Speeding up Speculative Decoding via Sequential Approximate Verification

Meiyu Zhong ! Noel Teku“' Ravi Tandon '

Abstract

Speculative Decoding (SD) is a recently proposed
technique for faster inference using Large Lan-
guage Models (LLMs). SD operates by using
a smaller draft LLM for autoregressively gener-
ating a sequence of tokens and a larger target
LLM for parallel verification to ensure statisti-
cal consistency. However, periodic parallel calls
to the target LLM for verification prevent SD
from achieving even lower latencies. We propose
SPRINTER, which utilizes a low-complexity veri-
fier trained to predict if tokens generated from a
draft LLM would be accepted by the target LLM.
By performing sequential approximate verifica-
tion, SPRINTER does not require verification by
the target LLM and is only invoked when a to-
ken is deemed unacceptable. This reduces the
number of calls to the larger LLM, achieving fur-
ther speedups and lower computation cost. We
present a theoretical analysis of SPRINTER, ex-
amining the statistical properties of the generated
tokens, as well as the expected reduction in la-
tency as a function of the verifier. We evaluate
SPRINTER on several datasets and model pairs,
demonstrating that approximate verification can
still maintain high quality generation while fur-
ther reducing latency.

1. Introduction

Large Langauge Models (LLMs) have shown to be very
effective in different applications including text generation
(Zingale & Kalita, 2024), image analysis (Niu et al., 2024),
and video understanding (Tang et al., 2024). However, de-
spite this success, LLM-based solutions for various problem
domains are still constrained by high computational costs

“Equal contribution 'Department of Electrical and Computer
Engineering, University of Arizona, Tucson, US. Correspon-
dence to: Meiyu Zhong <meiyuzhong @arizona.edu>, Noel Teku
<ntekul @arizona.edu>, Ravi Tandon <tandonr@arizona.edu>.

Proceedings of the 3¢ Efficient Systems for Foundation Models
Workshop at the 41°% International Conference on Machine Learn-
ing (ICML), Vancouver, Canada. PMLR 267, 2025. Copyright
2025 by the author(s).

Quality Latency Computation
0.43 0.43 0.92 658
[<> SPRINTER
(a) 0.56 < SD
H 55
ROUGE-2 Time (in ms) Flops (in Billions)
Prefix: In wireless communications, MIMO

In wireless communications, MIMO (Multiple-Input
SD Multiple-Output) is a technique for increasing the Q
(b) capacity of a wireless channel by

In wireless communications, MIMO (Multiple-Input
SPRINTER [Multiple-Output) is a technique for increasing the Q
signal-to-noise ratio (SNR) of

Figure 1. (a) Comparison between SPRINTER and SD with re-
spect to Quality (ROUGE score), Latency (time in ms required to
generate a token) and Computation (number of flops required to
generate 20 consecutive acceptable tokens from the draft model).
SPRINTER can attain comparable quality, 1.64X speedups, and
8X smaller computation costs compared to SD. (b) Example re-
sponses generated via SPRINTER vs SD given the prefix: “In
wireless communications, MIMO”. The response from SPRINTER
is comparable to SD (for more examples, see Section A.7).

incurred during inference due to large model sizes. To en-
able faster inference, Speculative Decoding (SD) (Leviathan
et al., 2023) has been proposed as a solution for reducing
the latencies incurred during the inference of significantly
larger LLMs. Under this paradigm, a smaller draft LLM is
used to autoregressively generate a certain number of tokens.
These tokens are then passed to a larger target LLM, which
processes the tokens in parallel to determine how many of
them are acceptable (i.e. if the distribution of the generated
tokens matches the distribution of what the target model
would have generated). If they are not acceptable, then the
target model is called to generate replacement tokens. By
reducing the amount of times the target model is invoked
for autoregressive generation, less latency is incurred. Thus,
the objective of SD is to incur smaller inference times while
guaranteeing that sampling tokens from the draft model is
equivalent to sampling from the target model. (Mamou et al.,
2024) proposed using a two layer feedforward network to
stop the draft model from generating tokens and initiate the
target model’s verification process, once the output of the
network is less than a threshold. (Huang et al., 2024) models
the SD procedure as a Markov Decision Process and uses the
draft model with a smaller, multi-layer network to predict

Speeding up Speculative Decoding via Sequential Approximate Verification

(a) SPRINTER: sequential approximate verification

prefix

PRy ——

== Verlﬁel
Accept 1!

(b) Speculative Decoding (SD)
Parallel & exact verification

Generate candidate tokens

"L 'iiiii' e
= 2o
Parallel Verification
Targe‘t[T LM Accept/Reject @1 | prefix =(z0) ? Accept
T“f‘l‘l‘thLM |-> Accept/Reject 3 | prefix =(zg,21) ? Accept
Tlrgitj LLM Accept/Reject a5 | prefix =(zg, z1,22) ? Reject

p1 efix —»

o f X
Dtaft’LLM pleﬁx Drait LLM Draft LLM]
A, M, (w0, @ T)
— 40 xo zl L0y L1, T2
ke Vcrlhm
A(cept !

p1 ofix Target LLM

70,T177“z

PR

- ' Reject 3

(¢) Comparison of SD variants with SPRINTER

Distribution Quality Theoretical
Match Evaluation Analysis

SD Exact v v
SpecDec++ Exact - v
DISCO Exact - -
AdaEDL Exact - v
Medusa Exact v -
Eagle2 Exact - -
MentoredDec | Approximate v v
SPRINTER Approximate 4 v

Figure 2. (a) SPRINTER works by generating tokens from a smaller (draft) LLM, which are sequentially accepted/rejected by a verifier, a
low-complexity small classifier. In SPRINTER, the larger (target) LLM is only called if a token is rejected and used only to replace the
rejected token. (b) Speculative decoding (SD) works by generating multiple tokens by the draft model, all of them are verified in parallel
by the target LLM. (c) Comparison of different speculative decoding based mechanisms with respect to three aspects: i) Approximate or
Exact match with the larger LLM (target) probability distribution, ii) Quality Evaluation of Completions and iii) Theoretical Analysis.
SPRINTER is the first framework to provide in-depth analysis of sequential approximate verification; its impact on the quality-vs-latency
tradeoff and provide insights on how to navigate this tradeoff. Additional discussion on related works is presented in Section A.6.

the probability that the current token generated by the draft
model should be accepted. The probability that there is at
least one draft token that should be rejected is subsequently
derived and compared with a threshold to determine if the
target model should be invoked for verification.

Overview of SPRINTER: Running the target model for
parallel verification, even periodically (i.e. after a certain
number of tokens) can still result in significant latencies.
Higher speedups can be attained if the constraint that the
tokens generated by the draft model must match the distribu-
tion of the target model is relaxed. However, we do not want
to deviate too far from the target distribution as this would
increase the likelihood of the draft model generating inaccu-
rate tokens. To balance this tradeoff, we propose SPRINTER,
a sampling technique that uses a low-complexity verifier
that predicts when it is necessary to invoke the target model
to generate a token that replaces the current draft token.
Subsequently, under SPRINTER, verification is performed
sequentially as draft tokens are generated, in contrast to
SD based approaches which perform parallel verification
of multiple draft tokens through the larger LLM, which
requires more computational resources to execute.

In many computational settings, including machine learning
and optimization, the cost of generating a valid solution

can be significantly higher than that of verifying one. This
asymmetry, often referred to as the generation-verification
gap, also provides inspiration for SPRINTER: verifying the
acceptability of a token could be easier than generating a
high quality token from a larger LLM. The verifier used in
this work has a significantly lower complexity compared
to the draft and target LLMs; subsequently, the additional
overhead introduced by training and using it is negligible
(as further evidenced in the results). b) Our approach is
also aligned with observations made in recent works such
as (Bachmann et al., 2025; Melcer et al., 2024), which have
shown that high-quality tokens can still be generated without
necessarily matching the distribution of the larger target
model. Figure 1(a) shows that SPRINTER achieves lower
latency and computational cost while maintaining quality
comparable to that of SD. Figure 1(b) presents example
responses generated by SPRINTER and SD, illustrating that
SPRINTER produces responses of similar quality as SD. We
next summarize the main contributions of this paper.

e SPRINTER framework. We propose SPRINTER, a
framework for achieving faster inference from LLMs
using a pair of (draft (small), target (large)) LLMs
together with the aid of a verifier. The role of the
verifier is to perform approximate verification, i.e., if

Speeding up Speculative Decoding via Sequential Approximate Verification

tokens generated by a draft model would be acceptable
by the larger target LLM. The key motivating factors
and the detailed framework is described in Section 3.

¢ Theoretical Analysis. We present a comprehensive
theoretical analysis in Section 3.1 to show the trade-
offs between quality of generated tokens versus la-
tency speedups and computational savings offered
by SPRINTER. Specifically, we demonstrate how the
ROC curve characteristics (e.g., false-positive and true-
positive rates) of the verifier can be used to balance the
tradeoff between latency and quality. Furthermore, we
discuss strategies to train the verifier and show how the
theoretical results also provide useful design insights.

* Experiments and Validation. We present a compre-
hensive evaluation of SPRINTER on several datasets
and model pairs in Section 4, demonstrating its abil-
ity to reduce latency while requiring significantly less
computation and maintaining high quality. Specif-
ically, Win-tie rate and ROUGE metrics are used
to evaluate the quality of responses generated by
SPRINTER against those generated with SD, indicat-
ing that only minimal quality degradation is experi-
enced. SPRINTER is also shown to outperform target
distribution-preserving SD variants (e.g. Eagle2 (Li
et al.), Medusa (Cai et al., 2024)) in speed and qual-
ity. Furthermore, higher performance improvements
are attained using SPRINTER compared to Mentored
Decoding (Tran-Thien, 2024), which similarly relaxes
the requirement that generated tokens match the target
distribution.

2. Preliminaries on Speculative Decoding (SD)

SD was originally proposed in (Leviathan et al., 2023) as
a novel algorithm for speeding up LLM inference from a
larger target LLM M, through the help of a smaller (faster)
draft LLM M,. p(x) and g(x) represent the probability
distributions we get from M,, and M, respectively for the
next token given a specific prefix (i.e. set of already gen-
erated tokens x;); specifically, we let p(z) and ¢(z) de-
note p(z|prefix) and ¢(x|prefix) respectively. First, given
a prefix, the draft model M, autoregressively generates
~ tokens, where 7 is a hyperparameter chosen by the user.
These sequence of tokens are then passed to the target model
which performs verification of all y candidate completion
sequences in parallel. For the last token x in each sequence,
the target model M), is invoked and it verifies the relation-
ship between ¢(x) and p(x) (see Figure 2 for an example).
If g(z) < p(z), meaning that the probability of the draft
token is within the distribution of the target token, it is
acceptable. However, if a draft token in any one of the
candidate sequences is not accepted, it can still be accepted
p(z).

with probability T otherwise, the target model resamples

1.0

0.4

o
N

True Positive Rate nrp

Vid —— Lm1b-ROC curve (area = 0.90)
4 Wiki-ROC curve (area = 0.80)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate npp

Figure 3. ROC Curve Performance of a trained Verifier (less than
1k parameters) on the Wiki-Summary and LM 1B Datasets with
GPT-Neo-125M as the draft model M, and GPT-Neo-1.3B as the
target model M. Despite being orders of magnitude smaller in
size compared to the draft and target models, the verifier was able
to achieve AU-ROC of 0.8 (respectively 0.9) on the two datasets.

from an alternative distribution given as follows (Leviathan
et al., 2023):

p() = norm(max(0, p(z) — q(2)). (1)

SD ensures that the entire sampling process matches the
distribution of the target LLM. Speculative decoding has
turned out to be powerful in achieving speedups and has
led to a large number of recent papers that have proposed
variations of SD, including works shown in Figure 2(c).
(Mamou et al., 2024) and (Huang et al., 2024), for example,
use a low-complexity classifier to determine when the draft
model should stop generating tokens while ensuring that the
sampled tokens match the distribution of the target model.
(Kim et al., 2024) and (Agrawal et al., 2024) propose heuris-
tics that incur less complexity compared to using a verifier;
however, they are also ensure that the sampled tokens match
the distribution of the target model. We provide a more
detailed discussion on these related works in Section A.6.

3. SPRINTER Framework & Analysis

Before presenting our framework, we first discuss some of
the key motivating factors behind SPRINTER.

Cost of Parallelism. As SD and several variants discussed
in related work attempt to match the target distribution, they
end up invoking the target model which performs paral-
lel verification. While parallelism ensures that the latency
(time) for verifying ~y tokens is equivalent to running the tar-
get model once, one still has to pay the cost of parallelism as
the target model runs y times. As +y increases, the latency re-
duces but the cost of parallelism grows proportionally. This
is the first idea that motivates us to study sequential verifica-
tion; instead of verifying by the target LLM in parallel, we
instead propose approximate verification by a significantly
smaller model (named the verifier) in a sequential manner
as shown in Fig. 2(a). Depending on the quality of the

Speeding up Speculative Decoding via Sequential Approximate Verification

verifier (i.e., false-positive and true-positive rates), we only
call the target LLM if a token is rejected by verifier. Thus,
SPRINTER can achieve the dual benefit of reducing the num-
ber of calls to the target LLM and completely eliminates the
cost of running it in parallel.

As an illustration, Fig. 3 shows the ROC curve of a low-
complexity verifier (with a single layer and less than 1k
training parameters) which was trained to accept/reject to-
kens generated by GPT-Neo-125M (draft model M) and
GPT-Neo-1.3B as the target model M,,. The fact that we
were able to achieve AU-ROC (area under ROC curve) of
0.8 and 0.9 was achievable on LM 1B and Wiki-summaries
datasets first highlights the feasibility of low-complexity
verification (more results are presented in Section 4).

Quality of Smaller Models. Inevitably, if we resort to ap-
proximate verification, we have to give up statistical con-
sistency, i.e., one cannot guarantee a match with the target
LLM distribution. However, statistical consistency alone
may not be a necessary indicator for high quality genera-
tion. For instance, recent works such as Mentored Decoding
(Tran-Thien, 2024) and Judge Decoding (Bachmann et al.,
2025) have shown that even smaller LLMs have generation
capabilities that can be comparable with larger ones. Our
idea behind SPRINTER is to use a smaller trained model
(verifier) which is pipelined with the smaller model for se-
quential verification. It is this interplay between latency, to-
tal computational costs and quality that motivate SPRINTER.
We next describe the framework in detail followed by the
theoretical analysis of SPRINTER.

Algorithm. We now provide an overview of the SPRINTER
sampling process. First, a prefix is fed to the draft model
and a token is sampled with probability ¢(x). The draft
token is then passed to a verifier V' to predict whether or
not the ratio between ¢(z) and p(x) is greater or less than 1.
The verifier can take as input various latent features derived
from the draft model (e.g. embedding of the draft token =,
probability distribution of the LLM’s vocabulary). As there
is flexibility with which features from the draft model can be
extracted, we denote the input to the verifier as s(x, prefix).
An ideal verifier would make the following decision:

2xz) < g

V (s(, prefix)) = {(1) o

- > 1.

If V(s(z, prefix)) = 1, the verifier predicts that the ratio
is less than 1, suggesting that the current token x is ac-
ceptable and that M, should generate the next token. If
V(s(x,prefix)) = 0, the verifier predicts that the ratio is
larger than 1, leading to the rejection of the current token
and indicating that M, should be called. In this scenario,
similar to SD, the draft token can be accepted with probabil-
p(z)

ity % or rejected with probability 1 — @) and replaced

with a token sampled from the revised distribution (1). In
Section 3.2, we provide details on how to train a verifier. We
illustrate the sampling process of SPRINTER in Algorithm
1 (full algorithm is presented in Section A.5) and show the
SPRINTER sampling process in Fig 2(a).

Algorithm 1 SPRINTER
Input: M, M,, V, Prefix, Prediction Threshold 7
Initiate the values
while True do
Update the Prefix
Generate the current token = from M,
Obtain the Verifier’s prediction of the current token
V(s(z, Prefix)) .
if V' (s(z, Prefix)) < 7 then
Break
end if
end while
Invoke M, to verify the last token and re-sample if nec-
essary.

3.1. Theoretical Analysis of SPRINTER

In this Section, we present our theoretical results on
SPRINTER. Through these results, we aim to study the
impact of verifier’s performance on a) the probability distri-
bution of tokens sampled by SPRINTER; b) expected num-
ber of consecutive tokens sampled by SPRINTER before
invoking the target model; c) average latency incurred in the
process as well as the amount of computational savings. All
theoretical results in our paper are derived under the assump-
tion that the verifier operates in an i.i.d. manner. As we
discuss later in this Section, these results also provide prac-
tical design insights for navigating the quality-vs-latency
tradeoffs.

(a) Statistical Analysis of generated tokens. Let us denote
nrp and nrp as the false-positive and true-positive rates of
the verifier, respectively. Specifically, a false positive refers
to the setting if an unacceptable token (i.e., ¢(z)/p(z) > 1)
is deemed acceptable by the verifier. Conversely, a true
positive refers to the scenario if an acceptable token (i.e.,
q(z)/p(x) < 1)is accepted by the verifier. In our first result,
we characterize the distribution of the tokens generated
by SPRINTER. Proof of Theorem 3.1 can be found in the
Appendix A.1.

Theorem 3.1. The probability of a token x being chosen
when running SPRINTER is given as

pserivter (%) = (1 — nep)p(x) + nepq(x), (2)

where npp is the false positive rate of the verifier. Fur-
thermore, the total-variation distance between the tar-
get and SPRINTER distributions is dry(p, psprINTER) =

nFPdTV(p7 Q>~

Speeding up Speculative Decoding via Sequential Approximate Verification

Acceptable tokens

Unacceptable tokens

i

Early rejection

Maximum T
acceptable o
token r Delayed rejection

Figure 4. A draft LLM generates r tokens that are acceptable and subsequent tokens that are unacceptable. If the verifier rejects one of the
first r consecutive tokens, the speedup attained from continuing to accept tokens until the r*" token is lost (i.e. early rejection). If the
verifier continues to accept tokens after the 7" token, it experiences smaller latencies but at the cost of accepting low-quality tokens (i.e.
delayed rejection). Theorem 3.3 characterizes the expected number of generated tokens as a function of nrp and ngp.

Remark 3.2. The false positive rate ngp directly influences
the distribution of SPRINTER and represents how much the
distribution of SPRINTER deviates from the distribution
of the target model. This observation aligns with the intu-
ition that a perfect verifier with ngpp = 0 (i.e. SPRINTER
never samples a token that should be rejected), for example,
this results in psprinteR = p(), effectively matching the
distribution of the target model.

(b) Expected number of generated tokens. We now ana-
lyze the expected number of tokens accepted by the verifier
when using SPRINTER as a function of ngp and nyp. For
this analysis, we consider the scenario illustrated in Fig-
ure 4. Suppose that the ground truth is that given a prefix,
the draft model M, is capable of producing r acceptable
tokens sequentially (in other words, the first r generated
tokens by M, are acceptable, whereas subsequent ones are
unacceptable). Under this ground truth, let us define the
random variable NgprinTER aS the number of consecutive
tokens accepted by the verifier. Assuming that the verifier
makes decisions in an i.i.d. manner, it can exhibit two types
of behavior also shown in Fig. 4:

* Early Rejection: This occurs if the verifier accepts
the first (¢ — 1) tokens but mistakenly predicts that
the 7" token (for ¢« < r) should be rejected, then the
verifier will revert to calling the target model rather
than continuing to enable the draft model to generate
the remaining r — ¢ acceptable tokens. In doing so,
the verifier misses out on experiencing an even greater
latency reduction while still generating high-quality
tokens. This indicates that nyp directly influences the
early rejection caused by SPRINTER.

* Delayed Rejection: On the other hand, it can happen
that the verifier continues to accept more than r tokens.
Specifically, if the verifier first stops at the i** token
(for ¢ > r), then it does not invoke the target model un-
til token ¢, resulting in a higher computational savings
and latency speedups but at the cost of accepting (i —r)

7 Gap <1
=i
S .
Q
)
IS nep = 0.5
s
—
=
D =
&% nep = 0.1
3
2
.:E — np=0.1, r=5
S —— np=0.5, r=5

0.‘5 0.‘6 0.‘7 O.‘E Ot9 ltO
nre

Figure 5. Illustration of expected number of tokens generated by
SPRINTER as a function of true-positive rate (17 p) for two differ-
ent values of nrp when the number of consecutively acceptable
tokens is 7 = 5. We can observe that as long as nrpp < 0.5, the
average number of unacceptable tokens (shown as the “Gap”)
generated by SPRINTER never exceeds 1.

lower quality tokens. This indicates that npp directly

influences the deviation of the statistical distribution
from the target model.

Our next Theorem characterizes the properties of NsprINTER
assuming that r consecutive draft tokens are acceptable.

Theorem 3.3. The probability distribution of the number of
generated tokens is given as:

, (1 — 1<,
P(Nsprivrer = i) = UZP(Ti) .
nrp(nee)'™" (1 —npp) i =

The expected number of generated tokens is given as:

E(Nsprinter) = WIP__UZIT,P 1 ﬁT;FP. ©

The proof of Theorem 3.3 can be found in the Appendix A.2.
To gain more insights from this result, Fig. 5 illustrates the

Speeding up Speculative Decoding via Sequential Approximate Verification

[e S

0.6 f === === e o e

0.5

nep = 0.5

0.4 1

E [TStOp]

nrp = 0.1
0.3 4

— np=0.1, r=5

024 nrp=0.5, r=5

0.5 0.6 0.7 0.8 0.9 1.0
nrp
Figure 6. Illustration of expected stopping time of SPRINTER as
a function of true-positive rate (nrp) for two different values of
nrp when r = 5 and t4 = 0.1. We can again observe that as long
asnrp < 0.5, the average stopping time (shown as the “Gap”)
generated by SPRINTER never exceeds tq.

trade-off between 7rp and E(Nsprinter) for two different
values of 7gp assuming that » = 5. The figure indicates
that as nrp approaches 1, even with a verifier that has a
substantial ngp (i.e. 0.5), the additional number of tokens
that are accepted past r is marginal. This implies that if
an estimate of r could be attained from the training data,
then fixing npp and varying nrp, for example, could bring
insights into how well the verifier must perform to generate
close to the ideal r tokens. Essentially, nrp and npp can be
varied to determine the optimal false positive and negative
rates such that the chances of early and delayed rejection
occurring potentially caused by the verifier are minimized.

(c) Latency Analysis and Computational Cost. Given
the result in 3.3, we now derive the latency incurred by
SPRINTER under the scenario in Figure 4. Let ¢4, t; and ¢,
represent the time required to inference the draft, target and
verifier models respectively. We also assume ¢, < tq4, i.e.,
the time it takes to run the verifier is smaller than running
the draft model. Under the above assumption, the next result
characterizes the expected stopping time (i.e., the average
time before the first rejection by the verifier).

Theorem 3.4. The expected stopping time is given as:

(1 —npp)ta Nrpld
E[Tp] = + . 4
[Ttop) 1—mnrp 1 —ngp @

Proof of the above theorem can be found in Section A.3.
From Theorem 3.4, we can observe that the expected stop-
ping time increases as 1y p increases. We also observe that
the dependence on the false-positive rate ngp is marginal
compared to nrp. Furthermore, Fig. 6 shows that as nrp
approaches 1, even with a verifier having a relatively high
nrp (e.g., 0.5), the additional expected stopping time re-
mains minimal (Gap < t;) whenr = 5,t5 = 0.1.

Savings in Computation. We now compare the total

computational cost of one run of SD versus one run of
SPRINTER. For simplicity, assume that one has a perfect
verifier (i.e., npp = 0 and nrp = 1). In SD, v tokens
are first generated by the draft model, followed by parallel
verification done by the target model. If we denote F, F}
and F), as the number of flops to run the draft, target and
verifier models once, then we have

SD-Flops(y) = vF4 + vF} 5
SPRINTER-Flops(y) = vFy +vF, + F; (6)

If F, € F; < F;, we can observe that computational
savings from SPRINTER can be significant and grow pro-
portional to (y — 1) F; due to sequential verification through
a low-complexity model (additional calculations showing
the computational savings for model pairs in Section A.8).

3.2. Verifier Training and Architecture

Verifier Training Methodology. The verifier V' is a bi-
nary classifier trained to predict whether a token should be
accepted or rejected. Specifically, V() can take as input
various latent features derived from the draft model (e.g.
embedding of the draft token x, probability distribution of
the LLM’s vocabulary). We denote the input to the veri-
fier as s(x, prefix). The data used for training the verifier
can be prepared as follows: for a given prefix, a token z is
sampled from the draft model M,. We also run the target
model M, and compute p(x). Subsequently, binary labels
are determined for each prefix and token pair by assign-
ing 1 if % < 1 and 0 otherwise. However, rather than

comparing the ratio % against a threshold of 1, we can
increase (decrease) the threshold to A to bias the verifier
to accept (reject) more draft tokens, which would increase
(decrease) npp or decrease (increase) nrp. Additionally, ad-
justing the inference threshold 7 (see Algorithm 1) would
achieve a similar effect. Thus, varying A and 7 serve as the

two hyperparameters which allow us to influence (7gp, 171p).

Our second observation is that during inference, SPRINTER
would face input as prefixes consisting of interleaved tokens
generated in the past by draft and target models. Hence,
during training, we expose the verifier to the following
possible inputs: (a) an original prefix, (b) a prefix supplied
with completions only from the draft model, (c) a prefix
supplied with completions only from the target model (d)
a prefix with tokens from both draft and target models. To
optimize the verifier’s performance, we ensure an equal
proportional of prefixes from each category.

Verifier architecture used for evaluation. For our exper-
iments, the verifier was implemented as a fully connected
linear layer followed by a sigmoid activation, containing
significantly fewer parameters than M, and M,. V takes as
input the last embedding of the previous token and is trained

Speeding up Speculative Decoding via Sequential Approximate Verification

with an Adam optimizer assuming binary cross entropy
loss. Our results indicate that a single layer is sufficient
to achieve strong performance while maintaining high effi-
ciency, as shown in Fig. 3 on the Wiki-summary and LM 1B
datasets. We observed that training thresholds of A = 1.2
enabled SPRINTER to attain an effective performance on
Wiki-Summary and LM 1B datasets.

4. Experiments and Evaluation

Evaluation goals. To quantify the effectiveness of
SPRINTER we present the following set of results: (a) We
measure the quality of responses generated by SPRINTER
using two performance metrics: the win-tie rates and
ROUGE scores. (b) We compare the latencies incurred
by SPRINTER, SD (Leviathan et al., 2023), SpecDec++
(Huang et al., 2024), AdaEDL (Agrawal et al., 2024), and
Mentored Decoding (Tran-Thien, 2024) in generating text
completions given a prefix. (c) We compare the effective-
ness of SPRINTER in completing tasks from Spec-Bench
(Xia et al., 2024) with Medusa (Cai et al., 2024) and Eagle2
(Li et al.). (d) To investigate the impact of verifier training
and inference hyperparameters on SPRINTER, we perform
an ablation study to observe how nrp and ngp affect the ROC.
(e) As part of our qualitative comparison, Figure 1(b) and
Section A.7 present example responses from SPRINTER
and SD, illustrating that SPRINTER is capable of produc-
ing coherent and contextually appropriate tokens without
strictly imitating the target model’s output distribution.

Code for SPRINTER is available at (Sprinter, 2025).

Dataset and Model Architecture. We use the WiKi-
summary (Scheepers et al., 2018), LM1B (Chelba et al.,
2013), and Spec-Bench (Xia et al., 2024) datasets for eval-
uation. Wiki-Summary is a collection of Wikipedia arti-
cle summaries designed for text summarization tasks. The
LM1B (One Billion Word Benchmark) Dataset is a large-
scale corpus for language modeling and text generation
tasks, extracted from news articles. Spec-Bench compiles
questions from various LLM evaluation datasets (e.g. MT-
Bench, GSM8K) covering different task categories includ-
ing summarization and translation. We adopted a simi-
lar experimental setup as the prior works: (Fang, 2024;
Chakraborty et al., 2024). We present results for three
(draft, target) model pairs: GPT-Neo-125M (EleutherAl,
2024b)/GPT-Neo-1.3B (EleutherAl, 2024a), GPT2-Small
(124M param.) (OpenAl, 2024a)/GPT2-XL (1.5B param.)
(OpenAl, 2024b), and Vicuna 68M (Laboratory, 2024)/7B
(LMSYS, 2023).

Quality Analysis. We investigate the quality of responses
generated by SPRINTER compared with standard SD. To
quantify the completion quality of SPRINTER, we report
results using a) win-tie rates, and b) ROUGE scores.

M,/M, WiKi-Summary LMIB
GPT-Neo-125M/1.3B 452 +3.12 354 +£5.08
41.0 £ 6.82 41.6 +3.98

Table 1. Average win-tie rates of SPRINTER against SD for GPT-
Neo-125M/GPT-Neo-1.3B and GPT2-Small/GPT2-XL pairs.

< sp [_1<>SPRINTER
0.481 0.481
0484 0485 (498 0.427 -
ROUGE-1 ROUGE-2 ROUGE-L

(a) GPT-Neo-125M/GPT-Neo-1.3B

0.461 0.463

M 0.403 0.405 0.457 0.457

ROUGE-1 ROUGE-2 ROUGE-L

(b) GPT2-Small/GPT2-XL

Figure 7. The ROUGE metrics (ROUGE-1, ROUGE-2, ROUGE-
2) of SPRINTER vs SD for (a) GPT-Neo-125M/GPT-Neo-1.3B and
(b) GPT2-Small/GPT2-XL model pairs. This demonstrates that
even with faster inference speeds, SPRINTER experiences only a
minimal drop in quality compared to SD.

Win-tie rate metric has been used extensively in LLM re-
search (Rafailov et al., 2024; Shen et al., 2024). Win-tie
rate measurements are taken by presenting GPT-4 with re-
sponses from two methods (SPRINTER-generated vs SD-
generated) and prompting it to decide which response is
better based on criteria provided by the user (additional de-
tails on win-tie rates are provided in Section A.9). Table
1 reports win-tie rate comparisons of SPRINTER with SD,
where GPT-4 is provided with an initial prefix and com-
pletions from SPRINTER and SD. Approximately 30% of
each prompt was given as input to each technique, which
were constrained to generate 20 tokens per prompt. The
table indicates that SPRINTER using the GPT-Neo model
pair can generate responses of comparable quality to SD.
This is especially observed on Wiki-Summary, which wins
on-average 45.2% of the time against SD, indicating that
SPRINTER suffers minimal quality degradation.

ROUGE score comparison. To further illustrate the com-

Speeding up Speculative Decoding via Sequential Approximate Verification

Model Pair WiKi-Summary LMIB

GPT-Neo- Methods Avg Tokens | Time (ms) | Speedup | Avg Tokens | Time (ms) | Speedup

125M / SD 2.17 0.92 £+ 0.32 1x 1.95 0.84 +0.21 1x

GPT-Neo- Specdec™™ 1.16 0.75 £ 0.25 1.23x 1.08 0.61 +£0.24 1.38x

1.3B AdaEDL 2.66 0.72 £ 0.30 1.28x 1.91 0.56 + 0.12 1.50x
MentoredDec 3.39 0.76 £ 0.18 1.21x 3.11 0.62 £ 0.13 1.35x
SPRINTER 11.10 0.56 + 0.22 1.64x 8.32 0.46 £ 0.09 1.83x
SD 2.01 0.84 + 0.24 1x 2.05 0.73 £ 0.15 1x
Specdec™ 1.82 0.72 £ 0.23 1.18x 1.04 0.61 £ 0.28 1.20x
AdaEDL 1.96 0.73 £ 0.25 1.16x 1.52 0.64 + 0.19 1.14x
MentoredDec 3.20 0.60 £+ 0.19 1.40x 3.12 0.55 £ 0.07 1.33x
SPRINTER 10.83 0.49 + 0.20 1.69x 6.56 0.44 + 0.12 1.66x

Table 2. Latency speedups for SPRINTER relative to SD (Leviathan et al., 2023), AdaEDL (Agrawal et al., 2024), Specdec++ (Huang
et al., 2024) and MentoredDec (Tran-Thien, 2024) using GPT families as the draft/target models on Wiki-Summary and LM1B datasets.

Table 3. Comparison of SPRINTER with state-of-the-art methods
(Medusa (Cai et al., 2024), Eagle2 (Li et al.) and Mentored De-
coding (Tran-Thien, 2024)) in terms of win-tie rate and speedup.
Medusa and Eagle2 FLOPS to process v tokens from (Christopher
et al., 2024), where 7,,, 74, K are the number of nodes/depth of
the draft tree and Medusa heads respectively.

parable quality between SPRINTER and SD, Figures 7
show ROUGE scores (Lin, 2004) of the responses made
by SPRINTER and SD respectively with the reference sum-
maries in Wiki-Summary for both GPT-Neo and GPT2
model pairs. The ROUGE scores measure differing lev-
els of similarity between a provided “candidate” summary
and reference summary (Lin, 2004). For both model pairs,
the figures indicate that SPRINTER is able to generate re-
sponses that attain very similar ROUGE scores to SD.

Latency Speedups. Table 2 reports results comparing the
latency speedups achieved with SPRINTER relative to the
methods shown in Figure 2(c) for the Wiki-Summary and
LMI1B datasets. Given a prefix, 20 additional tokens were
generated per prompt by each method. We report the “Avg
Token” as the accepted token generated by M, per single run
of the sampling process. As the table indicates, SPRINTER
achieves higher speedup improvements relative to SD com-
pared to the other baselines, without being restricted to
generate tokens that match the target model distribution.

Quality-Latency-Flops Tradeoffs. We further examine
the trade-offs between quality and latency using Spec-Bench
(Xia et al., 2024) with the Vicuna 68M/7B pair, compar-
ing SPRINTER against SD, Medusa (Cai et al., 2024), and
Eagle2 (Li et al.). For SPRINTER, we employ a verifier

SPRINTER vs | Win-Tie rate \ Speedup Flops Eval\Train Latency Quality

SD 41 L.64x Fa(v) + Fi(v) WiKi Lmlb WiKi Lmlb
Medusa 38 1.51x KFy(y) + Fi(tn) WiKi 056+022 057+026 | 452+3.12 47.6+5.78
Eagle2 32 L17x | Fy(rn) + maFa(Z2) Lmlb 051009 046+009 | 382+1.94 39.6+1.94
Mentored Dec 52 1.35x Fy(vy) + Fi(y)

Table 4. Comparison of Latency and Quality between WiKi and
Lm1b datasets. The verifier maintains comparable latency and
quality when trained on one dataset and evaluated on another.
Highlighted entries show the average win-tie rates using verifiers
trained/evaluated on the same dataset.

trained on LM 1B responses from the GPT2-Small/GPT2-
XL pair. Each method was constrained to generate 20 to-
kens per task. We also compare SPRINTER and the lossy
method Mentored Decoding (Tran-Thien, 2024) on Wiki-
Summaries using the GPT-Neo model pair. As shown in
Table 3, SPRINTER requires significantly fewer FLOPs than
SD and other variants, and achieves lower latency while
preserving high output quality.

Verifier Ablation Study. Rather than strictly forcing the
verifier to only accept draft tokens if the underlying ratio

(%) < 1, the threshold of 1 could be changed to a

parameter A > 1; allowing for more tokens to be deemed
acceptable, providing another method for SPRINTER to
generate tokens that deviate from the target distribution and
accelerate inference. We show ROC curves for the verifier
on the LM 1B and Wiki dataset when trained at thresholds
A =1, 1.2, and 1.5 respectively in Section A.10.

Verifier Transferability. We also explore the generaliza-
tion capability of the verifier and observe that it can be
effectively transferred across tasks and datasets. As shown
in Table 4, the verifier achieves comparable latency and
quality (measured by win-tie rate) when a model trained on
one dataset is used for inference on another. For example,
evaluating a verifier trained on Lm1b attains an average win
rate of 47.6 and 39.6 on Wiki and Lm1b respectively.

Speeding up Speculative Decoding via Sequential Approximate Verification

5. Conclusion

We introduced SPRINTER, a sampling framework designed
to accelerate LLM inference by leveraging a draft-target
model pair along with a lightweight verifier. Our theoret-
ical analysis highlights the trade-offs between inference
speed, computational efficiency, and output quality, demon-
strating how verifier characteristics, such as false-positive
and true-positive rates, influence performance. Through
extensive experiments on multiple datasets and model pairs,
we showed that SPRINTER significantly reduces latency
while maintaining high-quality outputs. Our result show
that sequential approximate verification can be effective
in balancing efficiency and quality, making it a promising
approach for scalable and efficient LLM deployment.

Acknowledgments

This work was supported by NSF grants CAREER
1651492, CCF-2100013, CNS-2209951, CNS-1822071,
CNS-2317192, and by the U.S. Department of Energy, Of-
fice of Science, Office of Advanced Scientific Computing
under Award Number DE-SC-ERKJ422, and NIH Award
RO1-CA261457-01A1.

Impact Statement

With the growing use of LLMs in different applications, and
the scaling in their size and complexity, inference speed
remains a critical bottleneck in real-world applications, af-
fecting latency-sensitive tasks such as conversational Al,
real-time translation, and autonomous systems. By introduc-
ing the idea of low-complexity sequential verification within
the context of speculative decoding, SPRINTER can reduce
response times and lowers computational costs without sig-
nificantly compromising on the quality. SPRINTER ensures
that the target model is not called frequently, resulting in a
reduction in energy consumption compared to standard spec-
ulative decoding, while ensuring minimal degradation in the
quality of its generated responses. Additionally, SPRINTER
is able to generate these responses at significantly higher
speeds compared to SD, making it more feasible for LLMs
to be used in time-sensitive applications.

References

Agrawal, S., Jeon, W., and Lee, M. Adaedl: Early draft stop-
ping for speculative decoding of large language models
via an entropy-based lower bound on token acceptance
probability. In NeurIPS Efficient Natural Language and
Speech Processing Workshop, pp. 355-369. PMLR, 2024.

Bachmann, G., Anagnostidis, S., Pumarola, A., Georgopou-
los, M., Sanakoyeu, A., Du, Y., Schonfeld, E., Thabet,
A., and Kohler, J. Judge decoding: Faster speculative
sampling requires going beyond model alignment. arXiv
preprint arXiv:2501.19309, 2025.

Cai, T, Li, Y., Geng, Z., Peng, H., Lee, J. D., Chen, D.,

and Dao, T. Medusa: Simple 1lm inference acceleration
framework with multiple decoding heads. arXiv preprint
arXiv:2401.10774, 2024.

Casson, A. Transformer flops. 2023. URL
https://adamcasson.com/posts/

transformer—-flops.

Chakraborty, S., Ghosal, S. S., Yin, M., Manocha, D., Wang,
M., Bedi, A. S., and Huang, F. Transfer q star: Principled
decoding for llm alignment, 2024. URL https://
arxiv.org/abs/2405.20495.

Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T.,
Koehn, P., and Robinson, T. One billion word benchmark
for measuring progress in statistical language modeling.
arXiv preprint arXiv:1312.3005, 2013.

Christopher, J. K., Bartoldson, B. R., Ben-Nun, T., Cardei,
M., Kailkhura, B., and Fioretto, F. Speculative diffu-
sion decoding: Accelerating language generation through
diffusion. arXiv preprint arXiv:2408.05636, 2024.

EleutherAl. Eleutherai/gpt-neo-1.3b, 2024a. @ URL
https://huggingface.co/EleutherAl/
gpt—-neo—1.3B. Accessed: 011-2024.

EleutherAl. Eleutherai/gpt-neo-125m, 2024b. URL

https://huggingface.co/EleutherAl/
gpt—-neo—-125m. Accessed: 011-2024.

Fang, J. Llmspeculativesampling. https://github.
com/feifeibear/LLMSpeculativeSampling,
2024. Accessed: 012-2024.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E.,
Millican, K., van den Driessche, G., Damoc, B., Guy,
A., Osindero, S., Simonyan, K., Elsen, E., Rae, J. W,,
Vinyals, O., and Sifre, L. Training compute-optimal large
language models, 2022. URL https://arxiv.org/
abs/2203.15556.

Huang, K., Guo, X., and Wang, M. Specdec++: Boost-
ing speculative decoding via adaptive candidate lengths.
arXiv preprint arXiv:2405.19715, 2024.

Jang, D., Park, S., Yang, J. Y., Jung, Y., Yun, J., Kundu, S.,
Kim, S.-Y., and Yang, E. Lantern: Accelerating visual
autoregressive models with relaxed speculative decod-
ing, 2024. URL https://arxiv.org/abs/2410.
03355.

Kim, S., Mangalam, K., Moon, S., Malik, J., Mahoney,
M. W., Gholami, A., and Keutzer, K. Speculative decod-
ing with big little decoder. Advances in Neural Informa-
tion Processing Systems, 36, 2024.

https://adamcasson.com/posts/transformer-flops
https://adamcasson.com/posts/transformer-flops
https://arxiv.org/abs/2405.20495
https://arxiv.org/abs/2405.20495
https://huggingface.co/EleutherAI/gpt-neo-1.3B
https://huggingface.co/EleutherAI/gpt-neo-1.3B
https://huggingface.co/EleutherAI/gpt-neo-125m
https://huggingface.co/EleutherAI/gpt-neo-125m
https://github.com/feifeibear/LLMSpeculativeSampling
https://github.com/feifeibear/LLMSpeculativeSampling
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2410.03355
https://arxiv.org/abs/2410.03355

Speeding up Speculative Decoding via Sequential Approximate Verification

Laboratory, N. K. double7/vicuna-68m, 2024.
URL https://huggingface.co/double7/
vicuna-68m. Accessed: 04-2025.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207-1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Infer-
national Conference on Machine Learning, pp. 19274—
19286. PMLR, 2023.

Li, Y., Wei, F.,, Zhang, C., and Zhang, H. Eagle-2: Faster
inference of language models with dynamic draft trees,
2024b. URL https://arxiv. org/abs/2406.16858.

Li, Y., Wei, F., Zhang, C., and Zhang, H. Eagle: Speculative
sampling requires rethinking feature uncertainty. arXiv
preprint arXiv:2401.15077, 2024.

Lin, C.-Y. ROUGE: A package for automatic evalua-
tion of summaries. In Text Summarization Branches
Out, pp. 74-81, Barcelona, Spain, July 2004. Asso-
ciation for Computational Linguistics. URL https:
//aclanthology.org/W04-1013/.

LMSYS. Imsys/vicuna-7b-v1.3, 2023. URL https:
//huggingface.co/lmsys/vicuna-"7b-v1l.3.
Accessed: 04-2025.

Lu, X., Zeng, Y., Ma, F.,, Yu, Z., and Levorato, M. Improving
multi-candidate speculative decoding. arXiv preprint
arXiv:2409.10644, 2024.

Mamou, J., Pereg, O., Korat, D., Berchansky, M., Timor,
N., Wasserblat, M., and Schwartz, R. Dynamic specula-
tion lookahead accelerates speculative decoding of large
language models, 2024. URL https://arxiv.org/
abs/2405.04304.

Melcer, D., Gonugondla, S., Perera, P., Qian, H., Chiang,
W.-H., Wang, Y., Jain, N., Garg, P., Ma, X., and Deoras,
A. Approximately aligned decoding. arXiv preprint
arXiv:2410.01103, 2024.

Niu, Q., Chen, K., Li, M., Feng, P, Bi, Z., Liu, J., and Peng,
B. From text to multimodality: Exploring the evolution
and impact of large language models in medical practice.
arXiv preprint arXiv:2410.01812, 2024.

OpenAl. openai-community/gpt2, 2024a. URL https://
huggingface.co/openai-community/gpt2.
Accessed: 09-2024.

OpenAl. openai-community/gpt2-x1, 2024b. URL https:
//huggingface.co/openai-community/
gpt2-x1. Accessed: 09-2024.

10

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-

vances in Neural Information Processing Systems, 36,
2024.

Scheepers, T., Kanoulas, E., and Gavves, E. Improving
word embedding compositionality using lexicographic
definitions. In Proceedings of the 2018 World Wide Web
Conference, pp. 1083—-1093, 2018.

Shen, S. Z., Lang, H., Wang, B., Kim, Y., and Sontag,
D. Learning to decode collaboratively with multiple lan-
guage models. arXiv preprint arXiv:2403.03870, 2024.

Sprinter. Code for SPRINTER, 2025. URL https://
github.com/MeiyuZzhong/SPRINTER.git.

Sun, Z., Suresh, A. T., Ro, J. H., Beirami, A., Jain, H.,
and Yu, F. Spectr: Fast speculative decoding via optimal
transport. Advances in Neural Information Processing
Systems, 36, 2024.

Tang, Y., Bi, J., Xu, S., Song, L., Liang, S., Wang, T.,
Zhang, D., An, J,, Lin, J., Zhu, R., Vosoughi, A., Huang,
C., Zhang, Z., Liu, P, Feng, M., Zheng, F., Zhang, J.,
Luo, P, Luo, J., and Xu, C. Video understanding with
large language models: A survey, 2024. URL https:
//arxiv.org/abs/2312.17432.

Tran-Thien, V. An optimal lossy variant of
speculative decoding, June 2024. URL

https://huggingface.co/blog/vivien/

optimal-lossy-variant-of-speculative-decoding.

Accessed: 2025-05-09.

Xia, H., Yang, Z., Dong, Q., Wang, P., Li, Y., Ge, T., Liu,
T., Li, W., and Sui, Z. Unlocking efficiency in large lan-
guage model inference: A comprehensive survey of spec-
ulative decoding. In Ku, L.-W., Martins, A., and Sriku-
mar, V. (eds.), Findings of the Association for Computa-
tional Linguistics ACL 2024, pp. 7655-7671, Bangkok,
Thailand and virtual meeting, August 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.
findings-acl.456. URL https://aclanthology.
0org/2024.findings—-acl.456.

Yin, M., Chen, M., Huang, K., and Wang, M. A theoretical
perspective for speculative decoding algorithm. arXiv
preprint arXiv:2411.00841, 2024.

Zingale, J. and Kalita, J. Language model sentence comple-
tion with a parser-driven rhetorical control method. arXiv
preprint arXiv:2402.06125, 2024.

https://huggingface.co/double7/vicuna-68m
https://huggingface.co/double7/vicuna-68m
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://huggingface.co/lmsys/vicuna-7b-v1.3
https://huggingface.co/lmsys/vicuna-7b-v1.3
https://arxiv.org/abs/2405.04304
https://arxiv.org/abs/2405.04304
https://huggingface.co/openai-community/gpt2
https://huggingface.co/openai-community/gpt2
https://huggingface.co/openai-community/gpt2-xl
https://huggingface.co/openai-community/gpt2-xl
https://huggingface.co/openai-community/gpt2-xl
https://github.com/MeiyuZhong/SPRINTER.git
https://github.com/MeiyuZhong/SPRINTER.git
https://arxiv.org/abs/2312.17432
https://arxiv.org/abs/2312.17432
https://huggingface.co/blog/vivien/optimal-lossy-variant-of-speculative-decoding
https://huggingface.co/blog/vivien/optimal-lossy-variant-of-speculative-decoding
https://aclanthology.org/2024.findings-acl.456
https://aclanthology.org/2024.findings-acl.456

Speeding up Speculative Decoding via Sequential Approximate Verification

A. Appendix

The Appendix is organized as follows:

A.1 Proof of Theorem 3.1 (Analysis of the distribution of the tokens generated by SPRINTER)
A.2 Proof of Theorem 3.3 (Analysis of the expected number of generated tokens from SPRINTER)
A.3 Proof of Theorem 3.4 (SPRINTER latency analysis)

A.4 Additional theoretical results

A.5 Full SPRINTER algorithm and hyperparameter tuning

A.6 More related works

A.7 Additional Examples of Responses generated by Sprinter and SD

A.8 Flops explainations and evaluations

A.9 Prompt Design for Win-tie Rate Evaluation

A.10 Additional experimental results

A.1. Proof of Theorem 3.1
Theorem 3.1. The probability of a token x being chosen when running SPRINTER is given as

pserivter (%) = (1 — nep)p(x) + nepq(x),)

where npp is the false positive rate of the verifier. Furthermore, the total-variation distance between the target and
SPRINTER distributions is dTv(p, pSPRINTER) = nppdrv(p, q).

Proof. We denote npp and ngy as the false positive and false negative rate of the verifier respectively. We define x,.. =
{z] % < 1} and i = {z] % > 1} to represent the sets of tokens generated by the draft model that should be accepted
and rejected by the verifier respectively.

In general, we consider two cases: (a) the token should be rejected while it is accepted by verifier V, (b) the token should
be accepted but it is rejected by V. Let us first consider the case when the token should be rejected (i.e. © € Tyej). If

V (s(x, prefix)) = 0, meaning that the verifier predicts that zgig > 1, then we reject the token x sampled from ¢(z) with

probability 1 — % and re-sample 2 from an adjusted distribution norm(max(0, p(z) — ¢(«))). Therefore, the probability
that token x is accepted is:
p(x)
x (1 — X . 8
If V (s(x, prefix)) = 1, meaning that the verifier predicts that % < 1, we accept the token, which occurs with probability:
nrp X q(T).)]

Therefore, combining (8) and (9), the probability of a token = € x,; being accepted under SPRINTER is:
(1 = nre)p(x) + nepg (). (10)

Now we consider the case when the token should be accepted (i.e. © € xy) . If V(s(z, prefix)) = 0, with probability

1 — e, we reject the token x and call the larger model M,,, which will verify that indeed % < 1. Therefore, though the

verifier made a mistake, it can be corrected by M,,. The probability that token x is accepted is:
q(z) x (1= nrp). (11)

11

Speeding up Speculative Decoding via Sequential Approximate Verification

If V' (s(z, prefix)) = 1, we accept token z with probability:
q(z) x 1re. 12)

While the above scenarios relied directly on the decision of the verifier given an acceptable token, there is an additional
scenario where a token x € . is accepted despite not being initially sampled from M. Assume that a token sampled
from the draft model should be rejected (i.e. * € xrj) and the verifier accurately predicts to invoke the target model. Under
this event, it would be possible for a token that is acceptable to be re-sampled from the adjusted distribution. The probability
of token x € z,.. being accepted under this scenario is:

(1 — 77Fp) X Zq(xre_])(l o p(xrej)) . p(l') — q(l’)

Q(l’rej) Ezm P(ZTace) — q(Tace)

Zg;rej p(l'rej) - Q(xrej)
= (1 - UFP) X (p(l‘) - Q(x)) X Zmucc p(xacc) _ q(xacc)

= (1 —nrp) x (p(2) — g(2)). (13)

Overall, combining (11), (12) and (13), the probability of a token = € z,.. being accepted under SPRINTER is:

Lrej

T

q(w) X (1 —nen +nen) + (1 —nep) x (p(z) — q(7))
q(x) + (1 —nre) x (p(z) — q(x))
(1 —nrp)p(z) + nreq(). (14)

Together with (10) and (14), we complete the proof of Theorem 3.1.

Furthermore, the total variation distance between psprinter and p can be calculated as follows:

drv (P, PspRINTER) = % > Ip(x) = psprivrer()|
= 3 3 @) — (1 = eep(a) — v o)
= 2 3 Ineeple) — era()

= ey 3 Ip(e) — a(a)]

= nepdrv (D, q)- (15)

A.2. Proof of Theorem 3.3

Theorem 3.3. The probability distribution of the number of generated tokens is given as:

. nip(1 = 1rp) i<,
P(Nsprinrer = 1) = .)
Nrp(Mep) =" (1 —nrp) @ 2> 7.

The expected number of generated tokens is given as:

nre — Nirp 4 Irp (16)

E(Nsprivrer) = - -
— ITP — I[FP

Proof. We assume that the first r tokens are acceptable, while subsequent tokens are unacceptable. This can be modeled as
a finite geometric series for the accepted tokens and an infinite geometric series for the rejected ones. The expected number

12

Speeding up Speculative Decoding via Sequential Approximate Verification

of generated tokens is derived as follows:

]E[NSPRINTER] = Z kP(NSPRINTER = k)

k=0
r—1

= Z kP(Nsprinter = k) + Z kP (NsprinTER = k) 17
k=0 k=r

Term 1 Term 2
We first expand Term 1 as follows:

r—1

ZkP(NSPRINTER =k)=0x(1—nw)+1x (L—mne)ne+2x (1—nw)nip+ ...+ (r—1) x (1 —np)nfp
k=0
r—1

(@
= (1= nre) Y knfp
k=0

Note that (a) represents a finite geometric series, allowing us to apply the sum formula for such a series, resulting in:

r—1 r—1 .
1L—rppp + (r— Dngp
(1 = 7re) anlfp = (1 — nrp)nre 3
= (1= nrp)
= TP (1) (18)
L — e
Similarly, we simplify Term 2 as follows:

> kP(Nsprivrer = k) @ X tp(1 =) + (r 4 1) % mpmip(L — m2) + (4 2) X mipnEe(1 — mee) +
k=r

Y ar +a(r + Lne + a(r + 20 + -

=a Z kil
— Z knFP

nFPk .

Z knfe (19)

nFPkO FPkO

where (a) the sum starts from the rth token (i.e. the first unacceptable token), (b) follows from setting a = n7p(1 — npp).
We also observe that (c) is a combination of two geometric series. Therefore, the first term in (19) can be simplified as:

o0
a a NFP
. k'r]k = — X —
Fp ;0 T (1 pe)?
= T TP (20)
ngp 1 —1ep
Similarly, we simplify the second term in (19) as:
r—1 r
a T
- krjgp = nfp X (nip i —(r— 1>77FP> (2D
e 1.2 Tep TP

13

Speeding up Speculative Decoding via Sequential Approximate Verification

Plugging (20) and (21) into (19), we have:

[e’e) r—1 " "
a a n Uiy TFp — 7)) r
LSy Sl = M (LI Iy)

nFP k=0 T]FP k=0 ;P 11— TP 1- TIFp
Ntp < Nip r
= 7=, T —=1n)
Ngp \ 1 — 7pp P
1
= e <1—77FP +(r— 1)) (22)

Combining (18) and (22), we obtain:

UTP"U%P r r
E(N, =——(r—1 + (+(r—1)
(Nsprivter) = —— . (r = L)mre +11p { 7 = (r—1)
_ e — Titp + TItp . (23)
1 —-UTP 1 —-npp
The above expression gives Theorem 3.3. O
A.3. Proof of Theorem 3.4
Theorem 3.4. The expected stopping time is given as:
1 —nfp)ty Totq
E[TStop] — (nTP) + 77TP (24)

L —mp L—nep

Proof. Similar as above Theorem, we assume that the first r tokens are acceptable, while all subsequent tokens are not. We
also note that the verifier’s runtime is negligible compared to that of the draft LLM M. Therefore, we consider only ¢4 for
the expected stopping time. We first reduce the expected stopping time as follows:

E[Tsip] = Y _ ta(k + 1) P(Tsep = k)
k=0

r—1 0
= talk+1)P(Tsip = k) + Y _ ta(k + 1)P(Tsiop = k) (25)
k=0 k=r

Term 17 Term 2’

We now write out Term 1°, representing the case that we stop before the rth acceptable token, as follows:

r—1
Zfd(k + 1)P(Tsiop = k) = ta x (1= nrp) + 2tg X (1 = mre) e + - .. + 7ta x (1 — nrp)nfp !
k=0

r—1

=Y (1 —nw)ntp x (k+ 1ta
k=0
r—1 r—1
= (L—nre)ta Y ke + (1= nme)ta Y e, (26)
k=0 k=0

where (26) is the combination of two geometric series. Therefore, (26) can be simplified as follows:

r—1 r—1

(1= mre)ta D knfe + (1= 1pe)ta Y 1ip
k=0 k=0

nitp n’;P r r
=1 — — (r—1)r¢ +tq(1 — 1
d<1 b ()ITP) d(ITP)

— 1y % ("TP”TP — i+ 1> 27)
1 —nrp

14

Speeding up Speculative Decoding via Sequential Approximate Verification

We next expand Term 2’°, which represents the case that we stop at or after the rth acceptable token, as follows:
itd(k + 1)P(Tswop = k) = (r+ 1)tqg x nyp(1 — nep) + (r + 2)ta x npnep(l — nep) + . ..
k=r

@ b(r+1)+b(r+2)ngp + ...
03 bl Y ke
k=r k=r

[b o=
= knfpt > b (28)
Trp . —,. Tep 1=,

where (a) follows from setting b = (1 — nrp)t4. Note that the first term in (28) can be written as:
b 0o b oo r—1
o Z k771’§1> == Z kn{?p - Z k‘nép

"ep = "ep \}=o k=0

=Ty« (e O T e 4y 1)7751») (29)

U 1 —npp 1 —nep

Similarly, the second term in (28) can be expressed as:

o0 b oo
DS ke = (Z

r—1
k k
Mlep — Z 77FP>
k=0

lpp k=r nl’,:‘P k=0
= prtd (1 —(1—ngp)) (30)
Tlgp

Plugging (29) and (30) into (28), we obtain the expected stopping time after or at rth acceptable token is:
77"?1’ T
—tq + 1tg 3D
1— 1 Titp
Combining (27) and (31), the final expression of the expected stopping time is given as:

1 —n5p)t Tpt
B[y = _”;;)) R e (32)

This completes the proof. O

A.4. Additional theoretical results

In this section, building on previous work by (Leviathan et al., 2023), we examine the acceptance rate of a single run
of SPRINTER. This analysis provides insight into how the verifiers’ statistical properties influence the acceptance rate.
Calculation of agpryrer and Ssprivreg. It is well known (Leviathan et al., 2023) that the acceptance rate of standard
speculative decoding 3 is given as:

/8 =1- dTV(p7 q)7 (33)

where drvy (p, q) is the total variation distance between the distributions p and ¢. In the next Theorem, we derive an
analogous result showing the acceptance rate of tokens generated by M, when using SPRINTER.

Theorem A.4. The acceptance rate of SPRINTER BsprinTeR is

1 — (1 —=ngp) -drv(p, q). (34)
Proof. From the SPRINTER sampling procedure, we know that Ssprnvrer satisfies the following:

1 if g(x) < p(z)

p(z)

35
mep + Gy (L—mep) if g(2) > p(z). (35)

BSPRINTER = Equ(m) {

15

Speeding up Speculative Decoding via Sequential Approximate Verification

The above expectation can be simplified and computed explicitly as follows:

BSPRINTER = Z min(q(x), nrpq(x) + (1 — nrp)p())
= Zmin(nppq(;l:) + (1 — nrp)q(), nreq(z) + (1 — nep)p(x))
= Z(l — nep) min(q(x), p(z)) + nreq()

=1 —nep)- (1 —drv(p,q)) + nep
=1—(1—npp)- - drv(p,q). (36)
O

Remark A.5. Note that when ngp = 0, the acceptance rate is the same as that of speculative decoding.

Remark A.6. When ngp # 0, Bsprinter = 8 meaning that SPRINTER has a higher acceptance rate compared to that
of standard speculative decoding. The inherent reason is that the classifier is susceptible to predicting that the token is
acceptable when it actually should be rejected, causing a higher acceptance rate and subsequently enabling the draft model
to generate more tokens. However, ngp also reflects the distance of the probability distribution of SPRINTER from the
probability distribution of the target model p. This means that while more tokens are being accepted, the distribution they
are sampled from may deviate from the distribution of M, causing poorer quality tokens to be generated. Therefore, ngp
measures the tradeoff between the accuracy of the tokens generated and the latency incurred from using SPRINTER.

A.5. Full SPRINTER Algorithm

Algorithm 2 provides the detailed overview of Algorithm stated in the main paper, detailing the procedure of a full step of
SPRINTER.

Algorithm 2 SPRINTER (detailed)
Input: M, M,,V,Prefix, Prediction Threshold 7

z=10
Sample tokens from M, while verifier predicts % <1
r=1

while True do

Prefix = Prefix + x

qr(x) ~ M, (Prefix)

T ~ qr ('T)

if V(s(x,Prefix)) > 7 then

r+ =1
else
Break

end if
end while
Run M), Once.
Pri1(z) ~ My (Prefix +)
p'(2) < prya(2)
c~U(0,1)
n = min(1, %)
if ¢ > n then

P/ () ~ norm(max(0, py +1(z) — gr41(x))
end if
t~p'(x)
Return Prefix + ¢

More Training Details Regarding the Verifier and Hyperparameter Tuning During the training process of the verifier,

16

Speeding up Speculative Decoding via Sequential Approximate Verification

we vary the value of A among 1, 1.2, and 1.5 to generate the ground truth regarding whether a token should be accepted or
rejected. By increasing A\, we bias the verifier to accept more draft tokens, potentially increasing ngp. Experimental results
show that SPRINTER with A = 1.2 performs best on the LM 1B dataset for both GPT-Neo and GPT2 model pairs. On
the Wiki-Summary dataset, SPRINTER with A = 1 and A = 1.2 achieves superior results using the GPT2 and GPT-Neo
model pairs respectively. For the verifier’s prediction threshold 7, we observe that 7 = 0.5 is sufficient to achieve strong
performance.

We split the dataset into train/test sets, using early stopping to mitigate overfitting. The input dimension of the verifier
depends on the dimension of the assumed draft model. As GPT-Neo-125M has an output dimension of 768, for example, the
verifier used would also have a dimension of 768 neurons.

A.6. Detailed Discussion of Related Works

Multiple approaches for optimizing SD have been presented in the literature. SpecTr (Sun et al., 2024) uses optimal transport
to effectively manage the draft selection process, ensuring efficient and accurate sampling from large models. Yin et al.
(Yin et al., 2024) frame the decoding problem through a Markov chain abstraction and analyzing its key properties—output
quality and inference acceleration—from a theoretical perspective. Recently, Judge Decoding (Bachmann et al., 2025)
uses a trained linear head to judge token validity/quality beyond mere alignment, significantly speeding up inference while
maintaining output quality. Under this method, tokens that may not necessarily match the target distribution may still be
accepted as they are still of high-quality. Similarly, (Jang et al., 2024) presents a variant of speculative decoding for visual
autoregressive models by relaxing the constraint that tokens must match the target distribution while proposing a mechanism
based on total variation distance to ensure that the distribution drift between the generated tokens and the target model does
not exceed a certain threshold.

There are also works that have similarly used an additional classifier for determining how many tokens the draft model
should generate. (Mamou et al., 2024) proposed using a two layer feedforward network to predict when the draft model
should stop generating tokens and initiate the target model’s verification procedure. (Huang et al., 2024) models the SD
procedure as a Markov Decision Process and uses the draft model with an added head to predict if the draft model should
stop generating tokens. However, both methods ensure that sampling the draft model with their method is equivalent to
sampling the target model, which hinders improved latency reductions that can be attained if this requirement is relaxed.
(Agrawal et al., 2024) proposes prove that a function of the entropy of the distribution of the draft model can be used as a
means of indicating when to end a round of drafting tokens. Specifically, the output of this function is compared against
a threshold, which is also adjusted dynamically based on the current acceptance rate, to determine if the current drafting
round should end. (Kim et al., 2024) provides two heuristics for determining when the target model should take control in
generating tokens. The first involves observing the draft model’s distribution to see if it has a certain lack of confidence in
its current token, which would indicate that the target model should generate a replacement token. The second takes place
during verification, when the distributions of the target model and draft model are compared to observe an instant in which
the draft model is too confident in its decision. This indicates that the sequence should revert back to this point, with the
target model generating a replacement token. A method for fine-tuning the draft model to generate tokens that better align
with the target model is also presented.

(Lu et al., 2024) investigated using different classifier architectures for halting the drafting process for multi-candidate
speculative decoding. MEDUSA (Cai et al., 2024) propose a framework to accelerate inference in large language models
(LLMs) by employing multiple decoding heads. By introducing parallelism in the decoding process, MEDUSA aims to
improve the efficiency of LLM operations significantly. EAGLE (Li et al., 2024) presents a speculative sampling framework
that improves large language model (LLM) inference by predicting second-to-top-layer features based on a token sequence
advanced by one time step.

A.7. Additional Examples of Responses generated by Sprinter and SD

In this section, we feed additional prefixes to SPRINTER and SD and show their respective generated responses in Figure 8.
We observe that SPRINTER can achieve a relatively good performance compared with SD, but can sometimes generate
incorrect information.

17

Speeding up Speculative Decoding via Sequential Approximate Verification

Prefix: /n wireless communications, MIMO Prefix: Facebook and Instagram are owned by
SsD In wireless communications, MINO (Multiple-Input Multiple-Output) is a Facebook and Instagram are owned by Facebook, and Instagram is owned by
technique for sing the capacity of a wireless channel by SD Instagram. Q
In wireless cor ations, MIMO (Multiple-In Multiple-Output) is a Facebook and Instagram are owned by the same company, and the two companies
SPRINTER |ccnnique for increasing the signal-to-noise ratio (SNR) of (V] SPRINTER [1o0e hoen 1inked cogethar. sinee the boginming of ehe yone.
Prefix: The capital of Spain Prefix: The movie Shrek was released in the year
SD The capital of Spain, Madrid is a city of contrasts. It is a city of the sD The movie Shrek was released in the year of the movie Shrek the Third. The
past, a city of the future movie Shrek was released in the year of the movie Shrek the Third.
The capital of Spain, Madrid, is the capital of the Kingdom of Spain. The The movie Shrek was released in the year 2000. It was a big hit, and it was
SPRINTER [.iv, 5c 1ocated in the heart of the SPRINTER |, 1ig success. 1t vas a big success in
Prefix: Spongebob Squarepants is owned by Prefix: Niagra Falls is located in
s Spongebob Squarepants is owned by Nickelodeon, and is the longest running sD Niagra falls is located in the city of Kolkata, India. It is a city in the
animated series in the history of television. It is also Q state of West Bengal,
Spongebob Squarepants is owned by the company that owns SpongeBob Niagra falls is located in the city of San Francisco, California. It is a
small city with a population of about 1,
SPRINTER |0 e et optier ot the. Soonaedon Savacer %] SPRINTER v wieh o pop (%]

Figure 8. Comparison of responses generated by SPRINTER and SD under the same prefixes.

A.8. Flops Calculation

We adopt the methods used in (Hoffmann et al., 2022; Casson, 2023) to determine the number of floating point operations
(FLOPS) performed in a forward pass of the draft and target models used in this work. The main sources of FLOPS
considered in (Hoffmann et al., 2022; Casson, 2023) are due to the embedding matrices, self-attention operations in the
transformer blocks of the LLM, the feedforward networks in each transfomer block, and the operations required to generate
the final logits. Table 10 presents the number of FLOPS needed for each draft and target model to generate 20 tokens.
The table shows that GPT-Neo-1.3B and GPT2-XL require roughly 8 and 10 times the number of FLOPS compared to
GPT-Neo-125M and GPT2-Small respectively.

[< sPRINTER e sp

Quality Latency Computation
0.40 0.41 0.84 -
Model FLOPs for 20 tokens
GPT-Neo-125M 8.01B
049 GPT-Neo-1.3B 64.66B
|_| 7B GPT2-Small 7.25B
O GPT2-XL 71.78B
ROUGE-2 Time (in ms) Flops (in Billions)
GPT2-Small/GPT2-XL Figure 10. Estimated FLOPs required for each model to generate

20 tokens.
Figure 9. Comparison between SPRINTER and SD in terms of
Quality (ROUGE score), Latency (ms to generate a sentence), and
Computation (FLOPs to generate 20 acceptable tokens) for GPT2-
Small and GPT2-XL.

Recall from Section 3.1, that if 7 consecutive tokens are generated by the draft model, our verifier is of a lower complexity
to the draft model, and, as evidenced by Figure 10, that the number of FLOPS used by the target model are significantly
greater than the FLOPS used by the target model, then the computational savings experienced under SPRINTER is (v — 1) F}
where F} denotes the number of FLOPS of the target model. This further shows that SPRINTER is significantly less
computationally expensive compared to SD, which relies on the target model for parallel verification every ~y tokens.

Figure 9 shows the quality-latency-computational profile experienced by SPRINTER and SD assuming the GPT2-
Small/GPT2-XL model pair. Similar to Figure 2, which shows the same profile for the GPT-Neo model pair, we observe
that SPRINTER is able to incur a lower latency than SD while suffering a minimal dip in quality and incurring more
computational savings by running inference on the draft model more frequently than the target model.

A.9. Prompt Design for Win-tie Rate Evaluation

In this work, GPT-4 is used to determine the win-tie rates. Specifically, GPT-4 is given the original prefix, a completion
generated by SPRINTER, and a completion generated by a baseline method. Similar to (Chakraborty et al., 2024), GPT-4 is

18

Speeding up Speculative Decoding via Sequential Approximate Verification

System Prompt

You are an assistant for checking the quality of the answer. We
would like to request your feedback on the performance of two
Al assistants in response to completing the initial prefix. Please
rate the accuracy and level of detail of their completions for
each prefix. Your evaluation should consider factors such as the
accuracy and level of detail of the completion. Bear in mind
that the response might be truncated at the end due to length
constraints. Each assistant receives an overall score on a scale of
1 to 10, where a higher score indicates better overall
performance. Prefix: In wireless communications, MIMO

SPRINTER Response

(Multiple-Input Multiple Output) is a technique
for increasing the signal-to-noise ratio (SNR) of

SD Response

(Multiple-Input Multiple Output) is a technique
for increasing the capacity of a wireless channel

by

—

)
—

Score

8

Score

9

o

Figure 11. Illustrating win-tie rates evaluation process.

then prompted to evaluate the quality of completions based on accuracy and level of detail of the responses. We provide
an example of using GPT-4 to evaluate two prompt responses pairs in Fig 11. Assume we have the prefix ”In wireless
communications, MIMO * and feed this to both SPRINTER and SD. The completion from SD is “(Multiple-Input Multiple
Output) is a technique for increasing the capacity of a wireless channel by . The completion from SPRINTER is “(Multiple-
Input Multiple Output) is a technique for increasing the signal-to-noise ratio (SNR) of”’. GPT-4 is given the prefix and the
two completions and gives a score of 8 and 9 to SPRINTER and SD respectively, which means that SD is assigned the win
for this prefix.

A.10. Additional Experimental Results

In this section, we present additional experimental results on the verifier’s hyperparameter tuning. Specifically, we show the
ROC curve for the Wiki-Summary dataset using the GPT-Neo-125M / GPT-Neo-1.3B model pair as shown in Figure 12 and
Table 5. Figure 13 shows the ROC Curve for the Im1b dataset. An interesting phenomenon emerges: as we increase the
verifier decision threshold A, the area under the curve improves, reaching its optimal performance at A = 1.2. The optimal
balance at A = 1.2 suggests that this threshold best separates acceptable from unacceptable tokens.

Receiver Operating Characteristic (ROC) Receiver Operating Characteristic (ROC)

1.0 4 = gy 1.0 e ————— - ———
‘_,-::r‘“ ’,’ _-—-::_..———"'— - ’I’
BT e ‘:‘_,_- -
v, -
'-;:,J e -‘4",'" e
081 i e 081 e e
LMy s - - P
& - F I -
- - L s I
W P ” @ - ~ -
Z , =1 P] P
= - - 2 A + s
v 0.6 4’ e v 0.6y l’ e
> 7 - > ly 5 -
= - ’, 2 -
= 47 - = g -
@ ot ”~) Il e
2 -7 - 2 i -
o o -~ S 4 i
> 0.44 o~ 4 S 0.4+ ,’ s
= v e = } e
oA - 1 -
+ ” F] ”
1y ’ ’
fr - I -
14 e - ¢ . .
0.2+ ’J,' - == ROC curve (area = 0.72) withA= 1.0 0.2 "" - == ROC curve (area = 0.86) with A= 1.0
” ”
,’ ,’ ROC curve (area = 0.78) withA= 1.2 i' ,’ ROC curve {(area = 0.91) withA= 1.2
"r’ == ROC curve (area = 0.73) withA= 1.5 /r’ == ROC curve (area = 0.90) withA= 1.5
0.0 T T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10

False Positive Rate

False Positive Rate

Figure 13. ROC curves on the LM1B dataset with varying
acceptance threshold X for the ¢(.)/p(.) ratio during training.
We used A = 1.2 for generating latency and quality results
with GPT2-S/XL and GPT-Neo draft/target pairs.

Figure 12. ROC curves on the Wiki-Summary dataset with
varying acceptance threshold X for the ¢(.)/p(.) ratio during
training. We used A = 1.2 for generating latency and quality
results with GPT2-S/XL and GPT-Neo draft/target pairs.

Wiki-Summary

LMI1B

GPT-Neo Model pair

O, 1) =(1.2,0.5)

O, 7 =(1.2,0.5)

GPT2 Model pair

7)) =(12,05)

1) =(12,05)

Table 5. Comparison of hyperparameters across datasets and model pairs

19

