

000 001 002 003 004 005 BENCHMARKING MULTIMODAL LLMs ON RECOGNI- 006 TION AND UNDERSTANDING OVER CHEMICAL TABLES 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

ABSTRACT

033 With the widespread application of multimodal large language models in scientific
034 intelligence, there is an urgent need for more challenging evaluation benchmarks to
035 assess their ability to understand complex scientific data. Scientific tables, as core
036 carriers of knowledge representation, combine text, symbols, and graphics, forming
037 a typical multimodal reasoning scenario. However, existing benchmarks are mostly
038 focused on general domains, failing to reflect the unique structural complexity
039 and domain-specific semantics inherent in scientific research. Chemical tables are
040 particularly representative: they intertwine structured variables such as reagents,
041 conditions, and yields with visual symbols like molecular structures and chemi-
042 cal formulas, posing significant challenges to models in cross-modal alignment
043 and semantic parsing. To address this, we propose ChemTable—a large-scale
044 benchmark of chemical tables constructed from real-world literature, containing
045 expert-annotated cell layouts, logical structures, and domain-specific labels. It
046 supports two core tasks: (1) table recognition (structure and content extraction);
047 and (2) table understanding (descriptive and reasoning-based question answering).
048 Evaluation on ChemTable shows that while mainstream multimodal models per-
049 form reasonably well in layout parsing, they still face significant limitations when
050 handling critical elements such as molecular structures and symbolic conventions.
051 Closed-source models lead overall but still fall short of human-level performance.
052 This work provides a realistic testing platform for evaluating scientific multimodal
053 understanding, revealing the current bottlenecks in domain-specific reasoning and
054 advancing the development of intelligent systems for scientific research.¹

1 INTRODUCTION

035 Recent advances in multimodal large language models (MLLMs) have created new opportunities for
036 mining expert knowledge from scientific literature and are increasingly viewed as catalysts for AI-
037 driven scientific discovery (Zhang et al., 2024). A growing wave of *scientific accelerators*—such as
038 MLLMs-based OCR, ChatPaper (Dean et al., 2023), and ChatPDF (Panda, 2023)—demonstrates the
039 potential of MLLMs to literature parsing, summarization, and interactive reading. From a modeling
040 perspective, MLLMs exhibit strong capabilities in semantic understanding and reasoning, making
041 them well-suited for processing the rich multimodal content of scientific documents. Benchmarks like
042 ChartQA (Masry et al., 2022) and ChartX (Xia et al., 2024) have begun exploring visual reasoning
043 over scientific figures. Yet, scientific literature remains one of the most semantically dense and
044 domain-specialized corpora, and understanding it serves as both a valuable application and a rigorous
045 testbed for evaluating the limits of MLLMs (Li et al., 2024b). In particular, while MLLMs excel at
046 general-purpose visual tasks, they continue to struggle with domain-specific multimodal reasoning,
047 precisely the capability that underpins **AI-assisted scientific discovery**.

048 While recent benchmarks have primarily focused on figures and charts, **tables remain a largely**
049 **underexplored yet equally critical modality in scientific literature**. In chemistry, tables are concise
050 and information-rich representations of experimental setups, reaction conditions, and empirical results.
051 These tables often combine symbolic expressions, structured variables, and graphical elements—
052 posing significant challenges for existing MLLMs. Despite their importance, there is a lack of
053 realistic, domain-specific datasets designed to evaluate the capabilities of MLLMs in scientific table

¹<https://anonymous.4open.science/r/ChemTable-ICLR-2026>

108 ICDAR-2013 (Göbel et al., 2013). Since 2019, large-scale datasets (Zhong et al., 2019; Gao et al.,
 109 2019; Li et al., 2020; Smock et al., 2022) have reshaped the field, enabling the deep learning era of
 110 table recognition. However, their annotations are programmatically generated and provide only table
 111 structures without cell content, limiting their utility in deeper understanding tasks. To enable deeper
 112 semantic understanding, recent datasets such as FinTabNet (Zheng et al., 2021), PubTabNet (Zhong
 113 et al., 2020), and SciTSR (Chi et al., 2019) incorporate logical cell locations and detailed content
 114 annotations, with TabRecSet (Yang et al., 2023) further extending coverage through multilingual and
 115 polygon-based labeling.

116 Beyond the general domain, scientific tables introduce richer layouts and domain-specific elements.
 117 Chemical tables, in particular, are uniquely challenging: they feature dense symbolic notation,
 118 embedded molecular structures, and implicit conventions, yet remain indispensable for reporting
 119 experimental knowledge. This complexity not only makes them valuable for practical applications but
 120 also an ideal testbed for probing the capabilities of multimodal large language models. Nevertheless,
 121 dedicated benchmarks for chemical table recognition are still lacking.

122 2.2 EXISTING BENCHMARKS ON TABLE UNDERSTANDING.

124 Several datasets have been proposed for table understanding tasks. Among them, WikiTQ (Pasupat &
 125 Liang, 2015) contains tables extracted from Wikipedia paired with natural language questions and
 126 has become a widely used early benchmark in this area. In recent years, advancements in natural
 127 language processing have extended beyond traditional homogeneous tables to incorporate additional
 128 modalities. For instance, HybridQA (Chen et al., 2020) and MMTab (Zheng et al., 2024) introduce
 129 multi-modal or semi-structured sources for more complex reasoning. Moreover, domain-specific
 130 benchmarks such as FinQA (Chen et al., 2021) (financial) and SciTab (Lu et al., 2023b) (scientific)
 131 address unique challenges by integrating structured tables with related textual content to support
 132 complex reasoning tasks.

133 The ChemTable dataset is different
 134 from existing benchmarks in several key
 135 ways. It is a comprehensive, open-ended
 136 dataset focused on table recognition
 137 and understanding in chemistry, created
 138 to support scientific question-answering
 139 systems. Unlike other datasets, its ques-
 140 tions combine visual elements, table data,
 141 and chemistry knowledge, making it nec-
 142 essary for models to recognize table con-
 143 tent and structure, then reason across
 144 that information. This setup reflects real
 145 tasks that researchers face when drawing
 146 conclusions from data.

Table 1: Comparison of table understanding datasets. We use the following shorthand: Dom. Spe. = Domain Specific, Pict. Moda. = Pictorial Modality, Text. Moda. = Textual Modality, Human Writ. = Human Written, LLM Gene. = LLM Generated.

Name	TABLE MODAL			QUESTION SOURCE	
	Dom. Spe.	Pict. Moda.	Text. Moda.	Human Writ.	LLM Gene.
WikiTQ Pasupat & Liang (2015)	✗	✗	✓	✓	✗
WikiSQL Zhong et al. (2017)	✗	✗	✓	✓	✗
HybridQA Chen et al. (2020)	✗	✗	✓	✓	✗
FinQA Chen et al. (2021)	✓	✗	✓	✓	✗
SciTab Lu et al. (2023b)	✓	✗	✓	✓	✓
MMTab Zheng et al. (2024)	✗	✓	✗	✓	✓
ChemTable	✓	✓	✓	✓	✓

147 3 CHEMTABLE: A CHEMICAL TABLE RECOGNITION AND UNDERSTANDING 148 BENCHMARK

150 We introduce ChemTable, a benchmark that systematically curates chemical research tables, evaluates
 151 table recognition capabilities, and advances table-based question answering in the chemical domain.
 152

153 3.1 DATASET CONSTRUCTION AND ANNOTATION

154 In this section, we outline our methodology for systematically collecting and annotating chemical
 155 research tables to construct domain-specific datasets. We first describe the data sources and table
 156 types, followed by the introduction of a structured data annotation protocol that seamlessly integrates
 157 structural features (e.g., table structural information, text formatting) with chemical elements.
 158

159 3.1.1 TABLE COLLECTION

160 **Journal Selection.** To ensure both credibility and disciplinary relevance, we selected publications
 161 from top-tier chemistry journals (e.g., ACS Catalysis, JACS, Chem, Angewandte Chemie Int. Ed.,

Figure 2: Overview of metadata, table recognition, and table understanding in ChemTable.

and Science). The dataset covers the past decade (2015–2024), providing a balanced scope that captures recent advances while retaining representative studies across the field. All publications were systematically linked to their DOIs to guarantee traceability and to facilitate future validation or extension of the dataset. Copyright considerations regarding data usage and redistribution are detailed in Appendix S.

Table Categorization Strategy. The dataset comprises six primary table types: (1) condition optimisation tables, (2) substrate screening tables, (3) chemical structure information tables, (4) reaction feature data tables, (5) property/result comparison tables, and (6) data statistics tables. Condition optimisation and substrate screening tables comprise over 50% of the dataset.

3.1.2 TABLE ANNOTATION

For table annotation, we formed a dedicated team to identify table titles, annotations, main content, and additional captions (Desai et al., 2021). Each element was annotated with pixel coordinates and OCR-verified text. We also encoded the logical structure of tables, such as row-column relationships. To preserve visual meaning, we carefully recorded stylistic features like boldface, italics, and color. For table-based question answering annotation, descriptive questions are directly derived from the detailed annotations of table elements created in the previous step. Simple reasoning questions are generated using GPT-4.1 (OpenAI, 2025) and then filtered based on difficulty. For more complex reasoning questions and visually descriptive tasks, we manually annotated 2,122 questions with the help of experienced graduate students. These questions focused on specific topics, such as reaction conditions and yields, while allowing a variety of question styles. Annotators were also encouraged to include unanswerable questions caused by missing data, vague references, or incomplete formatting. To ensure accuracy, all questions were verified by human review and model checks. Details can be found in the Appendix D.

3.2 TABLE RECOGNITION

Table recognition is a fundamental step in document understanding, which aims to turn table images into structured data. This task is more challenging in chemistry because of complex layouts and specialized symbols (Li et al., 2024a).

3.2.1 TASK DEFINITION

We employ the generation paradigm of MLLMs to address the table recognition (TR) task, which is formulated as a format mapping problem from images to sequences. Formally, given a dataset $\mathcal{D} = \{(I^i, H^i)\}_{i=1}^n$ with n samples, we predict the corresponding structured form H^i for each table image I^i . Specifically, we provide the image table I^i along with a prompt P as input to the MLLMs, which generates the structured data form $\hat{H}^i = \text{MLLM}(P, I^i)$.

216 3.2.2 EVALUATION PROTOCOLS
217218 To further assess the capabilities of table recognition models and understand the challenges of
219 chemical-domain data, we propose a set of tasks focused on domain-specific reasoning in chemical
220 table understanding. Specifically, we introduce the following three tasks:221 **Value Retrieval:** This task evaluates a model’s ability to locate and extract cell-level content
222 accurately. Given a table and a pair of coordinates, the model must return the exact value in that cell.
223 This task directly measures the model’s precision in structured data parsing and positional alignment.224 **Position Retrieval:** This task requires the model to infer the position of a specific value. Given a
225 table and a target value, the model must identify the correct row and column. This tests the model’s
226 understanding of value localisation within structured layouts.227 **Molecular Recognition:** Chemical tables often include molecular structures represented as images,
228 either embedded within cells or positioned externally. This task aims to evaluate a model’s ability
229 to recognise and interpret such molecular graphics. The objective is to extract the corresponding
230 SMILES (Simplified Molecular Input Line Entry System) string from a molecular diagram. This task
231 presents unique challenges, such as fine-grained visual understanding and domain-specific symbol
232 interpretation, which are not typically encountered in general-domain table recognition (Morin et al.,
233 2023; Han et al., 2024).234 3.3 TABLE UNDERSTANDING
235236 We divide table comprehension evaluation into two types: de-
237 scriptive questions and reasoning questions. Descriptive ques-
238 tions test the model’s ability to extract and summarize basic
239 table information, while reasoning questions assess its ability to
240 perform deeper analysis and inference. To improve the quality
241 of the evaluation, we applied a data filtering process to increase
242 both the diversity and difficulty of the questions in our dataset.243 3.3.1 TASK DEFINITION
244245 We employ the generation paradigm of MLLMs to address the
246 table question answering task. Formally, given samples, each
247 sample consists of a table T^i , a natural language question Q^i ,
248 and the corresponding answer A^i . To answer the question, we
249 provide the table T^i and the question Q^i as input to the MLLMs
250 in the form of a prompt P , yielding the predicted answer. In the
251 visual table QA setting, T^i is an image of a table, while in the
252 text table QA setting, T^i is a structured textual representation.253 3.3.2 DESCRIPTIVE QUESTIONS.
254255 Descriptive questions aim to provide a general overview of the
256 basic information presented in the table shown in the image.
257 These questions include: 1) describing the main body of the
258 table, such as its dimensions; 2) describing basic metadata of the
259 table, including titles and notes; 3) describing domain-specific
260 elements, such as reaction conditions in chemical reaction for-
261 mulae or SMILES notation in molecular graphs; and 4) identifying certain visual features in the table,
262 such as rows highlighted with special colors. Chemical tables often contain images, such as molecular
263 structures, instead of plain text, making them harder to read and analyze. For example, an image in a
264 table row can affect spacing and make it harder to recognize content. Sometimes, only certain parts
265 of a molecule, like a red-highlighted $-\text{OH}$ group—are shown, which adds to the difficulty for models
266 trying to understand the table.

267 3.3.3 REASONING QUESTIONS

268 Reasoning questions are designed to further analyze and infer information from the data presented in
269 the table within the image. They require a comprehensive understanding to make informed judgments.
These questions include: 1) Numerical and statistical reasoning, 2) Trend and change analysis, 3)236 Table 2: ChemTable dataset statis-
237 tics. unique tokens and QA
238 lengths are calculated based on the
239 Qwen2.5-7B tokenizer.

Statistics	Value
Images	
Total Images	1,382
Years	2015 – 2024
Average size (px)	3687 × 4086
Descriptive Questions	
# questions	7,344
# unique questions	1,512
<i>Question</i>	
- # unique tokens	1,568
- maximum length	25
- average length	11.10
<i>Answer</i>	
- # unique tokens	12,032
- maximum length	148
- average length	8.99
Reasoning Questions	
# questions	2,542
# unique questions	1,735
<i>Question</i>	
- # unique tokens	2,086
- maximum length	37
- average length	12.66
<i>Answer</i>	
- # unique tokens	2,610
- maximum length	78
- average length	6.21

270 Multi-hop logical reasoning, and 4) Domain-specific reasoning. Specific details are provided in
 271 the Appendix F.1. Since the data in chemical tables is often tightly linked to specific experimental
 272 conditions, molecular structures, and graphical annotations, reasoning questions not only assess the
 273 ability to comprehend explicit information but also place greater demands on domain knowledge, the
 274 integration of information across rows and columns, and the ability to reason using visual symbols.
 275

276 3.3.4 DATA FILTERING

277 **Diversity.** We identified questions with overly repetitive structures and semantically similar phrasing
 278 to encourage a broad range of question formulations. These were rewritten using GPT-4.1 with
 279 prompt templates provided in the Appendix Q. We selected algorithms that maximised the semantic
 280 distance from the original question, enhancing the linguistic and structural diversity of the dataset.

281 **Difficulty.** We implemented a filtering strategy to ensure the dataset poses a meaningful challenge.
 282 We first conducted a single-pass QA evaluation using the Qwen-2.5-7B model (Yang et al., 2024).
 283 For each question, we recorded whether the model was able to produce the correct answer on the
 284 first attempt. Questions that were answered correctly in one try were deemed too simple. To filter
 285 out these low-difficulty samples, we randomly discarded some of them. This approach allowed us to
 286 enrich the dataset with more challenging examples that were better suited for evaluating advanced
 287 reasoning capabilities.
 288

289 4 EXPERIMENTS ON TABLE RECOGNITION

290 4.1 EXPERIMENTAL SETUP

291 **Evaluation Metrics.** To evaluate the performance of the table recognition task, we adopt the
 292 improved similarity metric based on tree edit distance (TEDS) (Zhong et al., 2020) along with the
 293 TEDS-structure indicator. Specifically, the table content may contain molecular graphs in chemical
 294 scenarios. Interpreting these molecular graphs using the simplified molecular input line entry
 295 system(SMILES) can result in structural isomorphism, where different representations or atom orders
 296 may correspond to the same molecule, making it inappropriate for TEDS to utilize normalised edit
 297 distance as a measure of cell content recognition accuracy. Therefore, for cells containing chemical
 298 molecular graphs, we replace the normalised edit distance with the Tanimoto coefficient (Holliday
 299 et al., 1995) to accurately assess the performance of table recognition. We use accuracy (ACC) as the
 300 evaluation metric for fine-grained retrieval experiments.
 301

302 **Baselines.** We evaluate a diverse set of MLLMs, including open-source models InternVL3-78B
 303 (Zhu et al., 2025), Llama-3.2-90B (Meta, 2024), and Qwen2.5-VL-72B (Bai et al., 2025), as well as
 304 proprietary models Gemini-2.5-Flash (Google, 2025), GPT-4.1, GPT-4.1-mini (OpenAI, 2025), and
 305 Claude-3.7-Sonnet (Anthropic, 2024). Implementation details are in Appendix L.
 306

307 4.2 EXPERIMENTAL RESULTS

308 **Main Results Analysis.** We evaluate the table recognition performance using an improved similarity
 309 metric based on TEDS, along with the TEDS-structure indicator. The results are in Table 3 and key
 310 findings are listed as follows.
 311

312 **(a) Small performance gap between open-source and proprietary models.** Although a perfor-
 313 mance gap between open-source and proprietary models still exists, both achieve promising results
 314 in table recognition. For example, Gemini-2.5-Flash achieves 95.91 on TEDS-Struct and 88.29 on
 315 TEDS, while the open-source Qwen2.5-VL also performs competitively, scoring 93.12 on TEDS-
 316 Struct and 89.45 on TEDS. This shows that both model types possess strong capabilities in table
 317 understanding and structure reconstruction.
 318

322 Figure 3: Comparative evaluation of MLLMs and DECIMER for molecular formula recognition from
 323 real-world and synthetic chemical diagrams.
 324

324
 325 Table 3: Performance of different MLLMs on table recognition and fine-grained retrieval tasks. TEDS
 326 ↑, TEDS-Struct ↑, and ACC↑ are used as the evaluation metric. The "*" indicates using the tanimoto
 327 coefficient for molecular formula prediction from molecular diagrams within table cells.

328 Model Category	329 Model Name	330 Table Recognition		331 Value Retrieval	332 Position Retrieval
		333 TEDS-Struct*	334 TEDS*	335 ACC	336 ACC
337 Proprietary	Claude-3.7-Sonnet	92.58	85.40	33.89	53.06
	GPT-4.1	95.48	88.93	29.60	49.49
	Gemini-2.5-Flash	95.91	88.29	29.19	36.92
	GPT-4.1-mini	95.25	87.50	17.01	35.16
338 Open-Source	Qwen2.5-VL	93.12	<u>89.45</u>	<u>31.72</u>	<u>38.35</u>
	InternVL3	<u>94.40</u>	86.06	29.58	33.91
	Llama-3.2	93.15	87.46	29.30	32.85

337
 338 **(b) Poor fine-grained retrieval across all MLLMs.** All models show weak performance on fine-
 339 grained retrieval tasks, such as locating cell content by row-column positions or inferring positions
 340 from content. As shown in Table 3, even Claude-3.7-Sonnet, the best-performing model, only
 341 achieves an accuracy of 33.89 on value retrieval, with others performing worse. This highlights
 342 ongoing challenges in achieving precise fine-grained alignment in current MLLMs.

343
 344 **(c) Molecular formulas pose a key recognition bottleneck.** Recognition performance declines as
 345 the number of molecular formulas in tables increases. In contrast, accuracy improves significantly
 346 when molecular formulas are absent. Specifically, models perform notably worse on chemical tables
 347 with many molecular structures than on those with plain text or simple layouts. This indicates that
 348 molecular formulas remain a key bottleneck for current models and require further optimization to
 349 improve recognition accuracy.

350 **Analysis of Molecular Formula Recognition.**

351 We evaluated MLLMs on molecular formula
 352 recognition from real-world academic papers
 353 and synthetic diagrams. As shown in Figure
 354 3, MLLMs can identify and convert molecular
 355 structures into chemical formulas, but their per-
 356 formance on real-world diagrams is lower than
 357 on synthetic ones, highlighting the impact of
 358 data diversity and quality on model robustness.
 359 Although MLLMs possess some chemical do-
 360 main knowledge, their accuracy and reliability
 361 remain significantly inferior to specialized mod-
 362 els (DECIMER(Rajan et al., 2023)). This gap
 363 underscores the need for further improvements
 364 to enable MLLMs to effectively handle domain-
 365 specific tasks in advanced scientific applica-
 366 tions.

367
 368 **Analysis of Chemical Representation Recognition.** We examine whether current MLLMs treat
 369 chemical representations (e.g., molecular formulas and structural diagrams) as noise when process-
 370 ing tables, as shown in Figure 4. Results indicate that even when molecular structures appear only in the
 371 surrounding context—not within the table itself—their presence still degrades performance. This
 372 suggests that chemical symbols can interfere with the model’s overall understanding. Our findings
 373 confirm that MLLMs struggle to parse and integrate multimodal chemical information, revealing a
 374 key limitation in chemical table understanding and an important direction for future improvement.

375 5 EXPERIMENTS ON TABLE UNDERSTANDING

376 5.1 EXPERIMENTAL SETUP

377
 378 **Evaluation Metrics.** For tasks requiring descriptive answers, we use edit distance (Levenshtein
 379 et al., 1966) as the primary metric to assess recognition accuracy. For more open-ended question
 380 answering (QA) tasks, we adopt a binary evaluation strategy powered by GPT-4.1-nano (OpenAI,

379 Figure 4: Impact of molecular formula complexity
 380 on table recognition.

378
 379
 380
 381
 382 Table 4: Performance comparison of MLLMs on descriptive and reasoning tasks with human in
 383 chemical table understanding. Overall, MLLMs perform impressively but are slightly outperformed
 384 by humans in complex tasks. We denote the best score in blue, and the second-best score in green.
 385
 386
 387

Question Type	GPT-5	Gemini-Pro	Claude-4.5	GPT-4.1	Gemini	Claude-3.7	GPT-mini	Qwen-VL	InternVL	Llama	Human
<i>Descriptive Questions</i>											
Element Description	Table Dimensions	74.89	74.35	76.11	73.07	73.10	75.39	68.31	71.42	70.50	70.27
	Title Description	83.74	87.67	87.30	87.31	81.64	81.03	84.79	83.18	84.35	85.50
	Annotation Description	93.11	89.91	87.41	92.94	81.12	68.93	81.86	90.23	73.27	81.39
	Molecular Recognition	52.04	69.31	58.14	42.49	28.47	52.71	37.62	14.14	11.63	18.50
Visual Description	Bold Description	40.53	45.81	48.93	44.27	41.22	50.38	35.88	38.93	32.82	52.73
	Color Description	50.78	54.56	48.19	56.48	41.22	50.38	54.92	58.55	49.74	58.03
<i>Reasoning Questions</i>											
Domain-Specific QA	Benzene Rings Count	57.22	63.67	46.00	52.31	75.32	62.83	49.51	59.61	47.66	21.97
	Yield and Conditions	90.53	92.69	90.81	89.14	90.97	89.42	89.97	85.24	74.93	82.13
	Function Based	37.94	73.97	45.66	37.30	71.70	62.06	20.78	35.37	30.23	89.27
Numerical Statistics	Value Comparison	86.44	92.00	91.85	91.80	92.00	93.60	78.40	94.40	67.14	81.45
	Find Min/Max	86.18	89.62	94.79	85.85	83.18	94.39	79.44	94.39	60.94	100.00
	Calculate Sum	60.65	56.43	46.32	58.33	46.43	53.68	32.63	32.63	24.07	34.12
Logical Reasoning	Calculate Average	47.84	55.00	50.85	44.87	46.82	46.75	22.52	26.13	24.19	33.33
	Trend Analysis	84.46	87.32	86.21	81.87	86.53	83.94	75.13	74.61	76.34	55.96
Reasoning	Multi-hop Retrieval	83.68	84.87	85.65	84.87	87.94	88.16	83.55	82.89	80.20	81.48

395
 396 2025), which classifies each response as either correct or incorrect (Lu et al., 2023a; Young et al.,
 397 2024; Dubois et al., 2023),. The overall performance is then quantified by computing the accuracy
 398 (ACC) based on these binary classifications.

399 To ensure the reliability of this automated evaluation process, we randomly sampled 20% of the QA
 400 instances for manual verification. Human annotators reviewed the model outputs against reference
 401 answers and provided independent judgments. We then calculated the agreement rate between human
 402 evaluations and the binary assessments produced by GPT-4.1-nano . Implementation details are
 403 provided in the Appendix G.

404 **Baselines.** For table understanding, we evaluate a superset of the open-source and proprietary
 405 MLLMs introduced in Section 4.1. Concretely, we consider GPT-5, Gemini-2.5-Pro, Claude-
 406 4.5-Sonnet, GPT-4.1, Gemini-2.5-Flash, Claude-3.7-Sonnet, GPT-4.1-mini, Qwen2.5-VL-72B,
 407 InternVL3-78B, and Llama-3.2-90B. For brevity, we denote them as GPT-5, Gemini-Pro, Claude-4.5,
 408 GPT-4.1, Gemini, Claude-3.7, GPT-mini, Qwen-VL, InternVL, and Llama. We additionally include
 409 a human performance baseline (Human), consisting of human answers on the evaluation data (the
 410 collection process and evaluation protocol are detailed in Appendix L). We additionally report results
 411 for domain-specific chemistry models in Appendix K.

5.2 EXPERIMENTAL RESULTS.

412
 413 We compare a set of representative MLLMs on the table understanding task in Table 4, covering both
 414 descriptive and reasoning questions. Below are our main findings:

415 **(a) General reasoning strength, numerical weakness.** Across general reasoning tasks such as trend
 416 analysis, value comparison, and finding min/max values, MLLMs achieve relatively high accuracy.
 417 For example, Gemini-Pro reaches 87.32 ACC on *Trend Analysis*, indicating that models can reliably
 418 capture basic quantitative and monotonic patterns from tables. However, performance drops sharply
 419 on arithmetic-heavy tasks: on *Calculate Average*, Gemini-Pro only attains 55.00 ACC, far below
 420 human performance, highlighting limitations in calculation-intensive reasoning.

421 **(b) Descriptive tasks outperform domain-specific chemistry QA.** MLLMs perform strongly on
 422 descriptive questions about table content. On *Annotation Description*, GPT-5 achieves 93.11 ACC,
 423 reflecting robust capabilities in recognizing and summarizing textual annotations. In contrast, accuracy
 424 decreases on domain-specific chemistry questions. Even the best model on *Function Based QA*,
 425 Gemini-Pro, reaches only 73.97 ACC, substantially below the human baseline, highlighting the
 426 difficulty of integrating chemical knowledge with visual table structure.

427 **(c) Visual style interpretation remains challenging.** Tasks that depend on visual or stylistic
 428 cues—such as boldface and color highlighting—remain particularly challenging. While Llama
 429 and Qwen-VL emerge as the top contenders in this category, their performance is far from ideal.
 430 Llama reaches 52.73 ACC on *Bold Description*, and Qwen-VL leads slightly with 58.55 on *Color*

Figure 5: Accuracy comparison of InternVL3-78B on chemistry table understanding tasks across input modalities

Description. However, compared to the near-perfect human performance (>97 ACC), this substantial gap suggests that fine-grained visual formatting is still poorly grounded in current MLLMs.

(d) Closed-source models dominate complex and domain tasks, but humans still lead. Overall, closed-source models such as GPT-5, Gemini-Pro, Claude-4.5, and GPT-4.1 dominate complex reasoning and chemistry-specific tasks. For instance, Gemini-Pro achieves 73.97 ACC on *Function Based* QA and over 90 ACC on *Yield and Conditions*, whereas most open-source models lag behind on these tasks. At the same time, strong open-source models like Qwen-VL can match or surpass proprietary ones on certain numerical subtasks (e.g., *Value Comparison* at 94.40 ACC). Nevertheless, humans still outperform all models on the most complex table understanding tasks, indicating a non-trivial gap to expert-level competence.

5.3 ANALYSIS OF MULTIMODAL INPUT AND MODEL BEHAVIOR

Impact of Input Modality. In Figure 5, we evaluated three input modalities—Text QA (HTML), VQA (Image), and Hybrid QA (Hybrid)—to assess how different formats affect model performance in answering chemistry-related questions. Experimental results across tasks such as Yield and Conditions, Function Based show that Hybrid QA achieves the highest accuracy by combining textual and visual inputs, enabling a more comprehensive understanding of complex chemical structures. Text QA outperforms VQA, as converting images to text improves interpretability, although it may introduce errors due to information loss. In contrast, VQA struggles with detailed visual content, leading to higher error rates. These findings suggest that hybrid input strategies are most effective for enhancing performance, while careful handling of text conversion remains essential.

Impact of Unanswerable Questions on Model Behavior. We examine how advanced MLLMs handle unanswerable questions by refraining from responding, as shown in Table 5. This occurs when questions exceed model capabilities or lack context, which we classify into three types: non-existent content, missing format/style, and ambiguity. Our results show that leading models can effectively determine when not to answer by using contextual understanding and reasoning, reflecting a form of self-awareness that avoids misinformation. In contrast, smaller models often fail to recognize such cases, producing incorrect or irrelevant answers. This underscores the importance of model scale and training quality for reliable and trustworthy MLLMs in question-answering and prompt engineering.

6 CONCLUSION

In this work, we introduced **ChemTable**, a large-scale dataset and benchmark designed to evaluate multimodal large language models (MLLMs) on recognition and understanding tasks involving chemical tables. By curating over 1,300 real-world chemistry tables and annotating them with domain-specific metadata and question-answering tasks, ChemTable captured the multimodal, symbolic, and semantic challenges unique to the field. Our comprehensive evaluation revealed significant performance gaps between current MLLMs and human-level capabilities, particularly in domain-specific reasoning and molecular recognition. We believe that this dataset and benchmark will facilitate future advancements in multimodal scientific analysis and understanding.

Model	Missing		Ambiguity
	Col/Row	Style	
Llama	66.43	77.31	80.08
GPT-mini	70.29	35.64	70.36
InternVL	74.84	46.15	62.80
Qwen-VL	75.51	76.27	97.64
GPT-4.1	84.02	81.21	79.69
Gemini	92.50	73.06	93.67
Claude-3.7	97.12	90.68	98.23

Table 5: Model performance on unanswerable question categories.

486 **Ethics statement.** We confirm that this work aligns with accepted ethical standards in machine
 487 learning research. All datasets used in this study are derived from publicly available sources, and we
 488 carefully respect copyright and licensing requirements. Annotations were performed by qualified
 489 domain experts under fair working conditions. No personally identifiable or sensitive data were
 490 collected or used.

491 **Reproducibility statement.** To support reproducibility, we provide detailed descriptions of the
 492 dataset construction process, annotation protocols, and experimental setups, including model configu-
 493 rations, hyperparameters, and evaluation metrics, in the main text and appendices. We also release
 494 the benchmark, scripts, and evaluation tools to facilitate replication and further research.

496 **REFERENCES**

497 Muawia Abdelmagid, Mubarak Himmat, Ali Ahmed, and R KANNAN. Survey on information
 498 extraction from chemical compound literatures: Techniques and challenges. *Journal of Theoretical
 499 and Applied Information Technology*, 67(2):284–289, 2014.

500 Anthropic. Claude 3: Advanced conversational ai, 2024. URL <https://www.anthropic.com>.

501 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 502 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 503 2025.

504 Wenhui Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, and William Wang. Hybridqa:
 505 A dataset of multi-hop question answering over tabular and textual data. *Findings of EMNLP 2020*,
 506 2020.

507 Zhiyu Chen, Wenhui Chen, Charese Smiley, Sameena Shah, Iana Borova, Dylan Langdon, Reema
 508 Moussa, Matt Beane, Ting-Hao Huang, Bryan Routledge, and William Yang Wang. Finqa: A
 509 dataset of numerical reasoning over financial data. *Proceedings of EMNLP 2021*, 2021.

510 Mingyue Cheng, Qingyang Mao, Qi Liu, Yitong Zhou, Yupeng Li, Jiahao Wang, Jiaying Lin, Jiawei
 511 Cao, and Enhong Chen. A survey on table mining with large language models: Challenges,
 512 advancements and prospects. *Authorea Preprints*, 2025.

513 Zewen Chi, Heyan Huang, Heng-Da Xu, Houjin Yu, Wanxuan Yin, and Xian-Ling Mao. Complicated
 514 table structure recognition. *arXiv preprint arXiv:1908.04729*, 2019.

515 Max Dean, Raymond R Bond, Michael F McTear, and Maurice D Mulvenna. Chatpapers: an
 516 ai chatbot for interacting with academic research. In *2023 31st Irish Conference on Artificial
 517 Intelligence and Cognitive Science (AICS)*, pp. 1–7. IEEE, 2023.

518 Harsh Desai, Pratik Kayal, and Mayank Singh. Tablex: a benchmark dataset for structure and content
 519 information extraction from scientific tables. In *Document Analysis and Recognition–ICDAR 2021:
 520 16th International Conference, Lausanne, Switzerland, September 5–10, 2021, Proceedings, Part
 521 II 16*, pp. 554–569. Springer, 2021.

522 Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
 523 Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
 524 methods that learn from human feedback. *Advances in Neural Information Processing Systems*,
 525 36:30039–30069, 2023.

526 Liangcai Gao, Yilun Huang, Hervé Déjean, Jean-Luc Meunier, Qinjin Yan, Yu Fang, Florian Kleber,
 527 and Eva Lang. Icdar 2019 competition on table detection and recognition (ctdar). In *2019
 528 International Conference on Document Analysis and Recognition (ICDAR)*, pp. 1510–1515, 2019.
 529 doi: 10.1109/ICDAR.2019.00243.

530 Google. Gemini 2.5 flash, 2025. URL <https://deepmind.google/technologies/gemini/flash/>.

531 Max Göbel, Tamir Hassan, Ermelinda Oro, and Giorgio Orsi. Icdar 2013 table competition. In *2013
 532 12th International Conference on Document Analysis and Recognition*, pp. 1449–1453, 2013. doi:
 533 10.1109/ICDAR.2013.292.

540 Yang Han, Ziping Wan, Lu Chen, Kai Yu, and Xin Chen. From generalist to specialist: A survey of
 541 large language models for chemistry. *arXiv preprint arXiv:2412.19994*, 2024.

542

543 John D Holliday, Sonia S Ranade, and Peter Willett. A fast algorithm for selecting sets of dissimilar
 544 molecules from large chemical databases. *Quantitative Structure-Activity Relationships*, 14(6):
 545 501–506, 1995.

546 Ching Ting Leung, Yufan Chen, and Hanyu Gao. Smicrm: A benchmark dataset of mechanistic
 547 molecular images. *arXiv preprint arXiv:2407.18338*, 2024.

548

549 Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, insertions, and reversals.
 550 In *Soviet physics doklady*, volume 10, pp. 707–710. Soviet Union, 1966.

551

552 Junxian Li, Di Zhang, Xunzhi Wang, Zeying Hao, Jingdi Lei, Qian Tan, Cai Zhou, Wei Liu, Weiyun
 553 Wang, Zhe Chen, et al. Seeing and understanding: Bridging vision with chemical knowledge via
 554 chemvlm. *arXiv e-prints*, pp. arXiv–2408, 2024a.

555

556 Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, and Zhoujun Li. Tablebank: Ta-
 557 ble benchmark for image-based table detection and recognition. In *Proceedings of the Twelfth
 558 Language Resources and Evaluation Conference*, pp. 1918–1925, 2020.

559

560 Sihang Li, Jin Huang, Jiaxi Zhuang, Yaorui Shi, Xiaochen Cai, Mingjun Xu, Xiang Wang, Linfeng
 561 Zhang, Guolin Ke, and Hengxing Cai. Scilitllm: How to adapt llms for scientific literature
 562 understanding. *arXiv preprint arXiv:2408.15545*, 2024b.

563

564 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
 565 Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
 566 of foundation models in visual contexts. *arXiv preprint arXiv:2310.02255*, 2023a.

567

568 Xinyuan Lu, Liangming Pan, Qian Liu, Preslav Nakov, and Min-Yen Kan. SCITAB: A challenging
 569 benchmark for compositional reasoning and claim verification on scientific tables. In *Proceedings
 570 of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023,
 571 Singapore, December 6-10, 2023*, pp. 7787–7813. Association for Computational Linguistics,
 572 2023b. URL <https://aclanthology.org/2023.emnlp-main.483>.

573

574 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
 575 mark for question answering about charts with visual and logical reasoning. *arXiv preprint
 576 arXiv:2203.10244*, 2022.

577

578 Meta. Llama 3.2: Revolutionizing edge ai and vision with open, cus-
 579 tomizable models, 2024. URL <https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/>.

580

581 Lucas Morin, Martin Danelljan, Maria Isabel Agea, Ahmed Nassar, Valery Weber, Ingmar Meijer,
 582 Peter Staar, and Fisher Yu. Molgrapher: graph-based visual recognition of chemical structures. In
 583 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 19552–19561,
 584 2023.

585

586 OpenAI. Introducing gpt-4.1 in the api, 2025. URL <https://openai.com/index/gpt-4-1/>.

587

588 Subhajit Panda. Enhancing pdf interaction for a more engaging user experience in library: Introducing
 589 chatpdf. *IP Indian Journal of Library Science and Information Technology*, 8(1):20–25, 2023.

590

591 Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. *arXiv
 592 preprint arXiv:1508.00305*, 2015.

593

594 Kohulan Rajan, Henning Otto Brinkhaus, M Isabel Agea, Achim Zielesny, and Christoph Steinbeck.
 595 Decimer. ai: an open platform for automated optical chemical structure identification, segmen-
 596 tation and recognition in scientific publications. *Nature communications*, 14(1):5045, 2023.

597

598 Yucheng Ruan, Xiang Lan, Jingying Ma, Yizhi Dong, Kai He, and Mengling Feng. Language
 599 modeling on tabular data: A survey of foundations, techniques and evolution. *arXiv preprint
 600 arXiv:2408.10548*, 2024.

594 Brandon Smock, Rohith Pesala, and Robin Abraham. Pubtables-1m: Towards comprehensive table
 595 extraction from unstructured documents. In *Proceedings of the IEEE/CVF Conference on Computer*
 596 *Vision and Pattern Recognition*, pp. 4634–4642, 2022.

597

598 Olga A Tarasova, Anastasia V Rudik, N Yu Biziukova, DA Filimonov, and VV Poroikov. Chemical
 599 named entity recognition in the texts of scientific publications using the naïve bayes classifier
 600 approach. *Journal of Cheminformatics*, 14(1):55, 2022.

601 Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao Yan, Qi Liu, Hongbin Zhou, Zijun Chen, Peng Ye,
 602 Min Dou, Botian Shi, et al. Chartx & chartvlm: A versatile benchmark and foundation model for
 603 complicated chart reasoning. *arXiv preprint arXiv:2402.12185*, 2024.

604

605 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 606 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 607 *arXiv:2412.15115*, 2024.

608 Fan Yang, Lei Hu, Xinwu Liu, Shuangping Huang, and Zhenghui Gu. A large-scale dataset for
 609 end-to-end table recognition in the wild. *Scientific Data*, 10(1):110, 2023.

610

611 Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng
 612 Li, Jiangcheng Zhu, Jianqun Chen, et al. Yi: Open foundation models by 01. ai. *arXiv preprint*
 613 *arXiv:2403.04652*, 2024.

614 Xuanliang Zhang, Dingzirui Wang, Longxu Dou, Qingfu Zhu, and Wanxiang Che. A survey of table
 615 reasoning with large language models. *Frontiers of Computer Science*, 19(9):199348, 2025.

616 Yu Zhang, Xiusi Chen, Bowen Jin, Sheng Wang, Shuiwang Ji, Wei Wang, and Jiawei Han. A
 617 comprehensive survey of scientific large language models and their applications in scientific
 618 discovery. *arXiv preprint arXiv:2406.10833*, 2024.

619

620 Mingyu Zheng, Xinwei Feng, Qingyi Si, Qiaoqiao She, Zheng Lin, Wenbin Jiang, and Weiping Wang.
 621 Multimodal table understanding. *arXiv preprint arXiv:2406.08100*, 2024.

622

623 Xinyi Zheng, Doug Burdick, Lucian Popa, Peter Zhong, and Nancy Xin Ru Wang. Global table
 624 extractor (gte): A framework for joint table identification and cell structure recognition using visual
 625 context. *Winter Conference for Applications in Computer Vision (WACV)*, 2021.

626

627 Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
 628 natural language using reinforcement learning. *CoRR*, abs/1709.00103, 2017.

629

630 Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Publaynet: largest dataset ever for document
 631 layout analysis. In *2019 International conference on document analysis and recognition (ICDAR)*,
 632 pp. 1015–1022. IEEE, 2019.

633

634 Xu Zhong, Elaheh ShafieiBavani, and Antonio Jimeno Yepes. Image-based table recognition: data,
 635 model, and evaluation. In *European conference on computer vision*, pp. 564–580. Springer, 2020.

636

637 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Yuchen Duan, Hao
 638 Tian, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
 639 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

640

641

642

643

644

645

646

647

648
649
650

APPENDIX

651
652
653

A FINE-GRAINED QA BEHAVIOR ANALYSIS

654
655
656

This section presents detailed analyses of how reasoning complexity and query directionality affect the accuracy and robustness of multimodal models in scientific table question answering.

657
658

A.1 EFFECT OF QUESTION HOPS ON ANSWER ACCURACY

659

To understand the impact of reasoning complexity on model performance, we conduct a fine-grained analysis of multi-hop question answering, using hop counts of 2, 3, and 4 as indicators of increasing logical depth. As shown in Table 6, all models exhibit a monotonic decline in performance with increasing hop counts. For instance, Claude drops from 91.29% on 2-hop questions to 70.70% on 4-hop, while InternVL declines more sharply from 83.58% to 59.47%. This trend reflects a consistent rise in difficulty as models are required to perform more compositional and contextual reasoning over tabular data.

660

661
662
663
664
665
666
667
668

In the context of ChemTable, where tables encode dense, multimodal chemical knowledge—including symbolic notations, visual molecular structures, and complex reaction dependencies—multi-hop questions often require the integration of spatial, textual, and domain-specific knowledge. For example, answering a 4-hop question might involve comparing reaction conditions across multiple rows and applying chemistry knowledge such as identifying functional groups or evaluating yields under varying catalysts.

669

670
671
672
673
674
675

Our results show that stronger models such as Claude and Gemini maintain significantly higher accuracy on high-hop questions compared to smaller or open-source models (e.g., Qwen-VL or InternVL). This growing performance gap at higher hop levels suggests that complex multi-step reasoning tasks amplify the differences in model capabilities.

676
677
678
679
680

A.2 ASYMMETRY IN CONDITION-YIELD TABLE REASONING

681

682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Directionality of query plays a significant role in multimodal table question answering. In this additional experiment, we evaluate four state-of-the-art multimodal large language models (MLLMs) on two complementary QA settings: (1) Forward Prediction, where the model predicts reaction outcomes (e.g., yield) based on given conditions; and (2) Inverse Prediction, where the model must infer conditions from known outcomes. As shown in Figure 6, all evaluated models demonstrate higher accuracy on the forward task compared to the inverse one. For instance, GPT-4.1 achieves 91.74% on forward prediction but drops to 86.82% on the inverse. This performance gap suggests that MLLMs are better aligned with natural scientific reasoning—where outcomes are typically deduced from conditions—than with the reverse logic. It also reflects an asymmetry in learned representations: while models can synthesize output from structured inputs effectively, they struggle more when tasked with deducing structured inputs from outcomes, which often requires multi-hop or abductive reasoning. These findings reveal a fundamental challenge for scientific understanding in reverse reasoning settings and highlight the need for targeted training strategies to enhance backward inference in MLLMs.

Table 6: Performance of Multimodal Models on Multi-Hop QA Tasks Categorized by Hop Count.

Model	Hop Count			Overall
	2	3	4	
Claude	91.29	84.98	70.70	88.16
Gemini	90.86	86.98	69.14	87.94
GPT-4.1	87.72	79.71	71.78	84.87
GPT-mini	87.68	78.43	61.65	83.55
Qwen-VL	87.29	82.81	52.84	82.89
Llama-3.2	84.59	80.18	61.78	81.48
InternVL	83.58	78.24	59.47	80.20

Figure 6: Accuracy of Multimodal Models in Answering Questions Given Conditions vs. Inferring Conditions from Outcomes.

Figure 7: Accuracy and Sample Distribution by Thinking Length Across Models.

B CORRELATION BETWEEN RESPONSE LENGTH AND CORRECTNESS

To investigate how reasoning depth affects model performance, we analyzed the relationship between response (or "thinking") length and accuracy on Function-Based QA tasks. We evaluated three representative Multimodal Large Language Models—GPT-4.1, Gemini-2.5-Flash, and InternVL—by binning their outputs based on token length and computing corresponding accuracies and sample counts (Figure 7). This setting helps reveal whether longer responses lead to more accurate reasoning. As shown in the results, accuracy does not monotonically improve with longer thinking length. Instead, models tend to achieve peak performance at moderate length ranges. Beyond these ranges, accuracy either plateaus or decreases, likely due to verbosity, sample counts drop sharply at extreme lengths, limiting statistical confidence in those bins. Overall, the results suggest that effective reasoning often corresponds to an optimal response length—neither too short nor excessively long.

C EFFECT OF CHAIN-OF-THOUGHT REASONING

We conducted an ablation study using GPT-4.1 to evaluate the impact of Chain-of-Thought (CoT) prompting on multimodal question answering over chemical tables. Specifically, we compared model performance with and without CoT reasoning across four representative question types. As illustrated in Figure 8, the removal of CoT resulted in a consistent drop in accuracy, particularly for reasoning-oriented tasks. While annotation description—largely descriptive in nature—showed minimal change (92.94% with CoT vs. 92.35% without), substantial declines were observed in function-based questions ($37.30\% \rightarrow 24.64\%$), summation ($58.33\% \rightarrow 42.18\%$), and trend analysis ($81.87\% \rightarrow 76.53\%$). These results highlight the critical role of CoT prompting in enhancing the model's ability to perform step-by-step reasoning and complex inference. Overall, the findings underscore that even high-capacity models like GPT-4.1 benefit significantly from structured reasoning guidance, particularly in reasoning QA scenarios.

Figure 8: Impact of Chain-of-Thought (CoT) Reasoning on Question Answering Accuracy Across Different Task Types.

These results highlight the critical role of CoT prompting in enhancing the model's ability to perform step-by-step reasoning and complex inference. Overall, the findings underscore that even high-capacity models like GPT-4.1 benefit significantly from structured reasoning guidance, particularly in reasoning QA scenarios.

D SPECIFICATIONS OF ANNOTATION FORMAT AND PROCEDURE FOR TR

D.1 ANNOTATION FORMAT

During the table image annotation phase, we conducted detailed annotations of chemical reaction tables to facilitate the structured extraction and downstream machine learning tasks. Specifically, we divided each chemical table into five distinct components: **Title**, **Reactions**, **Substances**, **Table**, and **Annotations**. The structure of each component is systematically defined to ensure consistency and interpretability across the dataset, as illustrated in Figure 9.

On the left side of Figure 9, we present a typical chemical reaction table that has been comprehensively annotated. This includes:

Figure 9: Structured Annotations of a Chemical Table into Title, Reactions, Substances, Table, and Annotations Components.

- **Title:** The title of the table, annotated with a bounding box, unique index, and its content. Indicate the subject or purpose of the table, such as the optimization of reaction conditions.
- **Reactions:** Schematic representations of chemical reactions including clearly separated reactants, products, and conditions. Each reaction entry is annotated with a unique identifier, text content, and a bounding box. Additionally, the involved chemical entities are linked to corresponding substance entries.
- **Substances:** All unique chemical structures in the table are annotated with bounding boxes and identification text. Each structure is mapped to its SMILES representation and identifier, ensuring its traceability and enabling computational applications.
- **Table:** The core tabular data, where each cell is annotated not only with a bounding box and textual content but also with logical coordinates indicating its specific row and column position in the table. Furthermore, chemical substances mentioned within the table cells are linked to the corresponding SMILES representations via a mapping mechanism.
- **Annotations:** Footnotes or explanatory text found below or around the table are included as annotations. These provide essential context such as experimental conditions or special notes on reagents and are annotated with bounding boxes and textual content.

On the **right side** of Figure 9, the data structure for each annotation component is illustrated using JSON-style schema definitions. This schematic defines the internal representation of each component in the dataset, including keys like "bbox", "text", "maps", "start_row", and "start_col", enabling precise spatial and logical referencing within the table.

This annotation scheme ensures that both the visual layout and the semantic structure of chemical tables are faithfully captured, which is crucial for downstream applications such as automated chemical information extraction and chemical literature understanding.

D.2 FINE-GRAINED TEXT ANNOTATION RULES

To further enhance the interpretability and structured utility of the dataset, we adopted a standardized markup protocol for annotating textual elements within the table components:

- **Reference Markers:** Textual references are annotated using the `\refmark{X}` syntax, where X is a unique identifier pointing to an associated explanatory note. Corresponding footnotes or commentary annotations are marked using `\mark{X}` within the **Annotations** component.
- **Substance Identifiers:** When referring to specific chemical structures or substances, the annotation uses `\refiden{X}` to denote in-text references, which link to formal definitions annotated via `\iden{X}` in the **Substances** component. This bidirectional referencing ensures clarity and consistency across the dataset.
- **Subscripts and Superscripts:** Chemical text annotations follow the convention of using the caret symbol (^) for superscripts and the underscore (_) for subscripts.
- **Text Formatting:** For stylistic features embedded in the body of the table (excluding titles and substance labels), the following LaTeX-style conventions are used:
 - **Bold text:** `\textbf{X}`. When the bolded text corresponds to a substance identifier, it is nested as `\textbf{\iden{X}}` or `\textbf{\refiden{X}}`.
 - **Italicized text:** `\textit{X}`.
 - **Colored text:** `\color{red}{X}`, where the color annotation reflects the visual emphasis found in the original table.

These conventions are designed to faithfully capture the nuanced visual and semantic cues present in scientific tables, which are critical for tasks involving automatic parsing, entity recognition, and domain-specific layout understanding.

D.3 ANNOTATION PROCEDURE

The annotation process was carried out in three well-defined phases to ensure both coverage and precision across diverse types of chemical reaction tables.

Phase I: Data Collection and Categorization. We began by collecting and curating table images from peer-reviewed chemical literature published over the past decade. Specifically, we sourced documents from high-impact journals such as *ACS Catalysis*, *Journal of the American Chemical Society*, *Chem*, *Angewandte Chemie International Edition*, and *Angewandte Chemie*. From these publications, we systematically extracted regions explicitly labeled as tables based on captions, figure titles, or context cues. Following extraction, each table image was manually categorized into one of six functional types based on its primary purpose: (1) Reaction Condition Optimization Tables, (2) Substrate Scope Tables, (3) Chemical Structure Information Tables, (4) Reaction Feature Data Tables, (5) Property/Outcome Comparison Tables, and (6) Statistical Summary Tables. Among these, optimization and substrate scope tables comprised the majority (over 50%), while the remaining types each accounted for more than 10% of the dataset.

Phase II: Coarse-Grained Annotation. In the second phase, we performed coarse-grained annotations to establish the structural foundation of each table image. This included identifying and labeling five primary components — **Title**, **Reactions**, **Substances**, **Table**, and **Annotations**. For each component, bounding boxes and textual transcriptions were annotated. For instance, the **Title** region was delineated and transcribed to capture the overarching context of the table. Reaction schemes were segmented and annotated as **Reactions**, while molecular structures embedded in the table were marked as **Substances**. The main data matrix was annotated under the **Table** component, and any surrounding descriptive notes or footnotes were included under **Annotations**. This phase focused on accurately demarcating high-level semantic units to support later fine-grained processing.

Phase III: Fine-Grained Annotation. In the final phase, we applied fine-grained annotations to the core tabular content and reaction schematics. For the **Table** component, we annotated each individual cell with its bounding box, textual content, and logical position (row and column indices). If a cell referenced chemical entities, we linked the corresponding text or image to its associated SMILES identifier using a predefined mapping. Similarly, in the **Reactions** component, we annotated and linked specific chemical species — such as reactants, products, catalysts, or solvents — and reaction conditions (e.g., temperature, time, yield) to structured representations, enabling both visual and semantic disambiguation.

864 Following this three-stage annotation pipeline, we constructed a high-quality dataset comprising
 865 1,500 fully annotated chemical table images. This dataset preserves both the visual layout and the
 866 underlying chemical semantics, laying a robust foundation for downstream tasks including machine
 867 learning model training, automated reaction information extraction, and chemical table understanding.
 868

869 E ALGORITHM FOR CONVERTING ANNOTATIONS TO HTML

870

871 Since we only give the logical coordinate annotations of the tables, they cannot be directly used to
 872 calculate the TEDS metrics. To address this, we use the following pseudocode to convert the logical
 873 structure into markup sequence format. Firstly, we divide the entire conversion process into two
 874 stages. As shown in Algorithm 1, the first stage involves a preliminary preprocessing of the logical
 875 location information, associating the logical positions with the corresponding cell content and storing
 876 them in a tabular data matrix.

877 Algorithm 1 From Logical Location to Tabular Data Matrix

878 **Input:** cells = { $C_1, C_2 \dots, C_K$ }

879 **Output:** table

```

880 1: max_row ← maximum value of 'end_row' in cells
881 2: max_col ← maximum value of 'end_col' in cells
882 3: Initialize table as a array with dimensions (max_row, max_col)
883 4: for cell in cells do
884 5:   start_row, end_row, start_col, end_col, content ← cell
885 6:   rowspan ← 1 + end_row - start_row
886 7:   colspan ← 1 + end_col - start_col
887 8:   for row = start_row to end_row do
888 9:     for col ← start_col to end_col do
889 10:    if row == start_row and col == start_col then
890 11:      table[row][col] ← { "rowspan": rowspan,
891 12:        "colspan": colspan, "content": content }
892 13:    else
893 14:      table[row][col] ← "merged"
894 15:    end if
895 16:   end for
896 17: end for
897 18: end for

```

898 In the second stage, we traverse the tabular data matrix row by row, gradually converting the stored
 899 logical information and cell content into a mark-up sequence, eventually generating the conversion
 900 result. The specific implementation is detailed in Algorithm 2. The corresponding source code is
 901 available in our GitHub repository.

901 Algorithm 2 From Tabular Data Matrix to Markup Sequence

902 **Input:** table

903 **Output:** markup

```

904 1: Initialize markup ← "<table>"
905 2: for row in table do
906 3:   markup += "<tr>"
907 4:   for cell in row do
908 5:     if cell == "merged" then
909 6:       continue
910 7:     else
911 8:       rsp = cell["rowspan"]
912 9:       csp = cell["colspan"]
913 10:      markup += <td rowspan = rsp colspan = csp>
914 11:      markup += cell["content"] + "</td>"
915 12:    end if
916 13:   end for
917 14:   markup += "</tr>"
918 15: end for
919 16: markup += "</table>"
```

918 F WORKFLOW FOR QUESTION ANNOTATION

920 The process of question annotation in ChemTable is structured into four complementary stages:
 921 rule-based automatic generation, LLM-assisted synthesis, manual refinement, and domain-specific
 922 function-based annotation. Together, these stages ensure that the resulting question-answer pairs are
 923 both scalable and chemically meaningful. Each stage contributes a distinct layer of complexity and rea-
 924 soning depth—from surface-level descriptions to functionally grounded scientific inquiry—allowing
 925 ChemTable to comprehensively cover the diverse landscape of tabular chemical data.

927 F.1 RULE-BASED AUTOMATIC ANNOTATION

929 The first stage of question annotation is grounded in the structured annotations obtained from the
 930 preceding Table Recognition phase. Specifically, we utilize layout and semantic information such
 931 as table title, annotation blocks, cell types, and molecular elements. A set of deterministic scripts
 932 are designed to automatically generate descriptive question-answer (QA) pairs based on predefined
 933 heuristics. These rules capture basic factual and metadata-related queries, such as:

- 934 • Table dimensions (e.g., number of rows and columns),
- 935 • Title description (extracting the title),
- 936 • Annotation interpretation (e.g., footnotes or notes),
- 937 • Molecular recognition (e.g., identifying the molecular structure type in a cell).

940 This rule-based method ensures high coverage and consistency across common question types,
 941 especially those targeting descriptive understanding without the need for deep inference.

943 F.2 LLM-ASSISTED GENERATION FOR SIMPLE REASONING

945 For numerical and statistically oriented reasoning tasks, we adopt a semi-automatic pipeline leveraging
 946 large language models (LLMs), specifically GPT-4.1. The question generation follows a prompt-based
 947 paradigm where we input the HTML representation of the table, the table image, and a specified
 948 reasoning type (e.g., comparison, summation) into a structured prompt template (see Section Q for
 949 details). The model then outputs a set of QA pairs. The LLM is guided to focus on quantifiable
 950 patterns and basic statistical operations, such as:

- 951 • Value Comparison (e.g., comparing yields across rows),
- 952 • Find Min/Max (e.g., identifying the entry with the highest selectivity),
- 953 • Calculate Sum (e.g., summing up yields in a column),
- 954 • Calculate Average (e.g., computing the mean conversion).

957 F.3 MANUAL ANNOTATION FOR COMPLEX REASONING

959 For questions involving complex domain-specific logic or requiring visual-semantic integration—such
 960 as multi-hop reasoning, ambiguous references, or molecular structure interpretation—we rely on
 961 manual annotation. Annotators use an internal tool, LabelStudio (see Section H), where they are
 962 presented with the image of the table, metadata, and a set of predefined question types.

963 Human annotators are instructed to create diverse and challenging questions that demand:

- 964 • Domain knowledge (e.g., understanding catalyst-function relationships),
- 965 • Logical inference (e.g., combining footnotes with table entries),
- 966 • Visual decoding (e.g., counting specific molecular motifs like benzene rings).

969 To ensure quality, each question undergoes two rounds of review: first by MLLMs validation and
 970 then through another annotator validation. Annotators are also encouraged to include unanswerable
 971 questions—caused by non-existent content, missing format/style, and ambiguity—to reflect real-world
 data imperfections to further test model robustness.

972 F.4 DOMAIN-SPECIFIC QUESTION ANNOTATION: FUNCTION-BASED QA
973

974 While prior work in scientific table QA has largely focused on fixed question templates—such as
975 yield estimation, comparison, or description—chemical tables exhibit significantly broader functional
976 diversity. In ChemTable, we identify a substantial subset of tables whose structure and purpose
977 deviate from conventional paradigms. These include, but are not limited to, substrate screening
978 matrices, catalyst performance evaluations, structure-property tables, and experimental condition
979 explorations. Unlike standard output-driven tables (e.g., yield-focused), these tables encode specific
980 scientific functions that are often implicit and domain-specific.

981 To address this, we introduce a novel annotation paradigm termed *Function-Based QA*, which aims to
982 capture questions grounded in the functional roles of tables within experimental workflows. This
983 process is semi-automated and comprises the following pipeline:

- 985 1. **Function Summary Generation.** We begin by prompting GPT-4.1 with the full HTML
986 representation and image of a table, guiding it to generate a concise natural language summary
987 that articulates the table’s experimental function, purpose, or analytical focus.
- 988 2. **Function-Aligned Question Generation.** Based on the generated summary and table contents,
989 we prompt GPT-4.1 and Claude to produce candidate QA pairs that probe aspects closely
990 tied to the table’s described function. These include nuanced inquiries such as the effect of
991 a specific ligand under a fixed condition, rationale for substrate ordering, or interpretation of
992 experimental design variables.
- 993 3. **Validation via Multi-Round QA.** To verify correctness and answerability, each candidate
994 question undergoes three rounds of independent answering by GPT-4.1 and Claude-3.7-Sonnet.
995 If all answers are consistent and correct across rounds, the question is accepted as valid. If
996 discrepancies arise, human annotators inspect the question-answer pair for correctness and
997 revise or discard as needed.

998 This annotation strategy enables ChemTable to extend beyond rigid QA formats, capturing richer
999 scientific inquiry styles that reflect how chemists interpret and utilize tabular data. The resulting
1000 Function-Based QA subset significantly improves the coverage of the benchmark on real-world
1001 analytical reasoning.

1003 G CONSISTENCY ANALYSIS: VERIFICATION OF HUMAN VS. MLLM
1004

1006 To validate the reliability of our automatic QA evaluation pipeline powered by GPT-4.1-nano,
1007 we randomly sampled 20% of the QA instances for manual verification. Two human annotators
1008 with chemistry backgrounds independently judged whether model-generated answers were correct,
1009 referencing the original table content and gold answers. We calculated agreement accuracy between
1010 human and automated judgments using simple percentage overlap:

$$1011 \text{Agreement Rate} = \frac{|\mathcal{J}_{\text{human}} \cap \mathcal{J}_{\text{GPT}}|}{|\mathcal{J}_{\text{sampled}}|}, \quad (1)$$

1014 where $\mathcal{J}_{\text{human}}$ and \mathcal{J}_{GPT} denote the sets of instances labeled as correct by human annotators and
1015 GPT-4.1-nano, respectively, and $\mathcal{J}_{\text{sampled}}$ is the total set of sampled QA instances used for verification.
1016 The comparison between human annotations and GPT-4.1-nano’s binary classifications showed a high
1017 agreement rate of 96.8% overall. Agreement was particularly strong for descriptive and numerical
1018 tasks. These results confirm that GPT-4.1-nano provides a reliable and scalable approximation of
1019 human judgment for most evaluation scenarios in ChemTable.

1021 H SCREENSHOTS OF THE ANNOTATION INTERFACE
1022

1024 We utilize LabelStudio as the primary platform for all data annotation tasks. The system is deployed
1025 on our internal computing clusters, allowing annotators to securely access the annotation interface
via SSH forwarding. As shown in Figure 10, annotators begin by selecting a designated task from the

Figure 10: LabelStudio Dashboard View Showing Task Categories for Question-Answer Annotation.

project dashboard, where each task corresponds to a specific QA category (e.g., *Yield and Conditions*, *Visual Reasoning*, *Benzene Rings*).

Once a task is selected, the annotator is presented with the annotation interface (Figure 11), which displays the target table image at the top. Annotators must first select a suitable question type label. Based on the selected label, they are required to design a corresponding question-answer pair by analyzing the table content. To aid consistency, a reference panel on the right side of the interface provides example questions tailored to the selected type.

Figure 11: Annotation Interface for Generating QA Pairs from Table Content: Annotators Select a Question Type, Input the Question and Answer, and Refer to Provided Examples on the Right.

We encourage free-form question formulation to improve diversity. However, we enforce a strict constraint: all answers must be either directly found in the table or logically inferable from it without requiring specialized chemical knowledge. This ensures that questions remain grounded and accessible. In addition, annotators are encouraged to include **unanswerable questions** when the table content is ambiguous or insufficient. Such cases must be clearly noted in the *Remark* field to support subsequent filtering or diagnostic analysis.

Figure 12: Year-wise distribution of papers in the dataset.

Figure 13: Temporal distribution of papers and extracted tables across the dataset.

I DATASET DISTRIBUTION AND CHEMICAL DIVERSITY

The dataset was curated from leading chemistry journals between 2015 and 2024, ensuring both disciplinary relevance and temporal breadth. The majority of tables originate from *Angewandte Chemie International Edition*, *Organic Letters*, *The Journal of Organic Chemistry*, *ACS Catalysis*, and *JACS*, reflecting their central role in reporting experimental results. The year-wise distribution shows a steady increase in table usage, with recent years contributing the largest share, consistent with the growing trend of structured data reporting in chemical research. The detailed distribution can be found in Figures 12 and 13.

Table 7: Scaffold and reaction-type diversity statistics of the dataset.

Dimension	Metric	Value / Evidence
Scaffold diversity	Unique Bemis–Murcko scaffolds	839
	Scaffold-to-molecule ratio	0.208
	Mean pairwise Tanimoto similarity	0.095
	Top-3 scaffolds (share)	Benzene 19.7% · No-ring 15.1% · Cyclohexane 10.9%
Reaction-type coverage	Distinct reaction classes	15
	Top-3 classes (share)	C–C bond formation 16.4% · Oxidation 14.1% · C–Heteroatom bond 11.6%

Beyond bibliometric statistics, the dataset exhibits substantial chemical diversity. We identified 839 unique Bemis–Murcko scaffolds, yielding a scaffold-to-molecule ratio of 0.208 and a low mean pairwise Tanimoto similarity (0.095). The most frequent scaffolds include benzene (19.7%), acyclic frameworks (15.1%), and cyclohexane (10.9%), together covering less than half of the molecules. Reaction coverage spans 15 distinct classes, dominated by C–C bond formation (16.4%), oxidation (14.1%), and C–heteroatom bond formation (11.6%).

Taken together, these distributions highlight both the representativeness of the literature sources and the structural and functional diversity of the chemical space, making the dataset a robust testbed for benchmarking multimodal models in chemistry.

J ANNOTATOR INFORMATION AND CONSISTENCY

The annotations for this study were performed by a team of chemistry experts with graduate-level education in the field. Their extensive training ensures a deep understanding of chemical terminology, experimental procedures, and domain-specific knowledge, which is crucial for the accurate interpretation and annotation of complex chemical tables.

To measure the consistency and reliability of the annotations, several quality control metrics were employed. The inter-annotator agreement (IoU) for cell boundaries reached 0.96, while the exact

1134 match accuracy for SMILES extraction was 0.99. Additionally, the inter-annotator agreement for
 1135 cell content text was 0.94, further confirming the high consistency of the annotations across different
 1136 annotators.

1137 These quality control measures underscore the reliability of the annotated data set, making it suitable
 1138 for subsequent analyzes and model evaluations in chemical table recognition and understanding tasks.
 1139

1140

1141 K EVALUATING DOMAIN-SPECIFIC AND GENERAL TABLE MODELS ON 1142 CHEMTABLE TASKS 1143

1144 This section evaluates the performance
 1145 of domain-specific and general table models on chemistry-
 1146 related tasks. Specifically, we compare ChemVLM (chemical
 1147 domain-specific model) and Table-LLaVA 1.5 (general table model)
 1148 in the context of chemical table understanding. The performance
 1149 results across various question types are summarized in Figure 14.
 1150

1151 The results indicate that general table
 1152 models, such as Table-LLaVA, show limited transferability to
 1153 chemistry tasks, primarily due to their lack of adaptation to the
 1154 symbolic and multimodal nature of chemical tables. On the other hand,
 1155 ChemVLM, which is specialized for the chemistry domain, performs
 1156 better on certain tasks but still faces significant challenges in structured
 1157 understanding and reasoning, especially with complex chemical data.
 1158

1159 These findings highlight a substantial gap in model performance when it comes to understanding and
 1160 processing chemical tables in scientific literature. While ChemVLM and Table-LLaVA perform well
 1161 in their respective domains, they still fall significantly short of models like GPT-4.1 in addressing the
 1162 unique challenges of chemical table comprehension. ChemTable serves as a benchmark that reveals
 1163 these gaps, offering a realistic and challenging testbed for advancing model capabilities in chemical
 1164 table recognition and reasoning.

1165

1166 L IMPLEMENTATION DETAILS 1167

1168 To ensure consistency and stability across different models during evaluation, we adopted a unified
 1169 decoding configuration for all multimodal large language models. Specifically, the temperature was
 1170 set to 0.0 and the nucleus sampling parameter (top-p) to 0.2, wherever supported. This configuration
 1171 minimizes randomness and promotes deterministic outputs, which is essential for fair and reproducible
 1172 evaluation across both table recognition and question answering tasks.

1173

1174 Our human performance results are based on the annotations of five chemistry domain experts, all
 1175 with graduate-level training. To ensure fairness, annotators were provided only with scratch paper
 1176 and a basic calculator without advanced functions and were instructed to answer the given questions
 1177 directly. We used a balanced assignment scheme in which each question was independently answered
 1178 by three randomly selected annotators, and reported human performance as the average accuracy
 1179 across their responses. Human performance is only reported for tasks that require chemical expertise
 1180 or complex reasoning; purely descriptive element-level tasks are not annotated by humans.
 1181

1182 Figure 14: Performance comparison of domain-specific and general table models on ChemTable tasks.
 1183

1188
1189

M QUALITATIVE CASE STUDIES

1190
1191
1192
1193
1194
1195
1196
1197

We present several representative failure cases that reveal where current MLLMs struggle when processing chemical tables. These cases span four primary error types identified in our benchmark—(1) fine-grained recognition failures, (2) missing visual-style grounding, (3) domain-specific chemistry errors, and (4) multi-hop reasoning failures—and are further supplemented by an integrated example in the final, where multiple failure modes co-occur within a single real-world table. Together, these qualitative analyzes provide a more complete view of the limitations observed in both recognition and reasoning tasks.

1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216

M.1 FINE-GRAINED RECOGNITION ERRORS

Cell-Level Retrieval in a Crystal Table

Table 2. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\text{Å}^2 \times 10^3$) for Jl_a . $U(\text{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	$U(\text{eq})$
Br(1)	1556 (1)	8872 (1)	6649 (1)	66 (1)
O(1)	7569 (2)	5664 (3)	2960 (2)	55 (1)
O(2)	4528 (2)	4460 (2)	2204 (1)	40 (1)
N(1)	2816 (2)	4514 (2)	2640 (2)	33 (1)
C(1)	6215 (3)	5815 (3)	3109 (2)	37 (1)
C(2)	5232 (2)	6559 (3)	4197 (2)	37 (1)
C(3)	6072 (3)	7837 (3)	5209 (2)	40 (1)
C(4)	4954 (3)	8501 (3)	5970 (2)	43 (1)
C(5)	3025 (3)	7873 (3)	5583 (2)	37 (1)
C(6)	2144 (3)	6791 (3)	4850 (2)	37 (1)
C(7)	3019 (2)	5931 (3)	3742 (2)	29 (1)
C(8)	1369 (3)	4595 (3)	1656 (2)	34 (1)
C(9)	1777 (2)	6306 (3)	1232 (2)	30 (1)
C(10)	2818 (3)	6382 (3)	339 (2)	39 (1)
C(11)	2515 (3)	7361 (3)	467 (2)	44 (1)
C(12)	2476 (3)	9456 (3)	420 (2)	44 (1)
C(13)	1430 (3)	9399 (3)	1305 (2)	44 (1)
C(14)	1079 (3)	7834 (3)	1707 (2)	36 (1)

Recognition goals

Question: What is the position of the cell with value 'C (5)' in the picture?

Answer: Row 10, Column 1

MLLM Answer:

- I need to find the cell containing the value "C (5)".
- I will start by scanning the first column of the table to locate this value.
- I will then count the rows from the top of the image to determine the row number. The table has a multi-line caption at the top, which I must include in the count.

- Row 1: "Table 2. Atomic coordinates..."
- Row 2: "displacement parameters..."
- Row 3: "U(eq) is defined as..."
- Row 4: "Uij tensor."
- Row 5: The header row with "x", "y", "z", "U(eq)".
- Row 6: "Br (1)"
- Row 7: "O (1)"
- Row 8: "O (2)"
- Row 9: "N (1)"
- Row 10: "C (1)"
- Row 11: "C (2)"
- Row 12: "C (3)"
- Row 13: "C (4)"
- Row 14: "C (5)", I have found the target cell.

4. **The row number is 14.**

5. Now I will determine the column number by counting from the left.

- Column 1: Contains the atom labels (e.g., "Br (1)", "C (5)".)
- Column 2: Contains the 'x' values.
- Column 3: Contains the 'y' values.
- Column 4: Contains the 'z' values.
- Column 5: Contains the $U(\text{eq})$ values.

6. The cell "C (5)" is in the first column. So, the column number is 1.

7. Combining the row and column numbers, the position is **Row 14, Column 1**.

Figure 15: Case study of a fine-grained recognition failure on cell-level position retrieval: Gemini 2.5 Pro correctly OCRs and highlights the cell C(5) in a crystallographic coordinate table, but miscounts caption and header lines as data rows.

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230

In Figure 15, we illustrate a typical fine-grained recognition error on the position-retrieval task. The table reports atomic coordinates from a crystallographic study, and the model is asked: *“What is the position of the cell with value ‘C(5)’ in the picture?”* While Gemini 2.5 Pro correctly OCRs the entry ‘C(5)’ and visually localizes it in the leftmost column, it still outputs an incorrect row index. The chain of thought shows that it sequentially numbers every line of the multi-line caption as table rows, then treats the header row as an additional row before starting to count the body entries. As a result, the true location “Row 10, Column 1” is misreported as “Row 14, Column 1,” even though the target cell itself is clearly identified. This case demonstrates that fine-grained structural alignment—mapping correctly recognized content to precise row–column indices—remains a key bottleneck, even when overall layout parsing and OCR quality appear to be strong.

1231
1232

M.2 VISUAL-STYLE GROUNDING FAILURES

1233
1234
1235
1236
1237
1238
1239
1240
1241

In Figure 16, we probe visual-style grounding with a descriptive QA prompt posed to GPT-5: “What is the header of the column with yellow color?” The ground-truth answer is “No cells matching this characteristic exist,” since the table uses only uniform grey shading to group yield columns and contains no yellow highlighting. GPT-5 nevertheless hallucinates a “colored” column, describing a shaded strip with 100% yields and confidently concluding that its header is 3a. This error shows that the model loosely maps any subtle background tint to the queried color instead of verifying the exact pixel-level style. Together with the large human–model gap on bold/color description in Table 4, this case indicates that even state-of-the-art MLLMs like GPT-5 still lack robust grounding of color and formatting cues in chemical tables: they can generate fluent style-aware explanations, but these explanations are often visually unsubstantiated.

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Hallucinated Visual Cues

Question: What is the header of the column with **yellow** color?

Answer: No cells matching this characteristic exist.

MLLM Answer:

This seems to be a perceptual question where I simply identify a column header from an image. It's a simple task, and explaining my thought process, such as "I look at the table, the column is colored, and the header is X," seems fine. I look at the table in the image. The table has several columns: 'entry', 'reaction time', and then a grouped header 'Yield (%)' above two sub-columns labeled '3a' and '4a'. **Within the body of the table, I notice that one column has a colored background (appearing as a shaded strip) containing the numbers '100' in each row, while the adjacent column with '0' values is not shaded the same way. The shaded/colored column is directly under the sub-header '3a'. Therefore, the header of the colored (yellow in the question's description) column is '3a'.**

Answer: **3a**

Figure 16: Case study of visual-style grounding failure. The model forces an alignment between a query for a “yellow” column and a blue-shaded column, illustrating a failure in negative verification of visual attributes.

M.3 DOMAIN-SPECIFIC SYMBOL & REPRESENTATION CHALLENGES

Footnote Misreading in Enantioselectivity Extraction

Question: What is the enantioselectivity (ee) for (1S,2R)-cyclopropane in the trans products when using the swMb*H64V/V68A catalyst?

Answer: No answer matching this characteristic exist.

MLLM Answer:

- **Identify the Row:** Locate the row in the table corresponding to the catalyst 'swMb*H64V/V68A'. This is Entry 9.
- **Identify the Column:** The question asks for the enantioselectivity (ee) in the trans products.
- **Analyze Column Headers and Footnotes:**
 - The table has two 'ee' columns.
 - Footnote [d] refers to 'ee for (1S,2R)-cyclopropane in the *cis* products'.
 - Footnote [e] refers to 'ee for (1S,2R)-cyclopropane in the *trans* products'.
- **Resolve Discrepancy:** The question asks for '(1S,2R)-cyclopropane' (which is cis) but looks for it in the trans products. Given that the reaction for this catalyst (Entry 9) is highly trans-selective (de = 98% ± 1%), the user is likely inquiring about the major *trans* product.
- **Extract Value:** Look at the value in the column for *trans* product ee (Footnote [e]) for Entry 9.
 - The value is 99 ± 0%.

Answer: **99 ± 0%**.

Figure 17: Case study of a domain-specific notation failure: Claude-4.5-Sonnet misinterprets stereochemical footnote labels in an enantioselectivity table.

In Figure 17, we highlight how chemistry-specific notation can derail table understanding even for strong MLLMs like Claude-4.5-Sonnet. The table reports enantioselectivities for several cyclopropane diastereomers, with superscript footnotes tying each column to a particular stereoisomer. The model is asked: “What is the enantioselectivity (ee) for (1S,2R)-cyclopropane in the trans products when using the swMdo H64V/V68A catalyst?” The correct answer is that no such value is reported, because the relevant footnote actually refers to a different stereochemical assignment than the queried (1S,2R) trans product. Claude nonetheless treats footnote [e] as if it matched the target species, propagates this mislink through its chain-of-thought, and confidently returns “99% ee.” This case shows that current models still struggle to reliably bind domain-specific symbols and footnotes to their precise chemical meaning, and tend to hallucinate plausible numerical answers rather than recognizing when a requested quantity is formally undefined in the table, and refuse to answer this question.

M.4 MULTI-HOP REASONING BREAKDOWNS

In Figure 18, we stress-test multi-hop reasoning in Claude-4.5-Sonnet with a query that first requires locating the row where S4 and S5 have yields of 20% and 35%, and then returning the corresponding Entry index. The model successfully reads all numerical values, correctly identifies that only Entry 4 satisfies both constraints, and even states in its chain-of-thought that “Entry 4 matches both criteria exactly.” However, instead of outputting the requested index “4,” it reports the base used in that row, LDA (2.0 M in THF/EtPh/heptanes), effectively answering a different column than the one specified in the question. This mismatch between correct intermediate reasoning and the final prediction suggests that the bottleneck is not local retrieval or numerical comparison, but the final hop that

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

Figure 18: Case study of a multi-hop reasoning failure where Claude-4.5-Sonnet locates the correct row satisfying the yield constraints but outputs the base instead of the requested entry index.

maps a resolved row back to the correct schema field—an error pattern we observe repeatedly across multi-hop tasks in ChemTable.

M.5 INTEGRATED CASE ACROSS DESCRIPTIVE AND REASONING TASKS

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Reasoning Question 3: How many benzene ring molecular diagrams in the image?

✓ GPT Answer: 33 benzene.

✗ Qwen Answer: There are 3 benzene rings in the top section and 12 in the bottom section, totaling 3 + 12 = 15 benzene rings.

✗ Intern-VL Answer: 14 benzene ring molecular diagrams in the image.

Figure 19: Case study of answering descriptive and reasoning questions with different MLLMs.

Figure 19 provides a compact example illustrating how multiple failure modes can emerge within a single chemical table. For a simple descriptive query about the blue-labeled “Me” group, some models correctly interpret the colored annotation, while others misidentify it as the molecular formula of a nearby ligand, reflecting unstable grounding of domain-specific visual symbols. For a cell-level retrieval question, certain models also mislocate the target cell despite accurate OCR.

When the task shifts to chemically grounded reasoning—such as counting benzene rings in the ligand structures—all evaluated models produce large errors. This underscores the limitations highlighted: even strong MLLMs struggle with visual chemistry reasoning, especially in structures containing repeated or fused aromatic motifs. Overall, this example shows how symbolic misinterpretation, positional errors, and domain reasoning failures can co-occur within the same table context.

Question: In the table, what is the **Entry** corresponding to a yield of 20% for S4 and 35% for S5?

Answer: 4

MLLM Answer:

Looking at the table, I need to find the entry where the ‘Yield of S4’ column shows 20% and the ‘Yield of S5’ column shows 35%. Scanning through the rows: Entry 1 has S4=18% and S5=n.d., Entry 2 has S4=26% and S5=n.d., Entry 3 has S4=21% (20%) and S5=n.d., and Entry 4 has S4=20% and S5=35%. Entry 4 matches both criteria exactly.

Answer: LDA (2.0 M in THF/EtPh/heptanes)

N QA DENSITY AND CATEGORY DISTRIBUTION IN CHEMTABLE

We provide a detailed analysis of QA density in ChemTable to ensure that evaluation is not dominated by a small subset of tables or QA types. The final filtered split used for all experiments contains 9,886 QA pairs over 1,382 tables (7,344 descriptive + 2,542 reasoning QAs). The per-table QA density is moderate: the mean is 7.2 QAs per table (median 7, minimum 1, maximum 18, inter-quartile range 5–9). Only a small fraction of tables are very heavily annotated (2% of tables have 16 questions), while over 80% of tables lie in the 5–15 QA range. The resulting Gini coefficient over the “QAs per table” distribution is 0.18, indicating a well-balanced and relatively uniform distribution. As shown in Table 8, the largest descriptive categories (Value Retrieval and Position Retrieval) each contribute only about 15–16% of all QAs. Reasoning-oriented categories such as Yield & Conditions, Multi-hop Retrieval, and Numerical Statistics are also well represented.

Table 8: Question–answer density and category statistics of the dataset.

Dimension	Metric	Value / Evidence
Overall QA density	Tables with QA	1,382 tables
	QA instances (total)	9,886 QAs (7,344 descriptive / 2,542 reasoning)
	Mean / median QA per table	7.2 / 7
	Min / max QA per table	1 / 18
	25–75th percentile (QA per table)	5–9
	Gini coefficient (QA density)	0.18 (lower is more uniform)
QA count per table	1–5 QAs per table	410 tables (29.7% of 1,382)
	6–10 QAs per table	710 tables (51.4% of 1,382)
	11–15 QAs per table	230 tables (16.6% of 1,382)
	≥16 QAs per table	32 tables (2.3% of 1,382)

O DATASET VISUALIZATION BY IMAGE TYPE

Figure 20: Representative Examples of Six Chemical Table Types in the ChemTable Dataset.

1404
1405
1406
1407
1408
P TAXONOMY OF QUESTION TYPES WITH REPRESENTATIVE CASES
14091410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
Table 9: Representative Question Across Different Task Types for Chemical Table Understanding.

Question Type	Question Case 1	Question Case 2	Question Case 3
Table Dimensions	What is the size of the table in the picture?	-	-
Title Description	What is the title of this table?	-	-
Annotation Description	What are the annotations of this table?	-	-
Visual Description	What is the reaction time in the row highlighted in light blue?	In the catalyst column, what is the content in bold?	For the row highlighted in light blue, which has a higher yield, 3a or 4a?
Benzene Rings Count	How many molecular diagrams of benzene rings are there in the table?	How many benzene rings are in the diagram?	What is the proportion of substances containing benzene rings among all the substances in the table?
Yield and Conditions	What is the reaction time when the yield is at its highest?	Under the condition of 50°C, at what reaction time is the yield highest?	At a temperature of 70°C and a reaction time of 30 minutes, which has a higher yield, 3a or 4a?
Function Based	What is the yield (%) of 3f at the reaction time where the yield first drops below half of its maximum value?	At which entry does the yield of 3f become less than the yield observed at 30 min, and what is the yield at that entry?	Which structure has the highest number of solvent atoms, and what is that number?
Numerical Statistics	What is the mean (average) value of I_0/I ?	At 223 K, which is higher: the calculated $v_a - v_b$ or the observed $v_a - v_b$?	What is the sum of the yields of product 2 across all solvents?
Trend Analysis	How does the yield of 3p change with increasing reaction time?	What is the trend in the third column?	As k increases, what is the trend in the change of $\text{obs.}v_a - v_b$?
Multi-hop Retrieval	Which entries in the table have a yield of 99?	What is the maximum value in the U(eq) column of the table?	In the figure, what is the reaction time corresponding to a 10% yield of 6c?

1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458 **Q PROMPT TEMPLATES**
14591460 **Q.1 TABLE RECOGNITION PROMPT TEMPLATES**
14611462 Prompt 1 is designed to evaluate a model's ability to extract and reconstruct the structural layout
1463 of a table from an input image. The instruction explicitly requests the HTML representation of the
1464 table using only five basic tags: `<table>`, `<thead>`, `<tbody>`, `<tr>`, and `<td>`. To ensure a semantically
1465 accurate output, the prompt emphasizes the separation of the table header and body using `<thead>`
1466 and `<tbody>` tags, respectively. This task tests the model's understanding of both visual layout
1467 and hierarchical table semantics without reliance on style or advanced formatting. It serves as a
1468 foundational prompt for assessing table structure recognition capabilities.
14691470 **Prompt 1**
14711472 **Instruction:** Identify the structure of the table and return it to me in HTML format.
1473 {image}1474 **Note:** 1. Use the `<thead>` and `<tbody>` tags to distinguish the table
1475 header from the table body.1476 2. Use only five tags: `<table>`, `<thead>`, `<tr>`, `<td>`, and `<tbody>`.1477 **Answer:**
14781482 **Figure 21: HTML Table Structure Identification from Images.**1483 Prompt 2 focuses on cell-level retrieval by requiring the model to locate the exact position of a cell
1484 within a table image based on a given content string. The model must identify the table structure,
1485 search for the specified cell content, and return the corresponding row and column indices in a
1486 structured JSON format.
14871488 **Prompt 2**
14891490 **Instruction:** Please identify the table in the picture and retrieve the corresponding
1491 cell position according to the cell content given and output.
1492 {image}, {cell_content}1493 **Note:** 1. The cell position is represented by the row and column numbers of
1494 the cell. The row and column numbers start from 1.
1495 2. If the cell is not found, please return an empty string.
1496 3. All operations are performed on the entire table, including the head
1497 and body. When counting the number of rows and columns, the
1498 header and body of the table are also counted. If there are headers and
1499 columns, The row count starts from the header row. The columns
1500 count starts from the header columns.
1501 4. Your answer must be returned in the following json format.
15021503

```
{"chain_of_thought": "Your thought process for complete this task.",  
1504 "row_index": 0, "col_index": 0}
```

1505 **Answer:**
15061507 **Figure 22: Locate Cell Position by Content in Table Images.**
1508

1512 Prompt 3 evaluates the model's ability to locate and extract the textual content of a specific cell based
 1513 on given row and column indices within a table image. The coordinates are one-indexed and cover
 1514 both the header and body of the table. The model must parse the structure visually, identify the
 1515 correct cell, and return its string content in a JSON object.
 1516

1517 **Prompt 3**

1518
 1519 **Instruction:** Please identify the table in the picture and retrieve the corresponding
 1520 cell according to the row and column coordinates given and output.
 1521 {image}, {cell_index}

1522
 1523 **Note:** 1. The coordinates of the cell are represented by the row and column
 1524 numbers of the cell. The row and column numbers start from 1.
 1525 2. The cell value is a string, and the output format is a string.
 1526 3. If the cell is empty, please return an empty string.
 1527 4. All operations are performed on the entire table, including the head
 1528 and body. When counting the number of rows and columns, the
 1529 header and body of the table are also counted. If there are headers and
 1530 columns, The row count starts from the header row. The columns
 1531 count starts from the header columns.
 1532 5. Your answer must be returned in the following json format.
 1533
 1534

1535
 1536 { "chain_of_thought": "Your thought process for complete this
 1537 task.", "content": "The cell content." }

1538
 1539 **Answer:**

1540
 1541 Figure 23: Retrieve Cell Content by Position in Table Images.

1542 Prompt 4 targets the task of molecular recognition by instructing the model to identify molecular
 1543 structures in a given image and convert them into SMILES (Simplified Molecular Input Line Entry
 1544 System) format. This task evaluates a model's capacity for visual parsing of chemical diagrams,
 1545 structural interpretation, and chemical knowledge alignment. The expected output is a valid SMILES
 1546 string encapsulated within <smiles> tags, ensuring format consistency.
 1547

1548 **Prompt 4**

1549
 1550 **Instruction:** Identify the molecules in this image and return them to me in smiles
 1551 format.
 1552

1553 **Format:** The answer is wrapped in <smiles></smiles>.
 1554

1555
 1556 **Answer:**

1557
 1558 Figure 24: Molecular Recognition and SMILES Conversion from Images.
 1559

1560
 1561
 1562
 1563
 1564
 1565

1566 Q.2 TABLE RECOGNITION PROMPT TEMPLATES
15671568 Prompt 5 evaluates a model's ability to extract the title text from a scientific document image. The
1569 expected output is a JSON object containing both the extracted title and a brief explanation outlining
1570 the reasoning process.1571
1572
1573
1574
1575
1576 **Prompt 5**
15771578 **Instruction:** Extract the title from this chemical document image.
15791580 **Format:** Return the results in the following JSON format:
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

```
```json
{
 "chain_of_thought": "your chain of thought about how you get the
final result.",
 "title": "Title text"
}
```

```

Answer:

Figure 25: Extract Document Title from Image.

Prompt 6 asks the model to answer a question by reasoning over an HTML-rendered table. Given the structured table content and a specific question, the model must provide the answer to the question.

Prompt 6**Instruction:** Please answer the question based on the html content of the table.**Table:** {Table_html}

Format:

```
```json
{
 "chain_of_thought": "your chain of thought about how you get the
final result.",
 "answer": "answer"
}
```

```

Question: {Question}**Answer:**

Figure 26: Answer Table-Based Question from HTML Structure.

1620 Prompt 7 requires the model to identify the total number of rows and columns in a table image. The
 1621 output is formatted as a JSON object with a reasoning chain and a count of rows and columns. The
 1622 task evaluates the model's capability in structural table parsing and its consistency in counting visual
 1623 elements in scientific layouts.

1624

1625

1626

1627 **Prompt 7**

1628

1629

1630 **Instruction:** Please identify the table in the picture, and retrieve the dimensions of
 1631 the table and output.
 1632 {image}

1633 **Note:** 1. The dimensions of the table are represented by the number of rows
 1634 and columns.
 1635 2. The dimensions of the table are two integers. The row and column
 1636 numbers start from 1.
 1637 3. All operations are performed on the entire table, including the head
 1638 and body. When counting the number of rows and columns, the
 1639 header and body of the table are also counted. If there are headers and
 1640 columns, The row count starts from the header row. The columns
 1641 count starts from the header columns.
 1642 4. Your answer must be returned in the following json format.

1643 { "chain_of_thought": "Your thought process for complete this task.",
 1644 "rows": 0, "columns": 0 }

1645 **Answer:**

1646

1647

1648

1649 Figure 27: Retrieve Table Dimensions from Image.

1650 Prompt 8 challenges the model to answer a natural language question based on a table image. This
 1651 tests the model's vision reasoning ability by requiring joint understanding of the image content and
 1652 question intent.

1653

1654

1655 **Prompt 8**

1656 **Instruction:** Please answer the question based on the image of the table.

1657

1658

1659 **Format:**

```
1660     ````json
1661     {
1662         "chain_of_thought": "your chain of thought about how you get the
1663         final result.",
1664         "answer": "answer"
1665     }``
```

1666 **Question:** {Question}

1667

1668 **Answer:**

1669

1670 Figure 28: Visual Table Question Answering.

1671

1672

1673

1674
 1675 Prompt 9 evaluates the model's ability to answer questions using both a table image and its text. By
 1676 combining unstructured (visual) and structured (HTML) inputs, this prompt tests how effectively the
 1677 model integrates both modalities to improve accuracy and handle noise or ambiguity in either format.
 1678
 1679

Prompt 9

1680 **Instruction:** Please answer the question based on the html content of the table and
 1681 the image of the table.
 1682
 1683

Table: {Table_html}

1684
 1685 **Format:**

```
'''json
  {
    "chain_of_thought": "your chain of thought about how you get the
    final result.",
    "answer": "answer"
  },
```


 1686
 1687
 1688
 1689
 1690

Question: {Question}

1691
 1692 **Answer:**
 1693
 1694
 1695

Figure 29: Multimodal Table QA with HTML and Image Inputs.

1696 Prompt 10 asks the model to produce five question–answer pairs in statistical categories (e.g., max,
 1697 sum, mean, compare) based on a table image and its HTML content.
 1698
 1699

Prompt 10

1700
 1701 **Instruction:** Based on the table in the picture and the content of the table, generate
 1702 5 statistical questions (compare, find the maximum value, calculate
 1703 the sum and mean of values). Please give the question-answer pair.
 1704 Return it to me in json format.
 1705
 1706

1707 category:

1. compare
2. max
3. sum
4. mean

1708 **Table:** {Table_html}

1709
 1710 **Format:**

```
'''json
  {
    "chain_of_thought": "your chain of thought about how you get the
    final result.",
    "QA": [{"question": "question 1", "answer": "answer 1", "category": "..."}, {"question": "question 2", "answer": "answer 2", "category": "..."}, ...]
  },
```


 1711
 1712
 1713

Answer:

Figure 30: Generate Statistical Questions and Answers from Table.

1728
1729 Prompt 11 requires the model to assess whether a given answer correctly responds to a question. It
1730 must return a binary decision (“correct” or “incorrect”) and explain its reasoning.
1731
1732

Prompt 11

1733 **Instruction:** Please evaluate the answer based on the question and the answer. If
1734 the answer is correct, please return "correct". If the answer is
1735 incorrect, please return "incorrect".
1736 If the answer is unable to answer the question, please make sure the
1737 model's answer is refused to answer the question.

1738 **Question:** {Question}

1740 **Answer:** {Answer}

1742 **Model's**

1744 **Answer:** {Model_Answer}

1746 **Format:** ````json

```
1748 {  
1749     "chain_of_thought": "your chain of thought about how you get the  
1750     final result.",  
1751     "is_correct": "correct or incorrect"  
1752 },
```

1753 **Answer:**

1755 Figure 31: Answer Evaluation and Judgement Prompt.

1756 Prompt 12 tasks the model with summarizing the content and purpose of a scientific table, based
1757 on its HTML structure and visual appearance. The expected summary should concisely capture the
1758 data's meaning, key variables, and scientific implications.

Prompt 12

1763 **Instruction:** Based on the table in the picture and the content of the table, please
1764 generate a concise summary that explains the main purpose and
1765 content of the table. The summary should include what the table is
1766 about, what research or data it presents, and its key findings or
1767 implications.

1768 **Table:** {Table_html}

1770 **Format:** ````json

```
1772 {  
1773     "chain_of_thought": "your chain of thought about how you get the  
1774     final result.",  
1775     "summary": "summary"  
1776 },
```

1777 **Answer:**

1779 Figure 32: Table Summarization for Scientific Contexts.

1782 R THE USE OF LARGE LANGUAGE MODELS
17831784 We utilized large language models (LLMs) to assist and enhance the preparation of this manuscript.
1785 Specifically, LLMs were employed to improve clarity, grammar, and readability, while all conceptual,
1786 benchmark methodological, and experimental contributions are original and developed by the authors.
17871788 S COPYRIGHT AND LICENSING
17891790 The dataset presented in this work was constructed by collecting and processing table images extracted
1791 from published scientific articles. We ensured that all source articles fall under licenses that permit
1792 such use, including **CC0**, **CC-BY 4.0**, **CC-BY-SA 4.0**, and **CC-BY-NC 4.0**. For each extracted table
1793 image, we have provided explicit attribution to the original publication, including its DOI.
1794

1795 The journals from which images were sourced include:

1796

- *Science* (<https://www.science.org/journal/science>)
- *Chem* (<https://www.sciencedirect.com>)
- *Journal of the American Chemical Society* (<https://pubs.acs.org/journal/jacsat>)
- *ACS Catalysis* (<https://pubs.acs.org/journal/accacs>)
- *Angewandte Chemie International Edition* (<https://onlinelibrary.wiley.com/journal/15213773>)
- *Organic Letters* (<https://pubs.acs.org/journal/orlef7>)

18061806 After annotation and compilation, the resulting dataset is released under the **Creative Commons**
1807 **Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)** license, which permits reuse, redistribu-
1808 tion, and adaptation, provided appropriate credit is given and any derivative works are licensed under
1809 the same terms. Our code is licensed under the **Apache License 2.0**. All table images are subject to
1810 the copyright terms of their original publications and publishers.
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835