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Abstract

Characterizing the structural properties of neural networks is crucial yet poorly1

understood, and there are no well-established similarity measures between net-2

works. In this work, we observe that neural networks can be represented as abstract3

simplicial complex and analyzed using their topological ’fingerprints’ via Persis-4

tent Homology (PH). We then describe a PH-based representation proposed for5

characterizing and measuring similarity of neural networks. We empirically show6

the effectiveness of this representation as a descriptor of different architectures7

in several datasets. This approach based on Topological Data Analysis is a step8

towards better understanding neural networks and serves as a useful similarity9

measure.10

1 Introduction11

Machine learning practitioners can train different neural networks for the same task. Even for the12

same neural architecture, there are many hyperparameters, such as the number of neurons per layer13

or the number of layers. Moreover, the final weights for the same architecture and hyperparameters14

can vary depending on the initialization and the optimization process itself, which is stochastic. Thus,15

there is no direct way of comparing neural networks accounting for the fact that neural networks16

solving the same task should be measured as being similar, regardless of the specific weights. This17

also prevents one from finding and comparing modules inside neural networks (e.g., determining if a18

given sub-network does the same function as other sub-network in another model). Moreover, there19

are no well-known methods for effectively characterizing neural networks.20

This work aims to characterize neural networks such that they can be measured to be similar21

once trained for the same task, with independence of the particular architecture, initialization, or22

optimization process. We focus on Multi-Layer Perceptrons (MLPs) for the sake of simplicity. We23

start by observing that we can represent a neural network as a directed weighted graph to which we24

can associate certain topological concepts.1 Considering it as a simplicial complex, we obtain its25

associated Persistent Diagram. Then, we can compute distances between Persistent Diagrams of26

different neural networks.27

The proposed experiments aim to show that the selected structural feature, Persistent Homology,28

serves to relate neural networks trained for similar problems and that such a comparison can be29

performed by means of a predefined measure between the associated Persistent Homology diagrams.30

To test the hypothesis, we study different classical problems (MNIST, Fashion MNIST, CIFAR-10,31

and language identification and text classification datasets), different architectures (number and size32

of layers) as well as a control experiment (input order).33

In summary, the main contributions of this work are the following:34

1See Jonsson [21] for a complete reference on graph topology.
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• We propose an effective graph characterization strategy of neural networks based on Persis-35

tent Homology.36

• Based on this characterization, we suggest a similarity measure of neural networks.37

• We provide empirical evidence that this Persistent Homology framework captures valuable38

information from neural networks and that the proposed similarity measure is meaningful.39

The remainder of this paper is organized as follows. In Section 2, we go through the related work.40

Then, in Section 3 we describe our proposal and the experimental framework to validate it. Finally, in41

sections 4 and 5 we report and discuss the results and arrive to conclusions, respectively.42

2 Related Work43

One of the fundamental papers of Topological Data Analysis (TDA) is presented in Carlsson [8]44

and suggests the use of Algebraic Topology to obtain qualitative information and deal with metrics45

for large amounts of data. For an extensive overview of simplicial topology on graphs, see Giblin46

[18], Jonsson [21]. Aktas et al. [2] provide a thorough analysis of PH methods.47

More recently, a number of publications have dealt with the study of the capacity of neural networks48

using PH. Guss and Salakhutdinov [19] characterize learnability of different neural architectures by49

computable measures of data complexity. Rieck et al. [30] introduce the neural persistence metric, a50

complexity measure based on TDA on weighted stratified graphs. This work suggests a representation51

of the neural network as a multipartite graph and the filtering of the Persistent Homology diagrams52

are performed for each layer independently. As the filtration contains at most 1-simplices (edges),53

they only capture zero-dimensional topological information, i.e. connectivity information. Donier54

[14] propose the concept of spatial capacity allocation analysis. Konuk and Smith [22] propose an55

empirical study of how NNs handle changes in topological complexity of the input data.56

In terms of pure neural network analysis, there are relevant works, like Hofer et al. [20], that study57

topological regularization. Clough et al. [11] introduce a method for training neural networks for58

image segmentation with prior topology knowledge, specifically via Betti numbers. Corneanu et al.59

[13] try to estimate (with limited success) the performance gap between training and testing via60

neuron activations and linear regression of the Betti numbers.61

On the other hand, topological analysis of decision boundaries has been a very prolific area. Ra-62

mamurthy et al. [28] propose a labeled Vietoris-Rips complex to perform PH inference of decision63

boundaries for quantification of the complexity of neural networks.64

Naitzat et al. [27] experiment on the PH of a wide range of point cloud input datasets for a binary65

classification problems to see that NNs transform a topologically rich dataset (in terms of Betti66

numbers) into a topologically simpler one as it passes through the layers. They also verify that67

the reduction in Betti numbers is significantly faster for ReLU activations than hyperbolic tangent68

activations.69

Liu [25] obtain certain geometrical and topological properties of decision regions for neural models,70

and provide some principled guidance to designing and regularizing them. Additionally, they use71

curvatures of decision boundaries in terms of network weights, and the rotation index theorem72

together with the Gauss-Bonnet-Chern theorem.73

Regarding neural network representations, one of the most related works to ours, Gebhart et al. [16],74

focuses on topological representations of neural networks. They introduce a method for computing PH75

over the graphical activation structure of neural networks, which provides access to the task-relevant76

substructures activated throughout the network for a given input.77

Interestingly, in Watanabe and Yamana [35], authors work on neural network representations through78

simplicial complexes based on deep Taylor decomposition and they calculate the PH of neural79

networks in this representation. In Chowdhury et al. [10], they use directed homology to represent80

MLPs. They show that the path homology of these networks is non-trivial in higher dimensions and81

depends on the number and size of the network layers. They investigate homological differences82

between distinct neural network architectures.83

As far as neural network similarity measures are concerned, the literature is not especially prolific. In84

Kornblith et al. [23], authors examine similarity measures for representations (meaning, outputs of85
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different layers) of neural networks based on canonical correlation analysis. However, note that this86

method compares neural network representations (intermediate outputs), not the neural networks87

themselves. Remarkably, in Ashmore and Gashler [3], authors do deal with the intrinsic similarity88

of neural networks themselves based on Forward Bipartite Alignment. Specifically, they propose89

an algorithm for aligning the topological structures of two neural networks. Their algorithm finds90

optimal bipartite matches between the nodes of the two MLPs by solving the well-known graph91

cutting problem. The alignment enables applications such as visualizations or improving ensembles.92

However, the methods only works under very restrictive assumptions,2 and this line of work does not93

appear to have been followed up.94

Finally, we note that there has been a considerable growth of interest in applied topology in the95

recent years. This popularity increase and the development of new software libraries,3 along with the96

growth of computational capabilities, have empowered new works. Some of the most remarkable97

libraries are Ripser [32, 5], and Flagser [26]. They are focused on the efficient computation of PH.98

For GPU-Accelerated computation of Vietoris-Rips PH, Ripser++ [37] offers an important speedup.99

The Python library we are using, Giotto-TDA [31], makes use of both above libraries underneath.100

We have seen that there is a trend towards the use of algebraic topology methods for having a better101

understanding of phenomena of neural networks and having more principled deep learning algorithms.102

Nevertheless, little to no works have proposed neural network characterizations or similarity measures103

based on intrinsic properties of the networks, which is what we intend to do.104

3 Methodology105

In this section, we propose our method, which is heavily based on concepts from algebraic topology.106

We refer the reader to the Supplementary Material for the mathematical definitions. In this section,107

we also describe the conducted experiments.108

Intrinsically characterizing and comparing neural networks is a difficult, unsolved problem. First, the109

network should be represented in an object that captures as much information as possible and then it110

should be compared with a measure depending on the latent structure. Due to the stochasticity of111

both the initialization and training procedure, networks are parameterized differently. For the same112

task, different functions that effectively solve it can be obtained. Being able to compare the trained113

networks can be helpful to detect similar neural structures.114

We want to obtain topological characterizations associated to neural networks trained on a given115

task. For doing so, we use the Persistence Homology (from now on, PH) of the graph associated to a116

neural network. We compute the PH for various neural networks learned on different tasks. We then117

compare all the diagrams for each one of the task.118

More specifically, for each of the studied tasks (image classification on MNIST, Fashion MNIST and119

CIFAR-10; language identification, and text classification on the Reuters dataset),4 we proceed as120

follows:121

• We train several neural network models on the particular problem.122

• We create a directed graph from the weights of the trained neural networks (after changing123

the direction of the negative edges and normalising the weights of the edges).124

• We consider the directed graph as a simplicial complex and calculate its PH, using the125

weight of the edges as the filtering parameter, which range from 0 to 1. This way we obtain126

the so-called Persistence Diagram.127

• We compute the distances between the Persistence Diagrams (prior discretization of the128

Persistence Diagram so that it can be computed) of the different networks.129

• Finally, we analyze the similarity between different neural networks trained for the same130

task, for a similar task, and for a completely different task, independently of the concrete131

architecture, to see whether there is topological similarity.132

2For example, the two neural networks "must have the same number of units in each of their corresponding
layers", and the match is done layer by layer.

3https://www.math.colostate.edu/~adams/advising/appliedTopologySoftware/
4For more details, see Section 3.2.
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As baselines, we set two standard matrix comparison methods that are the 1-Norm and the Frobenius133

norm. Having adjacency matrix A and B, we compute the difference as norm(A−B). However, these134

methods only work for matrices of similar size and thus, they are not general enough. We could also135

have used the Fast Approximate Quadratic assignment algorithm suggested in Vogelstein et al. [34],136

but for large networks this method becomes unfeasible to compute.137

3.1 Proposal138

Our method is as follows. We start by associating to a neural network a weighted directed graph139

that is analyzed as an abstract simplicial complex consisting on the union of points, edges, triangles,140

tetrahedrons and larger dimension polytopes (those are the elements referred as simplices). Abstract141

simplicial complexes are used in opposition to geometric simplicial complexes, generated by a point142

cloud embedded in the Euclidean space Rn.143

Given a trained neural network, we take the collection of neural network parameters as directed and144

weighted edges that join neurons, represented by graph nodes. Biases are considered as new vertices145

that join target neurons with an edge having a given weight. Note that, in this representation, we lose146

the information about the activation functions, for simplicity and to avoid representing the network147

as a multiplex network. Bias information could also have been ignored because we want large PH148

groups that characterize the network, while these connections will not change the homology group149

dimension of any order.150

For negative edge weights, we reverse edge directions and maintain the absolute value of the weights.151

We discard the use of weight absolute value since neural networks are not invariant under weight sign152

transformations. This representation is consistent with the fact that every neuron can be replaced by a153

neuron from which two edges with opposite weights emerge and converge again on another neuron154

with opposite weights. From the point of view of homology, this would be represented as a closed155

cycle.156

We then normalize the weights of all the edges as expressed in Equation 1 where w is the weight157

to normalize, W are all the weights and ζ is an smoothing parameter that we set to 0.000001. This158

smoothing parameter is necessary as we want to avoid normalized weights of edges to be 0. This is159

because 0 implies a lack of connection.160

max(1− |w|
max(|max(W )|, |min(W )|)

,ζ ) (1)

Given this weighted directed graph, we then define a directed flag complex associated to it. Topology161

of this directed flag complex can be studied using homology groups Hn. In this work we calculate162

homology groups up to degree 3 (H0-H3) due to computational complexity and our neural network163

representation method’s layer connectivity limit.164

The dimensions of these homology groups are known as Betti numbers. The i-th Betti number is165

the number of i-dimensional voids in the simplicial complex (β0 gives the number of connected166

components of the simplicial complex, β1 gives the number of non reducible loops and so on). For a167

deeper introduction to algebraic topology and computational topology, we refer to Edelsbrunner and168

Harer [15], Ghrist [17].169

We work with a family of simplicial complexes, Kε , for a range of values of ε ∈R so that the complex170

at step εt is embedded in the complex at εt+1 for εt ≤ εt+1, i.e. Kε ⊆ Kεt+1 . In our case, ε is the171

minimum weight of included edges of our graph representation of neural networks.172

The nested family of simplicial complexes is called a filtration. We calculate a sequence of homology173

groups by varying the ε parameter, obtaining a persistence homology diagram. PH calculations are174

performed on Z2.175

This filtration gives a collection of contained directed weighted graph or simplicial complex Kεmin ⊆176

. . .⊆ Kεt ⊆ Kεt+1 ⊆ . . .⊆ Kεmax , where t ∈ [0,1] and εmin = 0, εmax = 1 (recall that edge weights are177

normalized).178

Given a filtration, one can look at the birth, when a homology class appears, and death, the time179

when the homology class disappears. The PH treats the birth and the death of these homological180

features in Kε for different ε values. Lifespan of each homological feature can be represented as181
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an interval (birth,death), of the homological feature. Given a filtration, one can record all these182

intervals by a Persistence Barcode (PB) [8], or in a Persistence Diagram (PD), as a collection of183

multiset of intervals.184

As mentioned previously, our interest in this work is to compare PDs from two different simplicial185

complexes. There are two distances traditionally used to compare PDs, Wasserstein distance and186

Bottleneck distance. Their stability with respect to perturbations on PDs has been object of different187

studies [9, 12].188

In order to make computations feasible and to obviate noisy intervals, we filter the PDs by limiting189

the minimum PD interval size. We do so by setting a minimum threshold η = 0.01. Intervals with190

a lifespan under this value are not considered. Additionally, for computing distances, we need to191

remove infinity values. As we are only interested in the deaths until the maximum weight value, we192

replace all the infinity values by 1.0.193

Wasserstein distance calculations are computationally hard for large PDs (each PD of our NN models194

has a million persistence intervals per diagram). Therefore we use a vectorized version of PDs instead,195

also called PD discretization. This vectorized version summaries have been proposed and used on196

recent literature [1, 6, 7, 24, 29].197

For the persistence diagram distance calculation, we use the Giotto-TDA library [31] and compute198

the following supported vectorized persistence summaries: 1. Persistence landscape. 2. Weighted199

silhouette. 3. Heat vectorizations.200

3.2 Experimental Framework201

Datasets To determine the topological structural properties of trained NNs, we select different202

kinds of datasets. We opt for four well-known benchmarks in the machine learning community203

and one regarding language identification: (1) the MNIST5 dataset for classifying handwritten digit204

images, (2) the Fashion MNIST [36] dataset for classifying clothing images into 10 categories, (3) the205

CIFAR-106 (CIFAR) dataset for classifying 10 different objects, (4) the Reuters dataset for classifying206

news into 46 topics, and (5) the Language Identification Wikipedia dataset7 for identifying 7 different207

languages.208

We selected these datasets because, apart from being well-known benchmarks, the performances209

without transfer learning are good enough and they have different data types and sizes. For CIFAR-210

10 and Fashion MNIST datasets we train a Convolutional Neural Network (CNN) first, and the211

convolutional layers are shared between all the models of the same dataset as a feature extractor.212

Recall that in this work we are focusing on MLPs, so we do not consider that convolutional weights.213

For the MNIST, Reuters and Language Identification datasets, we use an MLP. For Reuters and214

Language identification datasets, we vectorize the sentences with character frequency.215

Experiments Pipeline We study the following variables (hyperparameters): 1. Layer width,216

2. Number of layers, 3. Input order8), 4. Number of labels (number of considered classes).217

We define the base architecture as the one with a layer width of 512, 2 layers, the original features218

order, and considering all the classes (10 in the case of MNIST, Fashion MNIST and CIFAR, 46 in219

the case of Reuters and 7 in the case of the language identification task). Then, doing one change at a220

time, keeping the rest of the base architecture hyperparameters, we experiment with architectures221

with the following configurations:222

• Layer width: 128, 256, 512 (base) and 1024.223

• Number of layers: 2 (base), 4, 6, 8 and 10.224

• Input order: 5 different randomizations (with base structure), the control experiment.225

• Number of labels (MNIST, Fashion MNIST, CIFAR-10): 2, 4, 6, 8 and 10 (base).226

5http://yann.lecun.com/exdb/mnist/
6https://www.cs.toronto.edu/~kriz/cifar.html
7https://www.floydhub.com/floydhub/datasets/language-identification/1/data
8Order of the input features, the control experiment. This one should definitely not affect the performance in

the neural networks, so if our method is correct, it should be uniform as per the proposed topological distances.
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Figure 1: Distance matrices using Silhouette discretization.

• Number of labels (Reuters): 2, 6, 12, 23 and 46 (base).227

• Number of labels (Language Identification): 2, 3, 4, 6 and 7 (base).228

Note that this is not a grid search over all the combinations. We always modify one hyperparameter229

at a time, and keep the rest of them as in the base architecture. In other words, we experiment with all230

the combinations such that only one of the hyperparameters is set to a non-base value at a time.231

For each dataset, we train 5 times (each with a different random weight initialization) each of these232

neural network configurations. Then, we compute the topological distances (persistence landscape,233

weighted silhouette, heat) among the different architectures. In total, we obtain 5×5×3 distance234

matrices (5 datasets, 5 random initializations, 3 distance measures). Finally, we average the 5 random235

initializations, such that we get 5×3 matrices, one for each distance on each dataset. All the matrices236

have dimensions 19×19, since 19 is the number of experiments for each dataset (corresponding to237

the total the number of architectural configurations mentioned above). Note that the base architecture238

appears 8 times (1, on the number of neurons per layer, 1 on the number of layers, 1 on the number239

of labels and the 5 randomizations of weight initializations).240

All experiments were executed in a machine with 2 NVIDIA V100 of 32GB, 2 Intel(R) Xeon(R)241

Platinum 8176 CPU @ 2.10GHz, and of 1.5TB RAM, for a total of around 3 days.242

The code and results are fully open source9 under MIT license.243

4 Results & Discussion244

Number Experiment Index

1 Layer size 1-4
2 Number of layers 5-9
3 Input order 10-14
4 Number of labels 15-19

Table 1: Indices of the experiments of the
distance matrices.

Results from control experiments can be seen in the245

third group on Figures 1 and 4. In these figures, groups246

are separated visually using white dashed lines. Exper-247

iments groups are specified in Table 1. Control exper-248

iments in all the images appear very dimmed, which249

means that they are very similar, as expected. Recall250

that the control experiments consist of 5 (randomiza-251

tions) × 5 (executions) and that 25 different neural252

networks have been trained; each one of the network253

has more than 690,000 parameters that have been ran-254

domly initialized. After the training, results show that255

these networks have very close topological distance, as expected.256

9See Supplementary Material.
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Figure 2: Control experiments using norms.

Norm Minimum Maximum Mean Standard deviation

1-Norm 0.6683 4.9159 1.9733 1.5693
Frobenius 0.0670 0.9886 0.4514 0.3074

Table 2: Normalized difference comparison of self-norm against the maximum mean distance of the
experiment.

For Figure 2 we computed both 1-norm and Frobenius norm (the baselines) for graphs’ adjacency257

matrices of control experiments. Note that as we ran the experiment five times, we make the mean258

for each value of the matrix. In order to show whether the resulting values are positive or negative,259

we subtract to the maximum difference of each dataset the norm of each cell separately, we take the260

absolute value and we divide by the maximum difference of each dataset. Therefore, we obtain five261

values per dataset. Table 2 shows the statistics reflecting that the distance among the experiments are262

large and, thus, they are not characterizing any similarity but rather an important dissimilarity.263

In contrast, Figure 3, with our method (Silhouette), shows perfect diagonal of similarity blocks. In264

the corresponding numeric results, we obtained show small distances, as shown in Table 3. We can265

appreciate that each dataset has its own hub. This confirms the validity of our proposed similarity266

measure.267
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Figure 3: Control experiment comparison matrix
using Silhouette discretization.

The method we present also seems to capture268

some parts of hyperparameter setup. For in-269

stance, in Figure 4 we can observe gradual in-270

crease of distances in the first group regarding271

layer size meaning that, as layer size increases,272

the topological distance increases too. Similarly,273

for the number of layers (second group) and274

number of labels (fourth group) the same situ-275

ation holds. Note that in Fashion MNIST and276

CIFAR-10, the distances are dimmer because we277

are not dealing with the weights of the CNNs.278

Recall that the CNN acts as a frozen extractor279

and are pretrained for all runs (with the same280

weights), such that the MLP layers themselves281

are the only potential source of dissimilarity be-282

tween runs.283
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Figure 4: Distance matrices using Heat discretization.

Heat distance Silhouette distance

Dataset Mean Deviation Mean Deviation

MNIST 0.0291 0.0100 0.1115 0.0364
F. MNIST 0.0308 0.0132 0.0824 0.0353
CIFAR-10 0.0243 0.0068 0.0769 0.0204
Language I. 0.0159 0.0040 0.0699 0.0159
Reuters 0.0166 0.0051 0.0387 0.0112

Table 3: PH distances across input order (control) experiments, normalized by dataset.
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Thus, our characterization is sensitive to the architecture (e.g., if we increase the capacity, distances284

vary), but at the same time, as we saw before, it is not dataset-agnostic, meaning that it also captures285

whether two neural networks are learning the same problem or not.286

In Figure 4, Fashion MNIST (Figure 4b) and CIFAR (Figure 4c) dataset results are interestingly287

different from those of MNIST (Figure 4a) dataset. This is, presumably, because both Fashion288

MNIST and CIFAR use a pretrained CNN for the problem. Thus, we must analyze the results taking289

into account this perspective. The first fully connected layer size is important as it can avoid a290

bottleneck from the previous CNN output. Some works in the literature show that adding multiple291

fully connected layers does not necessarily enhance the prediction capability of CNNs [4], which292

is congruent with our results when adding fully connected layers (experiments 5 to 9) that result in293

dimmer matrices than the one from. Concerning the experiments on input order, there is slightly294

more homogeneity than in MNIST, again showing that the order of sample has negligible influence.295

Moreover, there could have been even more homogeneity taking into account that the fully connected296

network reduced its variance thanks to the frozen weights of the CNN. This also supports the fact297

that the CNN is the main feature extractor of the network. As in MNIST results, CIFAR results show298

that the topological properties are, indeed, a mapping of the practical properties of neural networks.299
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Figure 5: Language Identification dataset PH Land-
scape distance matrix.

We refer to the Supplementary Material for all300

distance matrices for all datasets and all dis-301

tances, as well as for the standard deviations302

matrices and experiment group statistics.303

5 Conclusions & Future Work304

Results from different experiments, in five dif-305

ferent datasets from computer vision and natural306

language, lead to similar topological properties307

and are trivially interpretable, which yields to308

general applicability.309

The bests discretizations chosen for this work310

are the Heat and Silhouette. They show better311

separation of experiment groups, and are effec-312

tively reflecting changes in a sensitive way. We313

also explored the Landscape discretization but it314

offers a very low interpretability and clearance.315

In other words, it is not helpful for comparing PH diagrams associated to neural networks.316

The most remarkable conclusion comes from the control experiments. The corresponding neural317

networks, with different input order but the same architecture, are very close to each other. The PH318

framework does, indeed, abstract away the specific weight values, and captures latent information319

from the networks, allowing comparisons to be based on the function they approximate. The selected320

neural network representation is reliable and complete, and yields coherent and meaningful results.321

Instead, the baseline measures, the 1-Norm and the Frobenius norm, implied an important dissimilarity322

between the experiments in the control experiments, meaning that they did not capture the fact that323

these neural networks were very similar in terms of the solved problem.324

We conclude that our proposed characterization, does, indeed, capture meaningful information from325

neural network, and the computed distances can serve as an effective similarity measure between326

networks. To the best of our knowledge, this similarity measure between neural networks is the first327

of its kind.328

As future work, we suggest adapting the method to different deep learning libraries and make it329

support popular neural architectures such as CNNs, Recurrent Neural Networks, and Transformers330

[33]. Finally, we suggest performing more analysis regarding the learning of a neural network, and331

trying to topologically answer the question of how a neural network learns.332
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