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Abstract

Privacy, data quality, and data sharing concerns
pose a key limitation for tabular data applications.
While generating synthetic data resembling the
original distribution addresses some of these is-
sues, most applications would benefit from addi-
tional customization on the generated data. How-
ever, existing synthetic data approaches are lim-
ited to particular constraints, e.g., differential pri-
vacy (DP) or fairness. In this work, we introduce
CuTS, the first customizable synthetic tabular data
generation framework. Customization in CuTS
is achieved via declarative statistical and logical
expressions, supporting a wide range of require-
ments (e.g., DP or fairness, among others). To en-
sure high synthetic data quality in the presence of
custom specifications, CuTS is pre-trained on the
original dataset and fine-tuned on a differentiable
loss automatically derived from the provided spec-
ifications using novel relaxations. We evaluate
CuTS over four datasets and on numerous custom
specifications, outperforming state-of-the-art spe-
cialized approaches on several tasks while being
more general. In particular, at the same fairness
level, we achieve 2.3% higher downstream accu-
racy than the state-of-the-art in fair synthetic data
generation on the Adult dataset.

1. Introduction
The availability of large datasets has been key to the rapid
progress of machine learning. To enable this progress,
datasets often have to be shared between different orga-
nizations and potentially passed on to third parties to train
machine learning models. This often presents a roadblock as
data owners are responsible for ensuring they do not perpetu-
ate biases present in the data and do not violate user privacy
by sharing their personal records. Tabular data is especially
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delicate from this perspective, as it is abundant in high-
stakes applications, such as finance and healthcare (Borisov
et al., 2022). An emerging and promising approach for
addressing these issues is synthetic data generation.

Synthetic data The promise of synthetic data is to pro-
duce a new dataset statistically resembling the original while
overcoming the above issues. Driven by recent regulations
requiring bias mitigation (e.g., GDPR (European Parliament
& Council of the European Union, 2016) Art. 5a), data
accuracy (GDPR Art. 5d), and privacy (GDPR Art. 5c and
5e), there has been increased interest in this field.

Prior work has only addressed some data sharing concerns:
differentially private synthetic data (e.g., Zhang et al. (2014);
Jordon et al. (2019); McKenna et al. (2022)), generating data
with reduced bias (e.g., van Breugel et al. (2021); Rajabi &
Garibay (2022)), and combining these two objectives (Pujol
et al., 2022). However, these methods might still generate
data violating truthfulness (e.g., 10 year old with a doc-
torate) or containing undesired statistical patterns (e.g., a
pharmaceutical company not sharing even synthetic copies
of their clinical trial data, as the distribution of patient condi-
tions reveals their development focus). Therefore, it remains
a key challenge to enable data owners to generate custom
high-utility data as required by their applications.

This Work Addressing the above limitations of synthetic
tabular data, we introduce our customizable tabular syn-
thetic data generation framework (CuTS), allowing for gen-
eral constraints, specifications, and customization over the
modelled distribution. Figure 1 shows an overview of CuTS,
featuring example specifications defined by the data owner,
where no person younger than 25 with a doctorate should
be generated and where bias w.r.t sex should be minimized.

CuTS supports a wide range of customizations. First, it
allows for differentially private training protecting individ-
uals included in the original dataset. Through logical and
implication constraints it can specify relationships that each
data point has to satisfy (as in Figure 1). Through statistical
specifications, it allows users to directly manipulate statis-
tics of the synthetic data. Finally, it provides soft-constraints
for encouraging desirable behavior of classifiers trained on
the synthetic data (e.g., low bias). Thus, CuTS generalizes
prior works supporting only restricted specifications.
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Figure 1: An overview of CuTS. The data owner writes a program that lists specifications for the synthetic data. For
example, they might want to make sure that the model does not generate people younger than 25 with a Doctorate degree.
Additionally, they might require that the synthetic data is differentially private and unbiased. To achieve this, CuTS pre-trains
a differentially private generative model, and then fine-tunes it to adhere to the given specifications. Finally, the generative
model can be used to sample a synthetic dataset with the desired properties.

Patient Condition Distribution

Original
CuTS

Figure 2: CuTS obfuscating the distribution using statistical
manipulations, while only losing ≈ 1% accuracy.

Our key insight is that one can preserve high utility by pre-
training a generative model (gθ in Figure 1) on the original
dataset and then fine-tune it to fit custom specifications.
CuTS automatically converts the non-differentiable spec-
ifications into a relaxed differentiable loss which is then
minimized together with the pre-training objective, biasing
the model towards the desired custom distribution.

Example: Statistical Manipulations We demonstrate on
a practical example how statistical manipulations allowed
by CuTS enable an organization to share their synthesized
data without compromising proprietary information. Recall
that a drug company may need to obfuscate the distribution
of patient conditions before even sharing synthetic data, as
they need to avoid revealing the focus of their research. We
instantiate this example on the Health Heritage dataset, con-
taining patient data. As shown in Figure 2, specifying CuTS
to increase the feature’s entropy, it obfuscates the details of
patient conditions, making it difficult to accurately deter-
mine the exact prevalence of the most common conditions.
Meanwhile, it retains high quality in the synthetic data only
losing ≈ 1% downstream accuracy w.r.t. the original data.

In our experimental evaluation, we demonstrate that CuTS
produces synthetic data according to a number of custom
specifications unsupported by prior work, while achieving
high utility. Furthermore, on specifications supported by
prior work we either outperform them or at least match their

performance. For instance, we improve the state-of-the-
art in fair synthetic data generation on the Adult (Dua &
Graff, 2017) dataset by achieving a 2.3% higher downstream
accuracy and a 2× lower demographic parity distance of
0.01. Additionally, we demonstrate that CuTS is able to
stack several diverse specifications at the same time, while
maintaining high data quality. CuTS shows for the first time
that it is in fact possible to allow for diverse customizations
over the synthetic data without significant sacrifice in utility.

Main contributions Our key contributions are:

1. The first framework for flexible synthetic tabular data
generation, supporting a wide range of customizations
on the generated data.

2. Novel relaxations allowing for fine-tuning via differ-
entiable regularizers derived from the specifications,
while retaining high synthetic data quality.

3. An implementation of the framework in a system called
CuTS, together with an extensive evaluation demon-
strating its strong competitiveness and versatility.

2. Background
Tabular Data Tabular data is extensively used in high-
stakes contexts, e.g., in healthcare, finance, and social sci-
ences (Borisov et al., 2022). We assume that the data only
contains discrete columns, i.e., we discretize any continuous
columns before proceeding. We denote the domain of each
resulting discrete feature as Di for i ∈ [K], with K the
number of columns. We employ one-hot encoding, turning
each di ∈ Di into a |Di|-long binary vector, with a single
non-zero entry marking the position of the encoded cate-
gory. The resulting set of one-hot encoded rows is denoted
as X , where each encoded data point x ∈ X is of length
q :=

∑K
i=1 |Di| and contains exactly K non-zero entries.

Further, a full table of N rows is denoted as X ∈ XN ,
with Xi denoting the i-th data point. In the rest of this
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text, we will also refer to X as a sample of size N , as well
as simply a dataset, and will use row and data point inter-
changeably to refer to a single x ∈ X . Also, unless stated
otherwise, we will denote a synthetic sample as X̂ . Finally,
let S := {s1, . . . , sm} ⊆ [K] := {1, . . . , K}, then we
write X[Ds1 , . . . ,Dsm ] meaning only the (column-space)
subset of X that corresponds to the columns Ds1 , . . . ,Dsm .

Marginals Let S := {Dsi}mi=1 be a subset of m columns.
The m-way marginal over S on a sample X counts the oc-
currences of each feature combination in the product space
×m

i=1
Dsi over all rows in X . We denote the normalized

marginal as µ̄(S, X) := 1
N µ(S, X). Marginals are an im-

portant statistic in tabular data, as they effectively capture
the approximate distributional characteristics of the features
in the sample, facilitating the calculation of a wide range
of statistics, e.g., correlations and conditional relationships.
Additionally, due to the one-hot encoding in X , we can dif-
ferentiably calculate marginals using the Kronecker product,
i.e., : µ(S, X) := 1

N

∑N
k=1Xk[Ds1 ]⊗ · · · ⊗Xk[Dsm ].

Differential Privacy The gold standard for providing pri-
vacy guarantees for data dependent algorithms is differential
privacy (DP) (Dwork, 2006), where the privacy of individu-
als contained in a dataset is ensured by limiting the impact a
single data point can have on the outcome of the algorithm.
This is usually achieved by injecting carefully engineered
noise in the process, which in turn negatively affects the
accuracy of the procedure. The privacy level is quantified
by ϵ, with lower levels of ϵ corresponding to higher privacy,
and as such, higher noise and lower accuracy.

Fair Classification As machine learning systems may
propagate biases from their training data (Corbett-Davies
et al., 2017; Buolamwini & Gebru, 2018), there is an in-
creased interest to mitigate this effect (Dwork et al., 2012;
Benaich & Hogarth, 2021; Chiu et al., 2021). Let f : X →
{0, 1} be a classifier. Then, the demographic parity distance
fairness measure can be used to quantify the difference in ex-
pected outcomes based on protected group membership Ds:
∆DP := |Ex∼X [f(x)|Ds = 0]− Ex∼X [f(x)|Ds = 1]|.

Synthetic Data The goal of synthetic data generation is
to train a generative model gθ on the real data X to produce
synthetic samples X̂ that are statistically as close as possible
to X . Ultimately, X̂ should have high enough quality to
replace X in data analysis and machine learning tasks.

3. Related Work
Synthetic Tabular Data: Nominal Approaches Uncon-
strained, or nominal synthetic tabular data generation ex-
hibits a long line of work, with most prominent approaches
collected in the Synthetic Data Vault (SDV) (Patki et al.,

2016), including the deep learning-based methods of TVAE
and CTGAN (Xu et al., 2018). Although recent works
(Kim et al., 2022; Liu et al., 2023a; Kotelnikov et al., 2022;
Borisov et al., 2023; Kim et al., 2023; Lee et al., 2023)
improved over the models in SDV, they lack an extensive
support for, privacy, fairness, or other customizations. Our
work is the first general approach in this direction.

Differentially Private Synthetic Data While some syn-
thetic data generation methods incorporate heuristic pri-
vacy considerations (Nandwani et al., 2019; Borisov et al.,
2023); such heuristics often do not provide sufficient protec-
tion (Stadler et al., 2022; Ganev & De Cristofaro, 2023). As
such DP synthetic data, enabling theoretical privacy guaran-
tees, is of increasing interest. Tao et al. (2021) established
that generative adversarial networks (GAN) (e.g., PATE-
GAN (Jordon et al., 2019) and DP-CGAN (Torkzadehma-
hani et al., 2019)) are outperformed by marginal-based
graphical models operating on a fixed set of measurements
(e.g., PrivBayes (Zhang et al., 2014), and MST (McKenna
et al., 2022)). Recent iterative DP synthetic data frameworks
have shown strong improvements (Aydöre et al., 2021; Liu
et al., 2021; McKenna et al., 2022), but lack customizability.

Fair Synthetic Tabular Data Reducing the bias of syn-
thetic data is an important concern, especially under DP,
where the effecs of bias are exacerbated (Ganev et al.,
2022). Most works in this area make use of GANs with
bias-penalized loss functions to encourage fairness (Xu
et al., 2019b;a; Abroshan et al., 2022; Rajabi & Garibay,
2022), or debiasing the dataset before training a generative
model (Chaudhari et al., 2022). Alternatively, DECAF (van
Breugel et al., 2021) trains a causally-aware GAN, removing
undesired causal links during generation to reduce bias. Pre-
Fair (Pujol et al., 2022) extends the graphical model based
DP algorithm of McKenna et al. (2021), reducing bias by
prohibiting undesired connections in the underlying graph.

Synthetic Data with Logical Constraints Although it
is important enable logical constraints over the synthetic
data, only few works have considered this issue. Chen et al.
(2019) augments tabular datasets with synthetic samples
respecting simple feature-to-feature dependencies present
in the original data. Stoian et al. (2024) enable linear
constraints over a continuous representation of the data,
not extending to natively discrete or statistical constraints.
AIM (McKenna et al., 2022) allows a restricted set of con-
straints by manually introducing zeros in the marginals. As
we find in Section 5, this approach can severely impact the
quality of the generated data. Kamino (Ge et al., 2020) is a
DP synthetic data generation method preserving logical rela-
tionships between pairs of generated data points. As CuTS
operates under the assumption of i.i.d. data, the constraints
supported by Kamino do not extend to our setting.
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Constraints in Continuous Models There has been a
long line of work focusing on encoding domain-knowledge
or other information in the form of logical constraints to
aid the machine learning model in its performance. Some
prominent works achieve this by modifying the loss function
or its computation at training time (Manhaeve et al., 2018;
Fischer et al., 2019; Nandwani et al., 2019; Rajaby Faghihi
et al., 2021; Yang et al., 2022; Li et al., 2023), or by mod-
ifying the model and/or its inference procedure (Hu et al.,
2016; Hoernle et al., 2022; Ahmed et al., 2022; Badred-
dine et al., 2022). The main distinguishing factors with
our work are: (i) these approaches improve the models by
injecting additional knowledge, while CuTS’s aim is freely
customizable generation; and (ii) most such approaches
only support customizations that are limited to restricted
logical constraints, while CuTS also supports statistical and
downstream customizations on the generated dataset.

4. Customizbale Synthetic Tabular Data
To fully exploit the potential of synthetic data, customiza-
tions are often necessary. Consider protecting individuals’
privacy using DP, supporting logical constraints to preserve
or inject structure, directly influencing statistics, and facili-
tating classifiers trained on the synthetic data with desirable
properties, e.g., low bias and high accuracy. While prior
work considered subsets of such customizations, we intro-
duce Customizable Synthetic Tabular data (CuTS), the first
framework allowing for composable specification of all of
the above for synthetic data generation. CuTS establishes
that extensive and diverse customizations over the synthetic
data are possible with minimal loss in utility. We now de-
scribe the underlying generative model, training procedure,
and the technical details of the supported specifications.

4.1. The CuTS Framework

Following Liu et al. (2021), in the base generative model,
we make use of the generator of a GAN to generate datasets
from random noise, which is then trained by comparing
the marginals of this generated dataset to the marginals of
the original dataset. Formally, denote the generative model
as gθ, then gθ : Rp → X is a mapping to the one-hot
representation-space of the original dataset. The input to gθ
is Gaussian noise z, i.e., z ∼ N (0, Ip×p) (shorthand: Np).
As such, we can sample from gθ by first sampling an input
noise and feeding it through the network to obtain a dataset
sample. To ensure that the output of gθ is in the correct
binary representation described in Section 2, we use a per-
feature straight-through gumbel-softmax estimator (Jang
et al., 2017) as the final layer, which differentiably produces
one-hot representations for each output feature. The goal of
training is to match the distribution induced by gθ to that of
the original data, i.e., to find a θ such that Pgθ ≈ Px.

Non-Private Pre-Training For the non-private training
of gθ, we first measure a set of marginals on the origi-
nal dataset X , denoted as M(X). To obtain the train-
ing loss LM , we calculate the total variation (TV) dis-
tance between the true marginals M(X) and the marginals
measured on a generated sample M(gθ(z)) of size B, i.e.,
LM (gθ(z), X) := 1

2 |M(X)−M(gθ(z))|, where z ∼ NB
p .

We then use iterative gradient-based optimization to mini-
mize LM , resampling z at each iteration.

Differentially Private Pre-Training For DP training, we
adapt the DP iterative framework of McKenna et al. (2022),
exchanging the original graphical model with our gθ. Cru-
cially, we also modify the budget adaptation step; in a simi-
lar vein to adaptive ODE solvers, we allow both for increas-
ing and decreasing the per iteration DP budget, depending
on the improvements observed in the previous step. For
more details, we refer the reader to Appendix F.

Impact of Differential Privacy on Design Choices As
our goal with CuTS is to provide a general customizable
framework for synthetic data, with a simultaneous support
for non-private and DP generation, we necessarily inherit the
limitations of DP synthetic data generation methods. This
motivates our choice for the marginal-matching architecture,
as it combines the advantages of full-differentiability and
strong performance under DP, where other deep learning
methods (e.g., GANs (Goodfellow et al., 2014)) that have
been adapted using DP-SGD (Abadi et al., 2016) tend to
exhibit inferior performance (Tao et al., 2021). Additionally,
while non-private synthetic data models usually support con-
tinuous features, they remain a challenge for DP synthetic
data generation methods. Incorporating continuous features
in DP synthetic data constitutes its own line of work, which
either still involves (relaxed) slicing (Vietri et al., 2022) or
comes at the cost of differentiability (Liu et al., 2023b). As
addressing this challenge is outside of the scope of this pa-
per, we default to the discretization strategy employed by
the most performant algorithm of McKenna et al. (2022).

Training CuTS Depending on whether DP is a require-
ment, we first pre-train CuTS either by the non-private or
the DP training method described above without any other
specifications. Next, we fine-tune CuTS minimizing the
pre-training objective LM regularized by soft-constraints
L(i)
spec. derived from the n provided specifications:

Lfine(gθ(z), X, Xr) := LM (gθ(z), X)

+

n∑
i=1

λi L(i)
spec.(gθ(z), Xr),

(1)

where {λi}ni=1 are real valued parameters weighing the
soft-constraints’ impact on the objective, X is the original
dataset, and Xr is a reference dataset, which is either the
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1. SYNTHESIZE: Adult;

2.   ENSURE: DIFFERENTIAL PRIVACY:
       EPSILON=1.0, DELTA=1E-9;

3.   ENFORCE: ROW CONSTRAINT:
       age > 35 AND age < 55;

4.   ENFORCE: IMPLICATION:
       marital_status in {Divorced, Never_married} 

   IMPLIES 
 relationship not in {Husband, Wife};

5.   ENFORCE: STATISTICAL:
       E[age|sex=Male] == E[age|sex=Female];

6.   MINIMIZE: BIAS: PARAM 0.01:
       DEMOGRAPHIC_PARITY(protected=sex, target=salary);

7.   MINIMIZE: DOWNSTREAM: PARAM 0.05:
       DOWNSTREAM_ACCURACY(features=all, target=sex);

8. END;

Figure 3: A CuTS program on the Adult dataset containing
example commands for each supported constraint type.

original dataset itself, or, to respect DP, a sample generated
at the end of fine-tuning. The goal is to find a θ∗ that
minimizes the fine-tuning loss Lfine(gθ(z), X, Xr). We
discuss the choice of {λi}ni=1 in Appendix E.1.

4.2. Privacy, Logical, Statistical, and Downstream
Specifications

Using the CuTS program on the Adult dataset (Dua & Graff,
2017) shown in Figure 3 as a running example, we introduce
the technical details of each supported specification below.

CuTS Programs Each program begins by fixing the
source dataset we wish to make a synthetic copy of and
ends in an END; command. In between, we may specify
all customizations over the learned synthetic distribution.
If no specifications are given, gθ is trained to maximally
match the original dataset in a non-private manner. Each
command consists of (i) an action description, defining how
the optimizer should treat the resulting regularizer (maxi-
mize, minimize, enforce, or ensure); (ii) a command type
description; (iii) an optional PARAM specification, setting
the regularization weight λ, and (iv) an expression describ-
ing the specification directly in terms of the features.

Differential Privacy Constraint CuTS can protect the
privacy of individuals in X with DP by using the constraint
shown in line 2 of Figure 3. This ensures that the pre-
training of gθ is done by the iterative DP method described
in Section 4.1, and that fine-tuning does not access the
original dataset X . This constraint guarantees that CuTS
respects DP at the given ϵ privacy level.

Logical Constraints To avoid generating unrealistic data
points or to incorporate domain knowledge, it is neces-
sary to support logical constraints over individual rows.
For instance, consider the constraint (denoted as ϕ) in

line 3 of Figure 3, requiring that each individual’s age
is between 35 and 55. We refer to such first order logi-
cal expressions consisting of feature-constant comparisons
chained by logical AND and OR operations that have to
hold for each row of the synthetic samples as row con-
straints. In our example, ϕ consists of two comparisons
t1 := age > 35 and t2 := age < 55. To enforce
ϕ over gθ, we first negate the expression ϕ to obtain
¬ϕ = age <= 35 OR age >= 55, and count the rows
where the negated expression holds, penalizing the fine-
tuning loss with this count. However, as both hard logic and
counting are non-differentiable, enforcing such constraints
over the synthetic data is challenging. To circumvent this
issue, we introduce a novel differentiable computation of a
binary mask b¬ϕ marking the rows in a generated synthetic
sample X̂ of length N that satisfy ¬ϕ, which sum to the
number of rows violating ϕ. For this, we make use of the
differentiable one-hot encoding in X̂ . First, we translate the
negated comparison terms ¬t1 and ¬t2 into binary masks
m¬t1 , m¬t2 ∈ {0, 1}q over the columns by setting each
coordinate corresponding to a valid assignment in ti to 1 and
the rest to 0. For instance, if the age feature is discretized as
[18-35, 36-45, 46-54, 55-80], then ¬t1[age] = [1, 0, 0, 0]
and ¬t2[age] = [0, 0, 0, 1], with the rest of the q − 4 di-
mensions padded with zeros. To compute the final binary
mask b¬ϕ over the rows of X̂ , we introduce the following
differentiable primitives: AND: X̂mT

t1 ⊙ X̂mT
t2 , and OR:

X̂mT
t1 + X̂mT

t2 − X̂m
T
t1 ⊙ X̂m

T
t2 . In the case of composite

expressions, we apply these primitives recursively. Notice
that as we only make use of matrix-vector operations be-
tween X̂ and constants independent of the data, the calcula-
tion is fully differentiable with respect to the generator. Alto-
gether, we can add the following loss term to the fine-tuning
loss of gθ to enforce ϕ: Lϕ(gθ(z)) :=

∑N
i b¬ϕ(gθ(z))i, us-

ing the notation b¬ϕ(gθ(z)) for the binary mask calculated
over the sample obtained from gθ.

Further, we extend the above relaxation to support logical
implications, such as line 4 in Figure 3. We enforce implica-
tions ϕ =⇒ ψ over the gθ by penalizing every generated
row that violates the implication, i.e., every row that satis-
fies ζ := ϕ ∧ ¬ψ. Notice that ζ can be understood as a row
constraint expression, allowing for the techniques described
above to calculate bζ(gθ(z)) (note that we do not negate ζ).
Therefore, the resulting regularization term is:

Lϕ =⇒ ψ(gθ(z)) :=

N∑
i=1

bζ(gθ(z))i

=

N∑
i=1

bϕ(gθ(z))i ⊙ b¬ψ(gθ(z))i.

(2)

To guarantee that each sample respects the defined logical
constraints, we use the same masking technique as dur-
ing training to reject any generated samples violating the
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constraint. In Section 5 we show that fine-tuning with the re-
laxed constraints is necessary to achieve high performance,
with rejection sampling alone not being sufficient.

Statistical Customization One may want to smoothen
out undesired statistical differences between certain groups
to limit bias, e.g., encourage that the mean age measured
over males and females agree (line 5 of Figure 3); or ob-
fuscate sensitive statistical information, such as hiding the
most prevalent disease in their dataset (recall the example
in Section 1). To facilitate such statistical customizability
we support the calculation of conditional statistical oper-
ations (expectation, variance, standard deviation, and en-
tropy) composed into arithmetic (+, −, ∗, /) and logical
(∧, ∨, <, ≤, >, ≥, =, ̸=) expressions. The calculation
of the corresponding loss term consists of two steps: (i)
differentiably calculating the value of each involved statis-
tical expression (involved), and (ii) as afterwards we are
left with logical and arithmetical terms of reals, we can
calculate the resulting loss term using t-norms and DL2
primitives (Fischer et al., 2019). Here (ii), we rely on prior
work (Fischer et al., 2019), therefore we only elaborate on
the more involved step (i) below.

Denote a conditional statistical operator as OP [f(S)|ϕ],
where f is a differentiable function over a subset of features
S, and ϕ is a row constraint condition. Incorporating such
an expression is fundamentally challenging, as the condi-
tioning is not differentiable. To address this issue, we select
all rows of X̂ where ϕ applies, using the differentiable tech-
nique for row constraints, described in an earlier paragraph.
From the resulting subset of the sample X̂ϕ ⊆ X̂ , we com-
pute the normalized joint marginal of all features involved
in S, µ̄(S, X̂ϕ), describing a probability distribution over
f(S), which enables the computation of the given statistical
operation following its mathematical definition.

As such statistical specifications can be directly measured
on any produced sample, they can be verified by the sam-
pling entity if they are met to a desired degree or further
regularization is needed using the soft-constraining proce-
dure described above. Section 5 we demonstrate that the
above procedure allows for effective statistical customiza-
tion while preserving high synthetic data quality.

Downstream Specifications As the synthetic data is ex-
pected to be deployed to train machine learning models, we
need to support specifications involving them. For instance,
consider synthetic data such that models trained on it ex-
hibit lower bias, or that no models can be trained on the
data to predict a certain protected column (lines 6 and 7 of
Figure 3). Facilitating such specifications is challenging,
as here we have to optimize not over measures of the data
itself, but instead over the effect of the data on downstream
classifiers. We achieve this by introducing a novel regu-

larizer involving the differentiable training of downstream
models. In each iteration of fine-tuning gθ, we train a dif-
ferentiable surrogate classifier hψ on the prediction task
defined by the provided specification. Then, we ”test” hψ
on the reference dataset Xr, and compute the statistic of
interest SI (e.g., demographic parity distance πDs

for bias
w.r.t. the protected feature Ds, or the cross entropy LCE
for predictive objectives). We then update gθ influencing
SI in our desired direction. Denote the synthetic sample
generated at the current iteration as X̂ , the features avail-
able to the surrogate model for prediction as X̂[ft], and the
target features as X̂[tg]. Then the loss term added to the
fine-tuning objective can be defined as:

LDS(gθ(z), Xr) := s · SI(hψ∗(X[ft]), X[tg]), (3)

with
ψ∗ := min

ψ
LCE(hψ(X̂[ft]), X̂[tg]), (4)

where LCE is the cross-entropy loss, and s ∈ {−1, 1}
depending on whether we wish to maximize or minimize
the computed statistic. Note that a ψ∗ depends differentiably
on θ through X̂ , Equation (3) is differentiable w.r.t. θ.

In Section 5 we demonstrate the effectiveness of our method
in encouraging desirable behavior from downstream models,
setting a new state-of-the-art in fair synthetic data.

5. Experimental Evaluation
In this section, we present our results demonstrating that
CuTS can produce high-utility synthetic data subject to
a wide range of customizations. We provide an imple-
mentation of CuTS under: https://github.com/
eth-sri/cuts/.

Experimental Setup We instantiate gθ with a fully con-
nected neural network with residual connections. The regu-
larization parameters are selected on a hold-out validation
dataset. Wherever possible, we report the mean and stan-
dard deviation of a given metric, measured over 5 retrainings
and 5 samples. For further details on the experimental setup
please see Appendix A. We evaluate our method on four pop-
ular tabular datasets: Adult (Dua & Graff, 2017), German
Credit (Dua & Graff, 2017), Compas (Angwin et al., 2016),
and the Health Heritage Prize dataset from Kaggle (Kaggle,
2023). Due to the space constraint, most experiments in-
cluded in the main paper are conducted on the Adult dataset,
and repeated on all other datasets in Appendix B. For evalu-
ating the quality of the produced synthetic data w.r.t. true
data, we measure the test accuracy of an XGBoost (Chen
& Guestrin, 2016) model trained on the synthetic data and
tested on the real test data. We resort to this evaluation
metric to keep the presentation compact, while providing a
comprehensive measure of the usefulness of the generated
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data. As XGBoost is state-of-the-art on tabular classification
problems, it allows us to capture fine-grained deviations in
data quality (Kotelnikov et al., 2022). We compare only to
prior works with an available open-source implementation
(listed in Appendix A.1).

Downstream Specifications: Reducing Bias and Pre-
dictability We evaluate CuTS’s performance on the task
of generating a synthetic copy of the Adult dataset that is
fair w.r.t the sex feature, both in the non-private and private
(DP) setting, using the command shown in line 6 of Fig-
ure 3. We compare to two recent non-private (DECAF (van
Breugel et al., 2021), and TabFairGAN (Rajabi & Garibay,
2022)), and one private (Prefair (Pujol et al., 2022)) fair syn-
thetic data generation methods. The statistic of interest is a
low demographic parity distance w.r.t. the sex feature of an
XGBoost trained on the synthetic dataset and tested on the
real testing dataset. In Table 1, we collect both our results
in the non-private (top) and in the private (bottom, ϵ = 1)
settings. Notice that CuTS attains the highest accuracy and
lowest demographic parity distance in both settings, achiev-
ing a new state-of-the-art in both private and non-private
fair synthetic data generation. Most notably, while the other
methods were specifically developed for producing fair syn-
thetic data, CuTS is general, with bias-reduction being just
one of the many specifications it supports.

Note also that CuTS is not restricted to the demographic
parity fairness criterion. Generally, it can support any differ-
entiable (relaxed) bias measure. To demonstrate this, in Ap-
pendix C we introduce two more bias measures, equalized
odds and equality of opportunity, and measure CuTS’s per-
formance on them on the Adult dataset, comparing against
the same baseline methods as here. We find that CuTS sets
a new state-of-the-art in the bias-accuracy trade-off also
on these criteria, achieving the lowest bias and the highest
accuracy in 3 out of 4 scenarios.

Further, it can often be useful to data owners to ensure
that malicious actors cannot learn to predict certain per-
sonal attributes from the released synthetic data. Using the
DOWNSTREAM command shown in line 7 of Figure 3, we
synthesize Adult, such that it cannot be used to train a clas-
sifier predicting the sex feature. As a result, we reduce the
balanced accuracy of an XGBoost on the sex feature from
83.3% to 50.2%, i.e., to random guessing, while retaining
84.4% accuracy on the original task.

Statistical Properties Recall that CuTS allows direct
manipulations of statistical properties of the generated
datasets, using STATISTICAL specifications. We eval-
uate its effectiveness on this task with 3 statistical com-
mands on Adult: S1: set the average age across the dataset
to 30 instead of the original ≈ 37; S2: set the average
age of males and females equal (line 5 in Figure 3); and

Table 1: XGB accuracy [%] vs. demographic parity distance
on the sex feature of various fair synthetic data generation
algorithms compared to CuTS, both in a non-private (top)

and private (ϵ = 1) settings (bottom).

XGB Acc. [%] Dem. Parity sex

True Data 85.4± 0.0 0.18± 0.00

DECAF Dem. Parity 66.8± 7.0 0.08± 0.07
TabFairGAN 79.8± 0.5 0.02± 0.01
CuTS 82.1± 0.3 0.01± 0.01

Prefair Greedy (ϵ = 1) 80.2± 0.4 0.04± 0.01
Prefair Optimal (ϵ = 1) 75.7± 1.5 0.03± 0.02
CuTS (ϵ = 1) 80.9± 0.3 0.01± 0.01

S3: set the correlation of sex and salary to zero, i.e.,
E[sex·salary]−E[sex]E[salary]√

Var(sex) Var(salary)
= 0, which is easily express-

ible in CuTS. Note here we do not compare to prior work,
as no prior work allows for such statistical manipulations.
On S1, we achieve a mean age of 30.2 retaining 84.6% ac-
curacy, while on S2 CuTS reduces the average age gap from
2.3 years to < 0.1 maintaining 85.1% accuracy. Most inter-
estingly, on S3, we reduce the correlation between sex and
salary from −0.2 to just −0.01, and retain an impressive
84.9% accuracy. We provide more details in Appendix E.

Logical Constraints We evaluate the performance of
CuTS in enforcing logical constraints on the Adult dataset,
using three implication (I1, I2, I3) and two row constraints
(RC1, RC2). While RC2 and I2 correspond to lines 3 and 4
in Figure 3, we list the rest of the constraints in Appendix E.
Note that the binary mask obtained for each constraint, as
explained in Section 4.2, can easily be used for rejection
sampling (RS) from CuTS. Therefore, in our comparison,
we distinguish between CuTS with just RS and CuTS fine-
tuned on the given constraint and rejection sampled (FT +
RS). In the private setting, we compare our performance
also to AIM (McKenna et al., 2022), where we encode the
constraints in the graphical model as structural zeros (SZ).
We summarize our results in Table 2, where in the first two
rows we show the constraint satisfaction rates (CSR) on the
original dataset, and on the evaluated synthetic datasets (i.e.,
we compare the methods at 100% CSR). Observe that while
other methods also yield competitive results on constraints
that are easy to enforce, i.e., have high base satisfaction
rate, as the constraint difficulty increases, fine-tuning be-
comes necessary, yielding superior results. Further, we
tested CuTS in case all 5 constraints are applied at once,
resulting in 84.0% accuracy, demonstrating a strong per-
formance in composability. These experiments show that
CuTS is strongly effective in enforcing logical constraints.
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Table 2: XGB accuracy [%] of synthetic data at 100% constraint satisfaction rate (CSR) on three implication constraints (I1
- I3) and two row constraints, applied separately, both in a non-private (top) and private (ϵ = 1) setting (bottom). RS:
rejection sampling, FT: fine-tuning, and SZ: structural zeros. CuTS + FT + RS is consistent across all settings, maintaining
high data quality throughout.

Constraint I1 I2 I3 RC1 RC2
Real data CSR 93.6% 100% 60.4% 32.4% 40.5%

TVAE 82.1± 0.5 82.1± 0.5 82.1± 0.5 81.1± 1.2 81.3± 0.6
CTGAN 83.4± 0.3 83.0± 0.6 83.4± 0.3 82.5± 0.7 82.5± 0.8
CuTS + RS 85.1± 0.1 85.1± 0.1 85.1± 0.2 82.9± 0.8 84.5± 0.1
CuTS + FT + RS 85.1± 0.1 85.0± 0.18 85.1± 0.2 84.7± 0.1 84.8± 0.2

AIM + SZ (ϵ = 1) 84.2± 0.2 84.1± 0.3 83.7± 0.3 73.9± 0.8 67.6± 1.4
CuTS + RS (ϵ = 1) 83.7± 0.2 83.7± 0.2 83.7± 0.2 81.0± 0.9 83.5± 0.2
CuTS + FT + RS (ϵ = 1) 83.8± 0.2 83.7± 0.2 83.9± 0.1 83.1± 0.2 83.4± 0.2

Table 3: CuTS’s performance on 5 different specifications applied together, progressively adding more of them. In each
row the active specifications are highlighted in green . The specifications are: the command used for fair data; statistical
manipulations S1 and S2, setting the average age to 30, and equating the average ages of males and females; and two
implications. CuTS demonstrates strong composability, adhering to all customizations while maintaining competitive
accuracy.

XGB Acc. [%] Dem. Parity sex ∆ Avg. Age to 30 ∆ M-F Avg. Age I3 Sat. [%] I2 Sat. [%]

85.1± 0.16 0.19± 0.005 37.3± 0.05 2.3± 0.17 59.3± 0.85 98.5± 0.09

81.7± 0.25 0.02± 0.007 37.3± 0.05 2.1± 0.19 57.6± 0.78 96.7± 0.09

82.5± 0.76 0.06± 0.053 30.2± 0.04 1.3± 0.14 57.0± 0.84 96.4± 0.25

82.0± 0.50 0.04± 0.036 30.2± 0.03 0.0± 0.10 56.9± 1.11 96.5± 0.19

81.3± 0.34 0.01± 0.006 30.2± 0.04 0.0± 0.12 100.0± 0.00 95.5± 0.16

81.6± 0.29 0.02± 0.011 30.2± 0.04 0.1± 0.12 100.0± 0.00 100.0± 0.00

Stacking Specifications of Different Types In a signifi-
cantly harder scenario, the user may wish to conduct several
customizations of different types simultaneously. To eval-
uate CuTS in this case, we selected at least one command
from each of the previously examined ones, and combined
them in a single CuTS program. We picked the following
commands for this experiment: (i) the command used to
generate fair synthetic data w.r.t. sex; (ii) & (iii) S1 and S2
statistical manipulations, setting the average age to thirty,
and equating the average ages of males and females; and
(iv) & (v) two logical implication constraints (I3 and I2)
from Table 2. In Table 3 we show the effect of applying
these customizations increasingly one-after-another, with
each row in the table standing for one additional active spec-
ification (marked in green). Observe that after sacrificing
the expected≈ 3.4% accuracy for achieving low bias, CuTS
maintains stable accuracy, while adhering to all remaining
customizations. This result demonstrates the strong ability
of CuTS to effectively incorporate diverse specifications
simultaneously, with little cost to synthetic data quality.

Health Heritage, German Credit, and Compas To
demonstrate the generalizability of CuTS, we repeated our
main experiments on three further tabular datasets. For each,
we defined 3 implication, 2 row constraint, 2 statistical, and
one downstream fairness specification. We then evaluated
CuTS under the same setup as on the Adult dataset, compar-
ing to baseline methods. Our detailed results are included
in Appendix B, where CuTS exhibits competitive perfor-
mance across all examined datasets. Most notably, it often
prevails as the best method in fair synthetic data generation,
outperforming state-of-the-art specialized approaches, both
in the non-private and DP settings. Further, we draw similar
conclusions from the experiments on these datasets as on
Adult; namely, (i) for harder to enforce logical constraints
soft-constrained fine-tuning benefits performance; (ii) CuTS
can effectively facilitate diverse customizations at the same
time. For further details on the results of the experiments on
the Health Heritage, German Credit, and Compas datasets,
we refer the reader to Appendix B.
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6. Discussion, Limitations, and Future Work
In this work, we introduced CuTS, the first method to enable
a wide range of customization over the generated synthetic
data. With CuTS, we hope to make a crucial step towards
a wider proliferation of synthetic tabular data, enabling
the distribution, use, and deployment of tabular data in
applications where this was not possible before.

In particular, the customizations supported by CuTS con-
tribute towards this goal along four pillars: I. By facilitating
DP synthetic data generation, we enable the deployment
of our framework in privacy sensitive domains, such as
healthcare or demographic research, where current data
restrictions often pose a key limitation. II. Through its sup-
port for a wide range of logical constraints, our method
allows the deployment of synthetic data in domains where
the presence of rigid structures in the data is crucial. III.
CuTS allows for flexible statistical customizations, enabling
synthetic data sharing in use-cases where certain statistical
patterns in the data had to be corrected, e.g., to eliminate
biases or to protect proprietary information. IV. Through
customizations over the effects of the data on downstream
model training, we enable the deployment of synthetic tabu-
lar data in sensitive downstream applications. For instance,
this enables the use of synthetic data in settings where a
simple synthetic copy of the original data would have led to
potential discriminatory impacts.

Limitations and Future Work Although CuTS achieves
competitive results in synthetic data generation, there are
certain design choices that may limit its performance. One
of these factors is the fact that the data has to be discretized
prior to fitting CuTS, where we only used a simple uniform
discretization scheme with 32 buckets. While due to the
option of DP guarantees the discretization step is hard to
avoid, we believe that a more carefully chosen discretization
scheme is an interesting future work item and could im-
prove the inherent performance of CuTS. Another delicate
choice is the set of measured marginals for training, where,
for simplicity, we resorted to three-way marginals without
exploring other options. We believe that CuTS could greatly
benefit from an advanced scheme choosing the marginals
for training. The improvement from this is likely to translate
into the constrained setting as well, and as such, would be
orthogonal to the main contributions of this paper. Further,
as CuTS relies on a generative model to learn the uncon-
strained data distribution, the intrinsic performance of this
model influences the quality of the final constrained syn-
thetic data. Therefore, we believe that any improvements
to the generative model would, at least partially, translate
into higher data quality in the constrained setting as well.
Additionally, CuTS could further be improved by incorpo-
rating a larger class of constraints, for example, constraints
between pairs of generated data points.

7. Conclusion
In this work, we presented CuTS, a novel and highly ef-
fective method for customizable synthetic data generation.
The key idea was to pretrain a generative model, and then
fine-tune it on a differentiable loss automatically derived
from declarative composable specifications. To allow for the
conversion of these specifications into a differentiable fine-
tuning loss, we introduced several novel differentiable relax-
ations. CuTS is first to enable data owners to customize their
synthetic data to their own use case by programmatically
declaring logical, statistical, and downstream specifications.
We evaluated CuTS on numerous practical specifications,
most of them not supported by prior work, and obtained
strong results across several datasets. Moreover, on tasks
supported by prior work we either match or exceed their
performance, e.g., we set a new state-of-the-art in fair syn-
thetic data generation. Further, CuTS allows for a strong
composability of varying specifications across different as-
pects of the data. Our work shows for the first time that it is
possible to generate high-quality customized synthetic data,
thus opening doors for its wider adoption.
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Impact Statement
CuTS is the first widely customizable synthetic data gener-
ation method for tabular data, opening the possibilities of
data sharing in areas where previously this was limited, due
to privacy, bias, or proprietary issues. As such, we hope that
CuTS, can open the way towards democratizing access to
data, by allowing even entities that were previously reluctant
to share their records to publish them. Such a development
would be beneficial not only for the open-source community,
and the science community but also for the industrial players
providing the data, who could benefit from the open-sourced
developments using their data themselves as well.

However, we have to acknowledge that allowing for me-
chanical manipulations in the data could open the door for
malicious actors to purposefully modify their data releases
in a misleading or straight-out harmful way. Although one
could argue that CuTS makes this process potentially easier,
our contribution is still significant from a mitigation per-
spective. We raise awareness that such manipulations on the
data are possible and appeal to future work to approach this
issue either from the technical or the legal end.
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Appendix
In Appendix A we give extended details on the experimental setup used to evaluate CuTS, including hyperparameters, and
training details. In Appendix B we present our main results on the Health Heritage, Compas, and German datasets. We
discuss further fairness criteria and evaluate CuTS’s performance on them in Appendix C. Appendix D presents additional
results in private and non-private unconstrained settings on all four datasets, compared to six baselines. In Appendix E,
we list all CuTS commands used for our evaluation in the main paper, together with their corresponding hyperparameters
and method of selecting these. In Appendix F, we give the technical details of the private training method for CuTS. We
compate the customization declaration interface of CuTS to other methods on an example in Appendix G. In Appendix H
we explain the differences between the base generative model used in CuTS and GEM (Liu et al., 2021).

A. Extended Experimental Details

In this section we give extended details on the experimental setup used to obtain our presented results, and introduce the
datasets used in the main body of the paper, the UCI Adult Census dataset (Dua & Graff, 2017), the Health Heritage Prize
dataset from Kaggle (Kaggle, 2023), the Compas dataset (Angwin et al., 2016), and the German Credit dataset (Dua &
Graff, 2017).

A.1. SETUP AND TRAINING PARAMETERS

Here, we first give more details on the experimental setup used to obtain the results presented in the main body of the paper.
Then, we also list all parameters and their choices relevant for training CuTS. Finally, we list the reproduced baselines and
link to their source code.

Experimental Setup In each of our experiments the base architecture of the CuTS generative model gθ is formed by a
four-layer fully connected neural network with residual connections, where the first hidden layer contains 100 neurons, and
the rest of the layers 200. The input dimension of the network, i.e., the dimension of the sampled Gaussian noise z, is 100.
In the non-private setting, we pre-train the generator for 2 000 epochs on a marginal workload containing all three-way
feature marginals that involve the label. Then, we fine-tune on each constraint for a varying number of epochs using the
original dataset as a reference (we give more training details for each constraint in Appendix E). In the private setting,
we pre-train the generator on a marginal workload containing all three-way marginals in the dataset using our modified
AIM algorithm presented in Appendix F. Then, we fine-tune on the constraints (we give more details for each constraint in
Appendix E), using a sample from the model before fine-tuning for reference. We pre-train for each dataset and privacy
scenario a generative model on random seed 42 and fine-tune it over 5 retries for each constraint. Then, from each of these
models, we sample 5 datasets to measure the performance. Finally, we report the mean and the standard deviation of the
resulting 25 measurements whenever possible. Note that this estimate incorporates the randomness in the fine-tuning phase,
and the sampling noise.

Hyperparameters For pre-training the non-private model, we use batch size 15 000 (i.e., the generated dataset we measure
the marginals of has 15 000 rows), and train the model for 2 000 epochs. For the private model, we use a batch size of
1 000, and train the generative model at each step of the private outer selection loop for 1 000 epochs. In both cases, we
use the Adam optimizer, with the default parameters, in combination with the CosineAnnealing learning rate scheduler.
Additionally, for non-private pre-training, we update on every group of 16 marginals, where one epoch is completed once
we have updated on every marginal of all three-way marginals containing the label. For measuring the utility of the dataset
using the XGB accuracy metric, we use an XGBoost classifier with the default hyperparameters, as included in the XGBoost
Python library1.

Resources Used For running the experiments we had 7× NVIDIA GeForce RTX 2080 Ti GPUs, 4× NVIDIA TITAN
RTX, 2× NVIDIA GeForce GTX 1080 Ti, and 2× NVIDIA A100 SXM 40GB Tensor Core GPUs available, where the
A100 cards were used only for the experiments on Health Heritage.

Reproducing Baselines Here, we will list the works we compared against, including a link to the repositories we have
downloaded their code from. In our paper (including this appendix) we reproduced the following works for comparison:

1XGBoost library: https://xgboost.readthedocs.io/en/stable/python/python_api.html
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• TVAE (Xu et al., 2019b), code from the Synthetic Data Vault (Patki et al., 2016): https://github.com/
sdv-dev/SDV,

• CTGAN (Xu et al., 2019b), code from the Synthetic Data Vault (Patki et al., 2016): https://github.com/
sdv-dev/SDV,

• GReaT (Borisov et al., 2023), code: https://github.com/kathrinse/be_great,

• AIM (McKenna et al., 2022), code: https://github.com/ryan112358/private-pgm,

• MST (McKenna et al., 2021), code: https://github.com/ryan112358/private-pgm,

• GEM (Liu et al., 2021), code: https://github.com/terranceliu/iterative-dp,

• Prefair (Pujol et al., 2022), code: https://github.com/David-Pujol/Prefair,

• DECAF (van Breugel et al., 2021), code from a reproduction study (Wang et al., 2022) (downloadable from the
supplementary materials on OpenReview: https://openreview.net/forum?id=SVx46hzmhRK),

• TabFairGAN (Rajabi & Garibay, 2022), code: https://github.com/amirarsalan90/TabFairGAN.

A.2. DATASETS

In this subsubsection we briefly describe the technical details of each dataset used in this paper.

Adult The UCI Adult Census dataset (Dua & Graff, 2017) contains US-census data of 45 222 individuals (excluding
incomplete rows), split into training and test sets of size 30 162 and 15 060, respectively. After removing the duplicate
feature of education num, the dataset contains 14 features (5 continuous and 9 discrete). We discretize each continuous
feature uniformly in 32 bins and one-hot encode the data, resulting in 261 dimensions for each row. The original task of
Adult is to predict the binary label of salary, which is 0 if the given individual earns ≥ $50K per year, and 1 otherwise.
The labels are imbalanced, with around 75% of the labels being 1. This also means that any classifier that assigns the label 1
to every instance will have an accuracy of around 75%.

Health Heritage The Health Heritage Prize dataset from Kaggle (Kaggle, 2023) contains health-related data of patients
admitted to the hospital, collected in a table. The dataset is widely used in algorithmic fairness research in the machine
learning community. The preprocessing details of the dataset are included in the accompanying code repository. The
constructed task, in this case, is to classify each patient if they are likely to be admitted to emergency care in the near future
or not, i.e., if they have a maxCharlsonIndex of > 0 or = 0, respectively. The dataset contains 218 415 rows, where we
randomly split to create a training dataset of 174 732 rows and a test set of 43 683 rows. There are 18 columns in the dataset,
with 7 discrete and 11 continuous columns, where, again, we uniformly discretize the continuous columns into 32 bins. The
dataset is imbalanced, with ≈ 64% of the labels being = 0, therefore, a majority classifier achieves an accuracy of around
64%.

Compas The Compas dataset (Angwin et al., 2016) contains personal attributes and criminal record related data of 6 172
individuals. The dataset is widely used in the fairness literature. To preprocess the dataset, we follow the same technique
as Balunovic et al. (2022). Finally, we split the dataset into 4 937 training data points, and 1 235 testing data points. The
dataset contains 9 columns, of which 5 are discrete and 4 are continuous. We discretize the continuous features into 32
equal-width bins. The dataset is relatively balanced, with around 55% of the data points having label 1, therefore a classifier
always predicting 1 only achieves an accuracy of around 55%.

German Credit The German Credit dataset (Dua & Graff, 2017) contains personal data of 1 000 individuals, where the
task is to classify each person in good or bad credit risk. We randomly split the dataset into 800 training data points and 200
test data points. The dataset consists of 20 columns, of which 14 are categorical, and the rest are continuous, which we
discretize into 32 equal-width bins. The dataset is imbalanced, with approximately 70% of the labels being 0, therefore, a
classifier predicting only 0 achieves ≈ 70% accuracy.
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Table 4: XGB accuracy [%] vs. demographic parity distance on the AgeAtFirstClaim feature of various fair synthetic
data generation algorithms compared to CuTS on the Health Heritage dataset, both in a non-private (top) and private
(ϵ = 1) settings (bottom).

XGB Acc. [%] Dem. Parity AgeAtFirstClaim

True Data 81.0± 0.00 0.51± 0.000

TabFairGAN 78.7± 0.45 0.40± 0.016
CuTS 70.9± 0.67 0.14± 0.023

Prefair Greedy (ϵ = 1) 73.5± 0.11 0.35± 0.004
Prefair Optimal∗ (ϵ = 1) - -
CuTS (ϵ = 1) 73.9± 0.17 0.228± 0.006

Table 5: XGB accuracy [%] vs. demographic parity distance on the race feature of various fair synthetic data generation
algorithms compared to CuTS on the Compas dataset, both in a non-private (top) and private (ϵ = 1) settings (bottom).

XGB Acc. [%] Dem. Parity race

True Data 63.4± 0.00 0.13± 0.000

TabFairGAN 62.3± 2.36 0.19± 0.057
CuTS 62.1± 1.28 0.05± 0.031

Prefair Greedy (ϵ = 1) 60.5± 1.07 0.11± 0.046
Prefair Optimal (ϵ = 1) 58.6± 3.75 0.11± 0.055
CuTS (ϵ = 1) 60.5± 0.58 0.04± 0.032

B. Main Results on German Credit, Compas, and Health Heritage

B.1. FAIRNESS

In Tables 4 to 5 we present our results on fair synthetic data generation on the Health Heritage, Compas, and German datasets,
respectively. Notice that CuTS exhibits a consistently strong performance, often clearly providing the best accuracy-fairness
trade-off. Note also that in some cases Prefair Optimal (Pujol et al., 2022) did not converge even after more than a week of
running. Also, in the DP case, on German CuTS due to the low prevalence of the protected class, the DP noise eliminated
that class from the modeled distribution, and as such, no fairness measurements were possible. This is because the German
dataset has very few samples (800) therefore it is possible that DP leads to the complete elimination of certain features.
Note that for these experiments we binarize the AgeAtFirstClaim column of the Health Heritage dataset with patients
above and below sixty, and we also binarize the race column of the Compas dataset by only keeping the Caucasian
and African-American features. Note that here we follow the example of fair representation learning literature, e.g.,
Balunovic et al. (2022).

Table 6: XGB accuracy [%] vs. demographic parity distance on the foreign worker feature of various fair synthetic
data generation algorithms compared to CuTS on the German Credit dataset, both in a non-private (top) and private
(ϵ = 1) settings (bottom).

XGB Acc. [%] Dem. Parity foreign worker

True Data 74.0± 0.00 0.28± 0.000

TabFairGAN 64.0± 4.57 0.09± 0.064
CuTS 73.6± 1.43 0.10± 0.091

Prefair Greedy (ϵ = 1) 65.0± 5.32 0.12± 0.086
Prefair Optimal∗ (ϵ = 1) 62.5± 2.07 0.22± 0.125
CuTS (ϵ = 1) - -
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Table 7: XGB accuracy [%] of synthetic data at 100% constraint satisfaction rate (CSR) on three implication constraints (I1
- I3) and two row constraints, applied separately, both in a non-private (top) and private (ϵ = 1) setting (bottom) on the
Health Heritage dataset. RS: rejection sampling, and FT: fine-tuning. CuTS + FT + RS is consistent across all settings,
maintaining high data quality throughout.

Constraint I1 I2 I3 RC1 RC2
Real data CSR 18.3% 79.3% 5.4% 44.8% 1.8%

TVAE 78.2± 0.22 78.2± 0.23 77.8± 0.40 78.1± 0.20 68.8± 6.70
CTGAN 78.4± 0.22 78.8± 0.58 78.5± 0.41 78.7± 0.51 75.9± 2.62
CuTS + RS 80.0± 0.08 80.1± 0.08 79.9± 0.09 79.9± 0.07 79.2± 0.11
CuTS + FT + RS 80.1± 0.09 80.0± 0.11 79.7± 0.12 80.0± 0.08 79.6± 0.13

CuTS + RS (ϵ = 1) 77.9± 0.09 77.9± 0.13 77.8± 0.10 77.8± 0.09 77.8± 0.12
CuTS + FT + RS (ϵ = 1) 77.7± 0.12 78.1± 0.11 77.6± 0.13 77.4± 0.10 77.7± 0.09

Table 8: XGB accuracy [%] of synthetic data at 100% constraint satisfaction rate (CSR) on three implication constraints (I1
- I3) and two row constraints, applied separately, both in a non-private (top) and private (ϵ = 1) setting (bottom) on the
Compas dataset. RS: rejection sampling, and FT: fine-tuning. CuTS + FT + RS is consistent across all settings, maintaining
high data quality throughout.

Constraint I1 I2 I3 RC1 RC2
Real data CSR 60.4% 87.0% 26.2% 35.2% 51.8%

TVAE 66.2± 1.03 66.2± 1.02 66.2± 1.13 64.9± 0.97 63.9± 0.99
CTGAN 60.4± 2.30 60.5± 3.38 59.9± 3.64 60.4± 2.67 59.1± 2.30
CuTS + RS 65.2± 0.89 65.2± 0.83 64.8± 1.01 64.2± 1.38 62.0± 0.66
CuTS + FT + RS 64.1± 0.82 64.8± 0.97 61.1± 0.87 64.6± 1.35 62.3± 0.76

CuTS + RS (ϵ = 1) 62.7± 0.93 62.7± 0.95 62.4± 1.15 62.6± 0.82 60.3± 0.73
CuTS + FT + RS (ϵ = 1) 61.9± 0.86 62.5± 0.63 58.4± 1.51 62.1± 0.70 59.1± 0.77

B.2. LOGICAL CONSTRAINTS

In Tables 7 to 9 we present our results on the Health Heritage, Compas, and German datasets in enforcing logical constraints.
Notice that the observations that can be drawn from these tables match those made in the main paper; namely, CuTS
outperforms the methods from the Synthetic Data Vault (Patki et al., 2016), and fine-tuning helps in enforcing hard logical
constraints.

B.3. STACKING SPECIFICATIONS

In Tables 5, 10 and 11 we show our results in chaining specifications on the Helath Heritage, Compas, and German datasets,
respectively. Aligned with the conclusions drawn in the main part of this paper, CuTS proves to be an effective method in
being able to deal with several specification simultaneously.
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Table 9: XGB accuracy [%] of synthetic data at 100% constraint satisfaction rate (CSR) on three implication constraints
(I1 - I3) and two row constraints, applied separately, both in a non-private (top) and private (ϵ = 1) setting (bottom)
on the German dataset. RS: rejection sampling, and FT: fine-tuning. CuTS + FT + RS is consistent across all settings,
maintaining high data quality throughout.

Constraint I1 I2 I3 RC1 RC2
Real data CSR 83.9% 61.7% 5.5% 40.9% 29.1%

TVAE 72.0± 1.73 71.3± 1.80 72.2± 1.98 72.1± 1.66 70.5± 0.00
CTGAN 63.4± 4.86 63.8± 3.24 64.4± 4.01 64.0± 4.28 63.5± 5.30
CuTS + RS 72.4± 2.82 73.3± 1.95 73.6± 2.80 72.8± 2.24 71.2± 1.80
CuTS + FT + RS 70.2± 2.51 73.0± 2.13 72.6± 2.25 73.7± 2.29 72.6± 2.36

CuTS + RS (ϵ = 1) 65.1± 3.16 65.4± 2.58 64.6± 3.24 68.7± 2.00 60.6± 3.94
CuTS + FT + RS (ϵ = 1) 63.0± 4.14 65.1± 2.89 66.4± 2.54 59.7± 3.66 64.8± 2.96

Table 10: CuTS’s performance on 5 different specifications applied together, progressively adding more of them on
the Health Heritage dataset. In each row the active specifications are highlighted in green . The specifications are:
the command used for fair data; statistical manipulations S1 and S2; and two implications. CuTS demonstrates strong
composability, adhering to customizations while maintaining competitive accuracy.

XGB Acc. [%] Dem. Parity S1 S2 I3 Sat. [%] I2 Sat. [%]

79.7± 0.09 0.52± 0.005 0.2± 0.00 5.7± 0.01 5.6± 0.09 77.5± 0.79

76.7± 0.13 0.33± 0.005 0.2± 0.00 5.7± 0.02 5.4± 0.11 81.4± 2.35

77.0± 0.19 0.34± 0.008 0.0± 0.00 5.7± 0.02 5.4± 0.11 81.8± 2.28

76.3± 0.24 0.32± 0.014 0.0± 0.00 0.0± 0.00 5.1± 0.09 79.8± 2.12

74.8± 0.31 0.24± 0.011 0.6± 0.03 0.0± 0.00 100.0± 0.00 95.9± 0.63

76.0± 0.43 0.33± 0.011 0.6± 0.01 0.0± 0.00 100.0± 0.00 100.0± 0.00

Table 11: CuTS’s performance on 5 different specifications applied together, progressively adding more of them on the
Compas dataset. In each row the active specifications are highlighted in green . The specifications are: the command used
for fair data; statistical manipulations S1 and S2; and two implications. CuTS demonstrates strong composability, adhering
to all customizations. Note that once I3 is introduced, a constraint with which the method seems to struggle already, the
accuracy decreases by an amount expected after Table 8.

XGB Acc. [%] Dem. Parity Mean Age to 40 (S1) Cov(sex, y) (S2) I3 Sat. [%] I2 Sat. [%]

63.7± 1.05 0.20± 0.042 33.6± 0.17 0.1± 0.01 26.2± 1.02 87.1± 0.90

61.6± 1.09 0.05± 0.021 33.5± 0.15 0.1± 0.02 27.3± 0.79 87.7± 0.76

61.9± 0.94 0.06± 0.036 39.6± 0.19 0.1± 0.01 26.4± 0.69 87.3± 1.01

61.4± 1.04 0.05± 0.040 39.8± 0.21 0.0± 0.02 26.3± 0.86 87.7± 0.62

54.3± 1.89 0.07± 0.042 39.1± 0.18 0.0± 0.02 100.0± 0.00 100.0± 0.00

53.9± 1.57 0.05± 0.035 39.1± 0.20 0.0± 0.02 100.0± 0.00 100.0± 0.00
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Table 12: CuTS’s performance on 5 different specifications applied together, progressively adding more of them on the
German dataset. In each row the active specifications are highlighted in green . The specifications are: the command
used for fair data; statistical manipulations S1 and S2; and two implications. CuTS demonstrates strong composability,
adhering to all customizations while maintaining competitive accuracy.

XGB Acc. [%] Dem. Parity Mean Age to 40 (S1) Cov(prot.,y) (S2) I3 Sat. [%] I2 Sat. [%]

73.7± 2.86 0.14± 0.093 34.7± 0.31 −0.1± 0.04 7.0± 2.41 62.1± 3.53

72.2± 2.03 0.09± 0.064 34.5± 0.47 −0.1± 0.04 6.8± 2.24 60.9± 2.21

72.9± 3.06 0.11± 0.071 40.0± 0.40 −0.1± 0.05 6.6± 2.72 62.8± 2.73

73.0± 2.35 0.09± 0.050 40.0± 0.43 0.0± 0.04 6.4± 2.14 61.6± 3.11

71.5± 2.48 0.10± 0.097 40.0± 0.25 −0.0± 0.02 100.0± 0.00 62.3± 2.32

71.4± 2.85 0.10± 0.097 40.7± 0.31 0.0± 0.03 100.0± 0.00 100.0± 0.00

C. Fairness Measures

C.1. DEFINITION OF FAIRNESS CRITERIA AND MEASURES

In this subsection we give the precise mathematical definition of all the fairness measures relevant to this paper. In all cases
we are given a binary classifier f : X → {0, 1} and a binary sensitive feature Ds = {0, 1}.

Demographic Parity Demographic parity requires the same expected outcome for each group. We say that demographic
parity is satisfied if the following condition holds:

Ex∼X [f(x)|Ds = 0] = Ex∼X [f(x)|Ds = 1]. (5)

We measure the violation of this condition using the demographic parity distance, defined as:

∆DP := |Ex∼X [f(x)|Ds = 0]− Ex∼X [f(x)|Ds = 1]| . (6)

This is the fairness measure we use in the fairness experiments presented in Section 5 in the main body of the paper.

Equalized Odds Equalized odds requires that w.r.t. a distinguished positive outcome (here 1), a classifier exhibits the same
true negative rates and true positive rates for all protected groups. In more technical terms, we require that the following two
conditions are met:

Ex∼X [f(x)|Ds = 0, y = 0] = Ex∼X [f(x)|Ds = 1, y = 0], (7)
Ex∼X [f(x)|Ds = 0, y = 1] = Ex∼X [f(x)|Ds = 1, y = 1]. (8)

We measure the violation of these conditions using the equalized odds distance:

∆EO := max{ |Ex∼X [f(x)|Ds = 0, y = 0]− Ex∼X [f(x)|Ds = 1, y = 0]| , (9)
|Ex∼X [f(x)|Ds = 0, y = 1]− Ex∼X [f(x)|Ds = 1, y = 1]|} . (10)

We present our results on the above measure in Appendix C.2.

Equality of Opportunity Similary to equalized odds, in the same setup, equality of opportunity requires that the true
positive rate of the classifier is equal for both protected groups. Therefore, the following condition has to be met:

Ex∼X [f(x)|Ds = 0, y = 1] = Ex∼X [f(x)|Ds = 1, y = 1]. (11)

We can measure the violation of the condition using the equality of opportunity distance:

∆EoO := |Ex∼X [f(x)|Ds = 0, y = 1]− Ex∼X [f(x)|Ds = 1, y = 1]| . (12)

We present our results on the above measure in Appendix C.2.
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Table 13: XGB accuracy [%] vs. equalized odds distance on the sex feature of various fair synthetic data generation
algorithms compared to CuTS, both in a non-private (top) and private (ϵ = 1) settings (bottom).

XGB Acc. [%] Equalized Odds sex

True Data 85.4± 0.0 0.08± 0.00

DECAF Dem. Parity 66.8± 7.0 0.07± 0.06
DECAF FTU 69.0± 6.8 0.14± 0.10
DECAF CF 67.1± 6.6 0.08± 0.05
TabFairGAN 82.6± 0.2 0.04± 0.01
CuTS 84.5± 0.2 0.03± 0.01

Prefair Greedy (ϵ = 1) 80.2± 0.4 0.01± 0.01
Prefair Optimal (ϵ = 1) 75.7± 1.5 0.03± 0.02
CuTS (ϵ = 1) 83.4± 0.2 0.02± 0.01

Table 14: XGB accuracy [%] vs. equality of opportunity distance on the sex feature of various fair synthetic data generation
algorithms compared to CuTS, both in a non-private (top) and private (ϵ = 1) settings (bottom).

XGB Acc. [%] Equality of Opportunity sex

True Data 85.4± 0.0 0.09± 0.00

DECAF Dem. Parity 66.8± 7.0 0.07± 0.06
DECAF FTUy 69.0± 6.8 0.15± 0.13
DECAF CF 67.1± 6.6 0.10± 0.08
TabFairGAN 82.6± 0.2 0.02± 0.01
CuTS 84.5± 0.1 0.02± 0.02

Prefair Greedy (ϵ = 1) 80.2± 0.4 0.02± 0.01
Prefair Optimal (ϵ = 1) 75.7± 1.5 0.04± 0.04
CuTS (ϵ = 1) 83.3± 0.2 0.04± 0.03

C.2. EQUALIZED ODDS AND EQUALITY OF OPPORTUNITY RESULTS ON ADULT

In this subsection we present our results on the fairness measures equalized odds (∆EO) and equality of opportunity (∆EoO)
distances on the Adult (Dua & Graff, 2017), in Table 13 and Table 14 respectively. The experiments follow the same setup as
the bias experiment on the demographic parity distance in the main experimental section of the paper in Section 5. As it can
be observed from the results, similarly to the results on demographic parity, CuTS tends to achieve the best fairness-accuracy
trade-off accross all competing methods.

D. Unconstrained Non-Private and Private Generation

In this subsection, we present our results in unconstrained non-private and private generation on both the Adult, Health
Heritage, Compas, and German Credit datasets. For evaluation, we use two metrics: (i) the total variation distance between
the training marginals and the marginals of the synthetic dataset, and (ii) the downstream XGB accuracy metric as used
in the main body of the paper. The goal of these experiments is to understand the performance of the generative model
underlying CuTS, note, however, that this generative model is not our main contribution. We believe that CuTS will greatly
benefit from improvements to its generative backbone by future work.

Non-Private Generation To understand the raw performance of gθ we trained it on the Adult, Health Heritage, Compas,
and German Credit datasets w.r.t. all three-way marginals that include the original task label. Then, we evaluated the
synthetic data generated by this model and compared it to three state-of-the-art tabular synthetic data generators, TVAE (Xu
et al., 2019b), CTGAN (Xu et al., 2019b), and GReaT (Borisov et al., 2023). Note that these models were designed with the
sole purpose of generating non-private synthetic data as close to the real data as possible in performance. As such, they
constitute a much more restricted set of models, that do not directly support DP training nor customizations. In the top halves
of Tables 15 to 18 we collect our results comparing the performance of CuTS to the above-mentioned baselines. Note that on
the Health Heritage and German Credit datasets, we do not report any results for GReaT as it did not generate even a single
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Table 15: TV distance on the training marginals, and downstream XGB accuracy, comparing CuTS with baseline non-private
generative models and private (ϵ = 1.0) generative models on the Adult dataset. The true data leads to an XGB accuracy of
86.7%, and to 85.4% when discretized. Per metric, we highlight the best model in bold and underline the second best.

Non-Private CuTS TVAE CTGAN GReaT

TV distance [·10−5] 4.1± 0.09 28.6± 4.02 34.2± 2.43 26.8± 0.21
XGB acc. [%] 85.2± 0.12 82.0± 0.43 83.3± 0.32 85.7± 0.13

Private (ϵ = 1) CuTS MST GEM AIM

TV distance [·10−5] 8.8± 0.19 13.9± 0.22 34.9± 0.14 7.1± 0.14
XGB acc. [%] 83.5± 0.26 79.7± 0.61 79.3± 0.90 84.1± 0.33

Table 16: TV distance on the training marginals, and downstream XGB accuracy, comparing CuTS with baseline non-private
generative models and private (ϵ = 1.0) generative models on the Health Heritage dataset. The true data leads to an
XGB accuracy of 81.3%, and to 81.1% when discretized. Per metric, we highlight the best model in bold and underline the
second best.

Non-Private CuTS TVAE CTGAN GReaT

TV distance [·10−5] 1.04± 0.01 12.3± 1.44 9.6± 0.42 –
XGB acc. [%] 80.1± 0.07 78.2± 0.22 78.3± 0.65 –

Private (ϵ = 1) CuTS MST GEM AIM

TV distance [·10−5] 3.0± 0.05 4.3± 0.02 5.5± 0.08 1.5± 0.03
XGB acc. [%] 77.9± 0.13 74.2± 0.10 76.5± 0.21 80.2± 0.09

sample after 4+ hours of sampling that was accepted by the sampling filter in GReaT. Looking at the non-private results, we
can observe that CuTS achieved an around 7× reduction in TV distance on the target marginals compared to the next best
non-private method GReaT on Adult, and more than 9× on Health Heritage compared to CTGAN. However, it is important
to note that in contrast to CuTS the other models do not directly optimize on the marginals. On XGB accuracy, CuTS ranks
as a competitive second-best method behind GReaT on Adult, exhibiting a comfortable margin to TVAE and CTGAN;
while on Health Heritage the comparison to GReaT was not possible, the margin to the other methods is still significant.
On Compas, somewhat surprisingly, TVAE ranks as the best method, with GReaT and CuTS close in performance, while
CTGAN is significantly worse. Meanwhile on the German Credit dataset, CuTS ranks as the best method. These results
argue that the CuTS backbone is a strong generative model for tabular data.

Private Generation We compare the DP trained CuTS backbone to three state-of-the-art DP methods, MST (McKenna
et al., 2021), AIM (McKenna et al., 2022), and GEM (Liu et al., 2021) on the Adult, Health Heritage, Compas, and German
datasets at a privacy level of ϵ = 1. Note that as all three of these baseline models require the same kind of discretization
as CuTS, the comparison is fair without further adjustments. We show our results in the bottom half of Tables 15 and 16.
Observe that CuTS often ranks as a strong second-best method behind AIM, more often than not exhibiting a fair margin to
the other methods. Most notably, on the German Credit dataset, it ranks as the best method based on the XGB accuracy.
This is remarkable, as AIM is, to the best of our knowledge, the strongest currently available DP synthetic data generation
model, but is far less versatile than CuTS, which supports non-private training and a large set of constraints. Altogether, this
experiment demonstrates that CuTS is a strong base generative model for fine-tuning on constraints, even in the private
setting.

E. Constraint Experiments

In this section we first explain how one can choose the weights for the constraints without violating the condition of train-test
separation. Then, we list all commands used for the experiments in the main paper, with their corresponding hyperparameters
(constraint weight and number of fine-tuning epochs).

E.1. CHOOSING THE CONSTRAINT WEIGHTS AND OTHER HYPERPARAMETERS

For choosing the constraint weights {λi}ni=1, we implemented a k-fold cross-validation scheme splitting over the reference
dataset of the fine-tuning objective. We fine-tune for each k splits and each weight that is to be evaluated. The results
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Table 17: TV distance on the training marginals, and downstream XGB accuracy, comparing CuTS with baseline non-private
generative models and private (ϵ = 1.0) generative models on the Compas dataset. The true data leads to an XGB accuracy
of 69.9%, and to 67.0% when discretized. Per metric, we highlight the best model in bold and underline the second best.

Non-Private CuTS TVAE CTGAN GReaT

TV distance [·10−4] 2.12± 0.17 20.2± 1.95 18.4± 2.9 7.74± 0.35
XGB acc. [%] 65.6± 0.78 66.7± 1.04 60.8± 2.28 65.7± 1.14

Private (ϵ = 1) CuTS MST GEM AIM

TV distance [·10−4] 5.87± 0.77 8.88± 1.17 29.2± 2.8 3.64± 0.15
XGB acc. [%] 61.9± 2.13 62.6± 1.30 56.0± 1.77 64.0± 0.81

Table 18: TV distance on the training marginals, and downstream XGB accuracy, comparing CuTS with baseline non-private
generative models and private (ϵ = 1.0) generative models on the German dataset. The true data leads to an XGB accuracy
of 78.0%, and to 74.0% when discretized. Per metric, we highlight the best model in bold and underline the second best.

Non-Private CuTS TVAE CTGAN GReaT

TV distance [·10−4] 5.44± 0.19 37.1± 1.00 13.6± 0.66 –
XGB acc. [%] 73.6± 1.64 69.7± 1.88 64.0± 3.65 –

Private (ϵ = 1) CuTS MST GEM AIM

TV distance [·10−3] 2.9± 0.21 1.7± 0.09 6.43± 0.18 1.78± 0.1
XGB acc. [%] 67.0± 2.88 63.3± 2.78 62.3± 16.40 64.1± 3.66

are reported for each weight combination and their corresponding diagnostic metrics on the data utility and the constraint
satisfaction degree. The user can use this diagnostic data to gauge the weights they want to set in their constraint program
for their final fine-tuning phase. To choose the weights we used for the results presented in the main body of the paper, in
order to save time and compute, we did not run the full k-fold cross-validation, but validated only on the first split at k = 5,
and chose the best performing parameter from this data.

E.2. COMMANDS USED

In this subsection we list for each paragraph from the experimental section in the main body the corresponding commands
and hyperparameters. Note that the syntax in the listed commands slightly differs from the syntax presented in the main
paper. The reason for this is that the commands included here serve the purpose of reproduction, and therefore follow the
syntax of the code repository version submitted in the supplementary materials. The code syntax in the paper uses a more
intuitive syntax which is being adapted in the codebase in the current refactoring. For all constraints, we use batch size
15 000.

• Downstream Constraints: Eliminating Bias and Predictability: Table 19.

• Statistical Properties: Table 20.

• Logical Constraints: non-private: Table 21, private: Table 22.

• Stacking Constraints of Different Types: Table 23.
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Table 19: Commands and hyperparameters used in the experiment:
Downstream Constraints: Eliminating Bias and Predictability

Command Weights

Reducing bias, non-private:
SYNTHESIZE: Adult;

MINIMIZE: FAIRNESS:
DEMOGRAPHIC PARITY(protected=sex, target=salary,
lr=0.1, n epochs=15, batch size=256);

END;

0.0009

Reducing bias, private (ϵ = 1):
SYNTHESIZE: Adult;

ENSURE: DIFFERENTIAL PRIVACY:
EPSILON=1.0, DELTA=1e-9;

MINIMIZE: FAIRNESS:
DEMOGRAPHIC PARITY(protected=sex, target=salary,
lr=0.1, n epochs=15, batch size=256);

END;

0.0007

Predictability, non-private:
SYNTHESIZE: Adult;

MINIMIZE: UTILITY:
DOWNSTREAM ACCURACY(features=all, target=salary);

END;

0.00133

Table 20: Commands and hyperparameters used in the experiment: Loads of text to align
Statistical Properties

Command Weights

Set the average age to 30 (S1):
SYNTHESIZE: Adult;

ENFORCE: STATISTICAL:
E[age] == 30;

END;

0.000025

Set the average age of males and females equal (S2):
SYNTHESIZE: Adult;

ENFORCE: STATISTICAL:
E[age|sex==Male] == E[age|sex==Female];

END;

0.0000125

Decorrelate sex and salary (S3):
SYNTHESIZE: Adult;

ENFORCE: STATISTICAL:
(E[sex * salary] - E[sex] * E[salary])
/ (STD[sex] * STD[salary] + 0.00001) == 0;

END;

0.7525
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Table 21: Commands and hyperparameters used in the experiment:Loads of text to align
Logical Constraints (non-private)

Command Weights

Logical Implication (I1):
SYNTHESIZE: Adult;

ENFORCE: IMPLICATION:
marital status == Widowed OR relationship == Wife
IMPLIES sex == Female;

END;

0.0000075

Logical Implication (I2):
SYNTHESIZE: Adult;

ENFORCE: IMPLICATION:
marital status in {Divorced, Never married}
IMPLIES relationship not in {Husband, Wife};

END;

0.0000075

Logical Implication (I3):
SYNTHESIZE: Adult;

ENFORCE: IMPLICATION:
workclass in {Federal gov, Local gov, State gov}
IMPLIES education in {Bachelors, Some college,
Masters, Doctorate};

END;

0.0000075

Logical Row Constraint (R1):
SYNTHESIZE: Adult;

ENFORCE: LINE CONSTRAINT:
sex == Female;

END;

0.0000025

Logical Row Constraint (R2):
SYNTHESIZE: Adult;

ENFORCE: LINE CONSTRAINT:
age > 35 AND age < 55;

END;

0.0000075

Combined Command:
SYNTHESIZE: Adult;

ENFORCE: IMPLICATION:
marital status == Widowed OR relationship == Wife
IMPLIES sex == Female;

ENFORCE: IMPLICATION:
marital status in {Divorced, Never married}
IMPLIES relationship not in {Husband, Wife};

ENFORCE: IMPLICATION:
workclass in {Federal gov, Local gov, State gov}
IMPLIES education in {Bachelors, Some college,
Masters, Doctorate};

ENFORCE: LINE CONSTRAINT:
sex == Female;

ENFORCE: LINE CONSTRAINT:
age > 35 AND age < 55;

END;

0.0000075

0.0000075

0.0000075

0.0000025

0.0000075
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Table 22: Commands and hyperparameters used in the experiment:Loads of text to align
Logical Constraints (private)

Command Weights

Logical Implication (I1):
SYNTHESIZE: Adult;

ENSURE: DIFFERENTIAL PRIVACY:
EPSILON=1.0, DELTA=1e-9;

ENFORCE: IMPLICATION:
marital status == Widowed OR relationship == Wife
IMPLIES sex == Female;

END;

0.00005

Logical Implication (I2):
SYNTHESIZE: Adult;

ENSURE: DIFFERENTIAL PRIVACY:
EPSILON=1.0, DELTA=1e-9;

ENFORCE: IMPLICATION:
marital status in {Divorced, Never married}
IMPLIES relationship not in {Husband, Wife};

END;

0.0000125

Logical Implication (I3):
SYNTHESIZE: Adult;

ENSURE: DIFFERENTIAL PRIVACY:
EPSILON=1.0, DELTA=1e-9;

ENFORCE: IMPLICATION:
workclass in {Federal gov, Local gov, State gov}
IMPLIES education in {Bachelors, Some college,
Masters, Doctorate};

END;

0.000375

Logical Row Constraint (R1):
SYNTHESIZE: Adult;

ENSURE: DIFFERENTIAL PRIVACY:
EPSILON=1.0, DELTA=1e-9;

ENFORCE: LINE CONSTRAINT:
sex == Female;

END;

0.0000375

Logical Row Constraint (R2):
SYNTHESIZE: Adult;

ENSURE: DIFFERENTIAL PRIVACY:
EPSILON=1.0, DELTA=1e-9;

ENFORCE: LINE CONSTRAINT:
age > 35 AND age < 55;

END;

0.0000125
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Table 23: Commands and hyperparameters used in the experiment:
Stacking Constraints of Different Types

Command Weights

Full Program:
SYNTHESIZE: Adult;

MINIMIZE: FAIRNESS:
DEMOGRAPHIC PARITY(protected=sex, target=salary,
lr=0.1, n epochs=15, batch size=256);

ENFORCE: STATISTICAL:
E[age] == 30;

ENFORCE: STATISTICAL:
E[age|sex==Male] == E[age|sex==Female];

ENFORCE: IMPLICATION:
workclass in {Federal gov, Local gov, State gov}
IMPLIES education in {Bachelors, Some college,
Masters, Doctorate};

ENFORCE: IMPLICATION:
marital status in {Divorced, Never married}
IMPLIES relationship not in {Husband, Wife};

END;

0.0009

0.000025

0.0000125

0.0000075

0.0000075

F. Differentially Private Training of CuTS

In the case of DP training, we adapt the iterative and privacy budget adaptive DP training algorithm presented in
AIM (McKenna et al., 2022). In brief, given a privacy budget ϵ and a workload (set of marginals that are to be pre-
served well by the final model) AIM works by iterating the following steps: (i) using the exponential mechanism to select a
marginal from the workload to be measured, (ii) privately measuring this selected marginal using the Gaussian mechanism,
(iii) fitting a generative model to all the privately measured marginals up to this point, and (iv) increasing the per-iteration
budget ϵt in case the improvement obtained from the new measurement is insufficient. The steps (i)–(iv) are repeated until
the entire privacy budget ϵ is used up. We adapt this algorithm by replacing the graphical model used in AIM with our
generative model gθ for step (iii) and training it similarly as in the non-private setting using the privately measured marginals
as reference. Additionally, we modify step (iv) in a similar vein to adaptive ODE solvers by also allowing for a decrease in
the budget in case the model showed a strong improvement in the given iteration, which we detail below.

Let γt be the privacy parameter of the selection step (parameter of the exponential mechanism), and σt the privacy parameter
of measurement step (parameter of the Gaussian mechanism), each at iteration t. Also, let the sample generated by gθ
at iteration t be denoted as Xt, and denote the marginal of the features r selected in round t measured on the sample
Xt with domain size nr as Mr(Xt). Then, using the budget annealing step of AIM, one doubles γt and halves σt if
∥Mr(Xt) −Mr(Xt−1)∥1 ≤

√
2/π · σt · nr, i.e., the per-round privacy budget is increased 4× whenever the change in

marginals is smaller than the expected error at the current noise level. Although this choice is well motivated by McKenna
et al. (2022), we found that for CuTS this led to too few rounds of private training, as the per-round budget is only increased,
and never decreased, when for example the improvement at the current round was much better than expected. Especially, as
the increase every time is 4-fold, the budget was depleted very quickly, leading to poor results. Therefore, we modified
this annealing step in AIM by (i) allowing for a decrease in the per-round budget in case the measurement provided an
improvement that is larger than the expected error, and (ii) setting a maximum adaptation factor of

√
2, meaning that the

per-round privacy budget changes at most 2× in each round. Our new annealing step is shown in Algorithm 1.

25



CuTS: Customizable Tabular Synthetic Data Generation

Algorithm 1 CuTS Privacy Budget Annealing

1: ξ ← ∥M(Xt)−M(Xt−1)∥1√
2/π·σt·nr

2: if ξ ≤ 1 then
3: σt+1 ← max(ξ, 1/

√
2) · σt

4: γt+1 ← γt/max(ξ, 1/
√
2)

5: else
6: σt+1 ← min(ξ,

√
2) · σt

7: γt+1 ← γt/min(ξ,
√
2)

8: end if

G. Comparing the Methods of Declaring Specifications in CuTS, SDV, and AIM

CuTS comes with an implementation of an intuitive domain-specific language that closely follows statistical notation for
declaring the desired specifications. Thereby, CuTS even in cases where certain subsets of the supported constraints and
specifications would be available in other methods, CuTS besides its strong performance it also provides a more accessible
interface to declaring the desired customizations. We exemplify this on how the user has to input the constraint I2 from
Table 2 to CuTS, SDV models (Patki et al., 2016), and to AIM (McKenna et al., 2022), respectively:

CuTS:

ENFORCE: IMPLICATION:
marital_status in {Divorced, Never_married} IMPLIES relationship not in {Husband, Wife}

SDV:

def is_valid_I2(column_names: list, data: pd.DataFrame, extra_parameter) -> pd.Series:
data = data.reset_index(drop=True)
validity_filter = np.ones(len(data)).astype(bool)
antecedent_mask = (data[’marital-status’] == ’Divorced’) | (data[’marital-status’] ==

’Never-married’)
antecedent_indices = data[antecedent_mask].index.to_numpy()
consequent_mask = np.logical_and((data[antecedent_mask][’relationship’] != ’Husband’).

to_numpy(), (data[antecedent_mask][’
relationship’] != ’Wife’).to_numpy())

validity_filter[antecedent_indices] = consequent_mask
return pd.Series(validity_filter)

AIM:

szeros = {(’marital-status’, ’relationship’): [(1, 2), (1, 0), (2, 2), (2, 0)]}

H. Differences to GEM

The main difference to the fixed-noise model used in Liu et al. (2021) (GEM) is that CuTS resamples the input noise at
each training step, and therefore, it truly learns a generative model of the data with respect to the Gaussian distribution at
the input. Additionally, our final layer is different from the one used in GEM, where the authors use a simple per-feature
softmax head and conduct the training of the network in a relaxed representation space. Only once the training is done,
for generating a final sample, the authors of GEM project the output of their model to the correct one-hot representations
by sampling each feature independently in proportion to their obtained values in the relaxed representation. Whereas, we
use a straight through estimator Gumbel Softmax (Jang et al., 2017) at the output, meaning that we already conduct the
training in the hard, one-hot encoded space. Finally, for DP training we use a modified version of the selection and privacy
budgeting algorithm presented in McKenna et al. (2022), and not the method presented in Liu et al. (2021). We explained
the modifications we conduct in Appendix F.
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