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ABSTRACT

In recent years, low-rank adaptation (LoRA) has emerged as a significant
paradigm, which freezes the pre-trained weights and introduces small, learnable
adapters instead of fine-tuning the full set of parameters. In this work, we uncover
several key insights regarding to the singular components of the network parame-
ters based on Singular Value Decomposition (SVD). Firstly, the dominant singular
components with large singular values in pre-trained network parameters can be
effectively reused during fine-tuning, whereas the fine-grained components with
smaller singular values are more task-specific and require substantial adaptation.
Secondly, the growth of singular values in the LoRA adapter leads to the forgetting
of pre-trained knowledge — a well-known issue called catastrophic forgetting.
Building upon these observations, we propose FCLoRA, which injects learnable
fine-grained singular components to the pre-trained model. By employing param-
eterized SVD and restricting the singular values to an appropriate range, FCLoRA
can effectively adapt to new tasks by learning in the fine-grained singular domain
and alleviates the catastrophic forgetting problem. We conduct extensive exper-
iments and demonstrate that FCLoRA not only improves performance but also
effectively retains pre-trained knowledge.

1 INTRODUCTION

Pre-trained language models (PLMs) have achieved remarkable performance in various natural lan-
guage processing tasks (Devlin et al.|2019;|Liu et al., 2019;|Lan et al.,|2019} He et al.,|2020; [Touvron
et al.,2023aj;|Achiam et al.| 2023} |Anil et al.|[2023). The common way to adapt pre-trained language
models to downstream tasks is fine-tuning. However, fine-tuning all parameters and storing copies
of the large model for each downstream task results in significant cost and memory consumption. To
address this issue, recent studies suggest parameter-efficient fine-tuning (PEFT) methods (Hu et al.,
2021; [Zhang et al.} 2023} |Lialin et al., 2023; [Liu et al., [2024} |Jiang et al., [2024; Meng et al., [2024;
Wang et al., [2024), fine-tuning with only a small number of parameters.

Low-Rank Adaptation (LoRA) (Hu et al., 2021}, which updates parameters using low-rank matrices,
has shown promising performance over other methods such as prompt tuning (Lester et al., [2021)
or prefix tuning (L1 & Liang, 2021)). LoRA keeps the pre-trained weights frozen and updates only
a small number of parameters, which makes LoRA both storage- and compute-efficient. LoRA is
designed based on the assumption that pre-trained language models are inherently low-dimensional
and can learn efficiently even with random projections into smaller subspaces. The low-rank matri-
ces serve as adapters, amplifying features that were learned but not emphasized during pre-training.

In recent years, many studies have investigated the properties of singular components with Singular
Value Decomposition (SVD) in LoRA (Meng et al.,|2024; [Wang et al., 2024} Batazy et al.|2024). A
singular component refers to a single rank-1 matrix formed by the product of a pair of left and right
singular vectors and their corresponding singular value. Specifically, a dominant singular component
refers to one associated with a relatively larger singular value, representing the global structure of the
matrix (Abdi & Williams, 2010; [Meng et al., 2024). Conversely, a fine-grained singular component
corresponds to a relatively smaller singular value and is often considered as noise (Wang et al.,
2024). In deep learning, however, because learned weight matrices are typically full rank (Hu et al.,
2021} |Garg et al.| 2025} | Yu & Wul |2023)), the fine-grained singular components are not merely noise;
rather, they also encode detailed and fine-grained information within the matrix.
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Figure 1: (a) The Fisher overlap (Kirkpatrick et al., |2017) between the pre-trained task (Book-
Corpus) and the fine-tuning task (MRPC), evaluated over partial reconstructions of the pre-trained
network parameters obtained by grouping singular components sorted from large to small according
to their singular values. Additional visualizations for other datasets are in[Appendix E} (b) The trade-
off between the spectral norm of the adapter and the accuracy on the pre-trained task (BookCorpus)
during fine-tuning of LoRA on the STS-B dataset from the GLUE benchmark for ROBERTa .

Motivations. We uncover key insights on the singular components of the network parameters.

Firstly, the dominant singular components of the pre-trained network parameters can be reused
for the fine-tuning task to a great extent; the fine-grained singular components become more task-
specific and thus require a significant adaptation. To quantify the alignment between pre-training
and fine-tuning tasks, we compute the Fisher overlap (Kirkpatrick et al.,|2017;Yao & Hansen, |[2022;
Qian et al., 2024) based on partial reconstructions of the pre-trained network parameter, obtained
by grouping its singular components. Specifically, we perform SVD on the pre-trained parameters,
sort the singular values in descending order, and divide the corresponding singular components into
groups. Each group is then used to independently reconstruct a partial version of the parameters.
The Fisher overlap computed from each reconstruction reflects how well that particular subset of sin-
gular components from the pre-trained parameters aligns with the fine-tuning task. A higher Fisher
overlap indicates stronger alignment, suggesting that the corresponding components are more trans-
ferable. The detailed formulation of the Fisher overlap is provided in[Appendix El [Fig. 1] (a) shows
that overlap gradually decreases as the singular components become more fine-grained, suggesting
that the dominant singular components are already aligned, while fine-grained singular components
need more task-specific adaptation.

Secondly, we demonstrate that the growth of singular values in the adapters during fine-tuning leads
to forgetting of the pre-trained knowledge. The optimization of deep learning, including LoRA,
can be seen as a process of performing a maximum a posteriori (MAP) estimation on the training
data. During fine-tuning, the MAP objective maximizes the posterior probability by combining the
likelihood of the fine-tuning data with the prior distribution from the pre-training data. We reveal
that when the singular values of the adapter increase, the prior from the pre-trained task decreases
(see[Theorem 3.1)). This can result in a phenomenon called catastrophic forgetting, where the model
rapidly forgets the pre-trained knowledge during fine-tuning. This phenomenon undermines the scal-
ability and reliability of pre-trained models, thereby making it essential to address this issue (Wang
et al.} 2024; [Yang et al} 2024b; Ren et al., [2024} |Yang et al., [2024a}; Dou et al.| [2024). It is also
known that during typical stochastic optimization, the spectral norm of weight matrices tends to
grow rapidly. As a result, the growth of norm leads to catastrophic forgetting in common fine-tuning
scenarios. [Fig. T|(b) shows that LoRA experiences a significant increase in the singular values of the
adapter during fine-tuning. This increase is associated to performance degradation on the pre-trained
task, suggesting that LoRA is also vulnerable to catastrophic forgetting.

Main idea. Inspired by these observations, we propose a Low-Rank Adaptation with Fine-grained
Component injection, called FCLoRA, which effectively adapts to the new task while retaining the
pre-trained knowledge. We propose to inject an appropriate range of fine-grained singular com-
ponents into the pre-trained model through parameterized SVD. Restricting the singular values of
the injected components prevents them from becoming excessively large, allowing the introduced
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modules to maintain a focus on the fine-grained information. This approach helps the model to
adapt effectively to new tasks by focusing on the singular components that require greater adapta-
tion. Moreover, the model preserves the pre-trained knowledge by balancing the likelihood from
fine-tuning data with prior probabilities from the pre-training dataset. We conduct extensive ex-
periments to evaluate the effectiveness of FCLoRA, demonstrating that it consistently outperforms
LoRA and its variants across various tasks. Additionally, we assess catastrophic forgetting across
multiple baseline models, showing that FCLoRA significantly mitigates the forgetting of pre-trained
knowledge. Our key contributions can be summarized as follows:

* In|Section 3.1} we reveal that the fine-grained singular components of the network param-
eter require a significant adaptation, and the growth of singular values in the adapters leads
to the forgetting of pre-trained knowledge.

* In we propose an advanced low-rank adaptation method, called FCLoRA,
which injects the models with the fine-grained singular components using parameterized
SVD, ensuring that the pre-trained model efficiently adapts to new tasks and mitigates the
catastrophic forgetting problem.

* In [Section 4| and [Section 5| we conduct comprehensive experiments demonstrating that
FCLoRA efficiently adapts to the new task and discuss how FCLoRA differs from existing
LoRA variants, particularly in addressing the limitations, e.g., catastrophic forgetting.

2 PRELIMINARIES & RELATED WORKS

2.1 TRANSFORMERS

Transformers can be understood from two key submodules: multi-head attention (MHA) and feed-
forward network (FFN). The MHA with h parallel heads performs the attention function as follows:
X W%’, (X Wki )T

Vdy
where W, € R4 is an output projection weight and W,,, Wy, W,,, € R¥* are query, key,
and value projection weights for each head . d, is typically set to d/h. FFN performs two linear
transformations with a ReLU activation as follows:

FFN(X) = RCLU()(I/Vf1 + bl)sz + bo, 2)

MHA(X) = Concat(heady, . .. ,head;)W,; head, = Softmax ( ) XW,,, (1)

where Wy, € R4*dm and Wy, € R4m*d, These architectures enable a model to understand the
language patterns and generate human-like texts in natural language processing.

2.2 LOW-RANK ADAPTATION

LoRA (Hu et al.,|2021) suggests the low-rank update of the pre-trained weights by the product of
two low-rank matrices. For h = Wjx, the modified forward pass becomes:

h =Wz + AWz = Wyz + BAx, 3)

where Wy, AW € R%1*d2 4 ¢ R"*4% and B € R *" with r < {d1,d2}. Ais initialized with a
random Gaussian initialization and B with zero, so AW = BA is initially zero at the beginning of
training. After fine-tuning, the learnable adapter AW can be integrated into the pre-trained weight
W without modifying the original model architecture or adding any additional inference overhead.

LoRA with explicit SVD. Recent studies have explicitly decomposed the network parameters
using SVD to initialize adapters with a subset of components. LoRA-XS (Batazy et al., 2024) di-
rectly decomposes the pre-trained networks and initializes the adapters with principal components.
PiSSA (Meng et al., |2024) assumes that the principal components hold the most important infor-
mation, decomposing the network parameters into principal and residual components using explicit
SVD. Then the residual components freeze, while the adapter is initialized with the principal com-
ponents and directly updated. Conversely, MiLoRA (Wang et al.,[2024) proposes directly modifying
the minor components of the pre-trained networks, assuming they are noisy and less important, in
order to better preserve the pre-trained knowledge.
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LoRA with parameterized SVD. AdalLoRA (Zhang et al.||2023) dynamically adjusts the rank for
each LoRA layer based on a sensitivity-driven importance score. They focus on pruning the number
of ranks with parameterized SVD to meet a predefined budget using heuristic importance scores.
LoRA? (Zhang et al., 2024) uses the twice-nested parameterized SVD to iteratively project the to-
ken representations onto mutually orthogonal planes. Mo-SARA (Gu et al., [2024)) initializes the
singular vectors with principal components of the pre-trained network parameters. They freeze the
singular vectors and fine-tune only the randomly initialized singular values under the same eigen-
vector mappings with the pre-trained network parameters. Therefore, recent studies design LoRA
based on the parameterized SVD (i.e.,[Equation (9)), which differ in their specific design strategies.

2.3 CATASTROPHIC FORGETTING AND LORA

Catastrophic forgetting refers to the phenomenon where the models forget previously acquired
knowledge during adaptation to new tasks, a well-known issue in the field of deep learning (Mc-
Closkey & Cohen, |1989; [French, [1999; [Kirkpatrick et al., [2017). To address this challenge, recent
studies have proposed various approaches, including knowledge distillation (Li & Hoiem, 2017;
Hou et al., [2019), rehearsal (Riemer et al., 2018} |Yang et al., [2023)) and dynamic architectures (Yan
et al.| [2021). This issue is particularly severe in large language models (LLMs), which learn ex-
tensive world knowledge through the pre-training process on massive datasets. During the fine-
tuning process, where task-specific information is learned based on this world knowledge, forgetting
the pre-trained knowledge can significantly undermine the stability and scalability of the models.
Catastrophic forgetting has also been observed in parameter-efficient fine-tuning methods, includ-
ing LoRA, prompting recent studies to propose various approaches to mitigate this issue (Wang
et al.,[2024; |Yang et al., 2024bj |Ren et al., 2024; Yang et al.| 2024a; [Dou et al., [2024)).

3 PROPOSED METHOD

3.1 MOTIVATIONS

In LoRA, there are some key insights on the singular components of the network parameters.

Relationship between singular components and adaptation. It is known that the dominant sin-
gular components with large singular values handle global information, while fine-grained singular
components with smaller singular values and capture fine-grained details for full-rank matrix, such
as weight matrix in deep learning. This distinction plays a crucial role in how the network pro-
cesses tasks. To analyze how the pre-trained parameters are aligned with the fine-tuning task across
various singular components, we decompose the pre-trained network parameters into singular com-
ponent groups and measure the Fisher overlap (Kirkpatrick et al.,[2017;|Yao & Hansenl 2022} |Qian
et al.l 2024) on each group for both tasks. A higher Fisher overlap indicates that the pre-trained
network parameters are already aligned with the fine-tuning task and can be efficiently adapted
by reusing them, as both tasks share knowledge and rely on a similar set of weights. (a)
illustrates the changes in the Fisher overlap for the pre-training and fine-tuning tasks, segmented
from low to fine-grained singular components of the pre-trained network parameters. Notably, the
pre-trained parameters reconstructed in the dominant singular value range exhibit a relatively high
overlap ratio, while the overlap ratio decreases as the singular increases. This observation suggests
that the dominant singular components of the pre-trained network parameters are already aligned to
the fine-tuning task and can be reused for the fine-tuning task to a great extent; the higher-singular
components become more task-specific and thus require a significant adaptation.

Relationship between singular components and catastrophic forgetting. The optimization of
deep learning models, including LoRA, is to perform a Maximum A Posteriori (MAP) estimation of
the network parameters € on the training data. In transfer learning, the models are pre-trained using
the pre-training dataset D 4 and fine-tuned on the fine-tuning dataset D . As revealed in Kirkpatrick
et al.| (2017), the posterior that needs to be maximized in MAP estimation is as follows:

P(Dsl0)p(01D)

0|Da,Dp) =

“4)
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where Dp is assumed to be independent of D4. By taking the logarithm of the posterior, the
objective of MAP becomes as follows:

0" = argmaxlogp(A|Da, D) = argmax [log p(Dp|0) + log p(0|D4)]. ®)
0 0

The first term is the likelihood of Dy given the parameters and expressed as the loss function for
the fine-tuning task. The second term represents the prior of the parameters given D 4. During fine-
tuning, we incorporate the posterior of the pre-trained task p(6|D4) as the prior of the fine-tuning
task. However, since the true posterior probability is intractable, it can be expressed as a function
f(0) and approximated using the Laplace approximation, a well-established method in Bayesian
deep learning for handling intractable posteriors (Kirkpatrick et al.l 2017} |Ritter et al.l 2018} Wang
et al.| [2021; Matena & Raffel, [2022} |(Gawlikowski et al., 2023). The Laplace approximation of the
posterior is derived from a second-order Taylor expansion around its mode 6 as:

log p(O1Da) = og H(0[D.1) = £(60) — 560 — ) F(0 — by), ©

where F' is the Fisher information matrix (Fisher,|1922)). During fine-tuning, if the prior probability
of the parameters decreases while learning a new task, it implies that the pre-trained knowledge is
not sufficiently preserved. The following theorem shows that the prior probability is upper-bounded
by the singular values of the difference between pre-trained and fine-tuned parameters.

Theorem 3.1. Let 0y and 0 be the pre-trained and fine-tuned weights, respectively. Then the log
probability of the prior logp(0|D4) for fine-tuning task can be approximated using Laplace Ap-
proximation as logp(6|Da) ~ f(00) — 2(6 — 6o) " F(6 — 6y). From this, the approximated log
probability of the prior is upper-bounded as follows:

IOgﬁ(9|DA) < f(eO) - /\min(F) @)

where Amin(+) indicates the smallest eigenvalue and o, is n-th singular value of 6 — 0.

The proof is described in[Appendix F It is worth to note that the negligibility of higher-order terms
in the Laplace approximation is a well-established literature in (Kass et al.l |1990), and we provide
details in According to log p(0|D4) is upper bounded by the singular
values of the parameter difference, which is adapter in LoRA. Specifically, larger singular values
of the adapter lead to a decrease in the posterior from the pre-training task, resulting in the loss of
pre-trained knowledge, the phenomenon called catastrophic forgetting. The catastrophic forgetting
problem undermines the strengths of pre-trained models and hinders their adaptability to new tasks,
making it crucial to address in order to maintain scalability and reliability in transfer learning (Wang
et al.| 20245 Yang et al.|[2024b} |Ren et al.} 2024} [Yang et al.| 2024a; Dou et al.| 2024)).

In stochastic optimization, however, the spectral norm of weight matrices grows rapidly (Zhai et al.,
2023). It is commonly assumed that stochastic gradients at a certain point can be expressed as
g = p+ e € R4 where y is the mean and € is a random variable representing noise. The
following proposition establishes a lower bound on the spectral norm of the ideal update ||A||.

Proposition 3.2. From|Zhai et al.|(2023), it holds that:

2

Al > Vd 1*32m ®)

The noise second moment w? is typically in the order of 2. Hence, indicates that
the spectral norm of the ideal update should be large, growing linearly with v/d. Moreover, for large

batch sizes we would have w? < 1, resulting in || A|| ~ v/d. The proposition demonstrates that the
spectral norm of weight matrices grows rapidly for large dimensions when equipped with adaptive
optimizers. Therefore, in a general probabilistic optimization, the spectral norm is learned in the
direction of increasing in the transfer learning including LoRA. This means that the largest singular
value increases, which reduces the probability of the pre-trained knowledge in MAP and causes
catastrophic forgetting. (b) shows that the singular values of the adapter in LoRA increase
significantly in the early stage of fine-tuning. This increase results in the performance degradation
of the pre-trained task, which suggests that LoRA is also vulnerable to catastrophic forgetting.
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Figure 2: The architectures of LORA and FCLoRA. FCLoRA employs parameterized SVD, where
the learnable singular values are constrained by the pre-defined upper bound &.

3.2 LOW-RANK ADAPTATION WITH FINE-GRAINED COMPONENT INJECTION

Building upon these insights, we propose a Low Rank Adaptation method with Fine-grained
Component injection method, called FCLoRA, to adapt effectively for new tasks while retaining the
pre-trained knowledge. illustrates the architectures of the traditional LoRA and our proposed
FCLoRA. While LoRA interprets AW as an adapter residual to the original pre-trained weights
Wy, FCLoRA treats AW as an injected fine-grained singular component to Wy. To define AW
as a matrix of learnable components with appropriate range of singular values, we parameterize the
introduced modules in the form of singular value decomposition, based on the following common
framework of the parameterized SVD-based LoRA (Zhang et al.l 2023} |Caol 2024} [Zhang et al.,
2024), with our enhancement in managing the learnable singular components:

W=Wo+AW =W, +UZVT, 9)

where U € R4*" VT ¢ R%X" are parameterized left and right singular vectors, respectively, and
¥ € R” contains the parameterized singular values {0, }1<n<,. U,V are initialized with random r
singular vectors of Wy, or U is initialized with zero and V' with a random Gaussian. Note that SVD
on W) is performed only once before fine-tuning as in (Wang et al., [2024; Meng et al.| 2024)), and
the actual operation does not involve any explicit decomposition or reconstruction of Wy during the
fine-tuning process. As mentioned earlier, we maintain the singular components of the introduced
modules at an appropriate range. We set the lower bound of the singular values as zero according
to the definition of SVD, ensuring the singular values to be non-negative. To enable the adapter
to effectively inject fine-grained information for learning the new task, we constrain the injected
singular values to lie below a pre-defined upper bound &, as expressed by the following equation:

o, = min(max(o,,0),5), (10)
where & can hold the ¢-th quartile of the singular values of W, denoted as ¢(?). To enforce the
orthogonality of the singular vectors, i.e., UTU = VV T = I, we apply the regularization term as:

RUV)=UTU—1I||+|VVT —1]| (1D

where I € R™*" indicates an identity matrix. This regularization term is controlled by the orthog-
onal regularization coefficient v. We verify the orthogonality of the parameterized singular vectors

in We present the training process in|Algorithm 1| of [Appendix J|

4 EXPERIMENTS

In this section, we empirically verify that FCLoRA efficiently adapts to the new task and improves
the performance over other LoRA-based methods.

4.1 EXPERIMENTS ON NATURAL LANGUAGE UNDERSTANDING

Experimental setup. We evaluate FCLoRA on the General Language Understanding Evaluation
(GLUE) benchmark (Wang et al.| |2018a). Following Hu et al. (2021) and |Zhang et al.| (2023), we
adopt the pre-trained RoBERTay,,. and DeBERTay,s. as the backbone models, respectively. We
report Matthews correlation for CoLA, Spearman correlations for STS-B, and accuracy scores for

the other tasks. The detailed descriptions are provided in[Appendix M.1.2]
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Table 1: Comparison of various methods with RoBERTa,se on GLUE tasks with different random

seeds. Full results with standard deviations are provided in

Method ‘ # Params ‘ MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B Avg.

LoRA 1.33M 8793 9480 6449 9094 9273 8039  89.05 90.87  86.40
AdaLoRA 1.27M 87.21 95.07 6137 89.75 9254 81.11 89.05 90.62  85.84
PiSSA 1.33M 87.95 9453 6466 9097 9253 79.18  89.79 90.96  86.32
rsLoRA 1.33M 8526 9235 6517 70.76 9248 7954  89.05 90.88  83.19
LoRA+ 1.33M 86.96 9392 6332 90.69 92.77 8159 8897 90.84  86.13
MiLoRA 1.33M 87.88 9469 6431 91.02 9296 8135 89.30 90.96  86.56
DoRA 1.41M 87.81 9511 6423 90.65 9293 8135 89.54 91.01  86.58
FCLoRA 1.33M 8795 9537 6479 90.76 93.09 83.15 90.32 91.22  87.08

Table 2: Comparison of various methods with DeBERTaV3y,,;. on GLUE tasks with different ran-
dom seeds. The results for the baselines are copied from |[Zhang et al.| (2023). Full results with

standard deviations are provided in

Method | #Params | MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B Avg.

Ful FT | 184M | 89.90 9563 69.19 9240 9403 8375 8946 91.60 88.09
BitFit 0.10M 89.37 9484 6696 8841 9224 7870 87.75 9135 86.02
HAdapter 1.22M 90.13 9553 68.64 9191 94.11 8448 89.95 9148  88.12
PAdapter 1.18M 9033 9561 6877 92.04 9429 8520 8946 9154 8824

LoRAg 1.33M 90.65 9495 69.82 9199 93.87 8520 89.95 91.60  88.34
AdaLoRA 1.27M 90.76  96.10 7145 9223 9455 88.09 90.69 91.84 8§9.31
FCLoRA 1.33M 9036 9633 7149 9233 94,57 8941 9158  92.19 89.78

HAdapter 0.61M 90.12 9530 67.87 91.65 9376 8556 89.22 9130 8793
PAdapter 0.60M 90.15 9553 6948 91.62 9398 84.12 89.22 9152 88.04
HAdapter 0.31M 90.10 9541 67.65 91.54 9352 8339 89.25 9131  87.60
PAdapter 0.30M 89.80 9472 69.06 9140 93.87 8448 89.71 91.38  87.90
LoRA- 0.33M 90.30 9495 6871 91.61 94.03 8556 89.71 91.68  88.15
AdaLoRA 0.32M 90.66 95.80 70.04 91.78 9449 8736 9044  91.63 88.86
FCLoRA 0.33M 90.66 96.18 71.83 91.82 9450 89.89 91.83  92.00 89.84

Experimental results. In[Table T} MiLoRA, which is closely related to our model, fails to achieve
optimal performance due to information loss caused by directly modifying the fine-grained singu-
lar components. In contrast, motivated by the tendency of network parameter overlap, FCLoRA
efficiently adapts to fine-tuning tasks by injecting the fine-grained singular components.

4.2 EXPERIMENTS ON QUESTION ANSWERING

Experimental setup. We evaluate FCLoRA on two question answering (QA) tasks:
SQuADvl1.1 (Rajpurkar, 2016) and SQuADvV2.0 (Rajpurkar et al., [2018). Following [Zhang et al.
(2023)), we fine-tune a DeBERTaV3y,, (He et al., |2021). We measured the performance using the
Exact Match (EM) and F1 metrics. The detailed descriptions are provided in

Experimental results. reports the experimental results of fine-tuning DeBERTay,s on
the QA task under four different budget settings: 0.08%, 0.16%, 0.32%, and 0.65% of the total
pre-trained parameters. The proposed method outperformed the baselines across most settings, high-
lighting that fine-grained singular information can be effectively and efficiently adapted to new tasks

4.3 EXPERIMENTS ON COMMONSENSE REASONING

Experimental setup. We evaluate FCLoRA on the commonsense reasoning tasks. Following [Hu
et al.|(2023), we amalgamate the training datasets from all 8 tasks to create the final training dataset
and evaluate with individual testing for each task. We fine-tune LLaMA-7B (Touvron et al.,|2023a)
and LLaMA2-7B (Touvron et al.l2023b). The detailed descriptions are provided in|Appendix M.3.2]

Experimental results. reports the results on commonsense reasoning tasks. FCLoRA
outperforms other methods, highlighting the effectiveness of fine-grained singular components of
adapters even in larger models. The result suggests that fine-tuning with fine-grained singular com-
ponents plays a crucial role in enhancing reasoning performance across diverse tasks.
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Table 3: Comparison of various methods with DeBERTaV3;,,. on SQuAD datasets

Method | SQuADv1.1 SQuADV2.0
‘ 0.08% 0.16% 0.32% 0.65% 0.08% 0.16% 0.32% 0.65%
Full FT* ‘ 86.0/92.7 85.4/88.4

PAdapter 84.4/91.7 85.9/92.5 86.2/92.8 86.6/93.0 | 84.2/87.2 84.5/87.6 84.9/87.8 84.5/87.5
LoRA 86.4/92.8 86.6/92.9 86.7/93.1 86.7/93.1 | 84.7/87.5 83.6/86.7 84.5/87.4 85.0/88.0
AdaLoRA | 87.2/93.4 87.5/93.6 87.5/93.7 87.6/93.7 | 85.6/88.7 85.7/88.8 85.5/88.6  86.0/88.9

\
\
\
HAdapter | 84.4/91.5 85.3/92.1 86.1/92.7 86.7/92.9 | 83.4/86.6 84.3/87.3 84.9/87.9 85.4/88.3
FCLoRA | 87.6/93.6 88.1/93.9 88.2/94.1 88.6/94.3 | 85.3/88.3 85.9/88.7 86.0/88.8 86.2/89.0

Table 4: Comparison of various methods with LLaMA on commonsense reasoning tasks

Model Method  #Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
ChatGPT - - 73.1 854 685 78.5 66.1 898 799 748 710
Prefix 0.11 643 76.8 739 42.1 72.1 729 540 60.6 64.6

Series 0.99 63.0 792 76.3 67.9 75.7 745 57.1 724 708

Parallel 3.54 679 764 78.8 69.8 78.9 737 573 752 722

LLaMA-7B LoRA 0.33 68.9 80.7 774 78.1 78.8 718 613 748 747
DoRAf 0.43 70.0 826 79.7 83.2 80.6 80.6 654 776 715

DoRA 0.84 69.7 834 78.6 87.2 81.0 819 662 792 784

FCLoRA 0.83 70.5 822 793 86.2 81.5 81.7 669 802 78.6

LoRA 0.83 69.8 799 79.5 83.6 82.6 798 647 810 77.6

‘ DoRA 0.43 72.0 83.1 799 89.1 83.0 84.5 710 812 805
LLaMA2-7B DoRA 0.84 71.8 83.7 76.0 89.1 82.6 837 682 824 79.7
FCLoRA 0.83 732 829 79.8 91.9 83.0 852 716 826 813

5 DISCUSSIONS ON CATASTROPHIC FORGETTING

This section discusses how FCLoRA mitigates catastrophic forgetting compared to LoRA variants.

5.1 COMPARISON WITH OTHER LORA-BASED METHODS

The traditional LoRA freezes the whole pre-trained network parameters and learns adapters which
are initialized to zero. PiSSA (Meng et al.l [2024) and MiLoRA (Wang et al.| |2024) adapt to new
tasks by directly adjusting the r highest/lowest singular values, respectively, making them highly
relevant to FCLoRA in terms of employing singular values. However, existing methods suffer from
catastrophic forgetting since: i) PiSSA and MiLoRA directly modify a subset of pre-trained param-
eters, leading to the loss of pre-trained knowledge, and ii) the lack of constraints on the singular
values in the adapters during fine-tuning causes singular values to grow and results in reducing the
posterior of the pre-trained task (see [Theorem 3.1). In contrast, FCLoRA restricts the upper bound
of the singular values of adapters during fine-tuning. This prevents the growth of spectral norms in
adapters without incurring overhead, thereby effectively mitigating catastrophic forgetting.

5.2 SPECTRAL ANALYSIS OF AW

[Proposition 3.2]demonstrates that the spectral norm of large weight matrices increases rapidly when
adaptive optimizers are applied. However, FCLoRA prevents this increase by restricting the range
of the singular value of AW during fine-tuning, ensuring that the spectral norm does not grow
excessively. To empirically verify this difference, [Fig. 3| (a) illustrates the evolution of the spectral
norm of AW across various methods during the fine-tuning. While LoRA and its variants tend
to increase the spectral norm during fine-tuning, FCLoRA maintains a smaller spectral norm. This
suggests that, unlike other LoRA-based methods, FCLoRA adapts to fine-tuning tasks by effectively
incorporating new information with the fine-grained singular components.

5.3 EXPERIMENTS ON MITIGATING CATASTROPHIC FORGETTING

We previously demonstrated that the spectral norm of existing LoRA-based methods growth rapidly
during fine-tuning. [Fig. 3| (b) and (c) empirically show the accuracy and evaluation loss on the
pre-trained task with the BookCorpus dataset. As the fine-tuning progresses, LORA and its variants
rapidly degrade the accuracy on the pre-trained task, dropping from the original performance of 0.6
to below 0.1, and the evaluation loss increases by more than 4 times. As mentioned earlier, without
restrictions on the range of singular values of AW during fine-tuning, the model undergoes a rapid
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Figure 3: Changes during fine-tuning RoOBERTay,. on the MRPC dataset: (a) Spectral norm of AW
in the query layer; (b, ¢) accuracy and evaluation loss on the pre-trained task (BookCorpus dataset).

growth of the spectral norm, leading to catastrophic forgetting of the pre-trained knowledge. In
contrast, FCLoRA effectively mitigates catastrophic forgetting by restricting the range of singular
values of AW. This prevents excessive growth of the spectral norm, ensuring it remains at an ap-
propriate level during fine-tuning and minimizing performance degradation on pre-trained tasks. We
further validate the effectiveness of FCLoRA on mitigating catastrophic forgetting in

6 ADDITIONAL STUDIES
In[Appendix O} we examine the effects of -,  and r as the sensitivity analysis.

6.1 ABLATION STUDY ON THE INJECTED COMPONENTS

To analyze the influence of the injected components in
FCLoRA on the performance of both pre-trained and  Taple 5: Ablation on the injected compo-
fine-tuned knowledge, we conduct an ablation study pepts

on the following variants: i) ‘LoRA’ refers to the tradi-
tional LoRA; ii) ‘LoRA;, v’ applies orthogonal reg-

al L - : ! Model | MRPC \ SST-2
ularization to the singular vectors without the singular | ACC e e ACC pr-n | ACC.tme e ACCe 1
TN o e e e 1s . -fine-tune +pre-train -fine-tune +pre-train
values; iii) ‘LoRAgyp’ initializes the singular values as Pre-wained| - oot |- Lo

ones, allowing them to be learnable from LoRA ;7 TRA 50 o= e s
and iv) ‘FCLoORA’ refers to the proposed method. We [ & Ay | 8922 312 0475 3939
measure the accuracy on both the fine-tuning tasks LoRAsvp | 89.62  17.57 | 9503  49.65
with MRPC and SST-2 from the GLUE task, and FCLoRA | 9032  32.00 | 9537 5129
the pre-trained task with BookCorpus dataset. In

LoRA significantly sacrifices pre-training per-

formance to adapt on fine-tuning task. For the MRPC dataset, accuracy on the pre-trained task
drops from 61.64 to 3.77, while it achieves comparable accuracy on the fine-tuning task. LoRA ;v
has limited expressiveness since its singular values are fixed, sacrificing either performance of pre-
trained or fine-tuning task. LoRAgyp performs better due to its learnable singular values than
LoRA;, 7. Notably, FCLoRA constraints the singular values to learn with the fine-grained singu-
lar components, ensuring both effective adaptation on fine-tuning task and retention of pre-trained
information. For both datasets, FCLoRA achieves the best performance on both tasks.

7 CONCLUSION

We propose a novel low-rank adaptation method called FCLoRA, motivated by the following two
rigorous analyses regarding the singular components of network parameters: i) We, for the first
time, analyze LoRA via the Fisher overlap across the singular components. Specifically, the dom-
inant singular components of pre-trained weights can be reused for fine-tuning tasks, whereas the
fine-grained singular components are more task-specific and require significant adaptation. ii) The
growth of singular values in the adapters directly causes catastrophic forgetting from the perspective
of MAP estimation. From these analyses, we design FCLoRA, which injects the pre-trained model
with fine-grained singular components. Experimental results show that FCLoRA achieves strong
performance on fine-tuning tasks and successfully retains the pre-trained knowledge.

Limitation. Despite the advantages of FCLoRA, the optimal range of singular values to compose
fine-grained singular components may vary across datasets, requiring further tuning in some cases.
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A  REPRODUCIBILITY STATEMENT

In an effort to ensure reproducibility, we report the description of dataset in [Ap-|
[pendix M.2.1| and [Appendix M.3.1} Also we report the best hyperparameters of our experiments

in [Appendix M.1.3| [Appendix M.2.3| and [Appendix M.3.3] Our FCLoRA code to reproduce the
experiment can be found at https://bit.ly/3E1HoYDbl
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Figure 4: The Fisher overlap (Kirkpatrick et al., [2017)) between the pre-trained task (BookCorpus)
and the fine-tuning task (MRPC), evaluated over partial reconstructions of the pre-trained network

parameters obtained by grouping singular components sorted from large to small according to their
singular values.

Following Kirkpatrick et al.|(2017), to examine whether different tasks solved by the same network

rely on overlapping parameter subsets (see (a)), we assessed the similarity of each task’s
Fisher information matrix. Specifically, we first computed the Fisher matrices for the two tasks,

denoted by F} and F». We then normalized each matrix so that its trace was equal to 1, yielding 2}
and F5. Next, we measure how closely these matrices aligned by computing the Fréchet distance, a
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metric on positive-semidefinite matrices, given as:
L. 1 - N L 1, - .
d2(Fy, Fy) = 5tr(F1 +Fy = 2(F Fy)Y?) = 5\|F11/2 — BM3|p, (12)

where this quantity lies between O and 1. We then define the overlap of the two tasks’ Fisher
matrices as 1 — d?. Hence, an overlap of 0 implies that the two tasks employ entirely distinct sets
of parameters, whereas an overlap of 1 indicates that one Fisher matrix is simply a scaled version of
the other (i.e., F; = aF5 for some o > 0).

Then, to verify the Fisher overlap across the singular components of the pre-trained network param-
eters, we perform SVD on the pre-trained parameters of the ROBERTa,,,e model, trained on multiple
datasets including BookCorpus. We group the singular components sorted by their singular values
and reconstruct partial versions of the parameters from each group. shows the Fisher overlap
computed for the BookCorpus task as well as for each task in the GLUE benchmark. Across all
tasks, the Fisher overlap progressively decreases as we move from groups containing larger singu-
lar values to those with smaller ones, indicating that fine-tuning increasingly struggles to reuse the
finer-grained partial reconstructions of the pre-trained parameters.

F PROOF OF[I'HEOREM 3.1

Theorem 3.1. Let 0y and 0 be the pre-trained and fine-tuned weights, respectively. Then the log
probability of the prior logp(0|D ) for fine-tuning task can be approximated using Laplace Ap-
proximation as logp(0|Da) =~ f(00) — 2(60 — 6o) " F(6 — 6y). From this, the approximated log
probability of the prior is upper-bounded as follows:

log p(0|D4) < f(0o) — Amin (F) (13)

where Amin(+) indicates the smallest eigenvalue and o, is n-th singular value of 6 — 0.

Proof. The optimization of neural networks can be considered as a process of estimating the network
parameters ¢ through maximum a posteriori (MAP) estimation using the training data. This involves
the pre-training dataset D4 and the fine-tuning dataset Dg. The pre-trained weights are denoted as
0o, and the fine-tuned weights are represented as 6.

The posterior to be maximized in the MAP estimation is formulated as:

~ p(DBl0,Da)p(0|Da)  p(Dpl|0)p(0|Da)
POPAPE) = DD pDpDa) “4)

Taking a logarithm of the posterior, the MAP objective becomes:
0* = argmaxlogp(0|Da, D) = argmax[logp(DB|9) + logp(G\DA)} . (15)
9 ]

Since the true posterior is intractable, we approximate the posterior using Laplace Approximation.
logp(6]D4) can be expressed as a function f(#) and approximated near the optimal point f(6y),
where 6, represents the pre-trained parameters, and V f(6g) = 0. Subsequently, a second-order
Taylor expansion of f(6) around 6 is performed as follows:

log p(OIDA) = f(80) + 50— 00) V2 (00)(0 — 00) = F(60) + 50— 60) H(O = 00),  (16)

where H denotes the Hessian matrix of f(f) evaluated at 6. The expected value of the Hessian
over the data distribution corresponds to the Fisher information matrix (FIM) F', defined as F' =
—Ep, [H]. Following (MacKay, |1992; Kirkpatrick et al., 2017), we approximate the posterior as a
Gaussian distribution with mean given by the parameters 6y and a diagonal precision given by the
diagonal of the Fisher information matrix F'. Given this approximation, the log probability can be
expressed as:

(0 —60)TF(6—6y), (17)

log p(6]Da) = log p(8]Da) = f(60) — %
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where the F' is symmetric and positive semi-definite, i.e., for any vector v, v F' vT > 0. Then using
the singular value decomposition (SVD)on 0§ —fy = A9 = ULV T where U € R4 <"V € R"¥42,
and X € R" with {O’n}lgngr. As U,V are orthonormal singular vectors and F' is a positive semi-
definite matrix,

AGTFAG > )\mm(F)HAaHF = >\min(F)”E”F~ (18)

Therefore, the log probability of the approximated prior for the fine-tuning task from the pre-trained
task is upper bounded as:

log 5(0]Da) = f(00) — 5(0 — 00)TF(0 — 00) < f(00) = Amin (F) |2 7

= f(90) - )\min(F)

G WELL-ESTABLISHED PROPERTIES ON LAPLACE @ APPROXIMATION

G.1 ERROR BOUND OF LAPLACE APPROXIMATION

In Bayesian inference, one of the most widely used methods for approximating the posterior distri-
bution is the Laplace approximation (Kass et al., |1990; Kirkpatrick et al., 2017; Ritter et al., [2018j
Wang et al., 2021} Matena & Raffel, 2022} Gawlikowski et al.,2023)). This method expands the log-
posterior function around its mode (i.e., the MAP estimate) using a Taylor series and retains terms
up to the second order, thereby approximating the posterior distribution by a Gaussian distribution.
In other words, higher-order terms beyond the quadratic expansion are discarded, and the resulting
approximation error is generally limited and asymptotically negligible.

In particular, under standard regularity conditions, it is well established that the relative error of
Laplace approximation is no worse than O, (n~!) under standard regularity conditions, where O,
refers to stochastic boundedness (Kass et al., [ 1990; Bilodeau et al., [2023)). This ensures that, as the
sample size n increases, the approximation error vanishes at the rate of n~!. Moreover, in deep
learning, where the number of training samples n is typically very large, the accuracy of the Laplace
approximation is further reinforced. Consequently, the Laplace approximation provides not only a
practical tool but also a theoretically justified method for posterior approximation in both Bayesian
inference and large-scale probabilistic modeling.

G.2 DECAY RATE OF THE INTEGRAL OVER THE MODE-DISTANT REGION

Laplace approximation is applied when the target function is sharply concentrated around a single
mode 0y and decays rapidly as § moves away from it. The method rewrites the integral in expo-
nential form and then approximates the log-posterior by a second-order Taylor expansion around its
mode. The region where 6 — 6 is large corresponds to the tail of the function. The approxima-
tion error in this region should not be judged solely by the magnitude of |6 — 6; rather, its actual
contribution to the integral must be considered. [Kass et al.|(1990) rigorously demonstrates that this
tail contribution is negligible. First, as the sample size increases, the likelihood function becomes
increasingly peaked, so the posterior concentrates around the mode 6. Second, the integral over
regions distant from 6, decays exponentially with n, that is, it is bounded by exp(—nc) for some
¢ > 0. Consequently, the integral over the mode-distant region converges to zero, and the dominant
contribution to the integral arises near the mode.

H EXPONENTIAL DECAY OF SINGULAR VALUES

To find the best possible n-dimensional subspace V;, such that the closest approximation v € V,, to
W minimizes the error | — v|| x, the definition of Kolmogorov n-width is formulated as follows:

d,(W, X) = ViréfX Uiené W —v|x, (20)
dimV,=n
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Figure 5: The error rate of the normalized singular values for: (i) the final output projection layer
weights W in the self-attention mechanism of DeBERTaV 3y, and (ii) an ideal low-rank matrix
with rank = 64. The marker indicates the n-value where the approximation error reaches 5%.

where V,, is n-dimensional subspace of X, v is an element from the subspace V,,. ‘inf’ stands
for infimum. When using the Frobenius norm (or spectral norm) with matrices, the Kolmogorov
n-width is computed by the singular values of W as follows:

dp (W, X) = 041, 2y

where 0,41 is the (n + 1)-th largest singular value of the matrix W. The Kolmogorov n-width
measures how well a set W can be approximated by an n-dimensional subspace. In other words, it
represents the minimal maximum error when approximating with an n-dimensional subspace. Then
we can determine the optimal dimensionality needed to achieve a desired approximation accuracy.

If the singular values decrease rapidly, W can be well approximated even for small n, and the
Kolmogorov n-width also decreases quickly. Therefore, the singular value decay rate o, which
plays a pivotal role in determining how effectively a matrix can be approximated, is commonly
modeled by an exponential decay function as follows:

o, = Ce ", (22)

where o/, represents the n-th modeled singular values, C' > 0 is a constant, and a > 0 is the decay
rate. When the decay rate « is low, the singular values decrease gradually, resulting in large errors
when approximating with the same n dimensions. To minimize the approximation errors, a larger n
is required, indicating that significant information is contained in the lower singular values.

Empirical analysis of the Kolmogorov n-width. To empirically analyze the Kolmogorov n-
width of the pre-trained language model, we present error rates based on low-rank approximation
under the same conditions as shown in (b) of Introduction. The formulation of error rates
Eyw (n) is as follows:

_ (W —]lr
EW(n)—< T, >><100%, (23)

where W is the original matrix and v is the approximated matrix obtained by truncating the SVD
to rank n. The error rates for the pre-trained model and the ideal low-rank matrix are presented in
with markers indicating the n-value where the error rate reaches 5%. For the ideal low-rank
matrix, the rank at which the error rate reaches 5% is 63. This suggests that the matrix has a low-
dimensional structure, with the most important information concentrated in the top singular values.
The lower singular values have little effect on the approximation and can be considered noise. In
contrast, for the pre-trained model, the n-value required to reach 95% approximation is 661, which
is significantly larger than ideal row rank matrix. This indicates that the data is complex and high-
dimensional, and the lower singular values contain important information rather than merely noise.

I DISCUSSION ON CONSTRAINING THE FROBENIUS NORM OF AW

Theorem 3.1|provides an upper bound of approximated posterior based on the Frobenius norm of Af
and the minimum eigenvalue of the Fisher Information Matrix (FIM), Apin (F'). However, simply
constraining the Frobenius norm is not sufficient. This is because the FIM F' encodes information
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about important directions about the pre-trained task in the parameter space. Specifically,
provides the approximated log posterior of pre-trained task using Laplace approximation.
The FIM F is a positive semi-definite matrix. The quadratic term quantifies how much the parameter
shift A = 6 — 0, affects the output distribution of the original task. In low-rank update methods like
LoRA, the parameter update can be expressed as A = UXV . Due to the low-rank nature of the
update, the singular values o; often become concentrated in a small number of singular directions.

Even for the same Frobenius norm of A#, if o,, is heavily concentrated in certain directions, and
those directions align with sensitive ones in the FIM (i.e., those with large eigenvalues), the penalty
term A" A can become significantly larger (not A9 " Af). As a result, the approximated poste-
rior decreases more sharply, which intensifies catastrophic forgetting on the pre-trained task. There-
fore, the Frobenius norm merely controls the total magnitude of change, but does not prevent the
change from being concentrated in directions that are crucial for the original task. In contrast,
FCLoRA explicitly controls individual singular values via clipping, thereby directly limiting up-
dates in directions where the model is most sensitive. This goes beyond a simple norm constraint
and introduces a structural bias that suppresses updates in forgetting-prone directions. Therefore,
while the Frobenius norm constrains only the total size of the update, FCLoRA enables fine-grained
control over which components grow, effectively mitigating catastrophic forgetting in a more tar-
geted and principled way. This is also well-described in Kirkpatrick et al.|[(2017), where L2-norm
cannot mitigate catastrophic forgetting because important parameters from previous tasks are not
adequately preserved. The standard L2-norm regularization treats all parameters uniformly, failing
to account for their varying importance, and thus cannot effectively mitigate this problem.

J ALGORITHM OF FCLORA

In this section, we summarize the detailed algorithm of FCLoRA in

Algorithm 1 How to train FCLoRA

Input: Dataset D; total iterations 7'; learning rate n; v, 7.
fort=1,...,T do

fo) = min(max(Eff), 0),0)
WO W 3 DO
Update U™ = U — Vi, (£ 5 Vi) + 1RO V)
Update V"™ = Vi — 9y, (c(U”, 50 V) + 4RO Vi)
Update E,(fﬂ) = E,(:) - nVEkL(U,Et), Eg), Vk(t))
end
Output: The fine-tuned parameters {U(7), (1) v (D}, W) = W 4 UMy (v T)HT,

K LORA WITH DISCRETE FOURIER TRANSFORM

Table 6: Comparison of various methods with RoOBERTay,s. on GLUE tasks with the experimental
setup from |Gao et al.| (2024). The results for the baselines are copied from (Gao et al.[(2024)). The
best performance is set in bold, and the second best is set in underline.

Method | #Params | SST-2 MRPC  CoLA QNLI RTE STS-B  Avg.

FT ‘ 125M ‘ 948102 902106 63.6426 928102 787107 912405 852
BitFit 0.1IM 9374103 927196 620419 91.8402 815408 90.840¢ 854
Adpt? 03M | 942.0; 885411 608411 93.li0s 715127 89.7i07 83.0
AdptP 09M | 947105 884101 626109 93.0102 759104 903102 842
LoRA 0.3M 951192 897107 634110 933402 784102 91542 852

AdaLoRA | 03M | 94510, 887105 620105 93.1i03 81.0109 90.5102 85.0
DyLORA 0.3M 94'3i0.2 89.5i()_(, 61.1j:()_9 92.23:()_4 78~7j:1.0 91413:()_3 84.5
FourierFT 0.024M 94'2j:0.3 Mi()_} @i]_ﬁ 92'2i0.1 79.13:()_2 90-8j:0.4 85.0
FCLoRA 03M | 950402 90.0407 651401 934402 83.0+0 91340, 863
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Discrete Fourier Transform (DFT) (Briggs & Hensonl, [1995) converts a finite sequence of equally-
spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-
time Fourier transform (DTFT), which is a complex-valued function of frequency. Recent studies
have proposed the DFT-based parameter efficient fine-tuning method. FouRA (Borse et al.| [2024)
transforms the hidden vectors in the latent space into the singular domain using DFT and compute
LoRA, followed by reconstruction through inverse DFT. FourierFT (Gao et al., [2024)) considers the
adapter as a 2D spatial-domain matrix and transforms into a 2D DFT spectrum. Therefore, existing
methods have focused on DFT-based approaches to either flexibly select adapter ranks depending
on the input or reduce the number of parameters. On the other hand, FCLoRA leverages a param-
eterized SVD in the parameter space, and injects the fine-grained singular components with upper
bounded singular values to achieve effective adaptation and mitigation of catastrophic forgetting.

We conduct additional experiments following experimental setup of FourierFT (Gao et al., 2024)),
one of the LoRA variants that employs the concept of DFT. Strictly following (Gao et al.l [2024),
we fine-tune ROBERTay,s., adapting only the query and value projection matrices using LoRA. We
maintain the same experimental settings as the original work, while only searching for the learning
rate from {1 x 1073,8 x 107%,6 x 1074, }, v from {1 x 1072,3 x 1073,1 x 1073}, and & from
{oM, 63 o) 51} and the results are reported in

L How DOES THE ADAPTERS AW COMPARED TO W?

Table 7: The Frobenius norm of U T WV, where U and V' are the left and right top r singular vector
directions of either: (1) AW, (2) W, or (3) arandom matrix. (4) The Frobenius norm of U TAWYV,
where U and V' are from W,. (5) The Frobenius norm of AW. (6,7) The introduced factors. The
weights are taken from the last query layer of ROBERTay,, fine-tuned on STS-B dataset with r = 8.

=
Model | 1o WVilr | HUVTVQAWVWQHF | AW || 7 ‘Factorw o aw Factoraw - w
| AW, W, Random | |
LoRA | 048 11.22 0.32 0.16 3.81 7.94 23.82
PiSSA | 038 11.22 0.35 0.11 2.49 6.54 22.60
MiLoRA | 045 11.22 0.35 0.08 3.11 6.91 38.86
FCLoRA | 0.36 11.22 0.38 0.03 0.94 2.60 31.18

We explore the relationship between AW and W by measuring the correlation between AW and
W as well as the magnitude of AW in comparison to its corresponding directions in W. To do so,
we introduce two key factors:

s Factorw _ aw is a factor formulated as |AW | r/||UAw W Vaw ||, which indicates
the ratio of the norm of difference over the norm of projected W on the r-dimensional
subspace of AW'. This factor is also called amplification factor (Hu et al}[2021])), measuring
how the new information of AW is related to the existing information of . A larger ratio
refers that the task-specific information of W has been amplified in AW

s Factoraw — w is a factor formulated as [|AW || /||Uyi, AW Viy || 7, which is the ratio
of the norm of difference over the norm of projected AW on the r-dimensional subspace
of W. It indicates the extent to which the change aligns with TW. A larger ratio refers that
AW has learned new information that is not present in W.

Following [Hu et al.| (2021)), we project W onto the r-dimensional subspace of AW by computing
UTWYV, where U and V are the left and right singular vectors of AW, W, and the random ma-
trix. Additionally, we project AW onto the subspace of W by computing U T AW V. As shown in
FCLoRA and other methods exhibit similar Frobenius norms when W is projected onto
the subspace of AW, W and random matrix. However, compared to the baselines, the projection of
AW onto the subspace of W in FCLoRA shows the lowest correlation with a value of 0.02, which
is less than half of the smallest baseline. This suggests that FCLoRA processes the existing infor-
mation in W similarly to other methods, while being better at learning independent new information
without relying on the existing information in W. Furthermore, considering the Frobenius norm of
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AW, both LoRA and PiSSA exhibit a large Factorwy _,aw and a small Factoraw —w, indi-
cating that AW primarily amplifies information already present in W. MiLLoRA also shows a large
Factoraw—w, but this results from the large magnitude of AW, leading to significant changes
from the pre-trained weights. In contrast, FCLoRA exhibits a relatively small Factory aw of
4.25 but a large Factoraw —w of 46.77. Given the small magnitude of AW, this indicates that
FCLoRA stands out for its ability to learn new information that is not already in W with minimal
deviation from the pre-trained weights.

M EXPERIMENTAL SETUP

M.1 NATURAL LANGUAGE UNDERSTANDING
M.1.1 DATASET DESCRIPTION

We describe the benchmark datasets of GLUE (Wang et al.,[2018a) below [H

* CoLA. The Corpus of Linguistic Acceptability (Warstadt et al.,|2019) provides a dataset of
English sentences, where each sentence is judged for grammatical acceptability based on
data from books and journal articles. The objective is a binary classification to determine
whether a sentence is grammatically correct or incorrect. The dataset consists of 8.5k
samples for training, 1k samples for validation, and 1k samples for test.

e SST-2. The Stanford Sentiment Treebank (Socher et al., [2013) includes sentences from
movie reviews, along with human-provided sentiment annotations. The goal is to classify
the sentiment of each sentence as either positive or negative. The dataset consists of 67k
samples for training, 872 samples for validation, and 1.8k samples for test.

* MRPC. The Microsoft Research Paraphrase Corpus (Dolan & Brockett, [2005) contains
pairs of sentences automatically extracted from online news sources. Human annotators
label each pair, and the task is to identify whether the two sentences in a pair convey
the same meaning. The dataset consists of 3.7k samples for training, 408 samples for
validation, and 1.7k samples for test.

* QQP. The Quora Question Pairs dataset (Chen et al.,|2018) consists of question pairs taken
from Quora, a community-driven question-and-answer platform. The task is to determine
if two given questions are semantically identical. The dataset consists of 364k samples for
training, 40k samples for validation, and 391k samples for test.

* MNLI. The Multi-Genre Natural Language Inference Corpus (Williams et al., 2017) in-
cludes sentence pairs with textual entailment annotations collected through crowdsourcing.
Given a premise and a hypothesis, the task is to predict whether the premise entails the hy-
pothesis, contradicts it, or is neutral. The dataset includes both in-domain and cross-domain
evaluations using a hidden test set. The dataset consists of 393k samples for training, 20k
samples for validation, and 20k samples for test.

* QNLI. The Question-Answering Natural Language Inference dataset (Wang et al.,|2018b)
consists of question-paragraph pairs from which an answer must be found. The task in-
volves determining whether a specific sentence from the paragraph answers the correspond-
ing question. The dataset consists of 108k samples for training, 5.7k samples for validation,
and 5.7k samples for test.

* RTE. The Recognizing Textual Entailment dataset (Bentivogli et al., 2009) comes from
a series of annual challenges focusing on textual entailment. The task is to classify sen-
tence pairs as either entailment or non-entailment. The dataset consists of 2.5k samples for
training, 276 samples for validation, and 3k samples for test.

¢ STS-B. The Semantic Textual Similarity Benchmark (Cer et al 2017) features sentence
pairs drawn from various sources, including news headlines and image captions, with
human-assigned similarity scores. The task is a regression problem where the model must
predict a similarity score ranging from O to 5. The dataset consists of 7k samples for train-
ing, 1.5k samples for validation, and 1.4k samples for test.

'https://huggingface.co/datasets/nyu-mll/glue
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M.1.2 EXPERIMENTAL SETUP

We evaluate FCLoRA on the General Language Understanding Evaluation (GLUE) bench-
mark (Wang et al., [2018a), which includes 3 categories of natural language understanding tasks:
i) single-sentence (CoLA and SST-2); ii) similarity and paraphrasing (MRPC, QQP, and STS-B);
iii) natural language inference tasks (MNLI, QNLI, and RTE). For a fair comparison, following
Hu et al.| (2021), we adopt the pre-trained ROBERTay,s. as the backbone model. We use 1 GPU
of NVIDIA RTX A6000 for experiments. We report Matthews correlation for CoLA, Spearman
correlations for STS-B, and accuracy scores for the other tasks. We conduct the experiments in
Huggingface Frameworkﬂ

M.1.3 HYPERPARAMETERS

Table 8: Best hyperparameters for FCLoRA in natural language understanding for ROBERTay,.

Dataset Learning rate Batch size #Epochs Metric o ¥ How to initialize U, V/
CoLA 4% 107" 32 25 Matthews correlation o® 3 x 1072 random r singular vectors
MNLI 5% 107* 32 7 Accuracy 0@ 1x107? 0, random Gaussian
MRPC 4 x 107* 16 30 Accuracy 0@ 1% 1072 random r singular vectors
QNLI 4x107* 32 5 Accuracy oM 1x107? 0, random Gaussian
QQP 5x 1074 32 5 Accuracy oM 1x1073 0, random Gaussian
RTE 5% 107* 32 50 Accuracy o® 5% 1072 0, random Gaussian
SST-2 5x107* 32 24 Accuracy o® 1x107? 0, random Gaussian
STS-B 4x107* 32 25 Pearson correlation o™ 1 x 107! 0, random Gaussian

Table 9: Best hyperparameters for FCLoRA in natural language understanding for DeBERTaV 3y,

with r = 8

Dataset Learning rate Batch size #Epochs

~

CoLA
MNLI
MRPC
QNLI
QQP
RTE
SST-2
STS-B

8 x 107*
5x107%
1x1073
5x107%
8 x 107*
1.2x 1073
8 x 107*
2.2x1073

32
32
32
32

Metric a
25 Matthews correlation ¥
7 Accuracy o®
30 Accuracy o®
5 Accuracy o®
5 Accuracy o™
50 Accuracy o®
24 Accuracy o®
25 Pearson correlation o?

5x 1071
1x 1072
5x 1071
1x 1071
1x 1072
1x 107!
1x 1071
5x 1071

Table 10: Best hyperparameters for FCLoRA in natural language understanding for DeBERTaV 3y,

with r = 2

Dataset Learning rate Batch size #Epochs Metric G ¥

CoLA 8 x 107* 32 25 Matthews correlation o® 1.1 x 107!
MNLI 5 x 10~* 32 7 Accuracy o® 1x107!
MRPC 1 x107° 32 30 Accuracy @ 1x1072
QNLI 7x107* 32 5 Accuracy o® 1x107!
QQP 8 x 1074 32 5 Accuracy oM 5x107°
RTE 1.2x107° 32 50 Accuracy o® 1x107!
SST2 8x107* 32 24 Accuracy o 5x107!
STS-B 2.2x 1073 32 25 Pearson correlation o 6 x 107!

To tune FCLoRA with RoOBERTay,., we search for the learning rate from {4 x 1074, 5 x 10_4}, o
from {¢, () o™} and v from {1 x 1071, 7x 1072,5 x 1072,3 x 1072,1 x 1072, 1 x 1073}.

https://github.com/huggingface/transformers
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The learnable singular vectors U/V can be initialized as i) random r singular vectors of Wy, ii)
U with zeros, V' with random Gaussian initialization. To tune FCLoRA with DeBERTaV 3., we
search & from {o(®), ) ¢®} and v from {1 x 107, 1.1 x 1071, 1 x 1072,5x 10~1,6 x 10~ 1}.
The learnable singular vectors U/V are be initialized as U with zeros and V' with random Gaussian
initialization. We report the best hyperparameters of FCLoRA in[Table 8|to[Table 10]

M.1.4 EXPERIMENTAL RESULT WITH STANDARD DEVIATIONS

We report the experimental results on GLUE tasks with standard deviation of Robertay,, and

DeBERTay, V3 in[Table TT]and[Table 12] respectively. Note that the results for[Table T2 are copied

from |Zhang et al.|(2023), the results with standard deviation are reported only for FCLoRA.

Table 11: Comparison of various methods on GLUE tasks with different random seeds.

Method | MNLI SST-2 CoLA QQP QNLI RTE MRPC  STS-B  Avg.

LoRA 87.9310.15 94.8040.11 64.491064 90.94 1004 92.7310.11 80.39+0.74 89.05+0.12 90.87 10,08 86.40
PiSSA 87.95i001 94-53i0.l9 64.66i098 90.97i0,05 92-53i0.14 79-181068 89.79i1.41 90.96i008 86.32
AdalLoRA|87.21 1005 95.07+032 61.37+1.01 89.75+0.10 92.54+0.08 81.114085 89.054031 90.6240.11 85.84
rsLoRA 85.26i334 92.35io_33 65.17i()‘gz 70.76i1()‘71 92-48i0.27 79-54i133 89.0535().31 90.88i()‘13 83.19
LoRA+ |86.96+065 93.92+0.00 63.32+069 90.69+007 92.77+0.01 81.59+1.18 88.97+035 90.84+0.14 86.13
DoRA 87.81i()‘04 95-11i0.19 64.23i()‘10 90.65i0_11 92~93i0.10 81.35i095 89.5435().23 91.01i()‘15 86.58
MiLoRA |87.88+0.11 94.69+030 64.31+097 91.024004 92.964021 81.354123 89.3040.12 90.9640.05 86.56
FCLoRA (87.9510.12 95.37+029 64.79+020 90.76+008 93.09+0.14 83.1540.17 90.324086 91.2240.05 87.08

M.2 QUESTION ANSWERING
M.2.1 DATASET DESCRIPTION

We describe the benchmark dataset of SQuAD (Rajpurkar, 20165 Rajpurkar et al., | 2018). The Stan-
ford Question Answering Dataset (SQuAD) is a benchmark for reading comprehension, featuring
questions based on Wikipedia articles. Each question is answered with a specific text segment (or
span) from the corresponding passage, though some questions may have no answer at all.

* SQuADv1.1. Over 100,000 question-answer pairs derived from more than 500 articles.
The dataset consists of 87,599 samples for training and 10,570 for validationﬂ

. SQuADVZ.O.E] Combines the 100,000 questions in SQuADv1.1 with over 50,000 unan-
swerable questions to closely resemble answerable ones. To perform well on SQuADv2.0,
systems must not only provide correct answers when availab F —-le but also recognize when
a question cannot be answered based on the given passage and abstain from responding.
The dataset consists of 130,319 samples for training and 11,873 for validation.

M.2.2 EXPERIMENTAL SETUP

We evaluate FCLoRA on two question answering (QA) tasks: SQuAD v1.1 (Rajpurkar, |2016) and
SQuADvV2.0 (Rajpurkar et al., 2018). Following Zhang et al. (2023), we fine-tune a pre-trained
DeBERTaV3y, (He et al.l 2021)) with FCLoRA and set the rank r of LoRA as {1, 2,4, 8}. These
tasks are considered as a sequence labeling problem, where the goal is to predict the probability of
each token being the start and end of the answer span. We measured the performance of model using
the Exact Match (EM) and F1 metrics. We use 1 GPU of NVIDA RTX 3090 24GB for experiments.
We conduct the experiments in Huggingface Framework.

M.2.3 HYPERPARAMETERS

To tune FCLoRA, we fix the batch size as 16, and train 10 epochs for SQuADv1.1 and 12 epochs for
SQuADV2.0, respectively. We search for the learning rate from {1 x 1073,2 x 1073,3 x 1073}, &

*https://huggingface.co/datasets/rajpurkar/squad
*nttps://huggingface.co/datasets/rajpurkar/squad_v2
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Table 12: Performance comparison of various methods with DeBERTaV3y,,. on GLUE tasks with
different random seeds. The results for the baselines are copied from (Zhang et al.,2023)).

Method  [# Params|] MNLI ~ SST-2  CoLA QQP QNLI RTE MRPC STS-B Avg.
Full FT ‘ 184M‘ 89.90 95.63 69.19 92.40 94.03 83.75 89.46 91.60 88.09

BitFit 0.10M | 89.37 94.84 66.96 88.41 92.24 78.70 87.75 91.35 86.02
HAdapter | 1.22M | 90.13 95.53 68.64 91.91 94.11 84.48 89.95 91.48 88.12
PAdapter | 1.18M | 90.33 95.61 68.77 92.04 94.29 85.20 89.46 91.54 88.24
LoRAs | 1.33M | 90.65 94.95 69.82 91.99 93.87 85.20 89.95 91.60 88.34
AdaLoRA| 1.27M | 90.76 96.10 71.45 92.23 94.55 88.09 90.69 91.84 89.31
FCLoRA | 1.33M (90.36+0.03 96.33+0.41 71.4940.60 92.33+0.01 94.57+0.05 89.4140.17 91.58 4121 92.19+0,07 89.78

HAdapter | 0.61M | 90.12 95.30 67.87 91.65 93.76 85.56 89.22 91.30 87.93
PAdapter | 0.60M | 90.15 95.53 69.48 91.62 93.98 84.12 89.22 91.52 88.04
HAdapter | 0.31M | 90.10 95.41 67.65 91.54 93.52 83.39 89.25 91.31 87.60
PAdapter | 0.30M | 89.89 94.72 69.06 91.40 93.87 84.48 89.71 91.38 87.90
LoRA | 0.33M | 90.30 94.95 68.71 91.61 94.03 85.56 89.71 91.68 88.15
AdaLoRA| 0.32M | 90.66 95.80 70.04 91.78 94.49 87.36 90.44 91.63 88.86
FCLoRA | 0.33M (90.66+0.02 96.18+0.14 71.83+1.08 91.82+0.07 94.50+0.00 89.89+1.47 91.83+0.90 92.00+0.23 89.83

Table 13: Best hyperparameters for FCLoRA in question answering

Dataset r Learningrate & ¥

2x107°% @ 5x107"

1
2 2x107°% 0@ 1x107!
SQuADvl.1
Q 4 1x107% 6@ 1x1072
8 2x107% o® 1x107!
1 2x107% o® 7x1072
2 2x107°%  o® 5x107?
SQuADv2.0 ) .
Q 4 3x107° @ s5x107!
8 3x107% o® 5x107!

from {0, ¢, c® Y and v from 5 x 1071, 1x 1071, 7x 1072,5x 1072, 1 x 10~2}. The learnable
singular vectors U/V are be initialized as U with zeros and V' with random Gaussian initialization.
We report the best hyperparameters of FCLoRA in[Table 13

M.3 COMMONSENSE REASONING
M.3.1 DATASET DESCRIPTION

The commonsense reasoning tasks are intended to require the model to go beyond pattern recogni-
tion. Instead, the model should use “common sense” or world knowledge to make inferences. The
commonsense reasoning tasks comprise 8 sub-tasks, each with a predefined training and testing set.

* BoolQ. The model answers yes/no questions about short passages, testing its ability to
understand statements.

* PIQA. The model chooses the most plausible solution for a physical interaction, focusing
on practical reasoning.

» SIQA. The model infers the most suitable outcome or rationale in everyday social contexts.

» HellaSwag. The model selects the most coherent continuation of a short scenario, empha-
sizing commonsense inference.

* WinoGrande. The model resolves ambiguous pronoun references that require broad com-
monsense to disambiguate.

* ARC-e. The model tackles elementary-level science questions assessing basic scientific
knowledge.
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* ARC-c. The model addresses harder, more nuanced science questions requiring deeper
reasoning.

* OBQA. OpenBookQA. The model answers questions using a provided ‘open book’ of
facts, testing its ability to integrate and apply specific knowledge.

M.3.2 EXPERIMENTAL SETUP

We follow the setting of |Hu et al.[(2023) and amalgamate the training datasets from all 8 tasks to
create the final training dataset and conduct evaluations on the individual testing dataset for each
task.

M.3.3 HYPERPARAMETERS

To tune FCLoRA, the learnable singular vectors U/V are initialized as U with zeros, V' with random
Gaussian initialization. We report the best hyperparameters of FCLoRA in[Table 14

Table 14: Best hyperparameters for FCLoRA in commonsense reasoning

Model Learning rate Batch size #Epochs & ¥
LLaMA-7B 2 x 10~* 16 3 @ 5%x107!
LLaMA2-7B 3 x 10~* 16 3 o™ 1x1072

N FURTHER EXPERIMENTS ON MITIGATING CATASTROPHIC FORGETTING

In this section, we validate the effectiveness of FCLoRA on mitigating the catastrophic forgetting,

following Section 3]
N.1 MITIGATING CATASTROPHIC FORGETTING WITH OTHER MODELS

Table 15: Catastrophic forgetting across various models. ‘Acc.’” denotes accuracy (higher is better),
and ‘PPL’ represents perplexity (lower is better).

Model | ROBERTamee |  RoBERTassra | LLaMA-7B

| AcC.netume  ACC.pretrain | ACC.fine-tune  ACC.pretrain | ACC.finetune  PPLpretrain
Pre-trained | - 68.21 | - 68.21 | - 6.66
LoRA 89.05 18.36 94.81 54.33 74.7 8.69
FCLoRA 90.32 47.28 95.37 65.67 78.6 7.78

To further validate the effectiveness of FCLoRA on mitigating catastrophic forgetting, we report
RoBERTay, trained on MRPC and SST-2 with accuracy for the pre-trained task with the Open-
WebText (Gokaslan et al,[2019) dataset in Furthermore, we also report the results for the
large-scale model with LLaMA-7B trained on commonsense reasoning for pre-trained task with PG-
19 (Rae et al.,[2019). FCLoRA adapts to the new task with improved performance while preserving
the pre-training task performance.

N.2 CATASTROPHIC FORGETTING WITH EXPLICIT SVD-BASED LORA

To validate the catastrophic forgetting in parameterized SVD-based LoRA, we measure the accuracy
on both fine-tuning and pre-training task with LoRA and its variants, including AdaLoRA (Zhang
et al.,[2023) and SORSA (Caol 2024)). As reported in Table@], both AdaLLoRA and SORSA exhibit
significant drops in the pre-trained task accuracy after fine-tuning, with SORSA being particularly
affected. In contrast, FCLoRA effectively mitigates catastrophic forgetting, achieving substantially
higher accuracy on pre-trained tasks, while also maintaining competitive fine-tuned task perfor-
mance. These results highlight the effectiveness of FCLoRA in retaining the pre-trained knowledge
while adapting to the new task.
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Table 16: Comparison of catastrophic forgetting across parameterized SVD-based LoRA methods

Model ‘ ROBERTB.MRPC ‘ ROBERTaSTs.B

‘ AcC. fine-tune Acc~prc-train ‘ AcC.fine-tune Acc-prc-train
Pre-trained | - 61.64 | - 61.64
LoRA 89.05 18.36 90.87 14.86
SORSA 89.05 6.45 90.72 10.37
AdaLoRA 89.05 25.58 90.62 28.49
FCLoRA 90.32 47.28 91.22 43.72
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Figure 6: Sensitivity studies

0.1 SENSITIVITY STUDY ON THE ORTHOGONAL REGULARIZATION COEFFICIENT 7y

The orthogonal regularization applied to U and V is used to learn the singular values that consists
the injected fine-grained singular components. We further conduct sensitivity study on the effect
of the orthogonal regularization coefficient 4. We fine-tuned the DeBERTaV3y,,. model on the
SQuADV2.0 dataset. As shown in[Fig. 6|(a), appropriate regularization induces the orthogonalization
of singular values, leading to improved convergence during fine-tuning and enhanced performance.
However, excessive regularization results in performance degradation, indicating the need for an
optimal balance that maximizes the benefits of regularization without hindering the ability of model
to learn task-specific patterns.

0.2 SENSITIVITY ON THE UPPER BOUND OF INJECTED SINGULAR VALUE &

We constraint the maximum value of the parameterized singular values with the hyperparameter & to
learn the injected fine-grained singular components. To analyze the impact of & on performance, we
fine-tune the DeBERTaV3,,, model on the SQuADv2.0 dataset and report EM/F1 score according
to &. In our experiments, & holds the ¢-th quantile value of the singular values distribution of W},
denoted as (9. As illustrated in (b), the performance peaks when ¢ = a®, indicating that
o at the appropriately small value level allows the model to optimally learn the injected fine-grained
singular components while maintaining best accuracy. However, reducing or increasing ¢ too much
leads to a degradation in both EM and F1 scores, suggesting that an inappropriate scale disrupts the
capability of model to learn fine-grained details effectively.

0.3 SENSITIVITY ON THE RANK 7 ON CATASTROPHIC FORGETTING
To verify whether FCLoRA maintains its performance and continues to mitigate forgetting as the

rank increases, we conduct sensitivity study on the rank » on MRPC and STS-B dataset. Specifically,
we measured the largest singular value and Frobenius norm of the difference between the pre-trained
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model and the fine-tuned model. Also, we evaluated the accuracy and the evaluation loss on the pre-
trained task.

Table 17: The effect of rank r on catastrophic forgetting

r Metric 8 16 64

Spectral norm 0.94 0.70 0.36
MRPC  Eval. 108Spre-train~~ 4.35 4.18 3.20
AcC.pre-train 32.00 33.58 41.32

Spectral norm 0.94 1.40 1.12
STSB  Eval. losspretran~ 3.18 249 2.53
AcC.pre-train 43.72  51.15 48.79

As reported in as r changes, the largest singular value also varies, which, in turn affects
the performance on the pre-trained task. The performance on the pre-trained task, however, does not
degrade but rather shows an improvement. This indicates that the proposed model retains its ability
to effectively mitigate catastrophic forgetting even as the rank increases.

0.4 ORTHOGONAL REGULARIZATION ON PARAMETERIZED SINGULAR VECTORS
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Figure 7: The orthogonal loss curves of parameterized singular vectors U and V' when fine-tuning
RoBERTay,s. on STS-B dataset

shows the orthogonal loss curve of parameter singular vectors U and V' of ROBERTap.
fine-tuned on STS-B dataset. The singular vectors are orthogonally optimized as indicated by the
consistent reduction in orthogonal loss.

0.5 GRAM-SCHMIDT ORTHOGONALIZATION ON PARAMETERIZED SINGULAR VECTORS

Table 18: Comparison of Gram-Schmidt orthogonalization and orthogonal regularization on various
datasets. Metrics are reported as “accuracy (%) 1 / minutes per epoch |”.

CoLA RTE MRPC STS-B

Gram-Schmidt ortho. 57.3110_85/3.6 67.2711423/1.1 87.5811,02/2.0 89.88i0,19/2.6
Ortho. Regularization 64.79i020/2.9 83.15i0A17/0.8 90-32i0486/1~3 91.22i0,05/2.1

Orthogonal regularization is a widely used method for implementing parameterized SVD in
LoRA (Zhang et al., 2023} |Cao, |2024; |Zhang et al., 2024). Unlike orthogonal regularization, Gram-
Schmidt orthogonalization—one of the orthogonalization methods—produces strictly orthogonal
vectors. However, since it refines each subsequent vector based on the previously orthogonalized
ones, it has the disadvantage of being difficult to parallelize compared to the regularization ap-
proach. Furthermore, as shown in the orthogonal error rapidly decreases to below 1072 in
the early stages of fine-tuning, indicating that the singular vectors can be sufficiently trained. We
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conduct an ablation study with orthogonal regularization by replacing it with Gram-Schmidt-based
orthogonalization. We measured the performance and training speed in|[Table 18

P COMPARISON OF COMPUTATIONAL COMPLEXITY

Increased number of trainable parameters. For the hidden dimension d and the rank of adapter
r, conventional LoRA learns 2dr parameters per layer. FCLoRA introduces only an additional r
parameter to the existing LoRA, resulting in a total of 2dr + r parameters per layer. For instance,
when r = 2 as shown in[Table 10} conventional LoRA learns 331,776 parameters, whereas FCLoRA
learns a total of 331,920 parameters—the additional parameters are only 144.

Increased computational cost. In inference stage, conventional LoRA involves computations
with complexity O(d?r) per layer, whereas FCLoRA includes the process of multiplying the param-
eterized singular value with the parameterized singular vector, resulting in an additional complexity
of O(d?r + dr), which is comparable. Note that the explicit SVD is performed only once during the
initialization stage and is not required during fine-tuning.

Table 19: Comparison of training time (min per epoch) and peak GPU usage (GB)

Method | MNLI SST-2 CoLA QQP QNLI RTE MRPC  STS-B
LoRA 105.9/24.9 18.2/249 23/249 98.1/249 28.3/249 0.7249 1.0/125 1.6/24.9
PiSSA 106.2/24.9 18.1/24.9 2.3/249 98.1/24.9 28.2/24.9 0.7/24.9 1.0/12.5 1.5/24.9

AdaLoRA | 123.4/25.6 21.1/25.6 2.7/25.6 114.4/25.6 33.1/25.6 0.8/25.6 1.3/13.1 1.8/25.6
MiLoRA | 106.0/24.9 18.1/24.9 2.3/249 98.1/24.9 28.2/24.9 0.7/24.9 1.0/12.5 1.5/24.9
FCLoRA | 128.9/25.2 22.1/252 2.8/252 119.4/25.2 34.3/252 0.8/252 1.3/12.8 1.9/25.2

Table 20: Comparison of inference time (min per epoch) and peak GPU usage (GB)

Method | MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B

LoRA 0.85/0.3 0.08/0.3 0.10/0.3 3.46/0.3 0.47/0.3 0.03/0.3 0.05/0.3 0.14/0.3
PiSSA 0.84/0.3 0.08/0.3 0.09/0.3 3.47/0.3 0.47/0.3 0.03/0.3 0.04/0.3 0.13/0.3
AdaLoRA | 1.32/0.3 0.13/0.3 0.15/0.3 5.43/0.3 0.74/0.3 0.05/0.3 0.07/0.3 0.21/0.3
MiLoRA | 0.84/0.3 0.08/0.3 0.09/0.3 3.47/0.3 0.47/0.3 0.03/0.3 0.04/0.3 0.13/0.3
FCLoRA | 1.01/0.3 0.10/0.3 0.12/0.3 4.15/0.3 0.57/0.3 0.04/0.3 0.05/0.3 0.16/0.3

Empirical complexity analysis. We conduct additional experiments on empirical time complexity
and GPU usage during fine-tuning and inference phase. [Iable 19| summarizes the empirical train-
ing time (min per epoch) and peak GPU usage (GB) of RoOBERTay,. fine-tuned on GLUE tasks.
The GPU usage showed a very slight increase compared to the original LoRA, and the additional
runtime occurs in FCLoRA and AdalLoRA. This increase arises from the orthogonal regularization
of singular vectors generated by parameterized SVD. However, fine-tuning typically requires fewer
epochs, and considering the improved performance and the ability to retain pre-trained knowledge
compared to the baseline model, this increase is negligible. reports the empirical infer-
ence time (min per epoch) and peak GPU usage (GB) of RoBERTay, fine-tuned on GLUE tasks.
FCLoRA exhibits a marginal increase in inference latency and peak GPU memory relative to vanilla
LoRA; nonetheless, both metrics remain lower than those of AdaLLoRA and are practically compa-
rable overall.
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