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ABSTRACT

Learning well-separated features in high-dimensional spaces, such as text or image
embeddings, is crucial for many machine learning applications. Achieving such
separation can be effectively accomplished through the dispersion of embeddings,
where unrelated vectors are pushed apart as much as possible. By constraining
features to be on a hypersphere, we can connect dispersion to well-studied prob-
lems in mathematics and physics, where optimal solutions are known for limited
low-dimensional cases. However, in representation learning we typically deal with
a large number of features in high-dimensional space, which makes leveraging
existing theoretical and numerical solutions impossible. Therefore, we rely on
gradient-based methods to approximate the optimal dispersion on a hypersphere. In
this work, we first give an overview of existing methods from disconnected litera-
ture. Next, we propose new reinterpretations of known methods, namely Maximum
Mean Discrepancy (MMD) and Lloyd’s relaxation algorithm. Finally, we derive
a novel dispersion method that directly exploits properties of the hypersphere.
Our experiments show the importance of dispersion in image classification and
natural language processing tasks, and how algorithms exhibit different trade-offs
in different regimes.

1 INTRODUCTION

Dispersion1 of embeddings encourages spreading out a large amount of high-dimensional embedding
vectors on the surface of the d-dimensional unit hypersphere (Liu et al., 2021). Clustering of the
embeddings, i.e., occurrence of semantically distant embeddings that are close to each other in terms
of distance metric, is a known problem, and it has been shown before that it negatively impacts the
performance of the downstream tasks, such as image classification (Wang & Isola, 2020; Liu et al.,
2021; Trosten et al., 2023), image generation (Liu et al., 2021), text classification (Wang & Isola,
2020) and text generation (Tokarchuk & Niculae, 2024). Mettes et al. (2019) also argue that directly
minimized maximum similarity of the points on the hypersphere is superior to uniformly obtained
samples (Hicks & Wheeling, 1959; Muller, 1959), since it explicitly encourages separation between
points.

In general, the problem of spreading N points on the surface of d dimensional sphere, such that
the angular distance between any two points is maximal, is an open mathematical problem known
as the Tammes problem (Tammes, 1930). The optimal solutions for this problem are known for
small values of d and N (Fejes, 1943; Danzer, 1986; Waerden van der & Schütte, 1951; Robinson,
1961; Musin & Tarasov, 2012; 2015). The Tammes problem can also be formulated as a problem
of finding a spherical code (Conway et al., 1999) with minimal cosine similarity value for given
d and N (Cohn, 2024). However, we typically deal with a large number of dimensions and many
points when learning, e.g., text embeddings for ML tasks. Thus, we can rely on gradient optimization
methods to approximate the optimal configuration on the hypersphere. Dispersion is also closely
connected to the contrastive learning (Chen et al., 2020a; He et al., 2020; Hjelm et al., 2019; Chen
et al., 2020b), where model outputs corresponding to different classes are pushed away from each
other. Wang & Isola (2020) in particularly showed that widely used contrastive learning objective
can be interpreted in terms of “alignment” (similar features for similar samples) and “uniformity”

1In the literature, the term “uniformity” is also used. However, to highlight the difference with samples from
the uniform distribution, we use “dispersion” instead.
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(feature distribution is close to uniform distribution). In our work we focus on parameter dispersion,
which can more easily be quantified. We study several dispersion objectives in order to find an
approximate solution to the dispersion problem on the unit hypersphere. In particular, we reinterpret
Maximum Mean Discrepancy (MMD, Gretton et al., 2012) as a method for dispersing an arbitrary
number of high-dimensional points, adapt Lloyd’s algorithm (Lloyd, 1982), and propose sliced
dispersion that directly exploits properties of the hypersphere. We compare them to the previously
proposed methods based on pairwise distances (Mettes et al., 2019; Sablayrolles et al., 2019; Liu
et al., 2021; 2018b; Wang & Isola, 2020). We showcase the performance of those objectives by
approximating optimal Tammes problem solutions and learning dispersed representation both for
computer vision and natural language processing tasks. Our results show that there is a dependence
between task performance and respective dispersion of the features. Additionally, we highlight that
using Riemannian optimization (Bonnabel, 2013; Becigneul & Ganea, 2019) on the hypersphere,
rather than projecting parameters to the sphere at each gradient update, benefits dispersion and overall
task performance.

Our contributions are the following:

• Review connections between several proposed dispersion regularizers based on pairwise dis-
tances, and give a new interpretation and motivation in terms of maximum mean discrepancy
(MMD);

• Propose two new methods for approximating optimal dispersion (Lloyd and Sliced);
• Provide empirical comparison among dispersion optimization methods on tasks from vision

and language processing;
• Investigate the impact of Riemannian optimization for dispersion.

Moreover, our implementation and experiment code will be released as an open-source library upon
publication.

2 DISPERSION ON THE HYPERSPHERE

First we discuss the notation we are going to use throughout the paper, give the definition of
“dispersion” and review existing approximate methods to estimate optimal dispersion.

2.1 NOTATION AND BACKGROUND

We denote by Sd the d-dimensional hypersphere embedded in Rd+1, i.e., Sd = {x ∈ Rd+1 |
∥x∥ = 1}. For u, v ∈ Rd+1 we denote their Euclidean inner product by ⟨u, v⟩ :=

∑︁d+1
i=1 uivi. The

hypersphere is an embedded Riemannian submanifold of Rd+1. The tangent space of the sphere at
a point x is TxSd := {v ∈ Rd+1 | ⟨x, v⟩ = 0} ≃ Rd, and the Riemannian inner product on it is
inherited from Rd+1, i.e., for u, v ∈ TxSd, ⟨u, v⟩x := ⟨u, v⟩. The geodesic distance on a hypersphere
is d(x, x′) = cos−1(⟨x, x′⟩). As a special case, for d = 1 it is more convenient to work in an
isomorphic angular parametrization, i.e., S1 ≃ {θ | −π ≤ θ < π} with d(θ, θ′) = |θ − θ′|: the
embedding of S1 into R2 is given by θ → (cos θ, sin θ). We reserve the use of Greek letters τ, θ, ϕ
for 1-d angles. We denote by Πn the set of permutations of (1, . . . , n).

We use roman capitals, i.e., X = (x1, . . . , xn), to denote an (ordered) collection, or configuration, of
n points on the same sphere, i.e., each xi ∈ Sd. We use sans-serif capitals, i.e., Y, to denote a random
variable.

2.2 MEASURES OF DISPERSION

To measure the dispersion of the set of embeddings X on the unit hypersphere, we consider two
different metrics.

Minimum distance. Dispersion requires that no two points be too close, so following Zhou et al.
(2022) we employ a minimum distance metric:

dmin(X) = min
xi,xj∈X,i ̸=j

d(xi, xj), (1)

2
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where d(xi, xj) is the geodesic distance from §2.1.

Spherical variance. Spherical variance (Jammalamadaka & Sengupta, 2001; Mardia, 1975) origi-
nates from directional statistics and is defined for finite X ⊆ Sd as

svar(X) = 1−R, where R = 1/n
∑︂
i

xi. (2)

Spherical variance is a key quantity in the Raleigh test for uniformity on the hypersphere Sd (Mardia
& Jupp, 1999, p. 206–208), which uses (d+ 1)nR

2
as test statistic.

The presented dispersion measures offer complementary perspectives of the dispersion of the em-
beddings, but are insufficient when considered in isolation. The minimum distance only depends on
the two closest embeddings: embeddings can be spread out in a near perfect configuration, whilst
having a minimum distance close to zero. Similarly, large spherical variance does not imply well
dispersed embeddings (consider embeddings clustered around two antipodes.) In addition, neither
method is well-suited for gradient optimization. The gradient of dmin depends only on the closest
pair of points and would lead to impractically slow algorithms. As for spherical variance, since the
Euclidean gradient of R is orthogonal to the surface of the hypersphere Sd, its Riemannian gradient
is null. Similarly to spherical variance, the Raleigh test cannot be used as minimization objective to
disperse embeddings.

There are many other ways to measure dispersion (Marbut et al., 2023), but in the scope of this work
we focus on two described above simple metrics.

2.3 PAIRWISE MEASURES FOR DISPERSION

Using pairwise distances for dispersion on the hypersphere has been long of interest for the machine
learning community (Sablayrolles et al., 2019; Mettes et al., 2019; Wang et al., 2020b; Trosten et al.,
2023; Liu et al., 2018b; 2021). All these works use pairwise-based as a backbone for their objectives,
which leads to quadratic complexity and require calculating a matrix of pairwise distances.

Max-Min Distance. To achieve better dispersion on hypersphere, a variety of works focus on
maximizing minimum distance (or equivalently minimizing maximum pairwise similarity) (Mettes
et al., 2019; Wang et al., 2020b; Liu et al., 2021). In this case, for each embedding vector, only its
nearest neighbor and the embedding itself are updated. The regularizer takes the form:

LMax-Min = − 1

n

n∑︂
i=1

min
j ̸=i

d(xi, xj), (3)

where d can be the cosine distance (MMCS, Mettes et al., 2019), the geodesic distance (MMA, Wang
et al., 2020b), or the euclidean distance (Liu et al., 2021).

Differential Entropy Dispersion. Using maximum entropy regularization is a known technique in
machine learning (Meister et al., 2020; Ahmed et al., 2019; Pereyra et al., 2017; Liu et al., 2018a)
aiming to encourage diversity of the output and improve generalization, i.e., higher entropy pushes
the output distribution closer to the uniform distribution. Sablayrolles et al. (2019) proposed to extend
this idea for the continuous space, and directly maximize differential entropy on hypersphere. To this
end, they propose to use Kozachenko-Leonenko estimator (Leonenko, 1987)

LKoLeo = − 1

n

n∑︂
1

logmin
i̸=j

∥xi − xj∥. (4)

Note that the following bound holds between LKoLeo and the logarithm of the max-min distance:

− 1

n
log

(︁ n∑︂
i=1

min
j ̸=i

d(xi, xj)
)︁
≥ − 1

n

n∑︂
1

logmin
i ̸=j

∥xi − xj∥.

3
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MHE. Inspired by Thomson problem (Gautam & Vaintrob, 2013), Liu et al. (2018b; 2021)
proposed to use minimum hypersherical energy (MHE) in order to ensure separation of the points on
hypersphere.

LMHE =

n∑︂
i=1

n∑︂
j=1,j ̸=i

fs(∥xi − xj∥), (5)

where fs(·) is a decreasing real-valued function and ∥ · ∥ is an Euclidean distance. Liu et al. (2018b;
2021); Lin et al. (2020) used fs(z) = z−s, s > 0, known as Riesz s-kernel:

ks(xi, xj) =

{︃
d(xi, xj)

−s, s > 0,

log
(︁
d(xi, xj)

−1
)︁
, s = 0

where d can be Euclidean or geodesic distance. Riesz s-energy has many applications in various
mathematical and physics problems, and connects to the Gaussian kernel through the Laplace
transformation (Borodachov et al., 2019).

Uniformity. Wang & Isola (2020) introduced the uniformity measure for representation learning
based on pairwise Gaussian potential:

Luniform = logEX,X’∼p [k(X, X’)] , (6)
where k(X, X’) is the Gaussian or Radial Basis Function (RBF) kernel (Borodachov et al., 2019). Wang
& Isola (2020) showed that this objective is optimized by uniform distribution. Similarly Trosten
et al. (2023) designed Luniform and interpret it as a negative entropy on the hypersphere.

3 OPTIMIZING FOR DISPERSION

All objectives discussed in §2 are pairwise-based objectives, meaning that they require calculation
of the full pairwise distance matrix, which scales poorly with the growth of N and d. Moreover,
Max-Min and KoLeo consider only the point and it’s nearest neighbor for each update. We give a
new interpretation of the Uniformity regularizer discussed in §2, in terms of (squared) MMD. Second,
we define Lloyd and Sliced objectives that approximate optimal dispersion without requiring the
full pairwise distance matrix. It makes those two objectives more suitable for large-scale parameter
optimization.

3.1 PAIRWISE REGULARIZERS AND MMD

The distribution of perfectly dispersed embeddings is similar to a uniform distribution on the hyper-
sphere. Dispersing embeddings can then be seen as minimizing the ‘distance’ between the embedding
distribution and the uniform distribution Unif(Sd). The Raleigh test for uniformity is not well suited
for this purpose as discussed in the previous section. An alternative statistical test for uniformity can
be derived from the maximum mean discrepancy (MMD), which measures the distance between two
probability distributions (Gretton et al., 2012). Lemma 1 implies that the squared MMD between the
distribution of the embeddings and the uniform distribution on the sphere can be computed using
embeddings only, up to a constant.

Lemma 1 (MMD2 and spherical embeddings.) Let p be any distribution on Sd and let k be
a kernel on Sd such that k(x, y) = f(⟨x, y⟩) for some function f : [−1, 1] → R. Assume all
random variables are independent.

Up to a normalizing constant c ∈ R, we have

MMD2[p,Unif(Sd)] = EX,X’∼p [k(X, X’)]− c.

The proof of Lemma 1 is deferred to Appendix A.1. Using the radial basis function kernel k(x, y) =
exp

(︂
−λ ∥x− y∥2

)︂
in the result of Lemma 1, we see that minimizing the estimated squared MMD

of the embeddings and the uniform distribution is equivalent to minimizing

LMMD =
1

n(n− 1)

n∑︂
i=1

n∑︂
j=1
i ̸=j

exp (γ⟨xi, xj⟩), (7)
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where X ⊆ Sd is a set of n embeddings and γ := 2λ > 0. The intuition for LMMD(X) is that the
embeddings are pushed away from each other when minimizing LMMD(X), thereby improving the
uniformity of the embedding distribution. The parameter γ determines the emphasis on the distance
between embeddings, i.e., a larger γ results in a larger emphasis on close embeddings.

The regularizer LMMD is related to the partial loss function used by Trosten et al. (2023) to disperse
image representation embeddings for few shot learning, as well as the energy-based approaches to
Tammes and Thompson problem (Gautam & Vaintrob, 2013; Liu et al., 2018b; 2021). In particular,
the exponential of the energy optimized by Trosten et al. (2023); Wang & Isola (2020) differs from
LMMD by a constant. Our work thus provides a new justification of their objective.

3.2 LLOYD’S ALGORITHM

An alternative formulation of dispersion comes from casting maximal dispersion as quantization
of a uniform measure. Quantization refers to the problem of approximating a given measure by an
empirical measure supported at a few centers. When the given measure is uniform over some support
set, the optimal centers are spread out uniformly over the support; and can be calculated by Lloyd’s
algorithm (Lloyd, 1982), henceforth Lloyd, which iteratively moves each centroid to the center of
mass of its Voronoi cell. When the given measure is another empirical measure, quantization is
equivalent to k-means clustering. When the space is Riemannian and not Euclidean, both quantization
and clustering generalize readily with an adequate choice of distance (Le Brigant & Puechmorel,
2019). While Lloyd’s algorithm and k-means are originally batch algorithms, stochastic gradient
versions have been developed (Bottou & Bengio, 1995; Sculley, 2010), including, independently, in
the Riemannian case (Le Brigant & Puechmorel, 2019). In general, given a domain D, which could
be a manifold or a compact subset of one (for quantization), or a discrete dataset (for clustering), the
n optimal centroids are a minimizer of2

LLloyd = EY∼Unif(D)

[︃
min
j∈[n]

1

2
d2(Y, xj)

]︃
. (8)

A stochastic gradient of the Lloyd regularizer can be obtained by drawing m uniform samples on D.
Intuitively, each cluster center is pulled toward the barycenter of the uniform samples assigned to it;
an approximation to the true Voronoi barycenter.

For dispersion on the sphere, we take D = Sd. While traditionally Lloyd’s algorithm corresponds to
minimizing LLloyd alone, we propose using LLloyd as a regularizer to move X closer to optimal Voronoi
centers of the sphere, while also minimizing some main task-specific objective. The complexity of
this regularizer is controlled by the number of samples: For efficiency, m should be much less than n,
in which case most cluster centers are not updated in an iteration. However, unlike for MMD, the
stochastic gradient takes into account all of X through the cluster assignment.

3.3 SLICED DISPERSION

The previously discussed algorithms are generally applicable to other manifolds. We now show how
using properties of the sphere we may obtain an alternative algorithm for embeddings dispersion. The
key idea is that, while in 2 or more dimensions it is hard to find the location of n evenly distributed
points, on S1 this can be done efficiently: The following set of angles is one optimal configuration:

Φ = (ϕ1, . . . , ϕn) where ϕk = −π
n+ 1

n
+

2πk

n
.

Any other optimal configuration must be a rotation of this one, i.e. τ +Φ for τ ∈ (−π, π). followed
by a permutation of these angles. Given a permutation σ ∈ Πn denote Φσ = (ϕσ(1), . . . , ϕσ(n)). We
can then write the set of all possible ordered optimally-dispersed configurations as

DnS1 := {τ +Φσ | τ ∈ (−π, π), σ ∈ Πn} . (9)
Given an ordered configuration of angles Θ = (θ1, . . . , θn) ⊂ S1, we define its (angular) distance to
the maximally-dispersed set as:

d2(Θ, DnS1) = min
Θ̂∈DnS1

n∑︂
i=1

1

2
(θi − θ̂i)

2. (10)

2More generally, the target measure need not be uniform. Le Brigant & Puechmorel (2019) discuss more
general conditions for the existence of a minimizer.
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Figure 1: Visualization of a single update in sliced dispersion, for a great circle Spq . Sliced dispersion
maximizes dispersion in expectation over all great circles.

Lemma 3 defined and proved in Appendix A.2 shows that any configuration of angles can be
efficiently projected to its nearest maximally-dispersed configuration. We defer all proofs in this
section to Appendix A.2.

In arbitrary dimensions, a similar construction is not possible, since the optimal configurations do not
have tractable characterizations. We instead slice a high-dimensional spherical dataset along a great
circle; similar to Bonet et al. (2023). The following result gives the geodesic projection.

Lemma 2 (Projection onto great circle.) Let p, q ∈ Sd with ⟨p, q⟩ = 0. Two such vectors
determine a unique great circle Spq ⊂ Sd defined by:

Spq := {cos(θ)p+ sin(θ)q | −π ≤ θ < π} ≃ S1.

The nearest point on Spq to a given x ∈ Sd is:

projSpq (x) = arctan2 (⟨x, q⟩, ⟨x, p⟩) . (11)

A well-dispersed configuration over Sd should remain fairly well-dispersed along any slice on average.
If we denote projSpq (X) := (projSpq (x1), . . .projSpq (xn)), we may capture this intention by the
following sliced dispersion regularizer:

LSliced = Ep,q

[︂
d2(projSpq (X), DnSpq)

]︂
, (12)

where d2 is defined in eq. (10), and the expectation is over orthogonal pairs p, q. Note that unlike
algorithms such as principal geodesic analysis (Fletcher et al., 2004), which keep X fixed but optimize
for some p, q to maximize variance, our intuition is the opposite: we want to update X in order to
increase dispersion along any great circle. The following proposition efficiently computes stochastic
gradients of LSliced.

Proposition 1 Denote θpqi = projSpq (xi), and θ̂
⋆

i

pq
the corresponding dispersion maximizer

computed using Lemma 3. The Riemannian gradient of LSliced is given by:

gradxi
LSliced=Ep,q

[︄
(θi

pq − θ̂
⋆

i

pq
)
⟨xi, p⟩q − ⟨xi, q⟩p
⟨xi, q⟩2 + ⟨xi, p⟩2

]︄
.

3.4 RIEMANNIAN OPTIMIZATION ON HYPERSPHERE

Optimization for dispersion can be defined as constrained optimization problem in R, where con-
straint is that points lie on the hypersphere. This can be solved by ignoring spherical constrains
and projecting the parameters onto the sphere after the gradient update, however convergence is not
guaranteed, because the sphere is not a convex set, even though it can give acceptable results with
careful initialization (Raman & Yang, 2019). Alternatively, we can rely on Riemannian optimiza-
tion (Bonnabel, 2013; Becigneul & Ganea, 2019) in Sd−1 as effective unconstrained extension (Bloch,
2015; Boumal, 2023) with guaranteed convergence (Bonnabel, 2013). We further empirically explore
the convergence of both methods in Appendix B.
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Figure 2: Minimum angles (degrees) for each of the N=24 points with respect to optimization
methods. Optimal Solution shows the angle for known optimal solution. Rand.Init. represents
the points generated uniformly at random on the surface of the sphere. All optimizations start with
the Rand.Init. as an initialization. Optimal minimum angle is equal to 48.53529763◦. An ideal
configuration is achieved when all angles are equal to optimal angle.

4 APPLICATIONS

We demonstrate the application of dispersion objectives and provide a comparative analysis
on both synthetic and real-world tasks. Unlike previous studies, we employ Riemannian
optimization (Bonnabel, 2013; Becigneul & Ganea, 2019) directly on the hypersphere using
geoopt3 (Kochurov et al., 2020), instead of relying on projection onto the hypersphere at each
gradient step as discussed in §3.4.

4.1 TAMMES PROBLEM

We evaluate the dispersion methods introduced in §2 and §3 by verifying that they can approximate
the known solution to the Tammes problem for N = 24 in three dimensions (Robinson, 1961), by
considering the minimum angle between points of the optimal configuration. Uniformly sampled
points are dispersed using the regularizers described in §2 and §3. Optimization is done with
Riemannian Adam for 2.5k epochs. The MMD regularizer was minimized with γ = 25. The sliced
dispersion regularizer used a single randomly generated pair of axes during each epoch. The Lloyd
regularizer was used with 300 samples. We set s = 0 for MHE. All regularizers were used with
learning rate 5 · 10−3.

The minimum angles of the points distributed using the MMD, MMA and KoLeo regularizers are
close to the optimal minimum angle for all presented N as shown in Figure 2. The Lloyd and MHE
regularizers follows closely, but seems to approximate the solutions less accurately. The sliced
dispersion regularizer, however, seems to approximate the solutions worse than the other regularizers.
More results on Tammes problem approximation can be found in Appendix C.

4.2 SYNTHETIC EMBEDDINGS

In practice, we are mostly interested in dispersion of large amount of points in dimension d ≫ 3.
Text embeddings can be a particular example of the set of points that can benefit from disper-
sion (Tokarchuk & Niculae, 2024). One can argue that dispersion connects strongly to the dimension-
ality, and in higher dimension embeddings are dispersed naturally. However, higher dimensionality
comes with higher computation and memory cost. Also, there is no guarantee that space is occupied
efficiently. Thus, Gao et al. (2019) showed that representation in vanilla Transformer Vaswani et al.
(2017) occupies only part of the whole space. We evaluate the behaviour of the regularizers discussed
in §2 with synthetic embedding by generating matrix containing 20k embeddings in d = 128. The
data was generated by sampling a matrix entry-wise from a PowerSpherical(De Cao & Aziz, 2020)
distribution with κ equal to 100. This exemplifies a scenario where the embeddings are well spread
out from the beginning. The regularizers were minimized using Riemannian Adam (Kingma & Ba,

3https://github.com/geoopt/geoopt
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Figure 3: Comparison of different dispersion objectives on synthetic data.

2015; Becigneul & Ganea, 2019; Kochurov et al., 2020), for 5k iterations with learning rate 1 · 10−3.
We set γ of the MMD regularizer to 10.0, number of samples for Lloyd to 8192. Due to the hardware
constraints we implement batched version of MHE and MMA, and use batch size equal to 16K. We
set s = 0 for MHE. We also rely on the batched version of axis-aligned Sliced regularizer with batch
size equal to 128.

Figure 3 shows the minimum distance and circular variance for various regularizers. KoLeo and
MMA performs the best in terms of minimum distance, with MMD being second best. MMD and
MHE reach the highest circular variance, followed closely by MMA and KoLEo. It it important to
note, that reaching the best minimum distance and/or circular variance does not necessarily mean the
best performance on the downstream task. The trade-off between performance and dispersion should
be considered for each particular case.

4.3 IMAGE CLASSIFICATION WITH PROTOTYPES

prototypes 50 100 200
Acc. dmin Acc. dmin Acc. dmin

MMCS (+projection) 41.67 1.22 42.76 1.36 43.03 1.44

MMCS (S) 42.59 1.46 42.96 1.52 43.27 1.56
MMA (S) 41.72 1.39 43.47 1.46 42.90 1.51
MHE (S) 43.37 1.41 42.25 1.6 34.47 1.58
KoLeo (S) 41.78 1.37 43.12 1.44 42.37 1.49

MMD (γ = 1,S) 43.87 1.22 42.73 1.57 34.53 1.58
Lloyd (samples=200, S) 41.69 1.20 42.42 1.30 43.09 1.35
Sliced (S) 40.76 1.10 42.34 1.20 42.92 1.33

Table 1: ImageNet-200 classification accuracy. Prototypes are trained with different separation
conditions. MMCS refers to the setup of Mettes et al. (2019). In bold we emphasise the best accuracy
in a column.

Mettes et al. (2019) showed that learning prototypes with dispersion encouraged by minimizing the
maximum cosine similarity (MMCS) on hypersphere improves classification results on ImageNet-
200. We first show in Table 1 that applying Riemannian optimization rather than re-normalizing
parameters after each gradient update as in Mettes et al. (2019) leads to the better class separation, and
as a result better classification accuracy. Second, we compare the classification accuracy given the
prototypes trained with different dispersion objectives discussed in §2 and §3. We use unconstrained
optimization on the sphere for all methods, and results with projection is shown only for comparison.
Also, Table 1 shows that when prototypes dimension is equal 50, MMD performs the best among
all dispersion objectives, even though the minimum distance is smaller compared to other pairwise-
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distance based objectives. It proves that even though we can measure the dispersion using minimum
distance, we cannot rely on this metric alone as a predictive factor of the downstream task accuracy.

Interestingly, when dimensionality is equal to the number of points, MMD and MHE prototypes
results degrade significantly. For both MMD and MHE minimum distance and median distance
are equal to exactly 1.5758213996887207 radian or 90.3◦, which resembles orthogonal solution.
Since the network is trained with the squared cosine distance, when angle between two points is 90◦,
the distance is equal to exactly 1 to all possible prototypes, which makes the loss less informative.
Results reported by Mettes et al. (2019) also confirms that one-hot embeddings (orthogonal solution)
perform badly on the task at hand.

4.4 NEURAL MACHINE TRANSLATION

Embeddings learned with the vanilla transformer model (Vaswani et al., 2017) are known for their
inefficiency in utilizing space effectively, leading to the collapse of token representations (Gao et al.,
2019; Wang et al., 2020a). This issue is particularly pronounced for rare tokens (Gong et al., 2018;
Tokarchuk & Niculae, 2024; Zhang et al., 2022). Gong et al. (2018) proposed to alleviate the problem
of rare tokens by learning frequency-agnostic embeddings, while Zhang et al. (2022) proposed to
use contrastive learning. In our approach, we tackle this challenge by focusing on the concept of
dispersion. Specifically, we train a Neural Machine Translation (NMT) system and jointly optimize
the decoder embeddings to enhance their dispersion.

L(W,EY ) = LMT(W,EY ) + λLdisp(EY ) (13)

We report results on two WMT translation tasks4: WMT 2016 Romanian→English (ro-en) with
612K training samples and WMT 2019 English→German (en-de) with 9.1M training samples
(including back-translated data). We measure translation accuracy on the best checkpoint according
to validation BLEU score using SacreBLEU (Papineni et al., 2002; Post, 2018) and COMET (Rei
et al., 2020). Detailed training parameters are discussed in Appendix D.

Table 2 shows the BLEU and COMET results on newstest2016 for ro-en and newstest2016 en-de
along with the dispersion metrics. Similarly to image classification, doing Riemannian optimization
in order to disperse embeddings leads to better dispersion and higher BLEU and COMET scores.

ro-en en-de
model BLEU COMET dmin svar BLEU COMET dmin svar

euclidean baseline 31.4 0.790 0.003 0.19 33.1 0.819 0 0

spherical baseline 32.2 0.793 0.001 0.57 33.7 0.825 0.001 0.408
+MMD 32.3 0.795 0.001 0.56 33.9 0.825 0.001 0.410
+Lloyd 32.4 0.791 0.001 0.60 33.4 0.822 0.001 0.414
+Sliced 32.4 0.795 0.435 0.99 33.5 0.820 0.222 0.999

Table 2: newstest2016 ro-en and en-de results on discrete NMT. Embeddings are 128 dim.

We investigate the effect of Riemannian optimization by analyzing the gradient norm of the Euclidean
baseline (vanilla transformer) and the Spherical baseline, as shown in Figure 4a, alongside the
minimum pairwise distance for each embedding, presented in Figure 4b. The results reveal that
the gradient norm for the Riemannian approach is approximately ten times higher than that of the
Euclidean baseline. We hypothesize that this increased gradient norm contributes to better dispersion
of rare tokens, thereby mitigating representation collapse. They dynamics of gradient norms and
minimum distances can be seen in Appendix E.

5 CONTINUOUS-OUTPUT NEURAL MACHINE TRANSLATION

Continuous-Output NMT (CoNMT, Kumar & Tsvetkov, 2019) reformulates machine translation as a
sequential continuous regression problem of predicting the embedding of the next word, instead of
the more usual discrete classification formulation. Tokarchuk & Niculae (2024) recently showed that

4https://www2.statmt.org/
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(a) Gradient norms of the embeddings for trained (step
equal 40000) Spherical and Euclidean NMT baselines.
Frequency rank refers to the position of the token in the
vocubulary, where most frequent token has rank 0 and
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Figure 4: Embeddings matrix gradient norms (a) and minumum distances (b) for Euclidean and
Spherical baselines.

dispersion plays an important role and greatly impacts performance. We follow closely their setup
and apply the dispersion regularizers in order to achieve dispersion. Pre-trained embeddings come
from the well-trained discrete model. We present results for WMT 2016 ro-en with 612k training
samples. Table 3 shows the BLEU score results on newstest2016 for CoNMT models with different
target embeddings EY, alongside dispersion measures defined in §2.2

We conduct two types of experiments. First we train a vanilla transformer model (Vaswani et al., 2017).
Resulting embeddings are in Euclidean space, so we project it onto the sphere by dividing to the norms
of embeddings. To spread out the embeddings we then use Riemannian optimization on the sphere
with geoopt (Kochurov et al., 2020) using three different regularizers. We refer to this as ‘offline’
methods in Table 3. Second, we train transformer model with embeddings explicitly modeled to be on
the sphere using Riemannian optimization. In this case, we can apply dispersion regularizers directly
during optimization. Discrete models that were used to extract embeddings are the same as in Table 2.

Tgt. Emb. EY svar(EY) ↑ dmin(EY) ↑ BLEU↑
euclidean (proj.) 0.191 0.014 27.8

+offline MMD 0.599 0.372 29.7
+offline Lloyd 0.585 0.004 27.7
+offline Sliced 0.979 0.106 29.6

spherical 0.57 0.001 29.9
+MMD 0.56 0.001 30.0
+Lloyd 0.60 0.001 30.1
+Sliced 0.99 0.435 30.0

Table 3: Impact of the dispersion of the target embeddings
on the CoNMT results. We report BLEU scores on the
newstest2016 for ro-en. Beam size is equal to 5.

Spreading out the projected embed-
dings results into the BLEU score
improvement with MMD and Sliced
dispersion. For all dispersion regu-
larizers, we can see that svar(EY)
is increasing. However, dmin(EY)
decreases for the Lloyd regularizer,
which seemingly also impacts the
BLEU score.

When adding dispersion regularizers,
there are no significant fluctuations
in svar(EY), except for the Sliced
regularizer. We leave thorough inves-
tigation of the observed behaviour for
the future work.

6 CONCLUSION

In this work, evaluate several dispersion objectives on the hypersphere, including one that is equivalent
to the widely used Maximum Mean Discrepancy (MMD) method, as well as two novel approaches:
Lloyd and Sliced. We compare these objectives against various pairwise distance-based methods pre-
viously explored in the literature. Our experimental results show that these methods can approximate
the Tammes problem solution, and also allow improvement on few-shot Image Classification with
prototypes, machine translation and the CoNMT task, which uses cosine distance both for training
and decoding.
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A APPENDIX

A.1 MMD DISPERSION: PROOFS

A.1.1 MMD2 AND SPHERICAL EMBEDDINGS: PROOF OF LEMMA 1

The squared MMD of two probability distributions p and q is equal to (Gretton et al., 2012, Lemma 6)
MMD2[p, q] = EX,X’∼p[k(X, X′)]− 2EX∼p,Y∼q[k(X, Y)] + EY,Y’∼q[k(Y, Y′)].

We show that the last two expectations are constant, when p is a distribution on the hypersphere
Sd and q is Unif(Sd). Let z, z′ ∈ Sd and let Q be a rotation matrix such that Qz = z′. Note that
Y ∼ Unif(Sd) if and only if Q⊤Y ∼ Unif(Sd), and ⟨Qz, z⟩ = ⟨z,Q⊤z⟩. It then follows that

EY∼Unif(Sd)[k(z, Y)] = EY∼Unif(Sd)[k(z
′, Y)],

since k(x, y) = f(⟨x, y⟩). Hence, there exists a c ∈ R such that for all z ∈ Sd we have
EY∼Unif(Sd)[k(z, Y)] = c.

Consequently, EX∼p,Y∼Unif(Sd)[k(X, Y)] = c and EY,Y’∼Unif(Sd)[k(Y, Y’)] = c. The desired result
follows immediately.

A.2 SLICED DISPERSION: PROOFS

A.2.1 OPTIMAL 1-D DISPERSION

Lemma 3 Optimal 1-d dispersion. The projection

argmin
Θ̂∈DnS1

n∑︂
i=1

1

2
(θi − θ̂i)

2

is given by θ̂
⋆

i = τ⋆+ϕσ−1(i), where σ is the permutation s.t. θσ(1) ≤ θσ(2) ≤ . . . ≤ θσ(n), and

τ⋆ =
∑︁

i θi
n . The projection can be calculated in O(n log n), the dominating cost being sorting

the angles.

We aim to prove the assertion that the projection

argmin
Θ̂∈DnS1

n∑︂
i=1

1

2
(θi − θ̂i)

2

is given by θ̂
⋆

i = τ⋆ + ϕσ−1(i), where σ is the permutation st θσ(1) ≤ θσ(2) ≤ . . . ≤ θσ(n), and

τ⋆ =
∑︁

i θi
n .

By definition, per eq. (9), Θ̂ = τ +Φσ and thus we may write the problem equivalently as

argmin
τ∈[−π,π),σ∈Πn

∑︂
i

1

2

(︁
θi − ϕσ(i) − τ

)︁2
.
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Finding the permutation. In terms of σ the objective takes the form −
∑︁

i θiϕσ(i) + const, so
we must find the permutation that maximizes

∑︁
i θiϕσ(i) =

∑︁
i θσ−1(i)ϕi. By the rearrangement

inequality (Hardy et al., 1952, Thms. 368–369), since ϕi is in ascending order, this sum is maximized
when θσ−1(i) is in ascending order; so the optimal σ must be the inverse of the permutation that sorts
Θ.

Finding τ . Ignore the constraints momentarily, and set the gradient of the objective to zero:
∂

∂τ

∑︂
i

1

2
(θi−ϕσ(i)−τ)2 =

∑︂
i

(τ+ϕσ(i)−θi) = 0, implying nτ =
∑︂
i

θi−
∑︂
i

ϕi =
∑︂
i

θi,

the last equality by choice of the zero-centered reference configuration Φ. Since all θi ∈ [−π, π), so
is their average, and thus the constraints are satisfied, concluding the proof.

A.2.2 PROJECTION ONTO A GREAT CIRCLE

The projection we seek to compute is
projSpq (x) := argmin

−π≤θ<π
d2((cos(θ)p+ sin(θ)q, x).

Since the geodesic distance satisfies d2(·, ·) = arccos ⟨·, ·⟩ and arccos is strictly decreasing on
(−1, 1), we have

projSpq (x) := argmax
−π≤θ<π

⟨cos(θ)p+ sin(θ)q, x⟩.

As a side note, this shows that it doesn’t matter whether we use geodesic or Euclidean distance to
define this projection. Setting the gradient to zero yields

cos(θ)⟨q, x⟩ = sin(θ)⟨p, x⟩,
or equivalently tan(θ) = ⟨q, x⟩/⟨p, x⟩. The unique solution on [−π, π) is given by the two-argument
arctangent function (arctan2), also known as the argument of complex number ⟨p, x⟩ + i⟨q, x⟩
(Wikipedia contributors, 2024).

A.2.3 GRADIENT OF SLICED DISTANCE

We first compute the Euclidean gradient of the desired expression:

∇xi
LSliced(X) = ∇xi

Ep,q

[︂
d2(projSpq (X), DnSpq)

]︂
. (14)

First, by writing

d2(Θ, DnSpq) = min
Θ̂

∑︂
i

1

2
(θi − θ̂i)

2

we see this may be interpreted as an Euclidean projection and
∂

∂θi
d2(Θ, DnSpq) = (θi − θ⋆i ).

But θi = projSpq (xi) and we can write
∂θi
∂xi

=
∂

∂xi
projSp,q (xi)

=
∂θi
∂xi

tan−1

(︃
⟨q, x⟩
⟨p, x⟩

)︃
=

⟨p, x⟩q − ⟨q, x⟩p
⟨q, x⟩2 + ⟨p, x⟩2

.

Putting the two together via the chain rule yields

∇xi
LSliced(X) = (θpqi − θ̂

⋆

i

pq
)
⟨p, xi⟩q − ⟨q, xi⟩p
⟨q, xi⟩2 + ⟨p, xi⟩2

. (15)

Notice that the second term is a vector in Rd+1 that is orthogonal to xi because:
⟨xi, ⟨p, xi⟩q − ⟨q, xi⟩p⟩ = ⟨p, xi⟩⟨q, xi⟩ − ⟨q, xi⟩⟨p, xi⟩ = 0.

Therefore,
gradxi

LSliced(X) = ∇xi
LSliced(X).
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Figure 5: Convergence of the sliced regularizer.

A.3 CONVERGENCE OF THE SLICED REGULARIZER

Figure Figure 5 shows that with the approximately 1000 samples Sliced regularizer reaches conver-
gence.

B RIEMANNIAN VS EUCLIDEAN OPTIMIZATION

B.1 TAMMES PROBLEM

We compare the results of optimal angle approximation using constrained optimization in Rd with
projection Appendix B.1 and unconstrained Riemannian optimization in Sd−1 Appendix B.1. We
perform optimization with the same parameters in both cases which identical to parameters described
in §4.1. We exclude Sliced from the comparison since in both cases custom Riemannian gradient is
calculated. However, for all other methods except KoLeo we can clearly see that optimization in Rd

fails to converge to the (sub)-optimal solution compared to unconstrained optimization in Sd−1.

C TAMMES PROBLEM: ADDITIONAL RESULTS

In we present additional approximation results for Tammes problem for N = (13, 14, 128). For
N=13 and N=14 we compare with the theoretically proven solutions (Musin & Tarasov, 2012; 2015),
for N=128 we use numerical solution (Cohn, 2024).

D NEURAL MACHINE TRANSLATION: EXPERIMENTAL SETUP

For subword tokenization we used the same SentencePiece (Kudo & Richardson, 2018) model,
specifically the one used in the MBart multilingual model (Liu et al., 2020). This choice al-
lows for unified preprocessing for all languages we cover. We used fairseq (Ott et al., 2019)
framework for training our models. Baseline discrete models (eucledian baseline) are trained
with cross-entropy loss, label smoothing equal to 0.1 and effective batch size 65.5K tokens.
All models are trained with learning rate 5 · 10−4 and 10k warm-up steps for 50k steps in to-
tal. Spherical baseline and models with dispersion regularizer are trained by defining decoder’s
embeddings layer as a manifold parameter and using Riemannian Adam (Becigneul & Ganea,
2019) with learning rate 5 · 10−3. We used SacreBLEU (Post, 2018) with the following signa-
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(a) Unconstrained optimization in Sd−1.
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(b) Constrained optimization in Rd (projection).

Figure 6: Minimum angles (degrees) for each of the N=24 points with respect to optimization
methods. Optimal Solution shows the angle for known optimal solution. Rand.Init. represents
the points generated uniformly at random on the surface of the sphere. All optimizations start
with the Rand.Init. as an initialization. Optimal minimum angle is equal to 48.53529763◦. Ideal
configuration is achieved when all angles equal to optimal angle, i.e., lie on the optimal angle line. (a)
refers to the Unconstrained optimization in Sd−1, while (b) show results for Constrained optimization
in Rd (projection).
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(a) N=13 points, optimal minimum angle is equal to 57.1367031◦
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(b) N=14 points, optimal minimum angle is equal to 55.6705700◦
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(c) N=128 points, optimal minimum angle is equal to 18.6349726◦

Figure 7: Minimum angles (degrees) distributions for various points arrangements with d=3 and
N=(13,14,128). Optimal Solution shows the angle for known optimal solution. Rand.Init. repre-
sents the points generated uniformly at random on the surface of the sphere. All optimizations start
with the Rand.Init. as an initialization.

ture nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1 and COMET (Rei et al.,
2020) with unbabel-comet library version 2.2.25 and Unbabel-wmt22-comet-da model.

5https://github.com/Unbabel/COMET
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E NEURAL MACHINE TRANSLATION: GRADIENT NORMS

We show in Figure 8 how gradient norms and minimum distances of target language embeddings
vary throughout the training process. Note that at the step=0, the norms and minimum distances are
the same.
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(a) Gradient norms and minimum distance for step=4000
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(b) Gradient norms and minimum distance for step=8000
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(c) Gradient norms and minimum distance for step=12000
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(d) Gradient norms and minimum distance for step=20000
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(e) Gradient norms and minimum distance for step=32000

Figure 8: Training dynamic of gradient norms and minimum distances of the target language
embeddings.
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