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ABSTRACT

Recurrent neural networks (RNNs) are a widely used tool for sequential data anal-
ysis, however, they are still often seen as black boxes of computation. Visualizing
the internal dynamics of RNNs is a critical step in understanding the functional
principles of these networks and developing ideal model architectures and opti-
mization strategies. Previous studies typically only emphasize the network rep-
resentation post-training, overlooking their evolution process throughout training.
Here, we present Multiway Multislice PHATE (MM-PHATE), a novel method
for visualizing the evolution of RNNs’ hidden states. MM-PHATE is a graph-
based embedding using structured kernels across the multiple dimensions spanned
by RNNs: time, training epoch, and units. We demonstrate on various datasets
that MM-PHATE uniquely preserves hidden representation community structure
among units and identifies information processing and compression phases dur-
ing training. The embedding allows users to look under the hood of RNNs across
training and provides an intuitive and comprehensive strategy to understanding
the network’s internal dynamics and draw conclusions, e.g., on why and how one
model outperforms another or how a specific architecture might impact an RNN’s
learning ability.

1 INTRODUCTION

Recurrent neural networks (RNNs) are artificial neural networks (ANNs) designed for sequential
data. Unlike feedforward neural networks (FNNs), which treat each input as independent, RNNs
model sequences of inputs to produce one or a sequence of outputs. RNNs achieve this by processing
each sequence element in order while retaining a memory of past inputs through memory units (e.g.,
LSTMs or GRUs) or through recurrent feedback connections (Lipton et al., 2015; Kaur & Mohta,
2019). This memory effectively passes information forward in time, updating the internal state of
the RNN with each input to reflect the sequence’s context. RNNs are thus particularly suited for
tasks where the order and relationship between elements are crucial for understanding the whole
sequence, e.g., neural time-series, postural action data, etc. (Hewamalage et al., 2021).

Since their initial rise in popularity in the 1990s, researchers have created various RNN variants
and training strategies to improve their training stability and ability to learn long-range time de-
pendencies within data, such as Long-Short Term Memory (LSTM) (Hochreiter & Schmidhuber,
1996) networks and Structurally Constrained Recurrent Network (SCRN) (Mikolov et al., 2014) ad-
dressing the vanishing gradient problem (Salehinejad et al., 2018). Moreover, RNNs have a natural
advantage in modeling irregular or incomplete sequential data, thanks to their flexibility in managing
inputs of varying lengths. These intrinsic properties, as well as the developments of different archi-
tectures (Salehinejad et al., 2018), have led to RNNs showcasing exceptional performance across
numerous domains, such as natural language processing (NLP), neuroscience and biomedical signal
processing (Chen & Li, 2021; Barak, 2017; Khalifa et al., 2021). Moreover RNNs remain the state
of the art for neural decoding models used in intracortical brain-computer interfaces (Deo et al.,
2024).

Despite their extensive use, RNN dynamics remain poorly understood. The opaque nature of their
learned representations complicates the interpretation of their performance and robustness, hinders
the selection of appropriate architectures and training parameters, and slows the development of
more effective models. Significant efforts have been made to address the “black-box” nature of
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FNNs (Wang et al., 2021; Yu et al., 2014; Li et al., 2018). However, similar advances have not
been as prevalent for RNNs, which have primarily been analyzed from the standpoint of dynamical
systems analyses after training (e.g., via fixed points) (Sussillo & Barak, 2013), or by comparing
the performance of different RNN architectures at the network level and investigating the role of the
various components within them (Chung et al., 2014; Greff et al., 2017). Thus, new methods that
facilitate the interpretation of RNNs’ latent representations and their evolution during training are
clearly needed.

In the field of explainable deep learning, dimensionality reduction methods are one of the more
popular techniques (Karpathy et al., 2015; Hidaka & Kurita, 2017; Rauber et al., 2016; Gigante
et al., 2019; Hong et al., 2020; Holtz et al., 2022). These approaches are useful as they allow
researchers and engineers to readily visualize the structure of high-dimensional data, allowing them
to gain intuition on structures and interactions within the data quickly. Nevertheless, they may
inadvertently obscure meaningful data relationships by either emphasizing local (e.g., t-SNE Maaten
& Hinton (2008)) or global (e.g., PCA Maćkiewicz & Ratajczak (1993) or Isomap Tenenbaum et al.
(2000)) structures, or possess sensitivity to noise and outliers (Moon et al., 2019). These challenges
are compounded in cases such as RNNs where structures along multiple dimensions (time, epoch,
unit) must all be preserved to produce summaries that capture the data’s complexity. As a result,
traditional dimensionality reduction techniques fall short in faithfully visualizing learning in RNNs.

To study learning in FNNs, Gigante et al. (Gigante et al., 2019) introduced Multislice PHATE (M-
PHATE) to visualize the network’s hidden state’s representations during training. M-PHATE com-
bines a multislice graph representation to model the community structure and temporal relationship
between hidden units over epochs, with Potential of Heat Diffusion for Affinity-based Transition
Embedding (PHATE) (Moon et al., 2019) for dimensionality reduction. Each slice in the multi-slice
graph captures the network’s state at a specific epoch during training. This collection of graphs
represents the dynamical system that governs the evolution of the network’s hidden states, where
each hidden unit is connected to itself across epochs. While M-PHATE requires only the activa-
tions of hidden units during training, the generated visualization captures key properties of network
performance, such as test error accuracy, without any held-out validation data.

Despite its numerous advantages, M-PHATE is designed to visualize the evolution of FNNs across
epochs but fails to account for the recurrent and sequential nature of RNNs. Research has shown that
hidden states from all time-steps are crucial for RNNs’ representations (Su & Shlizerman, 2020).
Therefore, to fully understand the evolution of these representations, it is essential to consider net-
work dynamics across both time-steps and epochs. To address this need, we propose Multiway
Multislice PHATE (MM-PHATE). Our method captures the latent dynamics of RNNs by visual-
izing hidden states across both time-steps and training epochs, providing deeper insights into the
complex learning processes of RNNs. Our findings indicate that MM-PHATE retains considerably
more dynamic details necessary for understanding RNNs’ performance compared to PCA, t-SNE,
Isomap, and M-PHATE.

Our main contributions are as follows:

• We present MM-PHATE, a novel framework for visualizing the hidden dynamics of RNNs
across both time-steps and epochs simultaneously, providing a new perspective to RNN’s
leaning trajectory, learned representation, and model performance.

• We demonstrate that MM-PHATE uniquely preserves the hidden representation community
structure of hidden units throughout training by tracking each unit’s learning trajectory and
the correlations among their activations.

• Applying MM-PHATE to RNN dynamics identifies phases of information processing and
compression during learning, an observation that aligns with information bottleneck theory.

2 RELATED WORK

We group existing methods to interpret RNNs into two categories: 1) performance-oriented and 2)
application-oriented post-training analysis.

Performance-oriented analyses include investigating the role of components within various RNN
architectures, as well as comparing different architectures and training parameters based on their
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network-level performance post-training. For example, Chung et al.Chung et al. (2014) conducted
a performance evaluation comparing gated RNNs, particularly GRUs and LSTMs. Similarly, Greff
et al. (2017) carried out a comprehensive analysis of LSTM components. While these studies inter-
pret the performance of different RNNs at the network level, they did not delve deeply into analyzing
their hidden states, thus providing limited insight into the nature of the representations learned by
these networks.

In contrast, application-oriented analyses of trained networks often involve visualizing and inter-
preting activation maps that depict the representations learned by hidden units after training, often
in the context of a specific task or network configuration. Numerous studies have applied this ap-
proach within the field of NLP. For instance, Karpathy et al. overlaid activation heat maps over texts,
demonstrating that certain units developed interpretable representations, such as tracking text length,
new line beginnings, and quote initiations (Karpathy et al., 2015). Li et al. used saliency heat maps
to identify words critical to the learned representations (Li et al., 2016). Strobelt et al. and Ming et
al. created interactive visualizations to correlate hidden state patterns with phrases in texts (Strobelt
et al., 2018; Ming et al., 2017). Beyond NLP applications, some studies explore other domains,
including speech recognition (Tang et al., 2017), earth sciences (Titos et al., 2022)), and medical
states (Kwon et al., 2019). While these studies provide intuitive insights into the representations
learned by the networks post-training, they are tailored for a particular task and may not generalize
to other tasks. Other studies tailored to understand general RNN properties include applying Proper
Orthogonal Decomposition (POD) to the internal states of encoder and decoder units in Seq2Seq
RNNs (Su & Shlizerman, 2020) or employing PCA to visualize the activation of recurrent units and
its link to generalization(Farrell et al., 2022).

While these application-oriented studies have identified critical aspects of RNNs’ hidden repre-
sentation, they largely overlook the network’s learning trajectory over training epochs, a crucial
process that must be understood to improve RNN-based machine learning systems. To the best of
our knowledge, no existing visualizations of RNNs’ hidden states interpret the hidden dynamics
simultaneously across time-steps and epochs.

3 BACKGROUND

PHATE: PHATE is a recent visualization technique that can capture both the local and global
structure of data using diffusion processes (Moon et al., 2019). The PHATE algorithm optimizes
the diffusion kernel (Coifman & Lafon, 2006) for the visualization of high dimensional data. Let
xi be a point in a high-dimensional dataset. PHATE begins by computing the Euclidean distance
matrix E between all data points, where Eij = ∥xi − xj∥2. These distances are then trans-

formed into affinities using an adaptive α-decay kernel Kk,α(xi,xj) = 1
2 exp

(
−
(

Eij

ϵk(xi)

)α)
+

1
2 exp

(
−
(

Eij

ϵk(xj)

)α)
, which adapts to the data density around each point and captures local infor-

mation. The parameters ϵk(xi) and ϵk(xj) are the k-nearest-neighbor distance of xi and xj , and
α controls the decay rate. The affinities are then row-normalized to obtain the diffusion operator
P = D−1Kk,α that represents the single-step transition probabilities between data points, where
D is a diagonal matrix whose entries are row sums of Kk,α. PHATE calculates the information dis-

tance between points based on their transition probabilities: distij =
√
∥ logP t

i − logP t
j ∥2, where

P t captures the transition probabilities of a diffusion process on the data over t steps and i and j
are rows in the matrix. These distances are embedded into low dimensions using Multidimensional
Scaling (MDS) (Ramsay, 1966) for visualization. Local and global distances within the data’s man-
ifold are represented in PHATE by multistep diffusion probabilities. The diffusion probability of
each point can capture the local context surrounding said point, allowing the construction of pair-
wise comparisons between all points (both neighboring and distant points) that represents the entire
global context. For further details, see (Moon et al., 2019). We will use PHATE to embed RNN
training dynamics, however we alter the initial graph construction to emphasize certain structures in
the data we wish to visualize.

M-PHATE: Gigante et al. (2019) model the evolution of the hidden units in a feedforward neural
network and their community structure using a multislice graph. Let F be an FNN with a total of m
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hidden units, and let F (τ) be the representation of the network after being trained for τ ∈ {1, ..., n}
epochs on the training data X sampled from a larger dataset Π. The algorithm first calculates a
shared feature space using the normalized activations of all hidden units i ∈ {1, ...,m} on the input
data, as a 3-dimensional tensor:

T (τ, i, k) =
F

(τ)
i (Yk)− 1

p

∑
ℓ F

(τ)
i (Yℓ)√

Varℓ[F
(τ)
i (Yℓ)]

,

where F
(τ)
i (Yk) : Rd → R denotes the activation of the i-th hidden unit of F for the k-th sample

from input data Y . Here, Y is a subset of p samples from the d-dimensional training data X , with
an equal number of samples from each input class, and p ≪ |X|. This activation tensor T is then
used to calculate intraslice affinities between pairs of hidden units within an epoch τ during the
training, as well as the interslice affinities between a hidden unit i and itself at different epochs:

K
(τ)
intraslice(i, j) = exp

(
−∥T (τ, i)− T (τ, j)∥α2

σα
(τ,i)

)
,K

(i)
interslice(τ, υ) = exp

(
−∥T (τ, i)− T (υ, i)∥22

ϵ2

)
where α is the α-decay parameter, σ(τ,i) is the intraslice bandwidth for unit i in epoch τ , and ϵ is
the fixed interslice bandwidth. These matrices are combined to form an nm× nm multislice kernel
matrix K, which is then symmetrized, row-normalized, and visualized using PHATE in 2D or 3D.

4 MULTIWAY MULTISLICE PHATE

M-PHATE was shown to be a powerful tool for visualizing FNNs. However, to effectively visualize
the evolution of RNNs’ hidden representations, we need to consider hidden state dynamics across
time-steps within the sequence and training epochs concurrently. In RNNs, the output from previous
time-steps is fed as an input to current time-steps. This is useful in the treatment of sequences and
building a memory of the previous inputs into the network. The network iteratively updates a hidden
state h. At each time-step t, the next hidden state ht+1 is computed using the input xt and the current
hidden state ht. Importantly, the network uses the same weights W and biases b for each time-step.
Thus the output yt at time-step t is yt = f(W · ht + b), where f is some activation function.

Let R(τ) be the representation of an m-unit RNN after being trained for τ ∈ {1, . . . , n} epochs on
the training data X ⊂ Π. We denote R

(τ)
i,w(Yk) : Rd → R the activation of the i-th hidden unit of

R at time-step w ∈ {1, . . . , s} in epoch τ for the k-th sample of Y , where Y consists of p samples
from the training data X . We construct the 4-way tensor T using the hidden unit activations as a
shared feature space, which we use to calculate unit affinities across all epochs and time-steps. The
tensor T is an n× s×m×p tensor containing the activations at each epoch τ ∈ {1 . . . n} and time-
step w ∈ {1 . . . s} of each hidden unit Ri (i ∈ {1 . . .m}) with respect to each sample Yk ⊂ X . To
eliminate the variability in T due to the bias term b, we z-score the activation of each hidden unit at
time-step w and epoch τ :

T (τ, ω, i, k) =
R

(τ)
i,ω(Yk)− 1

p

∑
ℓ R

(τ)
i,ω(Yℓ)√

V arℓ[R
(τ)
i,ω(Yℓ)]

. (1)

We construct a kernel over T utilizing our prior knowledge of the temporal aspect of T to capture its
dynamics over epochs and time-steps. This constructed kernel, denoted K, represents the weighted
edges in the multislice graph of the hidden units. In this representation, each unit has two types of
connections: edges between the unit to itself across epochs and time steps and, within a fixed epoch
and time-step, edges between a unit and its community—the other units which have the most similar
representation. The edges are weighted by the similarity in activation pattern. We define K as a
nsm×nsm kernel matrix between all m hidden units at all s time-steps in all n training epochs. The
((τ − 1)sm + (ω − 1)m + j)th row or column of K refers to the jth unit at time-step w in epoch
τ . We henceforth refer to the row as K((τ, ω, j), :) and the column as K(:, (τ, ω, j)). In order
to capture the evolution of hidden units of R across time-steps and epochs, while preserving the
unit’s community structure, we construct a multiway multislice kernel matrix reflecting two types
of connections simultaneously. Given the α-decay parameter α, the intrastep bandwidth for unit i at
time-step w and epoch τ : σ(τ,ω,i), and the fixed interstep bandwidth ϵ, we define:
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• Intrastep affinities between hidden units i and j at time-step ω in epoch τ :

K
(τ,ω)
intrastep(i, j) = exp(− ∥ T (τ, ω, i)− T (τ, ω, j) ∥α2 /σα

(τ,ω,i))

• Interstep affinities between a hidden unit i and itself at different time-steps and epochs:

K
(i)
interstep((τ, ω), (η, ν)) = exp(− ∥ T (τ, ω, i)− T (η, ν, i) ∥22 /ϵ2)

The bandwidth σ(τ,ω,i) of the α-decay kernel is set to be the distance of unit i at time-step w
from epoch n to its k-th nearest neighbor across units at that time-step and epoch: σ(τ,ω,i) =
dk(T (τ, ω, i),T (τ, ω, :)), where dk(z, Z) denotes the ℓ2 distance from z to its k-th nearest neigh-
bor in Z. We used k = 5 in all the results presented. The use of this adaptive bandwidth means the
kernel is not symmetric and thus requires symmetrization. In the interstep affinities K

(i)
interstep, we

use a fixed-bandwidth Gaussian kernel ϵ = 1
nsm

∑n
τ=1

∑s
ω=1

∑m
i=1 dk(T (τ, ω, i),T (:, :, i)), the

average across all time-steps in all epochs and all units of the distance of unit i at time-step t to its
kth nearest neighbor among the set consisting of the same unit i at all steps.

The combined kernel matrix of these two matrices contains one row and column for each unit at
each time-step in each epoch, such that the intrastep affinities form a block diagonal matrix and the
interstep affinities form off-diagonal blocks composed of diagonal matrices (Fig. 1a, 1b).

K((τ, ω, i), (η, ν, j)) =


K

(τ,ω)
intrastep(i, j) if (τ, ω) = (η, ν)

K
(i)
interstep((τ, ω), (η, ν)) if i = j

0 otherwise

We symmetrize this final kernel as K ′ = 1
2 (K+KT ), and row-normalize it to obtain P = D−1K ′,

where D is a diagonal matrix whose entries are row sums of K ′ and which P represents a random
walk over all units at all time-steps in all epochs, where propagating from one state to another is
conditional on the transition probabilities between time-step ω in epoch τ and time-step ν in epoch
η. PHATE is applied to P to visualize the tensor T in two or three dimensions. This resulting
visualization thus simultaneously captures information regarding the evolution of the units across
both time-steps and epochs.

(a) (b)

Figure 1: Example schematic of the multiway multislice graph (a) and kernel (b) used in MM-
PHATE for RNNs. The intrastep kernels represent the similarities between the graph nodes at the
same time-steps. The interstep kernels represent the similarities between the nodes and themselves
at different time-steps and epochs.

5 RESULTS

We demonstrate the ability of MM-PHATE to capture useful properties of RNN learning on two
datasets: 1) The Area2Bump dataset (Chowdhury et al., 2022) consisting of neural activity recorded
from Brodmann’s area 2 of the somatosensory cortex while macaque monkeys performed a slightly
modified version of a standard center-out reaching task and 2) The Human Activity Recognition
(HAR) Using Smartphones dataset (Reyes-Ortiz et al., 2012), kinematic recordings of 30 subjects
performing daily living activities with a smartphone embedded with an inertial measurement unit.
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5.1 NEURAL ACTIVITY

We begin with the Area2Bump dataset, which consists of spiking activity data from
macaques (Chowdhury et al., 2022). We trained an LSTM network comprised of a single layer
of 20 units to classify the direction of arm-reaching movements, and applied MM-PHATE to vi-
sualize the learning of the LSTM. In an example session where our network achieved a validation
accuracy of 74%, we applied the MM-PHATE visualization to the tensor T that consisted of the
network activations of all 20 units over 600 time-steps for each of 200 training epochs. In practice,
we sampled time-steps and epochs to reduce memory load. Each point in the visualization repre-
sents a hidden unit at a given time-step in a given epoch (Fig. 2). Through this visualization, we
observed a smooth transition of the hidden states across both time-steps and epochs, reflecting the
dynamic changes in the network’s internal representations throughout training. Here we compare
MM-PHATE to three other dimensionality reduction techniques: PCA, t-SNE, and Isomap, and we
compare to M-PHATE in the supplement (Fig. S1), using the same T tensor. We first flattened T
along the epoch, time-step, and unit axis, and embedded it with each of the dimensionality reduction
methods. Notably, the MM-PHATE visualization reveals a distinct split in representations during the
later time-steps and epochs, highlighting unique learning patterns as the model converges—patterns
that are not discernible with other methods. PCA and Isomap, while showing a seemingly smooth
transition, do not show distinct differences between the early and late epochs, failing to capture how
the representation transforms during learning. On the other hand, t-SNE resulted in a visualization
that lacked smooth transitions across time-steps and epochs, possibly due to its sensitivity to noise.

Figure 2: Area2Bump: Visualization of a 20-unit LSTM network trained for 200 epochs. The visual-
izations are generated using MM-PHATE, PCA, t-SNE, and Isomap, from left to right, respectively.
Points are colored based on epoch (top row) or time-step (bottom-row).

5.1.1 INTRA-STEP ENTROPY

To evaluate the effectiveness of our embedding in capturing meaningful structures within the net-
work’s hidden dynamics, we next analyzed the flow of information during training (Fig. 3). Specif-
ically, we aimed to analyze the spread of points in the MM-PHATE space, which corresponds to
the diversity of the internal representations of the network. To quantify this property, we com-
puted the entropy between hidden units in the embedded space at each time-step ω and compared
these intra-step entropies with the accuracy and loss metrics recorded at the end of each training
epoch. Conceptually, we model a general RNN trained on dataset X with label L as a Markov
chain (L → X → R). This allows us to compute the mutual information between X and R as
I(X,R) = H(R) − H(R|X), where H(R) and H(R|X) are the marginal and conditional en-
tropies. Given the deterministic nature of RNNs, H(R|X) equates to zero, indicating that H(R)
at each time-step ω reflects the input information the network retains during training (Tishby &
Zaslavsky, 2015; Cheng et al., 2019).

Our analysis of the MM-PHATE embedding revealed a general increase in the entropy (Fig. 3) that
aligns with the training epoch where the network begins to overfit (approximately epoch 100). We
hypothesize that this increase may be due to memorization of noise or other nuisance variance in
the training data. The observed changes in entropy at specific time-steps and epochs coincided with
shifts in model performance throughout the training. This suggests that our algorithm successfully
captures and retains dynamical information critical for the model’s learning process. Notably, tran-
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Figure 3: Intra-step entropy of all hidden units in embedding space at each time-step in each epoch,
compared to training and validation accuracy (top) and losses (bottom), comparing embeddings of
MM-PHATE, PCA, t-SNE, and Isomap.

sitions in validation accuracy are not always reflected in changes in the training loss curve, e.g.,
fluctuation of validation accuracy curve before epoch 30 cannot be observed in the training loss
(Fig. 3). The MM-PHATE embedding, however, successfully identified relevant transitions coin-
ciding with shifts in both performance measures, thus offering insights beyond those provided by
accuracy and loss functions alone. Moreover, the MM-PHATE embedding reveals details on in-
formation processing through time-steps. This is not the case for the loss and accuracy metrics,
which are measured once per epoch. With MM-PHATE, we obtain intra-step entropy plots for each
time-step, and can thus compared dynamics across them. Notably, we observe diverging patterns
between the entropy of earlier and later time steps. In this network, earlier time steps’ entropy in-
creases and plateaus around epoch 100, while later time steps mimic a spiking activity around that
epoch, eventually returning back to the entropy value they had in earlier epochs. While the effects
of these diverging patterns remains uncertain, MM-PHATE clearly offers additional insights into the
model’s dynamics.

We performed the same intra-step entropy analysis on other methods (Fig. 3). PCA failed to cap-
ture the critical dynamics associated with early subtle changes in model performance, likely due to
its linear nature and emphasis on the data’s global structures. Similarly, Isomap failed to capture
significant dynamics related to performance changes before the onset of overfitting. Although both
PCA and Isomap exhibited a rise in entropy, this increase occurred after the loss had plateaued.
In contrast, MM-PHATE demonstrated an earlier rise in entropy, aligning with the transition into
the plateau and thus more accurately capturing the underlying dynamics. On the other hand, t-SNE
struggled to identify the increase in retained information corresponding to model overfitting and was
generally inadequate in capturing the global structural dynamics evident in other techniques.

Intra-step entropy reflects how much input information the network retains during training. As the
model is trained and its latent representations evolve, intra-step entropy should change accordingly.
MM-PHATE clearly shows these changes in the first 100 training epochs, aligning with changes
in validation accuracy, whereas traditional methods do not exhibit such responsiveness. Moreover,
as the model converges, the latent representations and intra-step entropy should stabilize. In later
epochs, only MM-PHATE demonstrates this desired stabilization, unlike PCA, t-SNE, and Isomap.
Moreover, each time step in the input contains different information, leading the network to learn in
a unique manner at each step. Consequently, intra-step entropy should vary across time steps. MM-
PHATE effectively captures this variation, while PCA and Isomap show uniform entropy changes,
failing to reflect the unique learning dynamics across time steps.

5.1.2 INTER-STEP ENTROPY

To further assess the quality of our embedding, we quantified the inter-step entropy of hidden unit
activations across various time-steps ω (Fig. 4a). This metric measures the entropy between a unit’s
activations at different time-steps, providing insights into the temporal dynamics of each hidden unit.
Our analysis identified distinct patterns among the hidden units. Notably, certain units exhibited
significantly higher inter-step entropy, indicative of higher sensitivity to input changes over time
and their potential role in capturing complex dependencies. These units peaked around epoch 80,
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aligning with the peak in intra-step entropy at later time-steps. This suggests that these units are
largely responsible for the increase in mutual information at these time-steps.

Figure 4: a) Inter-step entropy of each hidden unit across epochs, alongside model accuracy (left)
and loss (right). b) Clusters of hidden units from the model’s inter-step entropy trajectories across
epochs. Left: Trajectories of the units in cluster 0 (12 units) and cluster 1 (8 units). Right: cluster
center trajectories across epochs. c-d) Confusion matrices of clusters on training and validation data.

To validate the insights from our entropy analyses and confirm the significance of the units’ distinct
learning behaviors with respect to the learned representation and model performance, we clustered
the hidden units into 2 groups, expecting one group to showcase the higher inter-step entropy. We
then analyzed each group’s specific properties. For clustering, we used k-means clustering with the
Dynamic Time Warping (DTW) metric to group the hidden units into clusters based on their inter-
step entropy trajectories (Fig. 4b). DTW determines an optimal match between two time series,
making it more suitable as a distance metric for our sequence data. Clustering revealed distinct
trends in inter-step entropy trajectories across epochs. Cluster 1 (8 units) corresponds to the units
previously identified as exhibiting higher inter-step entropy, and units in cluster 0 (12 units) showed
a sharp decrease in inter-step entropy around epoch 100. Following the clustering, we built new
networks comprised of the post-training weighted units contained in one particular cluster, forming
two sub-networks of the original network architecture to analyze their learning capabilities. By
computing confusion matrices for each sub-network and comparing their predictive performance on
both training and validation data, we assessed the quality of their learned representation (Fig. 4c-d).
Interestingly, despite having fewer units, cluster 1 performed significantly better with both training
and validation data. This outcome aligns with our previous prediction, where cluster 1 was identified
as learning more complex dependencies from the input. This differential learning capability between
clusters demonstrates the utility of our visualization and clustering approach in revealing critical
differences in how information is processed and represented within the network.

Previous studies have indicated that the clustering property of hidden unit activation is crucial for
understanding the quality of the learned representation (Su & Shlizerman, 2020; Oliva & Lago-
Fernández, 2021; Ming et al., 2017). Our findings affirm the importance of capturing each unit’s
temporal dynamics, their community structure, as well as the evolution of these structures across
time-steps and epochs.

Comparisons with other dimensionality reduction techniques highlighted their limitations (Fig. S8).
PCA and Isomap failed to capture subtle dynamic variations, particularly in early epochs before the
onset of overfitting. t-SNE displayed a general trend corresponding to each performance transition,
however, the trajectories are noisy. More importantly, all these methods failed to differentiate indi-
vidual units’ learning behavior or to capture their community structure effectively. This emphasizes
the superior performance of MM-PHATE in maintaining the integrity of the hidden dynamics.

In the supplemental material section, we present results for different RNN architectures, namely
GRU (D.2) and Vanilla RNN (D.3), both with 20 hidden units. Using the Area2Bump dataset, we
additionally tried different LSTM sizes (10, 20, 30, 40, 50) (D.4). We observed consistent visualiza-
tions when varying network size. Changing the learning rate helped confirm that the visualization
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indeed reflects the model learning, i.e. the resulting change of entropies should always follow the
change of model performance.

5.2 ANALYSIS WITH HUMAN ACTIVITY RECOGNITION MODEL

We next considered an action recognition dataset. We trained 30-unit LSTM network designed for
kinematics-based Human Activity Recognition (HAR) (Reyes-Ortiz et al., 2012). The model was
trained for 1000 epochs, achieving a final validation accuracy of 84% (Fig. 5). We applied MM-
PHATE to the tensor of hidden unit activations and repeated our analysis as in the Area2Bump
dataset. Similar to the patterns observed in the Area2Bump LSTM network, the HAR network dis-
played an increase in intra-step entropy with the onset of overfitting. Particularly noteworthy was the
gradual increase in entropy across time-steps before epoch 300. However, after this epoch, entropy
at later time-steps significantly dropped, while entropy at early time-steps remained stable through-
out the training epochs. This indicates a reduction in mutual information between the input and
the hidden states as the model processed more input over time. This behavior aligns with findings
by Farrell et al. (2022), who reported similar dynamics of information expansion and compression
across time-steps in trained RNNs. Their results further elucidated how gradient-based learning
mechanisms contribute to the development of robust representations by balancing these processes
of expansion and compression.

Further insights were gained from the inter-step entropy analysis, which indicated that the entropy of
many hidden units began to rise significantly around epoch 300, coinciding with a decrease in intra-
step entropy and an improvement in model performance. As previously discussed, high inter-step
entropy indicates that the units are more sensitive to changes in input across time and may be crucial
for the model to learn complex dependencies. This observation also implies that despite the increase
in time-dependent information retained by many hidden units, the network successfully compresses
this information in its overall learned representation across epochs. Such compression seems ben-
eficial to model performance and aligns with the principles in information bottleneck theory. This
theory states that deep network learning involves a fitting phase followed by a compression phase,
during which useful information is distilled from the input to enhance generalization (Cheng et al.,
2019; Tishby & Zaslavsky, 2015; Butakov et al., 2023).

Building on the discussion of information compression in the HAR model, it is pertinent to question
why the Area2Bump model does not exhibit a similar compression phase. Cheng et al. Cheng et al.
(2019) suggest that models with insufficient generalizability often fail to demonstrate a compres-
sion phase in practice, especially when applied to complex datasets with relatively simple network
architectures. Given that our models have comparable structures, we investigated the complexity of
the two datasets by analyzing the number of principal components (PCs) required to explain 95% of
the variance. We find that the Area2Bump data is significantly more complex than the HAR data,
necessitating 35 PCs compared to only 6 for the HAR data (Fig. 6). This difference in complexity
likely accounts for the absence of a noticeable compression phase in the Area2Bump model.

Figure 5: a) MM-PHATE visualization of a 30-unit LSTM network trained on HAR data, colored
by epoch (left) and time-step (right). b) Intra-step entropy, c) and inter-step entropy.

Our analysis demonstrates that information compression occurs across both time-steps and epochs in
RNNs, closely aligning with performance improvements. These results affirm the practical utility of
the information bottleneck theory in RNNs and confirm that MM-PHATE effectively reveals detailed
insights into the model’s hidden representation and its evolution. Further research should investigate
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the implications and interactions of various compression dynamics in RNNs, which could lead to
more robust and generalizable network architectures.

Figure 6: PCA on the 2 datasets. The Area2Bump data requires 35 PCs (left) to cover 95% of the
variance. The HAR data (right) requires 6 PCs to cover 95% of variance.

6 CONCLUSION

In this paper, we introduced MM-PHATE, a novel dimensionality reduction technique designed
to visualize the hidden dynamics of RNNs during training. MM-PHATE captures the evolution
of these dynamics across both time-steps and epochs, offering insights beyond traditional metrics
like accuracy and loss curves, as well as other commonly used dimensionality reduction methods.
Our entropy-based analysis demonstrates that MM-PHATE can reveal distinct learning behaviors
and the roles of hidden units in information flow, aligning with principles from the information
bottleneck theory. This approach is especially valuable in data-limited settings, as it does not rely
on external validation data. Moreover, we demonstrate the utility of analyzing the hidden state
dynamics throughout the model’s learning trajectory, which provides deeper insights into the internal
learning processes and the evolving structure of the representation space, facilitating a more nuanced
understanding of how the model captures and processes information over time.

Despite its strengths, our approach rests on several assumptions. Notably, we assume continu-
ity in time and over epochs, as encoded in the structured graph kernel. This assumption may be
violated in cases involving large learning rates, multiple significant restarts, or discontinuous acti-
vation functions, which could result in less informative visualizations. While these scenarios are
not commonly explored in the literature, and PHATE has been proven to be robust against sub-
sampling of data points, their impact should be considered (Moon et al., 2019). Additionally, while
MM-PHATE is based on a computationally efficient implementation of PHATE that has shown
better efficiency than traditional dimensionality reduction methods, the memory complexity of the
multiway-multislice kernel introduces a bottleneck in scalability for larger architectures or datasets.
Future work could address this by developing methods for sub-sampling the kernel or utilizing more
memory-efficient algorithms without compromising the overall structure (Holtz et al., 2022), such
as graph partitioning and merging of data points used by Kuchroo et al. (2022) in their Multiscale
PHATE. Moreover, MM-PHATE does not currently leverage the internal structure of RNNs, such as
attention mechanisms present in transformers (Vaswani et al., 2017). Future research will explore
extending MM-PHATE to analyze transformers, which are increasingly dominant in sequential data
analysis. However, RNNs remain valuable across various fields (Deo et al., 2024), especially when
working with limited datasets where transformers may not be practical. Thus, while MM-PHATE
is built for RNNs, its future adaptations could provide deeper insights into transformer architectures
and their hidden dynamics.
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Ronald R. Coifman and Stéphane Lafon. Diffusion maps. Applied and Computational Harmonic
Analysis, 21(1):5–30, July 2006. ISSN 10635203. doi: 10.1016/j.acha.2006.04.006.

Darrel R. Deo, Francis R. Willett, Donald T. Avansino, Leigh R. Hochberg, Jaimie M. Hen-
derson, and Krishna V. Shenoy. Brain control of bimanual movement enabled by re-
current neural networks. Scientific Reports, 14(1):1598, January 2024. ISSN 2045-
2322. doi: 10.1038/s41598-024-51617-3. URL https://www.nature.com/articles/
s41598-024-51617-3.

Matthew Farrell, Stefano Recanatesi, Timothy Moore, Guillaume Lajoie, and Eric Shea-Brown.
Gradient-based learning drives robust representations in recurrent neural networks by balancing
compression and expansion. Nature Machine Intelligence, 4(6):564–573, June 2022. ISSN 2522-
5839. doi: 10.1038/s42256-022-00498-0.

Scott Gigante, Adam S. Charles, Smita Krishnaswamy, and Gal Mishne. Visualizing the
PHATE of neural networks, August 2019. URL http://arxiv.org/abs/1908.02831.
arXiv:1908.02831 [cs, stat].

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k, Bas R. Steunebrink, and Jürgen Schmidhuber.
LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems,
28(10):2222–2232, October 2017. ISSN 2162-237X, 2162-2388. doi: 10.1109/TNNLS.2016.
2582924. arXiv:1503.04069 [cs].

Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks for time
series forecasting: Current status and future directions. International Journal of Forecasting, 37
(1):388–427, January 2021. ISSN 01692070. doi: 10.1016/j.ijforecast.2020.06.008.

Akinori Hidaka and Takio Kurita. Consecutive dimensionality reduction by canonical correlation
analysis for visualization of convolutional neural networks. In Proceedings of the ISCIE interna-
tional symposium on stochastic systems theory and its applications, volume 2017, pp. 160–167.
The ISCIE Symposium on Stochastic Systems Theory and Its Applications, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Lstm can solve hard long time lag problems. Advances
in neural information processing systems, 9, 1996.

Chester Holtz, Gal Mishne, and Alexander Cloninger. Evaluating disentanglement in generative
models without knowledge of latent factors. In Topological, Algebraic and Geometric Learning
Workshops 2022, pp. 161–171. PMLR, 2022.

Chang Woo Hong, Changmin Lee, Kwangsuk Lee, Min-Seung Ko, Dae Eun Kim, and Kyeon Hur.
Remaining useful life prognosis for turbofan engine using explainable deep neural networks with
dimensionality reduction. Sensors, 20(22):6626, 2020.

11

http://arxiv.org/abs/2305.08013
https://ieeexplore.ieee.org/document/9696155/
https://ieeexplore.ieee.org/document/9696155/
https://doi.org/10.5061/dryad.nk98sf7q7
https://doi.org/10.5061/dryad.nk98sf7q7
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
https://www.nature.com/articles/s41598-024-51617-3
https://www.nature.com/articles/s41598-024-51617-3
http://arxiv.org/abs/1908.02831


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding recurrent networks,
November 2015. URL http://arxiv.org/abs/1506.02078. arXiv:1506.02078 [cs].

Manjot Kaur and Aakash Mohta. A review of deep learning with recurrent neural network.
In 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT), pp.
460–465, Tirunelveli, India, November 2019. IEEE. ISBN 978-1-72812-119-2. doi: 10.
1109/ICSSIT46314.2019.8987837. URL https://ieeexplore.ieee.org/document/
8987837/.
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A DATASETS

We employed two datasets.

1. The Area2Bump dataset (Chowdhury et al., 2022) consists of neural activity recorded from
Brodmann’s area 2 of the somatosensory cortex while macaque monkeys performed a
slightly modified version of a standard center-out reaching task. Dataset license: CC0
1.0. According to the authors, data was collected consistently ”with the guide for the care
and use of laboratory animals and approved by the institutional animal care and use com-
mittee of Northwestern University under protocol #IS00000367”. This dataset, collected
from monkeys thus does not contain personally identifiable information. Since it is neural
data, we do not consider it to be offensive content.
Data Statistics: The dataset includes 193 samples, split into 115 training samples and 78
testing samples. Each sample consists of 600 time steps with 65 features per time step. For
the training set, the mean values across features range from 0.0001 to 0.03, with standard
deviations between 0.001 and 0.02, and maximum values ranging from 0.003 to 0.12. In
the test set, the mean values range from 0.00008 to 0.03, standard deviations from 0.0007
to 0.018, and maximum values from 0.0007 to 0.13.

2. The Human Activity Recognition (HAR) Using Smartphones dataset (Reyes-Ortiz et al.,
2012), kinematic recordings of 30 subjects performing daily living activities with a smart-
phone embedded with an inertial measurement unit. Dataset license: CC BY 4.0. Infor-
mation relating to participant consent was not found relating to this dataset. This dataset
does not reveal participant name or identifiable information. The kinematics contained in
the dataset are not considered offensive content.
Data Details: The dataset includes six activity classes (e.g., Walking, Sitting) based on ac-
celerometer and gyroscope data sampled at 50 Hz. The sensor data has been pre-processed
with noise filtering and separated into gravitational and body motion components. Data is
windowed into 2.56-second segments (128 data points) with 50% overlap, resulting in 561-
dimensional feature vectors per window. The dataset is split into 70% training (21 subjects,
7352 samples) and 30% testing (9 subjects, 2947 samples).
Data Statistics: For the training set, mean values across features range from -0.0008 to 0.8,
with standard deviations between 0.1 and 0.41, and values spanning from -5.97 to 5.75. For
the test set, mean values range from -0.013 to 0.8, with standard deviations between 0.095
and 0.41, and values spanning from -3.43 to 3.47.

B MODEL TRAINING

We used TensorFlow’s Keras API for all models training and validation.

The network in Section 5.1 was trained as follows. The Area2Bump dataset was randomly split
into training and validation subsets containing an equal number of samples for each input class with
an 8 to 2 ratio. Additional samples that would make the training data uneven were added back to
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the validation subset to make use of all samples. The network consists of an LSTM layer with 20
units. This is followed by a Flatten layer that converts the LSTM’s output into a one-dimensional
vector. Finally, a Dense layer with 8 units and a softmax activation function produces the output for
the 8-class classification tasks. The network was trained with a batch size of 64. We used an Adam
optimizer with a learning rate of 1e−4. During the training process, we recorded the activations from
the LSTM layer into the activation tensor T for visualization.

The network in Section 5.2 was trained as follows. The HAR dataset was preprocessed and split
by the authors into training and validation subsets according to the subjects with a 7 to 3 ratio. The
network consists of an LSTM layer with 30 units and a Dense layer with 6 units and a softmax
activation function produces the output for the 6-class classification tasks. The network was trained
with a batch size of 32. We used an Adam optimizer with a learning rate of 2e−5. During the
training process, we recorded the activations from the LSTM layer into the activation tensor T for
visualization.

C IMPLEMENTATION OF VISUALIZATION METHODS

C.1 MM-PHATE

Due to memory constraints, we only used a subset of the tensor T for MM-PHATE computation.
Specifically, for the Area2Bump model in section 5.1, epochs were sampled using an array combin-
ing the first 29 epochs with every 5th epoch thereafter to cover the initial rapid learning phase, and
intrinsic steps were sampled using a linear space from 0 to the end (600), resulting in 100 evenly
spaced steps. For the HAR model in section 5.2, we sampled the epochs using an array combining
the first 29 epochs with every 10th epoch thereafter. We utilized the M-PHATE package to construct
our multiway multislice graphs and for the application of PHATE.

C.2 PCA

PCA was performed using the ”PCA” class from the ”sklearn.decomposition” package to reduce the
dimensionality of the time trace tensor T—recorded during training of the Area2Bump model—to
three principal components.

C.3 T-SNE

In this analysis, we first conducted an initial dimensionality reduction on the same time trace
tensor T with PCA to 15 principle components, which explains 99.93% of the variance in the
activations. Subsequently, t-SNE with the Barnes-Hut approximation was performed using the
”sklearn.manifold.TSNE” class.

C.4 ISOMAP

Due to memory constraints, we only used a subset of the tensor T for Isomap computation. Specif-
ically, epochs were sampled using an array combining the first 29 epochs with every 10th epoch
thereafter, and intrinsic steps were sampled using a linear space from 0 to the end (600), resulting
in 50 evenly spaced steps. We first conducted an initial dimensionality reduction on the sampled
tensor with PCA to 15 principle components using ”sklearn.decomposition.PCA” package. Then,
we applied Isomap using ”sklearn.manifold.Isomap” class to reduce the dimensionality to 3.

D ADDITIONAL EXPERIMENTS

D.1 M-PHATE

M-PHATE was applied to the same 20-unit LSTM network trained on the Area2Bump dataset. The
algorithm only incorporated the final state, or time-step, from each epoch. While the resulting
visualization captures smooth transitions across epochs, it omits critical information from earlier
time-steps. This loss of temporal resolution obscures insights into how the network processes input
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sequences over time—an essential aspect for understanding RNNs, for instance, how much sequen-
tial input information is retained by the network.

Figure S1: M-PHATE on Area2Bump LSTM: Visualization of a 20-unit LSTM network trained for
200 epochs. Each point represents a hidden unit at the last time-step in a given epoch throughout the
entire training process. The points are colored based on epoch (left) or hidden unit (right).

D.2 AREA2BUMP WITH GRU

Here is the same analysis as section 5.1 using GRU (Fig. S2, S3, S4). Other parameters were kept
the same.

From these figures, it is evident that PCA and t-SNE present similar visualizations of the hidden
dynamics across different network architectures, while MM-PHATE distinctly captures the unique
learning behaviors of each model. Consistent with Section 5.1, PCA displays an increasing intra-
step entropy even after model accuracy has plateaued, and t-SNE produces a noisy visualization.
In contrast, MM-PHATE uniquely aligns its transitions well with the learning curve. Notably, the
GRU model’s representation appears more compact and organized compared to the LSTM model,
potentially reflecting its superior performance and reduced overfitting.

Figure S2: Area2Bump GRU: Visualization of a 20-unit GRU network trained for 200 epochs. Each
point represents a hidden unit at a specific time-step in a given epoch throughout the entire training
process. The visualizations are generated using MM-PHATE, PCA, and t-SNE, from left to right,
respectively. Points are colored based on epoch (top row) or time-step (bottom-row)
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Figure S3: Area2Bump GRU: Intra-step entropy of all hidden units in embedding space at each
time-step in each epoch, compared to training and validation accuracy (top) and losses (bottom),
comparing embeddings of MM-PHATE, PCA, and t-SNE.

Figure S4: Area2Bump GRU: Inter-step entropy of all hidden units in embedding space of the
Area2Bump model at each time-step in each epoch, compared to training and accuracies (top) and
losses (bottom). From left to right, the dimensionality reduction metrics used are MM-PHATE,
PCA, and t-SNE.
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D.3 AREA2BUMP WITH VANILLA RNN

Here is the same analysis as section 5.1 using vanilla RNN (Fig. S5, S6, S7). Other parameters were
kept the same.

From these figures, it is evident that regardless of the network architectures, PCA exhibits a re-
volving pattern with overly smooth transitions across epochs, while t-SNE produces a noisy visu-
alization. In contrast, the MM-PHATE visualization reveals that the Vanilla RNN displays a more
chaotic pattern compared to the LSTM and GRU models, which is likely associated with its reduced
performance and increased overfitting. Furthermore, the intra-step entropies of MM-PHATE show
reduced variation across time-steps, indicating that the model struggles to process the input data
effectively to generate meaningful representations.

Figure S5: Area2Bump Vanilla: Visualization of a 20-unit Vanilla RNN trained for 200 epochs.
Each point represents a hidden unit at a specific time-step in a given epoch throughout the entire
training process. The visualizations are generated using MM-PHATE, PCA, and t-SNE, from left to
right, respectively. Points are colored based on epoch (top row) or time-step (bottom-row)

Figure S6: Area2Bump Vanilla: Intra-step entropy of all hidden units in embedding space at each
time-step in each epoch, compared to training and validation accuracy (top) and losses (bottom),
comparing embeddings of MM-PHATE, PCA, and t-SNE.

D.4 AREA2BUMP WITH LSTM OF VARIOUS SIZES

Here we repeat the same MM-PHATE analysis as in section 5.1 using LSTM of various sizes
(Fig. S9, S10, S11). Other parameters were kept the same. These results demonstrate that MM-
PHATE consistently captures smooth yet distinct transitions across epochs and time steps, regard-
less of the LSTM network size. The intra- and inter-step entropy analyses further reveal that these
transitions closely correlate with performance changes throughout training. Specifically, we observe
a general increase in intra-step entropy as models begin to overfit, suggesting that the networks in-
creasingly memorize input information. In contrast, inter-step entropy shows a significant decline
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Figure S7: Area2Bump Vanilla: Inter-step entropy of all hidden units in embedding space of the
Area2Bump model at each time-step in each epoch, compared to training and accuracies (top) and
losses (bottom). From left to right, the dimensionality reduction metrics used are MM-PHATE,
PCA, and t-SNE.

Figure S8: Area2Bump: Inter-step entropy of all hidden units in embedding space of the Area2Bump
model at each time-step in each epoch, compared to training and accuracies (top) and losses (bot-
tom). From left to right, the dimensionality reduction metrics used are MM-PHATE, PCA, t-SNE,
and Isomap.
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as overfitting progresses, reflecting a loss of sensitivity to input changes over time. The loss curve
shows worse overfitting as the network size increases, and the networks’ inter-step entropy becomes
less structured.

Figure S9: Area2Bump LSTM: MM-PHATE visualization of networks of size 10 to 50 (left to right).
Each point represents a hidden unit at a specific time-step in a given epoch. Points are colored based
on epoch (top) or timestep (bottom).

Figure S10: Area2Bump LSTM: Intra-step entropy of all hidden units in MM-PHATE embedding
space at each time-step in each epoch, compared to accuracies (top) and losses (bottom). Network
sizes range from 10 to 50 (left to right).

Figure S11: Area2Bump LSTM: Inter-step entropy of all hidden units in MM-PHATE embedding
space of the Area2Bump model at each time-step for each unit in each epoch, compared to accuracies
(top) and losses (bottom). Network sizes range from 10 to 50 (left to right).
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E COMPUTING INFRASTRUCTURE

All but the t-SNE computation was done on a 14-core laptop running Windows 11 Home with a
NVIDIA GeForce RTX 3070 Ti Laptop graphics card and 40GB of RAM. The t-SNE was done on
a single 95-core internal cluster running Ubuntu 18.04.6 LTS with 10 Quadro RTX 5000 graphics
cards and 755GB of RAM.

F MATHEMATICAL NOTATIONS

Notation Definition
x Point in high dimensional space
E Euclidean distance matrix between all data points x
K Affinity kernel matrix

ϵk(xi) k-nearest-neighbor distance of xi

α Parameter controlling the decay rate
P Diffusion operator
D Diagonal matrix of row sums of K
P t Transition probabilities of a diffusion process over t steps
n Total number of epochs the network is trained for
F Feed-forward neural network
m Total number of hidden units in the network
X Training data, subset of Π
Π Larger dataset
T Activation tensor
Y Input data, subset of X with equal number of samples per class
p Number of samples in Y

K
(τ)
intraslice(i, j) Intraslice affinities between pairs of hidden units within an epoch τ

K
(i)
interslice(τ, υ) Interslice affinities between a hidden unit i and itself at different epochs
σ(τ,i) Intraslice bandwidth for unit i in epoch τ
ϵ Fixed interslice bandwidth
τ Index for given epoch
i, j Index for given hidden unit
ht RNN hidden state at time step t
W RNN weights
b RNN biases
yt RNN output at time step t
f RNN activation function
R Recurrent neural network
w Index for given time step
s Total number of time steps in the RNN

K
(τ,ω)
intrastep(i, j) Intrastep affinities between hidden units i and j at time-step ω in epoch τ

K
(i)
interstep((τ, ω), (η, ν)) Interstep affinities between a hidden unit i and itself at different time-steps and epochs

σ(τ,ω,i) Intrastep bandwidth for unit i at time-step w and epoch τ
k Number of nearest neighbors
L Labels of X

Table 1: Notations
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