novel framework of learnable PEs for
graphs. Our primary insight is that message-passing GNNs function as nonlinear
mappings of eigenvectors, enabling the design of GNN architectures for generating
powerful and efficient PEs. A crucial challenge lies in initializing node attributes
in a manner that is both expressive and permutation equivariant. We tackle this
by initializing GNNs with random node inputs or standard basis vectors, thereby
unlocking the expressive power of message-passing operations, while employing
statistical pooling functions to maintain permutation equivariance. Our analysis
demonstrates that PEARL approximates equivariant functions of eigenvectors
with linear complexity, while rigorously establishing its stability and high expres-
sive power. Experimental evaluations show that PEARL outperforms lightweight
versions of eigenvector-based PEs and achieves comparable performance to full
eigenvector-based PEs, but with one or two orders of magnitude lower complexity.

1 INTRODUCTION

Positional encodings (PEs) are a fundamental component of graph representation learning and play a
key role in the design of effective Graph Transformers (Dwivedi & Bresson, 2021; Rampášek et al.,
2022) and Graph Neural Networks (GNNs) (Kipf & Welling, 2016; Hu et al., 2020). Transformer
architectures (Vaswani, 2017) are inherently agnostic to structure and node identities, and PEs provide
a powerful mechanism to incorporate positional and structural information. On the other hand,
message-passing GNNs often struggle with low expressiveness, especially when node attributes
exhibit the same symmetries as the graph structure (Xu et al., 2019; Morris et al., 2019; Kanatsoulis
& Ribeiro, 2024). By integrating structural and positional information, PEs enhance GNNs’ capacity
to capture patterns that would otherwise be difficult to learn and generalize.

Several graph PE methods have been proposed in the literature, which can broadly be categorized into
two main types: absolute PEs and relative PEs. Absolute PEs assign an embedding to each node in the
graph, reflecting the node’s role within the graph structure. Common approaches include Laplacian
eigenvectors (Dwivedi & Bresson, 2021), substructure encodings (Tahmasebi et al., 2020; You et al.,
2021; Bouritsas et al., 2022), random walk encodings (Rampášek et al., 2022), and eigenvector-based
methods (Kreuzer et al., 2021; Lim et al.; Huang et al.). Relative PEs, on the other hand, assign
representations to pairs of nodes and typically utilize measures such as shortest-path and resistance
distances (Ying et al., 2021; Zhang et al., 2023), as well as random walk matrices (Ma et al., 2023;
Geisler et al., 2023). A thorough comparison between absolute and relative PEs can be found in
(Black et al., 2024).

In this paper, we study absolute PEs for graphs based on four key criteria: expressive power,
scalability, stability under perturbations, and generality. We find that PEs based on eigenvectors of
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graph Laplacian or other graph operators often struggle to satisfy all these criteria simultaneously.
To better understand this, we divide eigenvector-based approaches into two categories: those that
compute the full set of eigenvectors and those that only consider the K largest. Full eigenvector
approaches offer high expressive power but come with a computational complexity of O(N3) and
memory complexity of O(N2), which is prohibitive for even medium-sized graphs. The full set of
eigenvectors can also be used to learn spectral graph filters (Huang et al.), which result in stable PEs.
Note that stability is particularly crucial for out-of-distribution generalization.

However, when only a subset of eigenvectors is computed, several limitations arise. First, this intro-
duces an inductive bias, as different graphs encode different information across eigenvalues, especially
when they differ in size. Second, the expressive power and stability are reduced, becoming dependent
on the eigengap between the selected eigenvalues. These methods also face challenges in terms of
stability and generalization when applied to different or unseen graph structures. Consequently, this
approach often leads to significantly poorer performance. Substructure-based encodings face similar
challenges: while generally stable, they also introduce inductive bias and highly expressive versions
require combinatorial complexity. The aforementioned challenges raise a critical research question:

Question: Can we learn generic PEs that are simultaneously expressive, stable, and scalable?

In this work, we provide an affirmative answer by proposing PEARL, a powerful and efficient
framework for learnable PEs, entirely generated via message-passing GNNs. We begin by showing
that message-passing GNNs can be understood as nonlinear mappings of eigenvectors of the graph
Laplacian or other graph shift operators. This insight enables the computation of eigenvector-based
PEs efficiently with linear or quadratic complexity, leveraging message-passing operations. A central
challenge in developing effective PEs with GNNs lies in initializing node attributes to ensure both
expressiveness and permutation equivariance. We address this by initializing each node with a
set of M random samples, effectively breaking the symmetries between the graph structure and
node attributes. Each sample is processed independently by a GNN, and to guarantee permutation
equivariance, we design pooling functions based on statistics. Our analysis demonstrates that
PEARL surpasses the expressiveness of the Weisfeiler-Leman (WL) test (Weisfeiler & Leman, 1968),
and is capable of counting key substructures at the node level.

PEARL is provably stable, inheriting the stability guarantees of GNNs (Gama et al., 2020), which
are independent of the eigenvalue gap. Moreover, we analyze the sample complexity of PEARL and
show that the number of samples required for effective encoding is independent of graph size. This
enables the generation of powerful eigenvector-based PEs for large graphs with linear complexity.
For smaller graphs, where the number of samples is comparable to the graph size, we propose an
alternative model that initializes node attributes with basis vectors. This approach approximates
the PEs in (Huang et al.) with significantly lower computational and memory complexity. We
evaluate the proposed PEARL on graph classification and regression tasks on molecular graphs
and social network datasets, and compare it against eigen-based and structure-based absolute PEs.
The results demonstrate that PEARL consistently outperforms structure-based PEs and lightweight
variants of eigenvector-based PEs, achieving up to a 6% improvement on graph classification tasks.
In comparison to full eigenvector-based PEs, which have a computational complexity of O(N3),
PEARL delivers comparable performance with significantly reduced complexity, scaling at O(N) or
O(N2).

2 PRELIMINARIES

A graph G := (V, E), is represented by a set of vertices V = {1, . . . , N}, a set of edges E = {(v, u)},
and a graph shift operator (GSO) S ∈ RN×N . The GSO is typically sparse, with common choices
including the adjacency matrix, the Laplacian matrix, their normalized variants, or the random walk
transition matrix. The nodes (vertices) in the graph are often associated with node signals xv ∈ Rd,
each with d features, while edges can carry edge attributes x(u,v) ∈ Rde with de features.

An important operation in graph theory and network science is the spectral decomposition of the graph
and refers to the eigenvalue decomposition to the GSO, S = V ΛV T . Matrix V = [v1, . . . ,vn] is
the orthonormal matrix of eigenvectors, and Λ is the diagonal matrix of eigenvalues {λn}Nn=1. When
S represents the Laplacian matrix, V are the Laplacian eigenvectors that are commonly used as node
features or positional encodings for GNN architectures.
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In this paper, we study standard message-passing GNNs, defined by the following recursive formula:

x(l)
v = g(l−1)

(
x(l−1)
v , f (l−1)

({
x(l−1)
u : u ∈ N (v)

}))
. (1)

Here, N (v) represents the neighborhood of vertex v, meaning that u ∈ N (v) if and only if (u, v) ∈ E .
The function f (l) aggregates information from the multiset of signals coming from neighboring
vertices, while g(l) combines the signal of each vertex with the aggregated information from its
neighbors. Common choices for f (l) and g(l) include the single- and multi-layer perceptron (MLP),
the linear function, and the summation function.

3 OUR WORK: LEARNABLE, EFFICIENT, AND POWERFUL PES WITH GNNS

3.1 GNNS ARE NONLINEAR FUNCTIONS OF GSO EIGENVECTORS

Our first observation is that message-passing GNNs are nonlinear functions of eigenvectors. To see
this, let f (l) be one of the following aggregation functions:∑

u∈N (v)

xu, dv · xv −
∑

u∈N (v)

xu,
∑

u∈N (v)

xu√
dvdu

, xu −
∑

u∈N (v)

xu√
dvdu

,
∑

u∈N (v)

xu

du
(2)

where dv is the degree of node v. Then the recursive formula in Eq. (1) can be written as X(l) =
g(l−1)

(
X(l−1),SX(l−1)

)
, where S represents the adjacency matrix, the Laplacian matrix, the

normalized adjacency, the normalized Laplacian, and the random walk matrix, for the five choices
of f (l) in 2 respectively, and X(l) ∈ RN×Fl represents the signals of all vertices at layer l. Now let
g(l) be an equivariant MLP operating on each node independently. Note that the MLP is a common
choice for function g(l) for the majority of effective GNN architectures due to its expressiveness
properties. Then Eq. (1) can be cast as:

X(l) = σ

(
K−1∑
k=0

SkX(l−1)H
(l)
k

)
, (3)

where K = 2, Hk ∈ RFl−1×Fl are the trainable parameters, and σ is a point-wise nonlinear activation
function. Note that Eq. (3) defines a single-layer graph perceptron, but it can be easily generalized to
a multi-layer graph perceptron by letting σ represent an equivariant MLP acting on the node signals.
Additionally, while we set K = 2 here, higher values of K can be considered for more generalized
GNN layers. It is worth emphasizing that Sk is never explicitly instantiated; instead, SkX(l−1) is
computed using recursive message-passing operations, as outlined in Eq. (2).

Proposition 3.1 (GNNs are nonlinear functions of eigenvectors) A GNN defined in Eq. (1) with
f (l) being one of the functions in Eq. (2) and g(l) being an MLP, is a nonlinear function of the
GSO eigenvectors i.e., X(l) = MLP (V ). The trainable parameters of the first MLP layer are not
independent but depend on the eigenvalues {λn}Nn=1 and eigenvectors {vn}Nn=1 of the GSO, as well
as the initial node features X of the graph:

X(l) = MLP (V ) = MLP(−1) (σ (V W ))

W [n, f ] =

Fl−1∑
i=1

K−1∑
k=0

λk
nH

(l)
k [i, f ]⟨αn,X

(l−1) [:, i]⟩,

where αn = vn when the GSO is symmetric and αn = V −1[:, n] when it is not. MLP(−1) denotes
all the layers of the MLP except the first layer.

The proof is provided in Appendix B. Proposition 3.1 applies to most message-passing GNN models,
including, but not limited to, Graph Convolutional Networks (GCN) (Kipf & Welling, 2016), Graph
Isomorphism Networks (GIN) (Xu et al., 2019), and GraphSAGE (Hamilton et al., 2017).
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Figure 1: PEARL framework: The input graph undergoes anonymization by removing its node and
edge attributes. For each node, a set of M random or basis attributes is generated. Each sample is
then independently processed by a message-passing GNN, and a pooling function ρ is applied to
produce equivariant PEs. The graph structure, together with the generated PEs and any node or graph
attributes, is subsequently processed using either a GNN or a Graph Transformer.

3.2 PEARL: EXPRESSIVE AND EQUIVARIANT POSITIONAL ENCODING NETWORKS

Following the derivation of Proposition 3.1, a critical question arises: what is the optimal choice of
node attributes that allow a GNN to compute expressive and equivariant functions of the eigenvectors?
Equivariant structural features augment GNNs with valuable information, but they come at the
cost of increased computational complexity and inductive bias. Moreover, these features share the
same symmetries as the graph structure, limiting the expressiveness of message-passing GNNs.
Alternatively, unique identifiers, such as random node features, can break the structural symmetries
and improve expressiveness but at the expense of permutation equivariance, which limits the model’s
generalization capability. To address this trade-off between equivariance and expressiveness, we
propose to momentarily break the structural symmetries by initializing each node with a set of M
unique identifiers, while maintaining permutation equivariance in the model output via the use of
statistical pooling functions. The proposed PE framework (PEARL) is illustrated in Fig. 1 and, as
we see next, ensures both high expressiveness and strong generalization.

Consider a graph G = (V, E) with N nodes. For each node v ∈ V in G, we design a set of M
1−dimensional node signals

{
q
(1)
v , q

(2)
v , . . . , q

(M)
v

}
, where each q

(m)
v operates as a unique identifier.

Graph G is now associated with a set of M independent initial node attributes represented as{
q(m)

}M
m=1

, q(m) ∈ RN . Each pair of
{
G, q(m)

}
is independently processed via a GNN Φ(·),

which is described by Eq. (1) or (3), to produce a set of M independent outputs:

P (m) = Φ
(
G, q(m)

)
∈ RN×dp , m = 1, . . . ,M (4)

Since
{
q(m)

}M
m=1

operate as unique identifiers, they break the structural symmetries and unlock the
expressive power of message-passing operations. However, each P (m) is not permutation equivariant,
thus not generalizable. To address this, we leverage the independence among {P (m)}Mm=1 and design
an equivariant pooling function ρ to generate the final PE for each node:

P = ρ
[
Φ
(
G, q(1)

)
, . . . ,Φ

(
G, q(M)

)]
∈ RN×dp (5)

The PEARL framework can universally approximate any continuous basis invariant function.

Theorem 3.1 (Basis Universality) Let G be a graph with GSO S = V ΛV T , and f be a continuous
function such that f(V ) = f(V Q), Q ∈ O (diag (Λ)), for any eigenvalues Λ. Then there exist
GNN Φ and a continuous pooling function ρ, such that f(V ) = ρ

[
Φ
(
G, q(1)

)
, . . . ,Φ

(
G, q(M)

)]
.
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The proof can be found in Appendix C. In the following sections, we explore options for the initial
node attributes

{
q(m)

}M
m=1

and pooling functions ρ. A key aspect of PEARL is designing M
independent initial attributes for each node, which enables permutation equivariance at the model’s
output through the use of pooling functions. This stands in contrast to classical methods, which
typically assign a single unique identifier per node.

4 OUR WORK: RANDOM POSITIONAL ENCODING NETWORK (R-PEARL)

Next, we present our Random PE Network (R-PEARL). In R-PEARL we define node attributes{
q(m)

}M
m=1

by sampling them randomly from a probability distribution. Specifically, let q =

[qv1 , qv2 , . . . , qvN ]
T , where vn ∈ V , be a random vector with joint distribution fq(t1, . . . , tN ). The

set
{
q(m)

}M
m=1

consists of M independent N -dimensional realizations of q, drawn from fq . In our
experiments and analysis, q is either a set of independent and identically distributed (i.i.d.) Gaussian
random variables or a set of i.i.d. random variables with E [qi] = 0 and E [qpi ] = 1, where p ≥ 2.

When these samples are processed by a GNN Φ, the result is M (N × dp)-dimensional samples of the
random matrix output Φ(G, q). To ensure permutation equivariance, we note that the distribution of
Φ(G, q) is itself permutation equivariant, as are any statistics derived from it. Therefore, the function
ρ can be any empirical statistic computed from the samples

{
Φ(G, q(m))

}M
m=1

, each capturing
different characteristics. For instance, ρ could represent any statistical moment, such as the mean or
variance, or other measures as the empirical mode or median. In this paper, we choose ρ to be the
empirical mean due to its favorable convergence and stability properties, as well as its simplicity in
implementation and low computational and memory complexity:

P = Ê
[
Φ
(
G, q(1)

)
, . . . ,Φ

(
G, q(M)

)]
=

1

M

M∑
m=1

Φ
(
G, q(m)

)
=

1

M

M∑
m=1

P (m) (6)

In Appendix D, we explicitly analyze the equivariant functions learned by Eq. (6). We derive
nonlinear expressions both in the graph domain, using vertex and edge information, and in the
frequency domain, using the eigenvectors and eigenvalues of the GSOs. The key to this nonlinear
analysis involves studying the pointwise nonlinearities through their Taylor series expansion.

4.1 SAMPLE COMPLEXITY

In this section, we analyze the number of samples required to such that 1
M

∑M
m=1 P

(m) approximates
E [Φ (G, q)] with negligible error. To that end, we make the following two assumptions that will be
later used for the stability analysis as well.

Assumption 4.1 The pointwise nonlinearity σ is Lipschitz continuous with Lipschitz constant Cσ .

This is a common assumption in deep learning and is satisfied by the widely used nonlinearities. In
most cases, such as the Rectified Linear Unit (ReLU), hyperbolic tangent, and sigmoid, it holds that
Cσ = 1. Before introducing the second assumption, we first need to examine Eq. (3) more closely.
Notice that its linear component involves FL · Fl−1 graph filters of the form

∑K−1
k=0 hkS

k, which is
also explicitely shown in Appendix E, Eq. (46).

Assumption 4.2 The linear operators H (S) =
∑K−1

k=0 hkS
k involved in the projection of Eq. (3)

are bounded, i.e., ∥H (S)∥ ≤ β.

This is another common assumption in deep learning, where the value of β varies depending on the
architecture and task. We can now present Theorem 4.3, which characterizes the number of samples
M needed for our approach to converge to the true E [Φ (G, q)].

Theorem 4.3 (Sample Complexity) Let P denote the output of the architecture described in Eq.
(6), for a graph G with i.i.d. initial node attributes with unit variance. Also let Φ be an L−layer GNN
described by Eq. (3), with F hidden dimensions at each layer. If Cσ = 1 and β = 1/F , the number

5
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of samples M required such that:∣∣∣∣∣ 1M
M∑

m=1

Φ
(
G, q(m)

)
− E [Φ (G, q)]

∣∣∣∣∣ < ϵ, with probability at least 1− δ, (7)

satisfies:

M ≤ 1

δ · ϵ2
. (8)

It is worth noting that the above bound is independent of the size of the graphs, which suggests that
our proposed PE framework is well-suited for large-scale graphs. In practice, we have observed that
10 ∼ 100 samples are typically sufficient.

4.2 EXPRESSIVE POWER

In this section, we establish the expressive power of our proposed R-PEARL.

Corollary 4.4 (Structure Counting) Let q = [q1, . . . , qN ] be a set of N i.i.d. random variables
such that E[qi] = 0 and E[qpi ] = 1 for p ≥ 2. Then, there exists a parametrization Φ, defined by Eq.
(3), such that E [Φ (·, q)] counts the number of 3-, 4-, 5-, 6-, and 7-node cycles in which each node
participates, for any given graph.

Corollary 4.4 not only highlights the expressive power of R-PEARL framework but also provides
valuable insights into its generalization ability. Essentially, R-PEARL framework can learn not just
the number of cycles each node in a given graph participates in, but also a counting function that
generalizes this capability to any node in any graph. The proof can be found in Appendix F, and is
based on the results in (Kanatsoulis & Ribeiro). In Corollary 4.5 we characterize the expressive power
of message-passing GNNs with our proposed PEs with respect to the folklore-Weisfeiler-Leman
(FWL) test (Cai et al., 1992; Morris et al., 2019; Huang & Villar, 2021).

Corollary 4.5 (Expressive Power) A GNN defined in Eq. (1), with PEs produced by Eq. (6) is
strictly more powerful than the 1-FWL test, when f, g are injective functions.

The proof of Corollary 4.5 is a consequence of Corollary 4.4 and the analysis in (Xu et al., 2019).
Note that the previous results can be improved (e.g., count cycles and cliques of higher order, go
beyond 2-FWL test) when the samples

{
q(m)

}M
m=1

are drawn from a structurally aware distribution,
but this will increase the number of computations and is outside of the scope of this paper.

4.3 STABILITY

The proposed PEs are purely generated by GNN architectures and as a result they inherit favorable
stability properties of GNNs. Any stability results for GNNs hold for R-PEARL as well. For instance,
let G̃ be a perturbed version of G such that S̃ = S +E. We can use the stability results in (Gama
et al., 2020) and derive the following proposition.

Corollary 4.6 (Stability) Let G̃ be a perturbed version of G such that S̃ = S +E with ∥E∥ ≤ ε.
Let Φ be an L−layer GNN described by Eq. (3), where each layer consists of F 2 Lipschitz continuous
filters [cf. Eq. (G.2)] with constant C. Under assumptions 4.1 and 4.2 with Cσ = 1 and β = 1/F , it
holds that:∥∥∥∥∥ 1

M

M∑
m=1

Φ (G, ·) [:, f ]− 1

M

M∑
m=1

Φ
(
G̃, ·
)
[:, f ]

∥∥∥∥∥
P

≤
(
1 + 8

√
N
)
Lε+O(ε2) (9)

where ∥·∥P is the distance modulo permutation [cf. G.1], and M is the number of samples.

We can further normalize the proposed PEs by
√
N · L to improve the stability bound. Notably,

our result remains independent of the eigengap δλ, which is the difference between consecutive
eigenvalues of the GSO. However, this independence does not hold for the stability of eigenvectors.
According to the Davis-Kahan Theorem (Davis & Kahan, 1970), even a small perturbation in the
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graph can lead to arbitrarily large differences between the eigenvector encodings of the original
and perturbed GSOs. This limitation also applies to the eigenvector-based PEs in (Lim et al.). The
stability bound of the PEs in (Huang et al.) is inversely proportional to the eigengap δλ between
the d-th and (d+ 1)-th smallest eigenvalues when using the first d eigenvectors. This dependence
is mitigated if all eigenvectors are computed, but doing so requires O(N3) complexity, which is
impractical for large graphs. Further details on stability results, are provided in Appendix G.

4.4 COMPUTATIONAL COMPLEXITY

To implement R-PEARL, we process each initial random attribute independently using a message-
passing GNN. Consequently, the computational complexity of the feed-forward pass is equivalent to
that of a message-passing GNN multiplied by the number of samples, i.e., Θ

(
MNF 2 +M |E|F

)
,

where F represents the hidden dimension of each GNN layer. The memory complexity of a serial
implementation is Θ(NF ), while for a parallel implementation, it becomes Θ(MNF ).

5 OUR WORK: BASIS POSITIONAL ENCODING NETWORKS (B-PEARL)

The previous approach R-PEARL is particularly advantageous for large graphs, where the number of
samples is much smaller than the number of nodes and edges, making the computational and memory
complexity approximately linear. However, for smaller-scale graphs, such as molecular graphs, the
computational complexity becomes quadratic. In these cases, we propose using standard basis vectors
{em}Nm=1 as the initial node attributes, where em[m] = 1 and em[i ̸= m] = 0, thus setting M = N .
Similar to the previous approach, when these samples are processed by a GNN Φ, the result is N
(N × dp)-dimensional outputs. To maintain permutation equivariance, any equivariant function ρ can
be applied, but in this paper, we choose the summation pooling for ρ. Overall, B-PEARL is cast as:

P = ρ [Φ (G, e1) , . . . ,Φ (G, eN )] =

N∑
m=1

Φ (G, em) =

N∑
m=1

P (m) (10)

5.1 RELATION TO EIGENVECTOR BASED ENCODINGS

The proposed B-PEARL framework is highly related to the stable and expressive positional
encodings (SPE) proposed in (Huang et al.). In particular SPE is defined as SPE (V ,Λ) =

ρ
([
V diag (α1 (Λ))V T , . . . ,V diag (αF (Λ))V T

])
, where {αi}Fi=1 is a set of continuous func-

tions and ρ is an equivariant function. The suggested SPE implementation is SPE (V ,Λ) =∑N
n=1 Φ ([V diag (α1 (Λ))V [n], . . . ,V diag (αM (Λ))V [n]]), where Φ is a GNN, and {αi}Fi=1 are

MLPs. The computational complexity is cubic with respect to the number of nodes and the memory
complexity is quadratic.

Remark 5.1 When {αi}Fi=1 in SPE (V ,Λ) are pointwise analytic functions, i.e., the pointwise
nonlinearities are differentiable, the SPE architecture is equivalent to the proposed B-PEARL archi-
tecture in Eq. (10). The proof can be found in Appendix H.

5.2 COMPUTATIONAL COMPLEXITY

To implement B-PEARL, we process each initial basis encoding independently using a message-
passing GNN. As a result, the computational complexity is Θ

(
N2F 2 +N |E|F

)
, where F represents

the hidden dimension of each GNN layer. The memory complexity for a serial implementation is
Θ(NF ), while for a parallel implementation, it increases to Θ

(
N2F

)
.

6 EXPERIMENTS

In this section, we assess the performance of PEARL on graph classification and regression tasks.
All experiments were conducted on a Linux server with NVIDIA A100 GPU. Code can be found in
this repository1.

1https://github.com/codelakepapers/RPE-Framework
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Table 1: Graph classification accuracy on REDDIT-B and REDDIT-M (OOM stands for out-of-
memory). R-PEARL outperforms all light-weight baselines by at least 2.5% in REDDIT-B and
3.5 % in REDDIT-M. It also achieves better performance compared to SPE in RREDDIT-M and
comparable in in REDDIT-B, but with much lower complexity.

Method Computational Complexity Memory Complexity REDDIT-B REDDIT-M
GCN O (N) O (N) 50.0± 0.0 20.0± 0.0
GIN O (N) O (N) 91.8± 1.0 56.9± 2.0

GIN + rand id O (N) O (N) 91.8± 1.6 57.0± 2.1
GSN with cliques O

(
N2
)

O (N) 91.1± 1.8 56.2± 1.8

SignNet-8S O
(
N3
)

O (N) 94.5± 0.3 59.3± 0.5
SignNet-8L O (N) O (N) 89.0± 5.2 55.2± 2.9
SignNet-full O

(
N3
)

O
(
N2
)

OOM OOM
BasisNet O

(
N3
)

O
(
N2
)

OOM OOM
SPE O

(
N3
)

O
(
N2
)

OOM OOM

R-PEARL(ours) O (MN) O (N) /O (MN) 94.5± 0.4 60.6± 0.3

6.1 ARCHITECTURES

To generate the proposed PE, Φ is a 9−layer message-passing GNN with batch normalization layers
and skip connections. The first layer of Φ is a generalized GNN layer, as described in Eq. (3), and
K can be greater than two. All the remaining layers in Φ are GIN layers (Xu et al., 2019). When
K = 2 we omit this generalized GNN layer, and solely use GIN layers. We denote as R-PEARL the
architecture with random samples, described in Eq. (6), and B-PEARL the architecture with basis
vectors, described in Eq. (10).

In all experiments we evaluated our model on selected values of K ranging from 2 to 18, as well
as different sample sizes ranging from 10 to 200, and selected the best model accordingly. The
R-PEARL and B-PEARL encodings are fed to a GINE (Hu et al., 2020) architecture, which is a
message-passing GNN that processes node and edge attributes, as well as the graph structure and
PEs. More architectural and experimental details can be found in Appendices I and K.

6.2 BASELINES

The baseline models for comparison are grouped into four categories: i) GNNs without PEs: GCN
(Kipf & Welling, 2016), GIN (Xu et al., 2019); ii) GNNs with unique identifiers: GIN with random
IDs (Xu et al., 2019; Abboud et al., 2021; Sato et al., 2019); iii) GNNs with structural PEs: GSN
with cycles, GSN with cliques (Bouritsas et al., 2022); iv) GNNs with eigenvector-based PEs:
SignNet, BasisNet (Lim et al.), PEG (Wang et al., 2022), SPE (Huang et al.).

In addition, we implement SignNet-8S, BasisNet-8S and SPE-8S which are variants of the full
SignNet, BasisNet, and SPE models. These variants employ the eigenvectors corresponding to the 8
smallest eigenvalues of the normalized Laplacian that still need O(N3) computational complexity. In
SPE-8S and BasisNet-8S the memory complexity remains O(N2), but in SignNet-8S it reduces from
O(N2) to O(N). Furthermore, we implement SignNet-8L, utilizing only the 8 largest eigenvectors,
which reduces both the memory and computational complexity to O(N).

6.3 GRAPH CLASSIFICATION ON SOCIAL NETWORKS

We first evaluate our architecture on graph classification tasks using the REDDIT-B (2,000 graphs, 2
classes, 429.6 average nodes) and REDDIT-M (5,000 graphs, 5 classes, 508.5 average nodes) datasets
(Yanardag & Vishwanathan, 2015). Each graph represents an online discussion thread, with nodes
representing different users, and edges indicating whether one user responded to another’s comment.
In both datasets, the task is to predict the subreddit to which a particular discussion graph belongs.
To train the GNN models, we conduct 10-fold cross-validation. Table 1 summarizes the mean and
standard deviation of classification accuracy over the 10 folds. We report the best performance
observed during 350 epochs of training, as is the standard practice for this dataset. The results are
presented in Table 1.

We observe that R-PEARL outperforms all baselines on REDDIT-M and achieves the best per-
formance on REDDIT-B, alongside SignNet-8S, but with one to two orders of magnitude less
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Table 2: logP Prediction in ZINC. B-PEARL ouperforms all the baselines both in MAE and
Generalization gap. It is notable that B-PEARL achieves these results with quadratic complexity
compared to the second best (SPE) that operates with cubic complexity.

PE Method #PEs Test MAE Training MAE General. Gap
No PE N/A 0.1772± 0.0040 0.1509± 0.0086 0.0263± 0.0113
GCN N/A 0.469± 0.002 − −
GIN N/A 0.209± 0.018 − −
GSN with cycles 10 0.115± 0.012 − −
GIN + rand id 1 0.279± 0.023 − −
SignNet-8S 8 0.1034± 0.0056 0.0418± 0.0101 0.0602± 0.0112
SignNet Full 0.0853± 0.0026 0.0349± 0.0078 0.0502± 0.0103
BasisNet-8S 8 0.1554± 0.0048 0.0513± 0.0053 0.1042± 0.0063
BasisNet Full 0.1555± 0.0124 0.0684± 0.0202 0.0989± 0.0258
SPE-8S 8 0.0736± 0.0007 0.0324± 0.0058 0.0413± 0.0057
SPE Full 0.0693± 0.0040 0.0334± 0.0054 0.0359± 0.0087

R-PEARL(ours) N/A 0.0699± 0.002 0.0366± 0.006 0.0333± 0.007
B-PEARL(ours) N/A 0.0644± 0.001 0.0290± 0.003 0.0353± 0.002

computational complexity. Notably, SignNet-full, BasisNet, and SPE are unable to handle these
datasets due to their quadratic memory complexity.

6.4 GRAPH REGRESSION ON MOLECULAR GRAPHS

We also evaluate our model on the task of predicting the penalized water-octanol partition coefficient
(logP) for molecules from the ZINC dataset (Irwin et al., 2012; Dwivedi et al., 2023). We use the
standard split for this dataset, which entails 10,000 molecules for training, 1,000 for validation, and
another 1,000 for testing. We report the mean and standard deviation of the MAE for the model
achieving the highest validation accuracy, averaged over 4 different seeds. The results can be found
in Table 2. We observe that B-PEARL achieves the best results, and also the best generalization gap
between the competing methods. It is also notable that R-PEARL and B-PEARL also outperform
all the remaining competing methods.

Finally we conduct experiments on the DrugOOD dataset, a benchmark for out-of-distribution tasks
in AI drug discovery (Ji et al., 2022). The dataset evaluates models on their ability to generalize
across domains, focusing on three specific types of domain shifts: Assay, Scaffold, and Size. The
Assay splits test the model’s ability to generalize to different bioassays, the Scaffold splits evaluate
the model’s ability to generalize to molecules with different structures, and the Size splits test the
model’s ability to generalize to molecules of different sizes. Each of these types of splits contains
in-distribution train and validation datasets, as well as out-of-distribution train and test sets. We
record our results on all four of these datasets in Table 3. We observe that the impact of positional
encodings (PEs) is less pronounced in this dataset compared to the previous two. Across all scenarios,
R-PEARL performs similarly to SPE, while consistently outperforming SignNet and BasisNet in
the Scaffold and Size splits. This performance advantage of R-PEARL and SPE provides strong
empirical evidence of the enhanced stability of these two models.

6.5 LARGE-SCALE LINK PREDICTION ON RELATIONAL DATABASES (RELBENCH)

We also test the performance of the proposed PEARL on large-scale link prediction for Stack
Exchange Q&A Website Database. To that end we utilize the rel-stack dataset for the relational
deep learning benchmak (RelBench) Fey et al.; Robinson et al. (2024). Rel-stack is a temporal
and heterogeneous graph with approximately 38 million nodes. We consider two different tasks; i)
user-post-comment, where we predict a list of existing posts that a user will comment in the
next two years, and ii) post-post-related, where we predict a list of existing posts that users
will link a given post to in the next two years. The results for the two tasks can be found in Table 4.

The backbone model for this RelBench task a heterogeneous identity-aware GNN You et al. (2021)
and all methods are trained with batch size 20. From Table 4 we observe that PEARL has an 11%
benefit over the identity aware backbone model with no PE on the user-post-comment task and
a 2% benefit on the post-post-related task. PEARL works similarly to SignNet-8S but with
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Table 3: AUROC results (5 random seeds) on DrugOOD: The performance of R-PEARL falls
between the full version and the lightweight version of SPE, while maintaining lower computational
complexity. R-PEARL outperforms SignNet and BasisNet.

Domain PE Method ID-Val (AUC) ID-Test (AUC) OOD-Val (AUC) OOD-Test (AUC)

Assay

No PE 92.92±0.14 92.89±0.14 71.02±0.79 71.68±1.10
PEG 92.51±0.17 92.57±0.22 70.86±0.44 71.98±0.65
SignNet 92.26±0.21 92.43±0.27 70.16±0.56 72.27±0.97
BasisNet 88.96±1.35 89.42±1.18 71.19±0.72 71.66±0.05
SPE 92.84±0.20 92.94±0.15 71.26±0.62 72.53±0.66
SPE-8S 92.36±0.18 92.62±0.10 70.71±0.47 71.72 ± 0.71
R-PEARL(ours) 92.71±0.10 92.92±0.12 70.57±0.72 72.24±0.30
B-PEARL(ours) 90.54±0.89 90.81 ±0.79 70.53±0.67 71.22±0.42

Scaffold

No PE 96.56±0.10 87.95±0.20 79.07±0.97 68.00±0.60
PEG 95.65±0.29 86.20±0.14 79.17±0.97 69.15±0.75
SignNet 95.48±0.34 86.73±0.56 77.81±0.70 66.43±1.06
BasisNet 85.80±3.75 78.44±2.45 73.36±1.44 66.32±5.68
SPE 96.32±0.28 88.12±0.41 80.03±0.58 69.64±0.49
SPE-8S 96.44±0.079 87.88±0.45 79.34±0.50 68.72±0.63
R-PEARL(ours) 96.09±0.32 88.01±0.43 78.72±0.02 69.20±1.00
B-PEARL(ours) 96.06±0.29 87.56±0.81 79.86±0.58 69.51±0.62

Size

No PE 93.78±0.12 93.60±0.27 82.76±0.04 66.04±0.70
PEG 92.46±0.35 92.67±0.23 82.12±0.49 66.01±0.10
SignNet 93.30±0.43 93.20±0.39 80.67±0.50 64.03±0.70
BasisNet 86.04±4.01 85.51±4.04 75.97±1.71 60.79±3.19
SPE 92.46±0.35 92.67±0.23 82.12±0.49 66.02 ± 0.49
SPE-8S 93.68±0.20 93.86±0.12 83.04±0.63 65.74 ± 2.2
R-PEARL(ours) 93.32±0.34 93.92±0.20 82.09±0.44 65.89 ± 1.30
B-PEARL(ours) 93.18 ± 0.45 93.29 ± 0.46 83.14 ± 0.37 66.58 ± 0.67

Table 4: Validation and test mean average precision (MAP) on large-scale RelBench recom-
mendation tasks. PEARL has an 11% benefit over the backbone model with no PE on the
user-post-comment task and a 2% benefit on the post-post-related task.

Task Evaluation No PE SignNet-8L SignNet-8S B-PEARL(ours) R-PEARL(ours)

User-post-comment
Val. MAP 15.20 15.33 15.47 15.13 15.24
Test MAP 12.47 13.76 13.77 13.80 13.87

Post-post-related
Val. MAP 8.10 7.90 7.70 8.00 8.40
Test MAP 10.73 10.39 10.86 10.94 10.86

lower complexity and, and similarly to SignNet-8L on the user-post-comment task, but 5%
better than SignNet-8L on the post-post-related task.

7 RELATED WORK

The works that are mostly relevant to our work can be grouped in 4 categories: i) Eigenvector-based
Positional Encodings, e.g., (Dwivedi & Bresson, 2021; Rampášek et al., 2022; Kreuzer et al., 2021;
Mialon et al., 2021; Feldman et al., 2022; Huang et al.; Zhang et al.); ii) Graph Neural Networks
with unique node identifiers, e.g., (Loukas, 2019; Abboud et al., 2021; Sato et al., 2021; Abboud
et al., 2021; Sato et al., 2021; Eliasof et al., 2023); iii) Graph Representation Learning with Structural
Encodings, e.g., (Li et al., 2020; Ying et al., 2021; You et al., 2019; 2021; Dwivedi et al.; Ma et al.,
2023; Kanatsoulis & Ribeiro); iv) (Wang et al., 2022; Srinivasan & Ribeiro; Murphy et al., 2018). A
detailed discussion can be found in Appendix A.

8 CONCLUSION

In this paper, we proposed a novel framework for learnable positional encodings (PEs) that addresses
key limitations in existing eigenvector-based methods, particularly in terms of stability, expressive
power, scalability, and genericness. By leveraging message-passing GNNs as nonlinear mappings of
eigenvectors, we designed efficient PEs that maintain permutation equivariance through the use of
statistical pooling functions. Our approach not only ensures high expressiveness and stability but also
significantly reduces computational complexity. Experimental results demonstrate that our method
consistently outperforms lightweight eigenvector-based PEs and matches the performance of full
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eigenvector-based methods, all while offering substantial improvements in computational efficiency.
These findings open new avenues for developing scalable, expressive, and robust graph representation
techniques, paving the way for advancements in graph-based learning tasks.
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A RELATED WORK

Eigenvector-based Positional Encodings: Positional encodings are a crucial component in applying
transformers to graph data and further integrating structural information in graph neural networks
(GNNs). A notable approach for such positional encodings (PEs) is the use of Laplacian eigenvec-
tors. These eigenvector-based PEs have been shown to enhance performance in transformers on
graph-related tasks, as demonstrated in (Dwivedi & Bresson, 2021) and (Rampášek et al., 2022).
Additionally, they can be incorporated in attention mechanisms as seen in (Kreuzer et al., 2021),
(Mialon et al., 2021) and (He et al., 2023). Laplacian eigenvectors can also be used to improve
performance in the context of GNNs (Kim et al., 2022).

However, eigenvector-based positional encodings face challenges with stability and sign ambiguity.
Small structural changes in graphs can cause significant change in eigenvectors and their correspond-
ing positional encodings. In addition, the sign ambiguity of eigenvectors can introduce unwanted
inconsistencies in these positional encodings. Works such as Lim et al. and Huang et al. address these
issues by designing sign-invariant or basis-invariant models to produce these PEs, or by making the
PEs more robust and stable. (Zhang et al.) introduced expressive power of spectral invariant GNNs,
which are GNN architectures augmented with spectral projection matrices and provided a unified
theoretical framework to analyze the previous and their proposed approach. Feldman et al. (2022)
used eigenvector-based heat kernels to generate node embeddings the overcome the limitations of the
WL test. Geisler et al. (2024) combine spatial and spectral graph filters in a unified GNN architecture.

Randomized Graph Neural Networks Initializing GNNs with unique node identifiers to enhance the
expressive power has been first proposed by (Loukas, 2019; Abboud et al., 2021; Sato et al., 2021). In
particular, (Abboud et al., 2021) and (Sato et al., 2021) used random node features as inputs to GNNs,
leading to enhanced function approximation, though at the expense of permutation equivariance, a
key property in graph learning. Eliasof et al. (2023) proposed a method for generating PEs in graph
neural networks by leveraging random feature propagation, inspired by the power iteration method
and its generalizations. The core of their approach involves concatenating several intermediate steps
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to compute the dominant eigenvectors of a propagation matrix. Dupty et al. proposed a randomization
method that approximates the individualization-refinement technique through particle filtering. The
particle filtering GNN (PF-GNN) employs a 1-WL-based initialization method, which is subsequently
refined using with particle filtering sampling to overcome the 1-WL limitations.

Graph Representation Learning with Structural Encodings: Structural encodings are also impor-
tant in capturing aspects of a graph’s structure, such as connectivity and neighborhood information.
(Li et al., 2020) uses distance PEs for GNNs (distance from an anchor node) using shortest paths and
random walks. One approach is using distance-based information between nodes through methods
like shortest paths or random walks, to captural structural information for transformers (Ying et al.,
2021) (You et al., 2019) (You et al., 2021). Other methods learn structural PEs directly. For instance,
(Dwivedi et al.) learn embeddings that are initialized with Laplacian eigenvectors or random walks.
Similarly, (Ma et al., 2023) learn a linear combination of the Laplacian for creating relative PEs.

Node Embedding Methods: One foundational approach to capturing meaningful graph represen-
tations is through node embeddings. DeepWalk (Perozzi et al., 2014) and node2vec (Grover &
Leskovec, 2016) are early instances of these approaches and leverage random walk strategies to learn
node embeddings on graphs. Although these methods show the significance of capturing structural
information, they lack expressivity and do not incorporate many learnable components.

Equivariant pooling: Similar techniques to ours have been introduced in (Wang et al., 2022), which
generate PEs by applying transformations on the Laplacian. On the other hand, Kanatsoulis & Ribeiro
recently analyzed the capability of GNNs to count substructures using expectation pooling functions.
Srinivasan & Ribeiro explored the equivalence between node embeddings and structural represen-
tations, showing that the expectation of node embeddings can serve as structural representations
of the graph, and proposed methods to sample informative node embeddings for enhanced graph
representation learning. Finally, Murphy et al. (2018) investigated models of permutation-invariant
functions as averages of permutation-sensitive functions applied to all reorderings of a group.

A.1 COMPARING PEARL TO STRUCTURAL PES

The proposed PEARL framework can provably count important substructures in any graph, such as
cycles, cliques, and quasi-cliques. More importantly, it can generalize the counting function to graphs
not seen during training, demonstrating the robust generalization ability of PEARL. This naturally
invites comparison with methods that explicitly compute these substructures independently. Below,
we summarize the key comparison points with such methods:

Expressivity: PEARL is not limited to pre-defined motifs, such as cycles or cliques. It can compute
other potentially important substructures, such as dense subgraphs, chordal cycles, or combinations of
motifs, that explicit counting methods might omit simply because they are not pre-specified. Notably,
the number of possible motifs in a graph grows combinatorially, highlighting the flexibility and
breadth of PEARL.

Complexity: Explicitly counting high-order motifs, especially at the node level, can be computation-
ally expensive. PEARL bypasses this challenge by learning to capture these structures implicitly,
making it more scalable to large and complex graphs.

Bias: Predetermining which motifs to count introduces bias into the model. For example, molecular
graphs often benefit from detecting cycles, while social networks emphasize cliques or dense sub-
graphs. In contrast, PEARL is task-agnostic and allows the data to guide which motifs are most
relevant, adapting to the specific requirements of the application. On the flip side, when the training
data have small sizes, learning can benefit by specific biases that structural PEs admit.

B PROOF OF PROPOSITION 3.1

Under the assumptions of Proposition 3.1 the GNN has the following recursive formula:

X(l) = MLP
(
X(l−1),SX(l−1)

)
= MLP(−1)

(
σ

(
K−1∑
k=0

SkX(l−1)H
(l)
k

))
, (11)
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where MLP(−1) denotes the all the layers of MLP except the first layer, and K = 2. We know compute
the eigenvalue decomposition of Sk = V ΛkV T , and use some extra algebraic manipulations.

X(l) = MLP(−1)

(
σ

(
K−1∑
k=0

V ΛkV TX(l−1)H
(l)
k

))
(12)

= MLP(−1)

(
σ

(
K−1∑
k=0

N∑
n=1

λk
nvnv

T
nX

(l−1)H
(l)
k

))
(13)

= MLP(−1)

(
σ

(
K−1∑
k=0

N∑
n=1

λk
nvn

[
vT
nX

(l−1) [:, 1] , . . . ,vT
nX

(l−1) [:, Fl−1]
]
H

(l)
k

))
, (14)

where V [:, n] = vn and Λ[n, n] = λn. We now focus on the output of the first MLP layer X(l,1),
X(l) = MLP(−1)

(
X(l,1)

)
first layer only : Then each feature of X(l,1) can be written as:

X(l,1)[:, f ] = σ

(
K−1∑
k=0

N∑
n=1

λk
nvn

[
vT
nX

(l−1) [:, 1] , . . . ,vT
nX

(l−1) [:, Fl−1]
]
H

(l)
k [:, f ]

)
(15)

= σ

K−1∑
k=0

N∑
n=1

λk
nvn

Fl−1∑
i=1

H
(l)
k [i, f ]vT

nX
(l−1) [:, i]

 (16)

= σ

 N∑
n=1

Fl−1∑
i=1

K−1∑
k=0

λk
nH

(l)
k [i, f ] < vn,X

(l−1) [:, i] > vn

 (17)

= σ

(
N∑

n=1

W [n, f ]vn

)
, (18)

where:

W [n, f ] =

Fl−1∑
i=1

K−1∑
k=0

λk
nH

(l)
k [i, f ] < vn,X

(l−1) [:, i] > . (19)

As a result X(l,1)σ (V W ), which concludes the proof.

C BASIS UNIVERSALITY OF PEARL

We consider the general form of PEARL:

P = ρ
[
Φ
(
G, q(1)

)
, . . . ,Φ

(
G, q(M)

)]
∈ RN×dp , (20)

where ρ is a general pooling function and Φ is a message-passing GNN with skip connections. We
let q(m) = em and M = N . From Proposition 3.1 we get that:

X(l) = MLP (V ) = MLP(−1) (σ (V W )) (21)

W [n, f ] =

Fl−1∑
i=1

K−1∑
k=0

λk
nH

(l)
k [i, f ]⟨vn,X

(l−1) [:, i]⟩, (22)

We ommit the nonlinearities from the GNN and for X(0) = em we get:

X(K) = V W , W [n, f ] = ⟨vn, em⟩
K−1∑
k=0

hk[f ]λ
k
n, (23)

As a result W [n, f ] is a polynomial on the eigenvalues h̃f (λn) =
∑K−1

k=0 hk[f ]λ
k
n scaled by

⟨vn, em⟩. We will then use the following lemma.
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Lemma C.1 Let G be a graph with N nodes and GSO S ∈ RN×N . Also let S = {{λ1, . . . , λN}}
be the multiset of eigenvalues of S; S can have repeated elements (eigenvalues). Also, let M =
{µ1, . . . , µq} be the ordered set of all distinct (non-repeated) eigenvalues of S. We can always design
poynomial filter such that:

h̃ (λ) =

{
1, if λ = µf

0, if λ = µf ̸= µi
(24)

Proof: Let 
h̃ (µ1)

h̃ (µ2)
...

h̃ (µq)

 =


1 µ1 µ

2
1 . . . µ

K−1
1

1 µ2 µ
2
2 . . . µ

K−1
2

...
1 µq µ

2
q . . . µ

K−1
q




h0

h1

...
hK−1

 = Wh (25)

W is a Vandermonde matrix and when K = q the determinant of W takes the form:

det (W ) =
∏

1≤i<j≤q

(µi − µj) (26)

Since the values µi are distinct, W has full column rank and there exists a polynomial h̃ with unique
parameters h = W−1ei such that h̃ (λ) = 1 if λ = µf , and h̃ (λ) = 0 if λ = µj ̸= µf .

Using Lemma C.1, we can design h̃f (λn) =
∑K−1

k=0 hk[f ]λ
k
n such that:

h̃f (λn) =

{
1, if λn = µf

0, if λn = µj ̸= µf
(27)

Under this parametrization, X(K) takes the form:

X(K) =
[
Vµ1

V T
µ1
em, . . . ,Vµq

V T
µq
em
]
∈ RN×q, (28)

where Vµf
is the eigenspace (orthogonal space of the eigenvectors) corresponding to eigenvalue µf .

Since we independently feed e1, . . . , eN to the PEARL architecture, we will have N output samples
for each output feature. In particular, for the f−th output feature will have the following samples:

X(K)[:, :, f ] =
[
Vµf

V T
µf
e1, . . . ,Vµf

V T
µf
eN
]
= Vµf

V T
µf
, (29)

We process the output samples of each feature via a pooling function ρ, to get the final output
embedding as:

Y = ρ
(
Vµ1

V T
µ1
, . . . ,Vµq

V T
µq

)
. (30)

Without loss of generality we can choose ρ to be a different function for each feature i.e.,

Y = ρ
(
g(1)

(
Vµ1V

T
µ1

)
, . . . , g(q)

(
VµqV

T
µq

))
. (31)

Equation (31) is the definition of BasisNet Lim et al.. BasisNet universally approximates all contin-
uous basis invariant function, which proves that PEARL is also a universal approximator of basis
invariant functions.

D VERTEX AND FREQUENCY DOMAIN ANALYSIS OF RPE

Let the input to the GNN encoder q = [q1, . . . , qN ] be a set of N i.i.d. random variables such that
E[qi] = 0 and E[qpi ] = 1 for p ≥ 2. As shown in Eq. (46) q is processed by a set of functions:

y = σ (z) = σ

(
K−1∑
k=0

hkq

)
= σ (H (S) q) . (32)

Now we assume that the pointwise nonlinearity is analytic and expand it as a Taylor series:

y = σ (z) =

∞∑
n=0

βnz
n =

∞∑
n=0

βn (H (S) q)
n
, (33)
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where βn = σ(n)(0)
n! . If we only use one layer, each feature of our RPEs will be:

p =E [y] = E [σ (z)] =

∞∑
n=0

βnE [zn] =

∞∑
n=0

βnE [(H (S) q)
n
] (34)

=

∞∑
n=0

βn H (S) ∗ · · · ∗H (S)︸ ︷︷ ︸
n times

1 =

∞∑
n=0

∑
i1,i2,...,in

βnhi1 . . . hin

(
Si1 ∗ · · · ∗ Sin

)
1 (35)

where ∗ represents the Hadamard product. As a result, the produced PE is a linear combination of
the following features

(
Si1 ∗ · · · ∗ Sin

)
1. Using more layers to produce the proposed PEs yields

more complex functions. As we proved in Proposition 3.1, a GNN operates as a nonlinear function of
eigenvectors. To exactly analyze the proposed PEs as functions of eigenvectors let S = V ΛV T , be
the eigendecomposition of the GSO V . Then we can show that:

E [zn] =

K∑
i1,...,im=0

hi1,...,in

(
V iT1 ⊙ · · · ⊙ V iTn

)T (
ΛiT1 ⊗ · · · ⊗ΛiTn

)(
V iT1 ⊙ · · · ⊙ V iTn

)
1,

(36)

where ⊗ represents the Kronecker product and ⊙ represents the Khatri-Rao product (columnwise
Kronecker). The Equation in (36) is a linear combination of eigenvector “monomials”. In other words
Eq. (36) instantiates Hadamard products of different eigenvector combinations and linearly combines
them.

E SAMPLE COMPLEXITY

To characterize the sample complexity of our approach we will use this version of Chebychef’s
inequality (Boucheron et al., 2003) as:

P

(
1

M

∣∣∣∣∣
M∑

m=1

(
P (m) − E[Φ (G, q)]

)∣∣∣∣∣ ≥ ϵ

)
≤ var (Φ (G, q))

M · ϵ2
. (37)

To establish a bound for the variance of the output Φ(G, q), we begin by analyzing how pointwise
nonlinearity affects the variance of a random variable. Let X be a random variable with variance
Var(X), and let σ be a Lipschitz continuous function with Lipschitz constant Cσ. Our goal is to
examine the impact of applying σ to X , specifically focusing on how it influences the variance of the
transformed variable σ(X).

E.1 EFFECT OF POINTWISE ACTIVATION TO THE VARIANCE OF A RANDOM VARIABLE

Since σ is Lipschitz continuous with constant Cσ, for any values of X and E[X], we can apply the
Lipschitz condition:

|σ (X)− σ (E[X]) | ≤ Cσ|X − E[X]|.

Taking squares on both sides:

(σ (X)− σ (E[X]))
2 ≤ C2

σ (X − E[X])
2
.

Now, take the expectation of both sides:

E[(σ (X)− σ (E[X]))
2
] ≤ C2

σE[(X − E[X])
2
].

Since E[(X − E[X])
2
] = Var (X), this simplifies to:

E[(σ (X)− σ (E[X]))
2
] ≤ C2

σVar (X) .
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Now let’s work on the left-hand side of the previous equation:

E[(σ (X)− σ (E[X]))
2
] = E

[
(σ (X)− E[σ (X)] + E[σ (X)]− σ (E[X]))

2
]

(38)

= E[(σ (X)− E [σ (X)])
2
] + (E[σ (X)]− σ (E[X]))

2 (39)
+ 2E[< (σ (X)− E[σ (X)]) , (E [σ (X)]− σ (E[X])) >] (40)

= E[(σ (X)− E [σ (X)])
2
] + (E[σ (X)]− σ (E[X]))

2 (41)

= Var (σ (X)) + (E[σ (X)]− σ (E[X]))
2
, (42)

Now let µ = (E[σ (X)]− σ (E[X])), then the variance of σ(X) is bounded by:

Var(σ(X)) ≤ C2
σVar(X)− µ2 ≤ C2

σVar(X). (43)

This shows that the Lipschitz constant Cσ acts as a scaling factor on the variance of the random
variable. If Cσ is large, the variance of σ(X) can be significantly larger, and if Cσ is small, it can
shrink the variance accordingly. For the majority of nonlinearities used in deep learning, as ReLU,
sigmoid, and hyperbolic tangent, Cσ = 1, and Var(σ(X)) ≤ Var(X).

E.2 EFFECT OF GRAPH CONVOLUTION TO THE VARIANCE OF A RANDOM NODE SIGNAL

The next step is to study the effect of graph convolution (linear message-passing) operations to a set
of node features. In particular, let X(l) ∈ RN×Fl−1 be the node input to the l − th GNN layer. Then
we define Z(l) ∈ RN×Fl as:

X(l) = σ
(
Z(l)

)
, Z(l) =

K−1∑
k=0

SkX(l−1)Hk (44)

After some algebraic manipulations, we can see that:

Z(l) =

K−1∑
k=0

Sk

Fl−1∑
f=1

X(l−1)[:, f ]Hk[f, :]
T =

Fl−1∑
f=1

K−1∑
k=0

SkX(l−1)[:, f ]Hk[f, :]
T , (45)

and each feature of Z(l) can be cast as:

Z(l)[:, d] =

Fl−1∑
f=1

K−1∑
k=0

Hk[f, d]S
kX(l−1)[:, f ], d ∈ {1, . . . , Fl}. (46)

The above equation implies that each feature Z(l)[:, d] is generated by a summation over Fl−1 features
of type:

z =

K−1∑
k=0

hkS
kx = H (S)x (47)

We assume that norm of H (S) =
∑

k hkS
k is bounded, i.e., ∥H (S)∥ ≤ β.

As a result, we will first analyze the variance of z when the input x has covariance matrix:

E
[
(x− E [x]) (x− E [x])

T
]
= C (48)

The covariance of z is written as:

E
[
(z − E [z]) (z − E [z])

T
]
= H (S)QH (S) =

K−1∑
k=0

hkS
kC

K−1∑
m=0

hmSm (49)

=

K−1∑
k=0

K−1∑
m=0

hkhmSkCSm (50)
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and the variance for each individual variable z[i] is:

var (z [i]) =

K−1∑
k=0

K−1∑
l=0

hkhlS
k[i, :]TQSl[:, ] (51)

=

K−1∑
k=0

K−1∑
l=0

hkhl

∑
m∈N (k)

i

∑
n∈N (l)

i

Sk[i,m]Sl[i, n]cov (x [m] ,x [n]) (52)

≤
K−1∑
k=0

K−1∑
l=0

hkhl

∑
m∈N (k)

i

∑
n∈N (l)

i

Sk[i,m]Sl[i, n] |cov (x [m] ,x [n])| (53)

≤
K−1∑
k=0

K−1∑
l=0

hkhl

∑
m∈N (k)

i

∑
n∈N (l)

i

Sk[i,m]Sl[i, n] max
i

(var (x [i])) (54)

≤
K−1∑
k=0

K−1∑
l=0

hkhldegkmaxdegl
max max

i
(var (x [i])) (55)

≤
K−1∑
k=0

hkdegk
max

K−1∑
l=0

hldeglmax max
i

(var (x [i])) ≤ β2 max
i

(var (x [i])) , (56)

where degk
max is the maximum degree of Sk, and is equal to degk

max = 1, when S is the normalized
adjacency matrix or the random walk matrix. The inequality in (54) comes from the Cauchy-Schwartz
inequality, the inequality in (55) comes from the definition of Sk, and the last inquality in (56) is due
the boundedness of the operator H (S).

Overall,
var (z [i]) ≤ β2 max

i
(var (x [i])) . (57)

The final step is to analyze the the variance of a random variable that is a sum of dependent random
variables, z[i] =

∑Fl−1

f=1 zf [i]. Then:

var (z [i]) = E


Fl−1∑

f=1

zf [i]

2
 =

Fl−1∑
f=1

Fl−1∑
g=1

E [zf [i], zg[i]] ≤
Fl−1∑
f=1

Fl−1∑
g=1

|E [zf [i], zg[i]]| (58)

≤ F 2
l−1 max

f
(var (zf [i])) , (59)

where the last inequality in (54) comes from the Cauchy-Schwartz inequality. which is quadratic with
respect to the length of the GNN layer. Combining Eq. (43), (57), and (58 we conclude that:

var
[
X(l)

]
≤ C2

σβ
2F 2

l−1 max
(

var
[
X(l−1)

])
, (60)

If we assume the Fl = F for all hidden layers, we get that:

var
[
X(L)

]
≤ (CσβF )

2L
max (var [X]) , (61)

In our proposed approach max (var [X]) = 1. If we further assume that Cσ = 1, which is usually
the case in practice, and that β = 1/F , which means that the magnitude of trainable parameters is
inversely proportional to the number of hidden dimensions in each layer, we get that:

var
[
X(L)

]
≤ 1. (62)

We can now derive the following Theorem

Proposition E.1 (Sample Complexity) Let P denote the output of the architecture described in Eq.
(6), for a graph G with i.i.d. initial node attributes with unit variance. Also let Φ be an L−layer GNN
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described by Eq. (3), with F hidden dimensions at each layer. If Cσ = 1 and β = 1/F , the number
of samples required such that:∣∣∣∣∣ 1M

M∑
m=1

Φ
(
G, q(m)

)
− E [Φ (G, q)]

∣∣∣∣∣ < ϵ, with probability at least 1− δ, (63)

satisfies:

M ≤ 1

δ · ϵ2
. (64)

F PROOF OF COROLLARY 4.4

To prove Corollary 4.4, we assume that the pointwise nonlinearities σ are elementwise power
functions, i.e., σ (·) = (·)p for integer values of p ≥ 2. Using this assumption, we can apply Theorem
K.1 from (Kanatsoulis & Ribeiro) to establish the result. For approximate results, classical smooth
nonlinearities such as the hyperbolic tangent, the sigmoid, or the Swish function can be employed
and analyzed via their Taylor series expansion around zero:

σ(x) =

K−1∑
p=0

σ(p)(0)

p!
xp, (65)

where σ(p) represents the p-th derivative of σ(x) evaluated at 0. It is straightforward to observe that
elementwise power functions appear in this expansion, enabling approximate cycle counting. In any
case, the proposed PEs will contain rich information relevant to cycle counts.

G STABILITY ANALYSIS

Let G̃ be a perturbed version of graph G, with GSOs S̃ and S respectively. We consider two
perturbation models, i.e., additive and relative perturbation:

Additive perturbation model: S̃ = S +E (66)

Relative perturbation model: S̃ = SE + SE (67)

To measure the distance between S̃ and S, as well as the GNN outputs when the input graphs are
perturbed versions of each other we define the distance modulo permutation:

Definition G.1 (Linear operator distance modulo permutation) (Gama et al., 2020) Given linear
operators A and Ã we define the operator distance modulo permutation as∥∥A− Ã

∥∥
P = min

Π
max

x:∥x∥=1

∥∥ΠT (Ax)− Ã(ΠTx)
∥∥, (68)

where Π is a permutation matrix.

G.1 LIPSCHITZ AND INTEGRAL LIPSCHITZ FILTERS

Next, we need to define the notion of Lipschitz and Integral Lipschitz filters. First, we note that graph
filters are pointwise operators in the graph frequency domain, i.e.,

H (S) =

K−1∑
k=0

hkS
k =

K−1∑
k=0

hkV ΛkV T = V

(
K−1∑
k=0

hkΛ
k

)
V T . (69)

We can therefore define the graph frequency response of the filter as:

h(λ) =

K−1∑
k=0

hkλ
k. (70)

To continue our analysis we define the following filter types.
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Definition G.2 (Lipschitz Filter) (Gama et al., 2020) Given a filter h = {hk}K−1
k=0 its frequency

response h(λ) is given by equation 70. We say the filter is Lipschitz if there exists a constant C > 0
such that for all λ1 and λ2, ∣∣h(λ2)− h(λ1)

∣∣ ≤ C
∣∣λ2 − λ1

∣∣. (71)

Definition G.3 (Integral Lipschitz Filter) (Gama et al., 2020) Given a filter h = {hk}K−1
k=0 its

frequency response h(λ) is given by equation 70. We say the filter is integral Lipschitz if there exists
a constant C > 0 such that for all λ1 and λ2,

|h(λ2)− h(λ1)| ≤ C
|λ2 − λ1|

|λ1 + λ2| / 2
. (72)

G.2 STABILITY BOUNDS FOR RANDOM AND BASIS PES

We can use any stability bounds for GNNs. To see that let:∥∥∥Φ (G, ·) [:, f ]− Φ
(
G̃, ·
)
[:, f ]

∥∥∥
P
≤ Γ (73)

Then∥∥∥∥∥ 1

M

M∑
m=1

Φ (G, ·) [:, f ]− 1

M

M∑
m=1

Φ
(
G̃, ·
)
[:, f ]

∥∥∥∥∥
P

≤ 1

M

∥∥∥∥∥
M∑

m=1

Φ (G, ·) [:, f ]− Φ
(
G̃, ·
)
[:, f ]

∥∥∥∥∥
P

≤ 1

M

M∑
m=1

∥∥∥Φ (G, ·) [:, f ]− Φ
(
G̃, ·
)
[:, f ]

∥∥∥
P

≤ Γ (74)

Using the previous definitions and Eq. (74) we can now use the analysis in (Gama et al., 2020) to
establish the stability of the proposed PEs.

Proposition G.1 (Stability to additive perturbations) Let G̃ be a perturbed version of G such that
S̃ = S + E with ∥E∥ ≤ ε. Let Φ be an L−layer GNN described by Eq. (3), where each layer
consists of Lipschitz filters with constant C. Under assumptions 4.1 and 4.2 with Cσ = 1 and
β = 1/F , it holds that:∥∥∥∥∥ 1

M

M∑
m=1

Φ (G, ·) [:, f ]− 1

M

M∑
m=1

Φ
(
G̃, ·
)
[:, f ]

∥∥∥∥∥
P

≤
(
1 + 8

√
N
)
Lε+O(ε2) (75)

Proposition G.2 (Stability to relative perturbations) Let G̃ be a perturbed version of G such that
S̃ = S + SE + ES with ∥E∥P ≤ ε. Let Φ be an L−layer GNN described by Eq. (3), where
each layer consists of Integral Lipschitz filters with constant C. Under assumptions 4.1 and 4.2 with
Cσ = 1 and β = 1/F , it holds that:∥∥∥∥∥ 1

M

M∑
m=1

Φ (G, ·) [:, f ]− 1

M

M∑
m=1

Φ
(
G̃, ·
)
[:, f ]

∥∥∥∥∥
P

≤ 2
(
1 + 8

√
N
)
Lε+O(ε2) (76)

H SPECTRAL FILTERS WITH GRAPH FILTERS

The suggested implementation in (Huang et al.) is:

SPE (V ,Λ) =

N−1∑
n=0

ρ
([
V diag (α1 (Λ))V [n]T , . . . ,V diag (αM (Λ))V [n]T

])
(77)

=

N−1∑
n=0

ρ
([
V diag (α1 (Λ))V Ten, . . . ,V diag (αM (Λ))V Ten

])
, (78)
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where ρ represents multiple GIN layers. If we assume that αm are analytic element wise functions,
then we can take the taylor series expansion and represent αm as a polynomial. Then SPE can be cast
as:

SPE (V ,Λ) =

N−1∑
n=0

ρ

([
V diag

(
K−1∑
k=0

h1
kΛ

k

)
V Ten, . . . ,V diag

(
K−1∑
k=0

hM
k Λk

)
V Ten

])
(79)

=

N−1∑
n=0

ρ

([
V

K−1∑
k=0

h1
kΛ

kV Ten, . . . ,V

K−1∑
k=0

hM
k ΛkV Ten

])
(80)

=

N−1∑
n=0

ρ

([
K−1∑
k=0

h1
kV ΛkV Ten, . . . ,

K−1∑
k=0

hM
k V ΛkV Ten

])
(81)

=

N−1∑
n=0

ρ

([
K−1∑
k=0

h1
kA

ken, . . . ,

K−1∑
k=0

hM
k Aken

])
=

N−1∑
n=0

ρ

(
K−1∑
k=0

Akenh
T
k

)
(82)

The expression in Eq. (82) coincides with the B-PEARL architecture, which concludes our proof.

I IMPLEMENTATION DETAILS

All results for the SPE, SignNet, and BasisNet models using only 8 eigenvectors were either sourced
from their original papers, when available, or obtained by retraining the original models with 8
eigenvectors corresponding to the 8 largest or smallest eigenvalues. All other baseline results
were sourced from their original papers. For both the R-PEARL and B-PEARL models, batch
normalization is applied within the Φ layers. Additionally, when K > 2, the output of the first Φ
layer is passed through a shallow MLP consisting of 1 or 2 layers before continuing through the
remaining layers.

For the REDDIT datasets, we use R-PEARL with 30 samples and K = 2, omitting the the first layer
described in Eq. (3). Both SignNet and R-PEARL use 4 GIN layers with batch normalization to
generate the positional encodings, followed by a base model consisting of 6 additional GIN layers. In
R-PEARL, skip connections are applied across those 4 GIN layers, followed by a linear layer at the
end. SignNet uses residual connections instead, and also uses MLP encoders for the eigenvectors, as
well as a Set Transformer Lee et al. (2019). For both models, we use a batch size of 70 and 100 on
REDDIT-BINARY and REDDIT-MULTI respectively.

On the ZINC datasets, R-PEARL, B-PEARL, and SPE use a batch size of 128. The base model for
each is a 4-layer GINE. Similar to the SPE model, we inject the original positional encoding into every
layer by passing it through an MLP and adding it to the layer’s input. Notably, our model employs 8
GIN layers with 40 hidden units for Φ, whereas SPE uses an 8-layer GIN with 128 hidden units, in
addition to 3 MLPs. For R-PEARL we use 50-120 samples and K = 12, while for B-PEARL we
use K = 4.

For the DrugOOD datasets, R-PEARL, B-PEARL, SPE, and SignNet all use 4-layer GINE base
models. Both R-PEARL and B-PEARL use a 3-layer GIN for Φ. To process positional encodings,
in addition to a 3-layer GIN, SPE uses 16 3-layer MLPs on the Scaffold and Size splits, while
SignNet uses a 3-layer MLP across all splits. At each layer of the base model, all models concatenate
the original positional encodings with the input features. In the Assay and Size splits we use R-
PEARL with K = 14 and 80 samples, while for the Scaffold split, we use K = 16 and 200
samples.

For the RelBench tasks, both R-PEARL and B-PEARL models use K = 7. The R-PEARLmodel
employs a 5-layer GIN with 40 hidden units and 120 samples. The B-PEARLmodel uses either
a 5-layer or a 7-layer GIN, depending on the task: 5 layers for post-post-related and 7 layers for
user-post-comment, both with the same number of hidden units. For the SignNet models, we use an
8-layer GIN with batch normalization to generate positional encodings. The positional encodings
from the models are incorporated as additional node features for each node. The original node
features are generated by a Tabular ResNet model, which learns representations over the various node
features. These combined features are then fed into the base GNN model. All models follow the
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same setup as in RelBench for the base model, which employs a 2-layer HeteroGraphSAGE. Training
is conducted with a batch size of 20.

Table 5: Estimated runtime per epoch in Hours:Minutes for different models on RelBench.

Task No PE SignNet-largest SignNet-smallest B-PEARL R-PEARL
user-post-comment 00:03 00:07 01:22 00:13 00:17
post-post-related 00:01 00:08 00:26 00:05 00:01

Table 5 presents the runtime of our end-to-end PE models on the RelBench tasks. Notably, our
R-PEARLand B-PEARLachieve shorter runtimes compared to SignNet-smallest across both tasks.

For our experiments and model training pipeline we follow the codebases of (Huang et al.) and
(Lim et al.), using Python, PyTorch Paszke et al. (2019), and the PyTorch Geometric Fey & Lenssen
(2019) libraries. Our code can be found here: https://github.com/codelakepapers/
RPE-Framework.

J ADDITIONAL EXPERIMENTS

J.1 EXPERIMENTS ON GRAPH ISOMORPHISM

We conduct experiments on the Circular Skip Link (CSL) dataset (Murphy et al., 2019) which is the
golden standard when it comes to benchmarking GNNs for graph isomorphism (Dwivedi et al., 2020).
CSL contains 150 4-regular graphs, where the edges form a cycle and contain skip-links between
nodes. Each graph consists of 41 nodes and 164 edges and belongs to one of 10 classes. Message-
passing GNNs with WL-related PEs fail to classify these graphs and classification is completely
random. This is due to the inability of the WL algorithm to handle regular graphs.

The proposed PEARL architectures, however, have no issue in processing regular graphs and achieve
100% classification accuracy. In particular, let Φ be a two-layer GNN, where each layer is defined by
Eq. (3) with K = 5, F0 = F1 = 1, and σ(·) = ReLU(·). The generated node PE P is processed
by a summation graph pooling function to produce a scalar embedding for each graph. Then, both
B-PEARL and R-PEARL can perfectly classify the CSL graphs with 100% classification accuracy,
for any randomly generated trainable weights. This means that B-PEARL and R-PEARL can
perfectly classify the CSL graphs without any training. For example let Φ consist of two identical
layers with parameters (h0, h1, h2, h3, h4) = (0, 1,− 1

2 ,
1
3 ,−

1
4 ). The output 1TP of B-PEARL is

presented in Table 6. The output remains the same for all graphs within the same class, and differs
distinctly for graphs belonging to different classes. Consequently, perfect classification accuracy
can be achieved by feeding the B-PEARL encoding into a simple linear classifier or even a linear
assignment algorithm.

Table 6: B-PEARL PE for every class of the CSL graphs. B-PEARL can perfectly classify the CSL
graphs with 100% classification accuracy

CLASS
0 1 2 3 4 5 6 7 8 9

0 27351.6 8800.2 25779.9 20458.4 17197.2 15861.3 24055.6 4106.8 17667.0

K ABLATION STUDIES

K.1 ABLATION ON K

We also report our results on the ZINC dataset (Irwin et al., 2012) with alternate values of K for
R-PEARL and B-PEARL . In the case of K = 2 we omit the first layer described in Eq. (3), using
solely an 8-layer GIN for ϕ. These results are shown in Table7. We observe that even with K = 2
our model outperforms SignNet. Furthermore, even with a low K value of 4, B-PEARL outperforms
SPE.
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Table 7: logP Prediction in ZINC with different R-PEARL K values

PE Method #PEs K Test MAE Training MAE General. Gap
SignNet-8S 8 N/A 0.1034± 0.0056 0.0418± 0.0101 0.0602± 0.0112
SignNet Full N/A 0.0853± 0.0026 0.0349± 0.0078 0.0502± 0.0103
BasisNet-8S 8 N/A 0.1554± 0.0048 0.0513± 0.0053 0.1042± 0.0063
BasisNet Full N/A 0.1555± 0.0124 0.0684± 0.0202 0.0989± 0.0258
SPE-8S 8 N/A 0.0736± 0.0007 0.0324± 0.0058 0.0413± 0.0057
SPE Full N/A 0.0693± 0.0040 0.0334± 0.0054 0.0359± 0.0087

R-PEARL(ours) N/A 1 0.0699± 0.002 0.0366± 0.006 0.0333± 0.007
R-PEARL(ours) N/A 2 0.0831± 0.005 0.0725± 0.0125 0.0106± 0.008
R-PEARL(ours) N/A 12 0.0699± 0.002 0.0366± 0.006 0.0333± 0.007
B-PEARL(ours) N/A 1 0.0644± 0.001 0.0290± 0.003 0.0353± 0.002
B-PEARL(ours) N/A 4 0.0680± 0.0023 0.0381± 0.004 0.0299± 0.0033
B-PEARL(ours) N/A 12 0.0676± 0.0016 0.0403± 0.0104 0.0273± 0.0090

K.2 ABLATION ON NUMBER OF SAMPLES M

We conduct ablation studies on the number of samples used by R-PEARL across the REDDIT
datasets to examine the impact of sample size on model performance. These results are illustrated
in Fig. 2. For each dataset, we evaluate the original model with 200 samples on a single test
fold, varying the number of samples from 1 to 200. The test accuracy is then plotted, and Monte
Carlo simulation-based smoothing is applied to generate the plots. Notably, we observe that model
performance begins to converge with as few as 10 samples—an order of magnitude lower than the
graph size.

(a) Sample Ablation on REDDIT-BINARY (b) Sample Ablation on REDDIT-MULTI-5K

Figure 2: Ablation studies on the sample size for R-PEARL; It converges with only a few samples.

K.3 ABLATION ON THE NUMBER OF GNN LAYERS IN PEARL

Table 8: Ablation on the number of GIN layers in B-PEARL for the ZINC Dataset over 4 seeds.

# GIN Layers 3 5 7 9

Test MAE 0.0701± 0.005 0.067± 0.003 0.069± 0.001 0.0644± 0.001

The results in Table 8 show that B-PEARL achieves strong performance on the ZINC dataset even
with less layers in the GNN producing the positional encodings. With only 5 layers, B-PEARL
outperforms SPE.
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K.4 ABLATION ON DIFFERENT PARAMETER SIZE

Table 9: logP Prediction in ZINC over number of parameters.

PE Method #Parameters Test MAE Training MAE General. Gap
SignNet 487k 0.0853± 0.0026 0.0349± 0.0078 0.0502± 0.0103
SPE 650k 0.0693± 0.0040 0.0334± 0.0054 0.0359± 0.0087
R-PEARL 644k 0.0699± 0.002 0.0366± 0.006 0.0333± 0.007
B-PEARL 644k 0.0644± 0.001 0.0290± 0.003 0.0353± 0.002
R-PEARL 487k 0.0721± 0.0045 0.0399± 0.001 0.0306± 0.0015
B-PEARL 487k 0.0679± 0.0026 0.0336± 0.008 0.0322± 0.004

Table 9 presents our ablation study on the number of parameters for the ZINC dataset. Notably,
all models outperform SignNet even within the 500k parameter budget. Furthermore, B-PEARL
achieves superior performance compared to SPE on full eigenvectors, even with fewer parameters.
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