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ABSTRACT

There is growing interest in learning visual representations that work well across
distribution shifts as illustrated by the increasing number of IMAGENET evaluation
sets. In this paper, we reconsider adversarial training, which is generally used
as a defense against adversarial shifts, as a way to improve the pre-training of
representations for transfer across tasks and natural shifts. In this study we combine
adversarial training with different self-supervised pre-training methods such as
bootstrap your own latent (BYOL), masked auto-encoding (MAE), and the auxiliary
task of rotation prediction (RotNet). We show that the adversarial versions of these
self-supervision methods consistently lead to better fine-tuning accuracy both in and
out of distribution compared to standard self-supervision, even with nominal/non-
adversarial fine-tuning. Furthermore we observe that, to reach best performance
with adversarial self-supervised pre-training, (1) the optimal perturbation radius
differs among pre-training methods, and (2) that the robust parameters of early
layers need to be preserved during fine-tuning to avoid losing the benefits of
adversarial pre-training. Finally, we show that there is not a single adversarial self-
supervised method that dominates others across all variants, but that adversarial
MAE is the best choice for in-distribution variants, and that adversarial BYOL is
best for out-of-distribution variants.

1 INTRODUCTION

As deep networks continue to improve, with new architectures such as Vision Transformers (Doso-
vitskiy et al., 2020), the results on standard large-scale benchmarks like IMAGENET have begun
to saturate and to overfit to their test set (Recht et al., 2019). As illustrated by the emergence of
several IMAGENET variants, the interest of the community has started to shift towards training
models performing well on the standard evaluation set but which are also robust across distribution
shifts (Hendrycks et al., 2019b; 2020; Wang et al., 2019; Geirhos et al., 2018; Hendrycks & Dietterich,
2018).

In parallel with the development of novel architectures, the classification performance of networks
has been pushed by the advent of new self-supervised learning methods. Indeed, in recent work in
computer vision with Masked autoencoder (He et al., 2022) and natural language processing with
BERT (Devlin et al., 2018), transfer learning by first pre-training then fine-tuning dominates the
accuracy of simple fully-supervised training across tasks. However, sheer accuracy on a standard
evaluation set is not the only metric for a model, and robustness to distribution shifts in particular
is a key concern for deployment. In separate threads, recent work has highlighted the potential to
improve transfer by either adversarial pre-training with perturbed inputs (Salman et al., 2020) or
self-supervised pre-training with auxiliary outputs and losses (Gidaris et al., 2018; He et al., 2022).
For transfer effects beyond accuracy alone, there is evidence that self-supervised pre-training can
not only rival the accuracy of supervised pre-training, but that it can also deliver fairer and more
general representations without relying on hand-labeled annotations and their possible biases (Goyal
et al., 2022). In this work, we join the threads of adversarial and self-supervised learning to devise
a new pre-training scheme for self-adversarial learning based on MAE, and empirically show that
combining any pre-training method in our study with adversarial training achieves more accurate and
more robust transfer. Overall, our contributions are as follows:
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• We create an adversarial version of the self-supervision method MAE, and further examine the
existing adversarial BYOL and adversarial RotNet on both in and out of distribution benchmarks.
As adversarial attacks depend on the training loss, we detail in Section 2 and Appendix B the
specific adversarial training scheme for each self-supervised method.

• We empirically demonstrate that adversarial training consistently improves self-supervised pre-
training for all the studied methods, with a significant boost in accuracy on IMAGENET and
its variants. Furthermore, adversarial pre-training reduces the performance gaps among self-
supervised methods. Surprisingly, even the older RotNet rivals the accuracy of more recent and
strong methods like MAE when both are trained adversarially.

• We identify the key factors in the pre-training and fine-tuning procedures to reach best performance.
We study the influence of the attack and perturbation radius used during pre-training on the
downstream classification performance. For the fine-tuning stage, we show the impact of layer-
wise learning rate decay on preserving the robust filters learned during pre-training and how it
leads to better performance on out of distribution benchmarks.

• We show in a fine-grained study over IMAGENET variants that there is not a single adversarial
self-supervised method which performs best on all the variants but that self-supervised methods
specialize to certain shifts.

2 SELF-ADVERSARIAL TRAINING

We improve pre-training by attacking the label-free losses of self-supervised learning. That is, the
model is pre-trained with an adversarial version of self-supervision, and then fine-tuned on the task of
interest by standard supervised learning. As adversarial attacks modify the loss for training, we create
a separate setup to adversarially train each self-supervised method. In the following, we first define
adversarial training as background, and then explain its application to self-supervision by masked
auto-encoding (MAE). We recall in Appendix B the existing adversarial RotNet and BYOL.

3 BACKGROUND: ADVERSARIAL TRAINING

Adversarial training seeks to find a model that is robust to small perturbations that reside within an
ℓp-norm ball. Madry et al. (2018) propose to find the parameters θ of such a model by solving a
min-max problem at each training step:

argmin
θ

E(x,y)∼D

[
max
δ∈S
LAT
θ (x+ δ, y)

]
(1)

where pairs of samples x and labels y are sampled from the data distribution D. LAT
θ is a suit-

able loss function (such as the cross-entropy loss for classification tasks) using the output of the
model parametrized by θ. S denotes the constrained space of perturbations. For ℓp norm-bounded
perturbations of size ϵ the adversarial set of perturbations is defined as Sp = {δ | ∥δ∥p ≤ ϵ}. In
the rest of the manuscript we will use ϵp to denote ℓp norm-bounded perturbations of size ϵ (e.g.,
ϵ∞ = 4/255). To solve the inner optimization problem, Madry et al. (2018) use Projected Gradient
Descent (PGD), which computes the adversarial perturbation in K gradient ascent steps with step
size α. For an arbitrary adversarial loss LAT, we denote as PGDK

LAT(x, y) the inner optimization with
K steps defined as

δ(k+1) ← projS

(
δ(k) + α sign

(
∇δ(k)LAT

θ (x+ δ(k), y)
))

(2)

where δ(0) is randomly sampled within S, and where projA(a) projects a point a back onto a set A,
projA(a) = argmina′∈A∥a− a′∥2.

3.1 ADVERSARIAL MASKED AUTOENCODER

Masked autoencoder (MAE), as introduced by He et al. (2022), is a self-supervised technique based
on regression. Random patches of the input image are masked out and the autoencoder is tasked
to predict the missing pixels based on the remaining visible patches. The network architecture is
composed of an encoder e(·;θ) that operates on the visible patches and a lightweight decoder d(·;θ)
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that reconstructs the masked patches from the latent representation. Given an image x we decompose
it into a batch of patches p. We randomly sample a mask m which is equal to 1 for a visible patch
and to 0 for a masked out patch. We feed the patches p and the mask m to the auto-encoder d ◦ e and
use the mean squared error (MSE) error to match the output of the autoencoder with the normalized
input patches. This loss is only computed on masked patches, so MAE minimizes the following loss:

LMAE
θ ∝ (1−m)

∥∥∥∥d ◦ e(p,m;θ)− p− µ(p)

σ(p)

∥∥∥∥2
2

. (3)

where µ and σ are respectively the mean and standard deviation functions over width, length and
channel dimensions. At the end of the training, the decoder is discarded and the encoder representation
e(p,1;θ) of fully visible images x with patches p is fine-tuned on downstream tasks.

To adapt MAE to adversarial training, we need to design an adversarial attack which maximizes the
disagreement between the autoencoder output and the normalized input patches by perturbing the
input images. The input image is broken up into patches before being passed to the MAE loss, so we
need to decide how to attack the patches. We observe that MAE’s loss uses the input patches p in two
different ways depending on whether the patch is visible or not. Visible patches are given as input to
the autoencoder whereas masked patches are used for the reconstruction target. In our design, we
propose to only attack the visible patches of the image, as only the visible patches impact the output
of the autoencoder. The visible patches are independent of the masked ones, so perturbing the masked
ones would modify the target, but the autoencoder has no way to ascertain which masked patches had
been perturbed and thereby how to be robust to that perturbation. Hence, we propose to use

LA-MAE
θ = (1−m)

∥∥∥∥d ◦ e(p+ δ,m;θ)− p− µ(p)

σ(p)

∥∥∥∥2
2

. (4)

where we use PGDK
LA-MAE to approximate the perturbation in K gradient ascent steps and we optimize

the model parameters using this adversarial loss where the attacked visible patches are fed to the
autoencoder. We emphasize that the regression task of adversarial MAE is much more challenging
than that of standard MAE as the autoencoder has to reconstruct the original missing patches based
on perturbed visible patches. Hence, this task is a combination of both inpainting and denoising.

4 EXPERIMENTAL RESULTS

4.1 ADVERSARIAL TRAINING IMPROVES PRE-TRAINING

All methods benefit from adversarial training. We study the fine-tuning performance of ad-
versarially trained self-supervised models which are fine-tuned on clean IMAGENET images. We
report in Figure 1 their average classification performance on IMAGENET and its seven variants. We
compare models which are adversarially pre-trained with three different self-supervised methods and
attacked with either ℓ∞ or ℓ2 attacks and varying perturbation radii. We also add models adversarially
pre-trained with full supervision, which are then fine-tuned again with full supervision but on clean
images.

First, we observe that all the curves increase when moving to the right, improving over their starting
points which correspond to the nominal self-supervised methods. Thus, all the pre-training methods
benefit from adversarial training, as all methods obtain significantly higher average accuracies than
when nominally pre-trained. Second, all the curves reach positive values so all the adversarially
self-supervised methods achieve better classification performance than a model nominally trained
from scratch on IMAGENET with full supervision. This is not the case for nominal BYOL and
nominal RotNet whose points are below 0. Finally, self-supervision with adversarial training bridges
the performance gap between methods, as the best adversarial RotNet result, which already performs
better than nominal MAE, is only 1.68% in average accuracy below the best adversarial BYOL result.

Finding the optimal attack. When comparing the two panels of Figure 1 (as their y-axis are
aligned), we notice that adversarial RotNet and adversarial supervised pre-training achieve their best
results when using ℓ∞ attacks. On the contrary, the best adversarial MAE result with a ℓ2 attack is
+0.67% better than the best average accuracy with a ℓ∞ attack. Adversarial BYOL achieves similar
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Figure 1: Influence of the perturbation radius. We report the average classification performance over
IMAGENET variants for four adversarial pre-training methods using ℓ∞ (left panel) and ℓ2 (right panel) attacks
with various perturbation radii. Sup-PT corresponds to supervised pre-training with the true class labels. For
better comparison, we (1) subtract off the average accuracy obtained by a model nominally trained from scratch
on IMAGENET with full supervision and (2) align the y-axis of both panels.

best average accuracy with both ℓ∞ and ℓ2 attacks and is the method which benefits the most from
adversarial training with a +3.64% improvement for ϵ2 = 2 over nominal BYOL. Secondly, we
observe that the optimal perturbation radius differs for the various pre-training methods. Indeed, if
we focus on the left panel with ℓ∞ attacks, MAE reaches its maximum for ϵ∞ = 1/255, BYOL for
ϵ∞ = 2/255, RotNet for ϵ∞ = 4/255 and adversarial supervised for ϵ∞ = 6/255. We hypothesize
that there exist different optimal perturbations radii because these pre-training methods use different
training losses, which might be more or less sensitive to adversarial perturbations. Indeed, the
regression task of adversarial MAE of reconstructing patches of the clean image becomes extremely
difficult when the non-masked surrounding patches can be perturbed with a strong perturbation radius.
In comparison, classification losses used for adversarial supervised pre-training and RotNet are less
sensitive to the perturbation radius.

4.2 FINE-GRAINED ANALYSIS

Influence of the pre-training methods. In subsection 4.1, we observed that all the adversarial
pre-training methods have better average performance on IMAGENET and its variants than training
from scratch on IMAGENET . Delving into a more fine-grained analysis, we study the per variant
performance of these models. We report in Figure 2 the results of the models with the best average
accuracies for the different pre-training methods and attacks (nominal, ℓ∞ or ℓ2 ). When comparing
the ℓ∞ and ℓ2 columns to the nominal columns, we see that adversarial pre-training improves over
nominal pre-training for all the methods and for all the variants. More interestingly, we notice that
there is not a single method which works best on all the variants. Indeed, if we look at the last two
columns of Figure 2, we observe that adversarial MAE performs better than adversarial BYOL on
standard ImageNet, IN-V2, IN-Real, IN-A and IN-Sketch but worse on IN-R, Conflict Stimuli and
IN-C. Additionally, the fine-tuned performance on the standard ImageNet test set is not a sufficient
indicator of performance for pre-training methods, as these methods show different strengths and
weaknesses depending on the variant. To illustrate this point, we observe for ℓ2 attacks that adversarial
supervised pre-training and adversarial RotNet have opposite behaviours, with supervised pre-training
performing better on domains closer to the original test set whereas adversarial RotNet performs
relatively better on IN-R, IN-Sketch and Conflict Stimuli.

Influence of the layer-wise learning rate decay. For all the pre-training methods, we use the same
fine-tuning procedure proposed in He et al. (2022) which prevents earlier layers from changing too
much during fine-tuning thanks to layer-wise learning rate decay. In this setting the learning rate of
the k to last transformer block is obtained by multiplying the nominal learning rate, which is the
learning rate applied to the last layer, by a factor γ−k where γ is the layer-wise learning rate decay.
Notably, γ = 1 boils down to standard full-finetuning and γ = 0 to training a classifier layer on top
of a frozen feature extractor. We study the impact of this hyperparameter in Figure 3 where we report
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Figure 2: Influence of the pre-training methods
and attacks. We report the accuracy on IMAGENET
variants of the models with the best average accuracies
in Figure 1 for the different pre-training methods and
attacks. The three groups of columns (from left to right)
correspond respectively to pre-training nominally, with
ℓ∞ attacks and with ℓ2 attacks. The colours are row
normalized and red means better.
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Figure 3: Influence of the layer-wise learning rate
decay. We report the accuracy on IMAGENET vari-
ants when fine-tuning with various layer-wise learning
rate decay from different pre-training models. The
three groups of columns correspond to the pre-training
models achieving the best average performance over
variants in Figure 1: supervised with ϵ∞ = 6/255,
MAE with ϵ2 = 0.5 and BYOL with ϵ2 = 2. The
colours are row normalized and red means better.

the per variant performance when varying the layer-wise learning rate decay for the three adversarial
pre-training methods achieving the best average performance over variants, namely supervised with
ϵ∞ = 6/255, MAE with ϵ2 = 0.5 and BYOL with ϵ2 = 2. Similarly for the three methods, we
observe that some variants benefit more from the smallest decay γ = 0.65 such as IN-R, IN-Sketch,
IN-C and more significantly Conflict Stimuli. A small layer-wise learning rate decay acts as a ”soft”
freezing of the early layers which have a much smaller effective learning rate than later layers. Thus
keeping early layers close to the robust filters learned during the adversarial pre-training phase is
helpful for variants which are the most outside of the IMAGENET training distribution. Conversely,
variants such as IN-V2 or IN-A, closer to the training distribution, obtain better results with a larger
decay γ = 0.75.

A possible explanation is that preserving the robust early layers during nominal fine-tuning can
retain some of the robustness learnt during adversarial pre-training and transfer this robustness on the
fine-tuned task. To illustrate this, we report in Figure 5 (in the appendix) the robust test accuracy on
IMAGENET of models nominally fine-tuned with various layer-wise learning rate decays from the
same network pre-trained using adversarial BYOL with ϵ2 = 2. We observe that soft freezing the
early layers with a smaller layer-wise learning rate decay (blue curve) during fine-tuning leads to a
higher robustness on the downstream classification task. This transferred robustness could explain the
better performance on the variants which are the most outside of the IMAGENET training distribution.

5 CONCLUSION

In this work we have shown that adversarial training consistently improves self-supervised pre-training.
In fact, not only models fine-tuned from adversarial versions of self-supervised methods have better
performance on the standard evaluation set of IMAGENET but they also do significantly better in
the face of distribution shifts with strong improvements on the IMAGENET variants. Furthermore,
adversarial training narrows the performance gap between self-supervised methods as even adversarial
RotNet can compete (on average) with more recent methods such as MAE.

In a fine-grained analysis over IMAGENET variants, we have shown that the various self-supervision
methods specialize on certain distribution shifts and that there is not a single method which performs
best on all the variants. These observations open up new interesting directions for future work about
whether there are potential self-supervised methods that could do well on many (or even all) types of
distribution shift.
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A RELATED WORK

Adversarial Robustness. Adversarial training improves the robustness of supervised learning by
perturbing its inputs during training (Madry et al., 2018; Kurakin et al., 2016), and as posed by
Madry et al. (2018) it remains one of the most successful defenses to attack as measured in standard
evaluations (Croce et al., 2021). It has been augmented in different ways—by changes to the attack
optimization (e.g., by incorporating momentum (Dong et al., 2018)), loss (e.g., logit pairing (Mosbach
et al., 2018)), model architecture (e.g., feature denoising (Xie et al., 2019)), and data augmentation
(e.g., leveraging synthetic examples (Rebuffi et al., 2021; Gowal et al., 2021b))—and thoroughly
analyzed (Gowal et al., 2020b; Pang et al., 2020). During training, adversarial perturbations are
generated by counter-optimizing the supervised loss of the main task, and they do not take into
account auxiliary tasks, such as the losses provided by self-supervised learning. For evaluation,
adversarial training has almost exclusively been studied for robustness, and not transfer, and studying
its transfer (Salman et al., 2020) has considered only supervised and not self-supervised pre-training.
Our work adapts adversarial training from supervised learning to self-supervised learning, which
necessitates the careful design and evaluation of adversarial schemes to address each type of self-
supervised output and loss. We report the first results for the adversarial training of self-supervision
by MAE.

Self-supervised Training. Self-supervised learning enables pre-training on unlabeled data by
designing auxiliary tasks and losses that provide their own labels. Unsupervised learning uses
the data as its own “labels” for prediction, generation, or reconstruction. Pre-training without
labels has attracted widespread attention for its potential to reduce effort and raise accuracy: unlike
supervised pre-training, such methods do not require time-consuming and expensive labeling, and
they can learn more transferable representations from the input itself than potentially limited or biased
labels (Ericsson et al., 2021; Goyal et al., 2022). Auxiliary tasks and losses for vision often transform
the image, then supervise the transformation or its inverse, by for example recognizing rotations
(Gidaris et al., 2018), colorizing (Zhang et al., 2016), locating shuffled patches (Doersch et al., 2015;
Noroozi & Favaro, 2016), or clustering (Caron et al., 2018). Contrastive learning more generally
defines positive and negative pairs as transformations of the same or different images, then optimizes
to differentiate between positives and negatives (Oord et al., 2018; Chen et al., 2020c; He et al., 2020)
or to simply bring together positive pairs (Grill et al., 2020; Chen & He, 2021; Richemond et al.,
2020). Unsupervised learning by reconstruction and generation includes masking then reconstructing
or generating image patches (He et al., 2022; Pathak et al., 2016) or autoregressively generating
neighboring pixels (Chen et al., 2020a). To complement progress on the invention and tuning of
self-supervised and unsupervised losses, we demonstrate that casting such losses into adversarial
counterparts can further improve the robustness and transferability of the learned representations, and
do so without the supervised task labels that are needed for standard adversarial training.

Self-supervision for Robustness. Self-supervised and multi-task losses have been shown to im-
prove robustness in combination with supervised training (Hendrycks et al., 2019a; Mao et al., 2020).
To improve robustness without full supervision, recent work has investigated adversarial training
on unlabeled data by robust optimization of self-supervised losses. Chen et al. (2020b) experiment
with adversarial self-supervised classification, including RotNet, followed by adversarial or nominal
fine-tuning. Adversarial contrastive learning by RoCL (Kim et al., 2020), ACL (Jiang et al., 2020),
and AdvCL (Fan et al., 2021) augment contrastive pairs with adversarial perturbations to improve
robustness to attack for pre-training and fine-tuning on CIFAR-10/100. Bootstrap your own robust
latents (BYORL) (Gowal et al., 2021a) extends BYOL by perturbing its positives, and shows both
improved adversarial robustness and nominal accuracy on the training dataset in the regime of limited
labeled data. However, these works each study a single self-supervised loss in isolation, on smaller
datasets like CIFAR-10/100, and with smaller and less accurate models than the current state-of-the-
art for vision. We contribute to this line of work with a broader and deeper examination of robustness
and transfer, and report results for pre-training and fine-tuning across a variety of self-supervised
methods and datasets at IMAGENET scale with the stronger ViT-B16 architecture.
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B MORE SELF-ADVERSARIAL TRAINING METHODS

B.1 ADVERSARIAL ROTNET

Gidaris et al. (2018) propose RotNet, a self-supervised learning method which pre-trains the model
by using a fully supervised pretext task based on rotation prediction. The unlabeled images are
randomly rotated by 0◦, 90◦, 180◦ or 270◦ degrees before being fed to the network, and the network is
trained to predict which rotation was applied to each image. This is a standard classification problem
with four classes corresponding to the four rotations. Similar to Chen et al. (2020b), RotNet can
straightforwardly be adapted to adversarial training by modifying the adversarial risk of equation 1
for the rotation prediction task:

argmin
θ

E
(x,.)∈D

E
y∼U [{0,...,270}]

[
max
δ∈S
LCE
θ (rot(x, y) + δ, y)

]
(5)

where LCE is the cross-entropy loss, the label y corresponds to a rotation randomly sampled among
the four possible rotations 0◦, 90◦, 180◦ and 270◦ degrees and rot(x, y) is the function which rotates
the sample x by y degrees. In adversarial RotNet, the adversarial perturbations are optimized to fool
the network into predicting the wrong rotation.

B.2 ADVERSARIAL BYOL

Grill et al. (2020) propose BYOL, a self-supervised learning method based on two networks: an online
and a target network. The goal of the online network is to predict the target network representation of
the same image under different augmented views. The target network is defined by an exponential
moving average of the online network parameters. The online network is composed of three stages:
an encoder e(·;θ), a projector g(·;θ) and a predictor q(·;θ). We denote by γ = g ◦ e the composition
of the encoder and projector and by κ = q ◦ g ◦ e the composition of the encoder, projector and
predictor. The target network has the same architecture as the online network but skips the predictor
and uses as weights ξ, an exponential moving average of the weights θ. Given an image x, and
two augmentations t, t′ ∼ T sampled from a set of augmentations BYOL produces two augmented
views v = t(x) and v′ = t′(x). The first view passes through the online network, producing a
representation h = e(x;θ) and a projection z = g(h;θ). The second view similarly passes through
the target network, producing a target projection z′ = γ(v′; ξ). Finally, given an online prediction
q(z;θ) = κ(v;θ) (which should be predictive of the target projection), BYOL minimizes the loss

LBYOL
θ ∝ − κ(v;θ)Tz′

∥κ(v;θ)∥2 · ∥z′∥2
. (6)

At the end of training, everything but e and θ is discarded and only the representation e(x;θ) of an
image x is used by downstream applications.

Similar to Gowal et al. (2020a), we adapt BYOL to the adversarial setting by performing the attacks
through the online network. There are still two views v = t(x) and v′ = t′(x) of the same image
x. Now, while the second view goes through the target network unmodified to produce a target
projection z′ = γ(v′; ξ), the first view is further augmented via an adversarial attack. To maximize
the loss in Equation 6, the optimal perturbation has to minimize the cosine similarity between the
online prediction κ(v + δ;θ) and target projection z′:

max
δ∈S
− κ(v + δ;θ)Tz′

∥κ(v + δ;θ)∥2 · ∥z′∥2
. (7)

Similar to the other methods, the optimal perturbation is approximated by using PGD and then we
minimize the loss in Equation 6 where the attacked view is given to the online network. As in the
original BYOL, we can symmetrize the procedure by feeding v′ to the online network and v to the
target network. The adversarial attack is then executed on v′ instead of v and tries to minimize the
cosine similarity between the online prediction κ(v′ + δ;θ) and target projection γ(v; ξ).
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C EXPERIMENTAL SETUP

Architecture. We base our studies on the B16 variant of the Vision Transformer (VIT-B16) of
Dosovitskiy et al. (2020). Furthermore, to be consistent across pre-training methods, we use for each
method the same modified VIT architecture proposed by He et al. (2022) for fine-tuning MAE. In
this architecture, the linear head is not applied to the classification token but to the mean of the final
tokens except the classification token. When pre-training with BYOL, we follow Grill et al. (2020);
Gowal et al. (2020a) and use MLPs with hidden dimension 4096 and output dimension 256 for the
projector and predictor networks on top of the VIT. Regarding the decoder of the MAE, we use 8
transformer layers with 16 heads and a hidden dimension of 2048 in the MLPs.

Attacks. We consider several attacks and perturbation radiuses when pre-training on adversar-
ial samples: ℓ∞ -bounded attacks with radius ϵ ∈ {1/255, 2/255, 4/255, 6/255, 8/255} and ℓ2
-bounded attacks with radius ϵ ∈ {0.25, 0.5, 1, 2, 4, 8}. During training we compute the adversarial
perturbations with 2 steps Projected Gradient Descent (Madry et al., 2018) named PGD2 where we
use a gradient descent update with a fixed step size of 5ϵ/8.

Training. For fully supervised and MAE pre-training we use the hyperparameters described in
He et al. (2022). For BYOL, we adversarially pre-train the model by using the training pipeline of
Gowal et al. (2020a). For RotNet, we use the same hyperparameters as for supervised pre-training
but without using CutMix and MixUp. Regarding fine-tuning, we fine-tune for 100 epochs with batch
size 512, using AdamW with learning rate 0.0005 and weight decay 0.05 and we use the same data
augmentations as in He et al. (2022). Furthermore, we sweep over the layer-wise learning rate decay
within {0.65, 0.75, 0.85, 0.95}.

Datasets. We evaluate the fine-tuning performance of the various pre-training methods on the
IMAGENET dataset (Russakovsky et al., 2015) and its variants to measure their generalization
across distribution shifts. We consider IMAGENET-A (Hendrycks et al., 2019b), IMAGENET-R
(Hendrycks et al., 2020), IMAGENET-SKETCH (Wang et al., 2019), Conflict Stimuli (sometimes
called IMAGENET -Stylized) (Geirhos et al., 2018) and IMAGENET-C (Hendrycks & Dietterich,
2018). For both training and evaluation we use images at 224× 224 resolution. We also study the
transfer learning performance of the pre-trained models on smaller datasets: CIFAR-10, CIFAR-100
(Krizhevsky, 2009), SUN-397 (Xiao et al., 2010), RESISC-45 (Cheng et al., 2017) and DMLAB
(Beattie et al., 2016). For these smaller datasets we rescale the images to 224 × 224 resolution
without preserving aspect ratio and we apply random horizontal flipping as data augmentation.

D VISUALIZING FILTERS.

We visualize filters to qualitatively explore the differences between the features learned for models
trained with adversarial or non adversarial self-supervised pre-training. We visualize the VIT
embedding layer of the pre-training models which achieve the best average accuracy on IMAGENET
and its variants after fine-tuning nominally on IMAGENET . We extract the first principal components
of the standardized embedding weights. Then we reshape and rescale these principal components
to 16 × 16 × 3 RGB images which we plot in Figure 4. First, we notice that the filters (first row)
for the different nominal pre-training methods are visually diverse. Interestingly, when combining
these methods with adversarial training, we observe that filters learned with adversarial samples
(second and third rows) are visually very different from the nominal filters (first row) and that these
adversarial samples are much more similar among methods, especially between Supervised, RotNet
and BYOL. When comparing the last two rows, we see that ℓ∞ and ℓ2 perturbations result in similarly
looking embedding filters.

11



Published at ICLR 2023 Workshop on Domain Generalization

(a) Supervised - Nominal (b) RotNet - Nominal (c) MAE - Nominal (d) BYOL - Nominal

(e) Supervised - ℓ∞ (f) RotNet - ℓ∞ (g) MAE - ℓ∞ (h) BYOL - ℓ∞

(i) Supervised - ℓ2 (j) RotNet - ℓ2 (k) MAE - ℓ2 (l) BYOL - ℓ2

Figure 4: Visualizing filters. First 28 principal components of the embedding filters of VIT-B16 pre-trained
nominally (first row) or adversarially (second and third rows) by various pre-training methods: Supervised,
RotNet, MAE, and BYOL (columns from left to right).

E TRANSFER LEARNING PERFORMANCE

Transfer learning details. For completeness we evaluate the transfer learning performance of the
adversarial pre-training methods from IMAGENET to smaller datasets. For all the pre-training methods
and attack types we select as initialization the models that achieved the best average performance
over IMAGENET variants in the previous subsections. Regarding the optimization, we compare the
masked autoencoder procedure of He et al. (2022) with AdamW and layer-wise learning rate decay
which we used in the previous subsections and the transfer learning procedure proposed in Steiner
et al. (2021) with SGD with momentum 0.9, a batch size of 512, gradient clipping at global norm
1, no weight decay, a total of 2500 training steps and a learning rate of 0.01 attained after a linear
ramp-up of 500 steps followed by a cosine decay.

Results. We report the results in Table 1 where we observe that adversarial training consistently
improves the transfer learning performance of the various pre-training methods with an improvement
of the average accuracy of +0.27%, +1.95%, +0.86% and +0.47% for supervised pre-training, RotNet,
MAE and BYOL respectively when changing from nominal to ℓ2 attacked pre-training. Secondly,
IMAGENET supervised pre-training is the best performing method on all of the datasets except
DMLAB whereas BYOL and MAE achieve the highest accuracy on IMAGENET and its variants, so
there is no strict correlation between the fine-tuning performance on the pre-training dataset (here
IMAGENET ) and other transfer datasets. Finally, while both optimizers perform similarly on average
for supervised pre-training and BYOL, we observe that RotNet and MAE perform much better with
AdamW and layer-wise learning rate decay. This indicates that these two methods benefit from
preserving the early layers learned during the pre-training phase.

F ADDITIONAL TABLE AND FIGURE
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Table 1: Transfer learning. We compare the transfer learning performance of models pre-trained with or
without attacks on the four studied pre-training tasks. We select the pre-trained models that achieve the best
average downstream performance over IMAGENET variants: supervised with ϵ∞ = 6/255 and ϵ2 = 4, RotNet
with ϵ∞ = 4/255 and ϵ2 = 4, MAE with ϵ∞ = 1/255 and ϵ2 = 0.5 and BYOL with ϵ∞ = 2/255 and ϵ2 = 2.
We evaluate two fine-tuning optimizers on several datasets (headers in green) and we report the average over
datasets in the last rows (orange header). MAE-ℓ2 performs the best among adversarial self-supervised methods
and matches supervised adversarial pre-training without any labels.

SETUP SUPERVISED ROTNET MAE BYOL
Nominal ℓ∞ ℓ2 Nominal ℓ∞ ℓ2 Nominal ℓ∞ ℓ2 Nominal ℓ∞ ℓ2

CIFAR-10

SGD 98.78% 98.97% 99.08% 94.79% 96.90% 96.79% 96.77% 97.78% 98.00% 97.72% 98.80% 98.96%
AdamW 98.55% 98.69% 98.76% 96.14% 97.29% 97.43% 98.03% 98.30% 98.46% 98.12% 98.69% 98.67%

CIFAR-100

SGD 90.96% 91.60% 92.53% 78.65% 83.00% 83.48% 83.28% 86.39% 86.68% 86.91% 90.56% 91.10%
AdamW 90.71% 90.59% 91.07% 82.55% 85.22% 86.45% 88.15% 89.24% 89.74% 88.62% 90.61% 91.05%

SUN-397

SGD 76.53% 74.26% 76.62% 59.79% 61.52% 63.95% 69.88% 69.98% 71.82% 74.82% 75.02% 75.31%
AdamW 77.59% 76.13% 78.01% 68.01% 69.09% 70.27% 76.39% 76.56% 77.31% 76.47% 75.65% 75.96%

RESISC-45

SGD 96.32% 95.31% 96.17% 94.56% 94.29% 95.14% 94.69% 93.85% 95.30% 95.07% 95.15% 95.46%
AdamW 96.94% 96.52% 96.92% 95.15% 95.30% 95.93% 96.62% 96.44% 96.94% 96.44% 95.89% 96.08%

DMLAB

SGD 73.63% 74.56% 74.49% 63.73% 69.01% 68.89% 70.22% 73.86% 73.76% 70.93% 72.90% 71.81%
AdamW 74.88% 74.61% 75.27% 66.80% 68.60% 68.31% 76.32% 76.90% 77.34% 72.13% 73.40% 72.39%

AVERAGE

SGD 87.24% 86.94% 87.78% 78.30% 80.94% 81.65% 82.97% 84.37% 85.11% 85.09% 86.49% 86.53%
AdamW 87.73% 87.31% 88.01% 81.73% 83.10% 83.68% 87.10% 87.49% 87.96% 86.36% 86.85% 86.83%
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Figure 5: Influence of layer-wise learning rate decay on preserving robustness. We report the robust test
accuracy on IMAGENET under ℓ2 attacks with different perturbation radii of models nominally fine-tuned with
various layer-wise learning rate decays. All the models are fine-tuned from the same network pre-trained using
adversarial BYOL with ϵ2 = 2. Using a smaller layer-wise learning rate decay during fine-tuning leads to a
higher robustness on the downstream classification task, thus preserving some of the robustness learned during
pre-training.
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