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Abstract

Two-stage recommender systems are widely
adopted in industry due to their scalability
and maintainability. These systems produce
recommendations in two steps: (i) multiple
nominators preselect a small number of items
from a large pool (�100K) using cheap-to-
compute item embeddings; (ii) with a richer
set of features, a ranker rearranges the nomi-
nated items and serves them to the user. A
key challenge of this setup is that optimal
performance of each stage in isolation does
not imply optimal global performance. In
response to this issue, Ma et al. (2020) pro-
posed a nominator training objective impor-
tance weighted by the ranker’s probability
of recommending each item. In this work,
we focus on the complementary issue of ex-
ploration. Modeled as a contextual bandit
problem, we find LinUCB—a near optimal
exploration strategy for single-stage systems—
may lead to linear regret when deployed in
two-stage recommenders. We therefore pro-
pose a method of synchronising the explo-
ration strategies between the ranker and the
nominators. Our algorithm only relies on
quantities already computed by standard Lin-
UCB at each stage and can be implemented
in three lines of additional code. We end by
demonstrating the effectiveness of our algo-
rithm experimentally.

1 Introduction

Contemporary recommender systems are tasked with
finding a small number of relevant items among mil-
lions or billions of candidates, personalized for each of
hundreds of thousands or millions of users and their

This version of the paper appeared at the Workshop on
Bandit and Reinforcement Learning from User Interactions
(REVEAL 2020) at the 14th ACM Conference on Recom-
mender Systems (RecSys 2020). *Equal contribution.

always changing needs, all of which has to happen in
order of milliseconds so as not to negatively impact
webpage loading speeds. One of the most widely used
solutions to the problem are two-stage recommender
systems (Borisyuk et al., 2016; Covington et al., 2016;
Eksombatchai et al., 2018) in which (i) a set of compu-
tationally efficient nominators narrows down the search
from millions to only hundreds of items, and (ii) the
slower but more accurate ranker selects and reorders a
few items which are eventually served to the user.

For example, a nominator can use a two-tower archi-
tecture (Yi et al., 2019) and focus on a narrower set of
features, whereas the ranker would rely on a more pow-
erful model and consider additional features extracted
from, e.g., ratings, specialized user and item attributes,
or the number and type of past interactions with given
user (Covington et al., 2016; Ma et al., 2020). Impor-
tantly, the nominators are often heterogeneous both in
terms of the size and type of the items from which they
select the candidate items, and the algorithm used to
select candidates ranging from simple associative rules
to recurrent neural networks (Chen et al., 2019).We will
focus on nominators which utilize statistical learning
methods in the two-stage setup as in the paper most
relevant to our work (Ma et al., 2020).

Ma et al. (2020) study off-policy learning for two-stage
recommender systems where the goal is learning a good
recommendation policy from the typically abundant
logged data. The main proposal of Ma et al. is to
modify the nominator training objective by adding im-
portance weights based on the ranker’s probability of
recommending each item. With adjustments facilitat-
ing gradient descent optimization, the authors show
significant empirical improvements not only compared
to a system trained without importance weighting, but
also relative to nominators importance weighted only
based on the past nominator policy (ignoring the pres-
ence of the ranker). These results thus demonstrate
that local optima of individual components do not
translate to optimality of the system as a whole.

Naturally, we can ask whether there are other aspects
of the recommendation problem where optimal solu-
tions for a single-stage system result in suboptimal
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Figure 1: The two-stage recommendation setup.

performance when deployed in a two-stage system. We
answer this question affirmatively in the case of explo-
ration by which we mean the task of learning an optimal
recommendation policy under uncertainty in a sample
efficient way. An effective exploration strategy then
needs to balance greedy actions based on past inter-
actions with exploratory recommendations targetting
items about which there is little or no information.

While many strategies have been proposed in the liter-
ature, ranging from more conservative ones like Boltz-
mann exploration (Daw et al., 2006; Chen et al., 2019)
to more optimistic contextual bandit algorithms (Lat-
timore & Szepesvári, 2020), we will restrict our dis-
cussion to the popular LinUCB algorithm (Auer, 2002;
Dani et al., 2008; Li et al., 2010) and the associated
contextual bandit recommendation setup. A similar
setup has been explored by (Ma et al., 2020) as it is
rich enough to exhibit many of the salient properties
encountered in the real world, while abstracting away
some of the complexities involved in deployment of
large scale recommendation systems.

Contributions: We (i) show that a mismatch of fea-
ture mappings (architecture) and the amount of data
seen (regularization) between LinUCB ranker and nomi-
nators can result in large, even linear regret; (ii) demon-
strate said effects and their dependence on the level of
mismatch empirically on a toy dataset; and (iii) pro-
pose a simple algorithm based on synchronization of
inferred statistics between the ranker and the nomina-
tors which addresses the issue. We demonstrate the
efficacy of our algorithm on simulated data.

2 Setup

We consider a scenario in which a single item is to be
recommended in each of the T rounds. The recommen-

dation problem is modeled in a contextual bandit setup
where the individual items correspond to arms a ∈ A
(we thus also refer to items as arms or actions). For
the first stage, we assume a fixed number of N ∈ N
nominators, each of which has access only to a fixed
non-empty subset of arms An ⊆ A. At every round
t ∈ [T ], each nominator observes contexts xt,a for all
a ∈ An, and selects a single action at,n. The ranker
then chooses a single final recommendation among the
ones nominated in the first stage at ∈ {at,1, . . . at,N}
based on the corresponding contexts.Both the ranker
and the nominators can ultimately be updated using
the reward rt obtained by pulling arm at as well as all
the revealed contexts xt,a. This two-stage recommen-
dation process is illustrated in Figure 1.

We restrict our attention to the stochastic linear bandit
setting (Abe & Long, 1999; Lattimore & Szepesvári,
2020), and the LinUCB algorithm with ellipsoidal con-
fidence sets for both the ranker and the nominators
(Auer, 2002; Dani et al., 2008). The linear contextual
bandit setting assumes existence of a fixed embedding
for each context φ(xt,a) such that

E[rt |xt,at , at] = 〈φ(xt,at), θ?〉 (1)

for all xt,a, at, and a fixed θ? ∈ Rd. Since θ? is assumed
unknown, a single-stage LinUCB estimates it by ridge
regression with regularization parameter λ > 0

Σt :=
[
λ Id +

t∑
i=1

φ(xi,ai)φ(xi,ai)
>
]−1

,

θ̂t := Σt

t∑
i=1

ri φ(xi,ai) .

(2)

The actions are then selected according to

at+1 ∈ argmax
a∈A

UCBt+1(a) , (3)

where as in (Lattimore & Szepesvári, 2020, p. 239–241)

UCBt+1(a) := 〈φ(xt,a), θ̂t〉+
√
βt ‖φ(xt,a)‖Σt

,√
βt :=

√
λ+

√
2 log t+ d log

(
dλ+ t

dλ

)
.

LinUCB with such βt achieves near optimal regret

RT := E

[
T∑
t=1

rt,? − rt

]

=

T∑
t=1

〈θ?, φ(xt,at,?)− E[φ(xt,at)]〉 ,

(4)

when the reward noise is sub-Gaussian (Dani et al.,
2008; Lattimore & Szepesvári, 2020), where

at,? := argmax
a∈A

〈θ?, φ(xt,a)〉 , (5)
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rt,? is the reward obtained by choosing at,?, and the
expectation is taken with respect to the randomness of
the rewards and the policy (uniform tie breaking).

Importantly for our later development, LinUCB can be
interpreted in Bayesian terms in the following sense: the
current mean and covariance estimates θ ∼ N (θ̂t,Σt)
correspond to the posterior distribution obtained by
combining the prior N (0, λ−1Id) with the likelihood
rt,a ∼ N (〈φ(xt,a), θ〉, 1). Since

〈φ(xt,a), θ〉 ∼ N
(
〈φ(xt,a), θ̂t−1〉, ‖φ(xt,a)‖Σt−1

)
, (6)

the selection rule employed by LinUCB can be viewed as
selecting the action with the highest posterior Φ(

√
βt)-

th quantile, where Φ is the cumulative distribution
function (CDF) of the standard normal distribution.
In other words, the maintained estimates define a confi-
dence set for the true parameter θ, and LinUCB chooses
the best action compatible with this set.

As mentioned, we will assume that each of the nomina-
tors and the ranker use the LinUCB algorithm also in
the two-stage setup.1 Since the nominators often need
to rapidly sift through millions of items, we assume
only the ranker has access to the true but expensive to
compute embeddings φ, while each nominator n ∈ [N ]
uses computationally cheaper embeddings φn(x) ∈ Rdn .
In the rest of this document, we use the term naive
two-stage LinUCB to refer to the algorithm where each
nominator independently maintains its own estimates
θ̂n,t, Σn,t defined as in Equation (2) with φ replaced
by φn, nominate actions analogously to Equation (3),
and update their posterior only with rt and φn(xt,at),
where we recall at need not equal at,n. Moreover, the
ranker independently maintains its own estimates θ̂, Σt
used to select the item ultimately served to the user.

In the next section, we will first show on a simple ex-
ample that such independently maintained uncertainty
estimates lead to suboptimal global performance. We
then propose a solution based on synchronization of the
upper bound estimates UCBt(a) used in Equation (3)
between the ranker and the nominators.

3 Coordinated exploration

To understand when the naive two-stage LinUCB
implementation does not work, it is useful to know
when it does. In particular, consider the case when
all the nominators are allowed to use the same fea-
tures as the ranker φn = φ, and employ the same

1While not in line with the usual heterogeneity of the
nominator algorithms, we believe this setting captures much
that is salient to the interaction between general simultane-
ously learning ranker and nominators. It also goes one step
beyond the setup in (Ma et al., 2020) by considering the
existence of more than one nominator.

Inputs: θ̂0 ,Σ0 , (βt)t ; ∀n : θ̂n,0 ,Σn,0, (βn,t)t
for t = 1, 2, . . . , T do
∀n : an,t ← argmaxa∈An

UCBn,t(a)
at ← argmaxa∈{a1,t,...,aN,t}UCBt(a)

Σ−1
t ← Σ−1

t−1 + φtφ
>
t

θ̂t ← Σt
(

Σ−1
t−1θ̂t−1 + rtφt

)
for n = 1, 2, . . . , N do

Σ−1
n,t ← Σ−1

n,t−1 + φn,tφ
>
n,t

θ̂n,t ← Σn,t
(

Σ−1
n,t−1θ̂n,t−1 + rtφn,t

)
if ‖φn(an,t)‖Σn,t > ‖φ(an,t)‖Σt then

θ̂n,t ← θ̂n,t +
〈θ̂t,φt〉−〈θ̂n,t,φn,t〉
‖φn,t‖2Σn,t

Σn,tφn,t

Σ−1
n,t ← Σ−1

n,t +
(

1
‖φt‖2Σt

− 1
‖φn,t‖2Σn,t

)
φn,tφ

>
n,t

Algorithm 1: Two-stage synchronized LinUCB. Here
φt := φ(at) and φn,t := φ(an,t) for all n, t.

prior N (0, λ−1
n Id) with λn = λ. It is not hard to

see that in this case θ̂n,t = θ̂t and Σn,t = Σt for all
t ∈ [T ], and thus each nominator selects the same ac-
tion as would be selected by the ranker constrained
to the same action pool An. Since max{c1, . . . , ck} =
max{max{c1, . . . , ck1}, . . . ,max{ckN−1+1, . . . , ck}} for
any partition of c1, . . . , ck ∈ R, this then implies that
the naive two-stage system behaves exactly as a single-
stage LinUCB with access to all actions would.

Because we know single-stage LinUCB is close to op-
timal, the above implies that any potential increase
in regret must come from either the already discussed
mismatch of the embeddings inherent to two-stage sys-
tems, or mismatch of the prior. The latter is then
most often caused by the ranker being deployed for
much longer time and thus better trained. Such a
scenario is common in many contemporary industrial
practices (Covington et al., 2016; Ma et al., 2020), and
can be modelled in our setup by using a ranker prior
with lower initial uncertainty then the nominators. As
demonstrated next, naive two-stage LinUCB is poorly
equipped to handle such discrepancies.

3.1 Motivating example

Consider a setting with only one context, two nomina-
tors, three actions split between them as A1 = {a1},
A2 = {a2, a3}, φ returning one-hot encodings of the
actions, and φn = φ for all nominators. The expected
rewards from a1 to a3 are [1/2, 1/4, 3/4] = θ∗ (one-hot
action encodings), and observed rewards are generated
by adding i.i.d. Gaussian noise N (θ?, 10−2I3). The
ranker’s parameters are initialized to θ̂0 ∼ N (θ?, σ

2
θ?
I3),

and Σ0 = (λ + γ)−1I3 where γ represents how many
more samples per action the ranker has seen at t = 1
compared to the nominators. For both nominators
n ∈ [2], we take θ̂ = 0, and Σn,0 = λ−1

n I3 with regular-
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Noise level σθ? = 0.1: θ̂0 ∼ N (θ?, 10−2)
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Noise level σθ? = 0.2: θ̂0 ∼ N (θ?, 5
−2)
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Figure 2: Naive vs. synchronized 2-stage recommendation. Setup described in Section 3.1. Expected regret and
its 2-sigma confidence intervals were estimated over 400 runs. The level of pretraining of the ranker γ has outsized
effect on the naive but not the synchronized two-stage LinUCB, overcoming the ‘deadlock’ effect.

ization parameter (prior precision) λn = λ = 10−3.

To see what can go wrong in this scenario, consider
the extreme case σ2

θ?
= 0 and γ � 0, i.e., the ranker

has seen enough data to essentially recover the true
parameter. Since A1 = {a1}, such a ranker always
picks a3 (the best action) when a2,t = a3, and a1

otherwise. In the naive implementation, this results in
a ‘deadlock’ where the second nominator’s uncertainty
about a2 never decreases, leading it to mostly nominate
a2 over a3, entailing linear regret. While the extreme
case may be rare in practice, Figure 2 shows the effect
remains significant even when the ranker is not fully
trained, i.e., σθ? > 0, and γ > 1 but not overly large.

3.2 Synchronized two-stage LinUCB

The deadlock observed in the previous section is due
to a lack of communication of uncertainty between
the ranker and the nominators. Since the computa-
tional constraints inherent to the two-stage setup entail
distinct embedding functions, the issue cannot be ad-
dressed by simply setting nominator parameters to
those of the ranker. However, because action selection
only depends on the estimated marginal quantiles of
the rewards, we can update the nominator’s estimates
based on the reward statistics computed by the ranker.

We propose to synchronize each nominator n in the
rounds where ‖φn(an,t)‖Σn,t

> ‖φ(an,t)‖Σt
, i.e., when

the nominator is more uncertain about its selected
action than the ranker (the cause of the ‘deadlock’ in
Section 3.1). In particular, we want to minimally adjust
the nominator posterior so that it matches the ranker’s
mean and variance which fully determine UCBn,t(an,t)
(see Section 2). Defining the minimality in terms of
Kullback-Leibler (KL) divergence, this can be achieved
by solving the constrained optimization problem:

min
m,S

KL
(
N (m,S)

∥∥∥ N (θ̂n,t,Σn,t)) (7)

subject to 〈m,φn(an,t)〉 = 〈θ̂t, φ(an,t)〉 , (mean)

‖φn(an,t)‖S = ‖φ(an,t)‖Σt , (covariance)

When synchronization is performed after the usual up-
date, the solution to Equation (7) gives us Algorithm 1.

Note that the selected KL divergence penalizes overdis-
persion compared to the previous distribution, meaning
the resulting replacement for N (θ̂n,t,Σn,t) should not
have more uncertainty. Furthermore, if we modify Al-
gorithm 1 to perform the synchronization before the
usual update—i.e., swap the black and blue lines within
the inner-most for-loop and replace the if-condition by
‖φn(an,t)‖Σn,t−1

> ‖φ(an,t)‖Σt−1
—we arrive at an al-

gorithm that only uses quantities already computed
during selection of an,t and at, minimizing the addi-
tional computation required; in experiments, both ver-
sions of the algorithm performed essentially the same,
which we show in an example setting in Figure 3.
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Figure 3: Comparison of post- vs. pre-update synchro-
nization for a noise level of 0.2 and γ = 50. In this
setting, the line for pre-update synchronization is barely
visible, because it is covered by the line for post-update
synchronization.

Finally, let us consider our synchronized two-stage
LinUCB algorithm in the context of the motivating
example from Section 3.1. Because we assumed φ = φn
are one-hot encodings of the actions, we see that the
ranker variance for an action j ∈ [3] at time t is
‖φ(aj)‖2Σt

= (λ+ γ + ntj)
−1 where ntj is the number

of times the ranker selected aj . The first time a nomi-
nator select aj , its variance before the round update
will be ‖φn(aj)‖2Σn,t

= (λ + ntj)
−1.2 Inspecting the

synchronization update for Σ−1
n,t in blue (Algorithm 1),

the new value for the (jj)th entry of Σ−1
n,t amounts to

λ+ ntj︸ ︷︷ ︸
Σ−1

n,t

+λ+ γ + ntj︸ ︷︷ ︸
‖φ(aj)‖−2

Σt

− (λ+ ntj)︸ ︷︷ ︸
‖φn(aj)‖−2

Σn,t

= ‖φ(aj)‖2Σt
,

while the other variances will remain as in Σn,t at time
t. Since an analogous claim holds for the mean θ̂n,t,
we conclude the synchronization update ensures the
posteriors of the ranker and the nominators match
after each nominator selected (but not necessarily seen
recommended) each a ∈ An exactly once. Because the
posteriors never diverge after they are fully matched,
our algorithm starts behaving like single-stage LinUCB
from thereon, which we know is near optimal for the
task. This is confirmed in Figure 2 where the more
pretrained the ranker is (higher γ), the better the
synchronized and the worse the naive LinUCB do.

2Since we allow the pools An to be overlapping, ntj
could generally be greater than zero here. This is not the
case for the example from Section 3.1 though.

4 Conclusion

We have shown that naive deployment of LinUCB in
two-stage recommender systems may result in subopti-
mal performance, and close to linear regret in extreme
cases. The suboptimality is due to the mismatch be-
tween both the embeddings used by the ranker and
the nominators, and the gap between the amount of
training data the ranker has seen compared to the
nominators. Both of these issues are inherent to the
setting in which two-stage recommenders are typically
deployed in industry, and thus pose important barriers
to achieving a good exploration-exploitation trade-off.

We have proposed a simple modification of the LinUCB
algorithm based on communication of inferred statistics
between the ranker and the nominators. Our algorithm
can be implemented with minimal computational over-
head, and achieves superior empirical results compared
to the naive two-stage LinUCB implementation. While
focusing solely on LinUCB, we suspect the ‘deadlock’
problem identified in Section 3.1 is pertinent to any
exploration algorithm which in part selects its actions
based on the level of uncertainty about them (e.g., all
‘optimism in the face of uncertainty’ type algorithms,
Lattimore & Szepesvári, 2020). Since the principles
motivating Equation (7) do not hinge on LinUCB in
particular, we hope these issues could also be addressed
by communication of statistics from the ranker.

This preprint is based on a workshop version of our
work. We plan to publish an extended version with
additional experiments on real-world data and extended
discussion in the near future.
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