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ABSTRACT

In recent years, low-rank adaptation (LoRA) has emerged as a significant
paradigm, which freezes the pre-trained weights and introduces small, learnable
adapters instead of fine-tuning the full set of parameters. In this work, we uncover
several key insights regarding to the singular components of the network parame-
ters based on Singular Value Decomposition (SVD). Firstly, the dominant singular
components with large singular values in pre-trained network parameters can be
effectively reused during fine-tuning, whereas the fine-grained components with
smaller singular values are more task-specific and require substantial adaptation.
Secondly, the growth of singular values in the LoRA adapter leads to the forgetting
of pre-trained knowledge — a well-known issue called catastrophic forgetting.
Building upon these observations, we propose FCLoRA, which injects learnable
fine-grained singular components to the pre-trained model. By employing param-
eterized SVD and restricting the singular values to an appropriate range, FCLoRA
can effectively adapt to new tasks by learning in the fine-grained singular domain
and alleviates the catastrophic forgetting problem. We conduct extensive exper-
iments and demonstrate that FCLoRA not only improves performance but also
effectively retains pre-trained knowledge.

1 INTRODUCTION

Pre-trained language models (PLMs) have achieved remarkable performance in various natural lan-
guage processing tasks (Devlin et al., 2019; Liu et al., 2019; Lan et al., 2019; He et al., 2020; Touvron
et al., 2023a; Achiam et al., 2023; Anil et al., 2023). The common way to adapt pre-trained language
models to downstream tasks is fine-tuning. However, fine-tuning all parameters and storing copies
of the large model for each downstream task results in significant cost and memory consumption. To
address this issue, recent studies suggest parameter-efficient fine-tuning (PEFT) methods (Hu et al.,
2021; Zhang et al., 2023; Lialin et al., 2023; Liu et al., 2024; Jiang et al., 2024; Meng et al., 2024;
Wang et al., 2024), fine-tuning with only a small number of parameters.

Low-Rank Adaptation (LoRA) (Hu et al., 2021), which updates parameters using low-rank matrices,
has shown promising performance over other methods such as prompt tuning (Lester et al., 2021)
or prefix tuning (Li & Liang, 2021). LoRA keeps the pre-trained weights frozen and updates only
a small number of parameters, which makes LoRA both storage- and compute-efficient. LoRA is
designed based on the assumption that pre-trained language models are inherently low-dimensional
and can learn efficiently even with random projections into smaller subspaces. The low-rank matri-
ces serve as adapters, amplifying features that were learned but not emphasized during pre-training.

In recent years, many studies have investigated the properties of singular components with Singular
Value Decomposition (SVD) in LoRA (Meng et al., 2024; Wang et al., 2024; Bałazy et al., 2024). A
singular component refers to a single rank-1 matrix formed by the product of a pair of left and right
singular vectors and their corresponding singular value. Specifically, a dominant singular component
refers to one associated with a relatively larger singular value, representing the global structure of the
matrix (Abdi & Williams, 2010; Meng et al., 2024). Conversely, a fine-grained singular component
corresponds to a relatively smaller singular value and is often considered as noise (Wang et al.,
2024). In deep learning, however, because learned weight matrices are typically full rank (Hu et al.,
2021; Garg et al., 2025; Yu & Wu, 2023), the fine-grained singular components are not merely noise;
rather, they also encode detailed and fine-grained information within the matrix.
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Figure 1: (a) The Fisher overlap (Kirkpatrick et al., 2017) between the pre-trained task (Book-
Corpus) and the fine-tuning task (MRPC), evaluated over partial reconstructions of the pre-trained
network parameters obtained by grouping singular components sorted from large to small according
to their singular values. Additional visualizations for other datasets are in Appendix E. (b) The trade-
off between the spectral norm of the adapter and the accuracy on the pre-trained task (BookCorpus)
during fine-tuning of LoRA on the STS-B dataset from the GLUE benchmark for RoBERTabase.

Motivations. We uncover key insights on the singular components of the network parameters.

Firstly, the dominant singular components of the pre-trained network parameters can be reused
for the fine-tuning task to a great extent; the fine-grained singular components become more task-
specific and thus require a significant adaptation. To quantify the alignment between pre-training
and fine-tuning tasks, we compute the Fisher overlap (Kirkpatrick et al., 2017; Yao & Hansen, 2022;
Qian et al., 2024) based on partial reconstructions of the pre-trained network parameter, obtained
by grouping its singular components. Specifically, we perform SVD on the pre-trained parameters,
sort the singular values in descending order, and divide the corresponding singular components into
groups. Each group is then used to independently reconstruct a partial version of the parameters.
The Fisher overlap computed from each reconstruction reflects how well that particular subset of sin-
gular components from the pre-trained parameters aligns with the fine-tuning task. A higher Fisher
overlap indicates stronger alignment, suggesting that the corresponding components are more trans-
ferable. The detailed formulation of the Fisher overlap is provided in Appendix E. Fig. 1 (a) shows
that overlap gradually decreases as the singular components become more fine-grained, suggesting
that the dominant singular components are already aligned, while fine-grained singular components
need more task-specific adaptation.

Secondly, we demonstrate that the growth of singular values in the adapters during fine-tuning leads
to forgetting of the pre-trained knowledge. The optimization of deep learning, including LoRA,
can be seen as a process of performing a maximum a posteriori (MAP) estimation on the training
data. During fine-tuning, the MAP objective maximizes the posterior probability by combining the
likelihood of the fine-tuning data with the prior distribution from the pre-training data. We reveal
that when the singular values of the adapter increase, the prior from the pre-trained task decreases
(see Theorem 3.1). This can result in a phenomenon called catastrophic forgetting, where the model
rapidly forgets the pre-trained knowledge during fine-tuning. This phenomenon undermines the scal-
ability and reliability of pre-trained models, thereby making it essential to address this issue (Wang
et al., 2024; Yang et al., 2024b; Ren et al., 2024; Yang et al., 2024a; Dou et al., 2024). It is also
known that during typical stochastic optimization, the spectral norm of weight matrices tends to
grow rapidly. As a result, the growth of norm leads to catastrophic forgetting in common fine-tuning
scenarios. Fig. 1 (b) shows that LoRA experiences a significant increase in the singular values of the
adapter during fine-tuning. This increase is associated to performance degradation on the pre-trained
task, suggesting that LoRA is also vulnerable to catastrophic forgetting.

Main idea. Inspired by these observations, we propose a Low-Rank Adaptation with Fine-grained
Component injection, called FCLoRA, which effectively adapts to the new task while retaining the
pre-trained knowledge. We propose to inject an appropriate range of fine-grained singular com-
ponents into the pre-trained model through parameterized SVD. Restricting the singular values of
the injected components prevents them from becoming excessively large, allowing the introduced

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

modules to maintain a focus on the fine-grained information. This approach helps the model to
adapt effectively to new tasks by focusing on the singular components that require greater adapta-
tion. Moreover, the model preserves the pre-trained knowledge by balancing the likelihood from
fine-tuning data with prior probabilities from the pre-training dataset. We conduct extensive ex-
periments to evaluate the effectiveness of FCLoRA, demonstrating that it consistently outperforms
LoRA and its variants across various tasks. Additionally, we assess catastrophic forgetting across
multiple baseline models, showing that FCLoRA significantly mitigates the forgetting of pre-trained
knowledge. Our key contributions can be summarized as follows:

• In Section 3.1, we reveal that the fine-grained singular components of the network param-
eter require a significant adaptation, and the growth of singular values in the adapters leads
to the forgetting of pre-trained knowledge.

• In Section 3.2, we propose an advanced low-rank adaptation method, called FCLoRA,
which injects the models with the fine-grained singular components using parameterized
SVD, ensuring that the pre-trained model efficiently adapts to new tasks and mitigates the
catastrophic forgetting problem.

• In Section 4 and Section 5, we conduct comprehensive experiments demonstrating that
FCLoRA efficiently adapts to the new task and discuss how FCLoRA differs from existing
LoRA variants, particularly in addressing the limitations, e.g., catastrophic forgetting.

2 PRELIMINARIES & RELATED WORKS

2.1 TRANSFORMERS

Transformers can be understood from two key submodules: multi-head attention (MHA) and feed-
forward network (FFN). The MHA with h parallel heads performs the attention function as follows:

MHA(X) = Concat(head1, . . . , headh)Wo; headi = Softmax
(
XWqi(XWki)

⊤
√
dk

)
XWvi , (1)

where Wo ∈ Rd×d is an output projection weight and Wqi ,Wki
,Wvi ∈ Rd×dh are query, key,

and value projection weights for each head i. dh is typically set to d/h. FFN performs two linear
transformations with a ReLU activation as follows:

FFN(X) = ReLU(XWf1 + b1)Wf2 + b2, (2)

where Wf1 ∈ Rd×dm and Wf2 ∈ Rdm×d. These architectures enable a model to understand the
language patterns and generate human-like texts in natural language processing.

2.2 LOW-RANK ADAPTATION

LoRA (Hu et al., 2021) suggests the low-rank update of the pre-trained weights by the product of
two low-rank matrices. For h = W0x, the modified forward pass becomes:

h = W0x+∆Wx = W0x+BAx, (3)

where W0,∆W ∈ Rd1×d2 , A ∈ Rr×d2 and B ∈ Rd1×r with r ≪ {d1, d2}. A is initialized with a
random Gaussian initialization and B with zero, so ∆W = BA is initially zero at the beginning of
training. After fine-tuning, the learnable adapter ∆W can be integrated into the pre-trained weight
W without modifying the original model architecture or adding any additional inference overhead.

LoRA with explicit SVD. Recent studies have explicitly decomposed the network parameters
using SVD to initialize adapters with a subset of components. LoRA-XS (Bałazy et al., 2024) di-
rectly decomposes the pre-trained networks and initializes the adapters with principal components.
PiSSA (Meng et al., 2024) assumes that the principal components hold the most important infor-
mation, decomposing the network parameters into principal and residual components using explicit
SVD. Then the residual components freeze, while the adapter is initialized with the principal com-
ponents and directly updated. Conversely, MiLoRA (Wang et al., 2024) proposes directly modifying
the minor components of the pre-trained networks, assuming they are noisy and less important, in
order to better preserve the pre-trained knowledge.
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LoRA with parameterized SVD. AdaLoRA (Zhang et al., 2023) dynamically adjusts the rank for
each LoRA layer based on a sensitivity-driven importance score. They focus on pruning the number
of ranks with parameterized SVD to meet a predefined budget using heuristic importance scores.
LoRA2 (Zhang et al., 2024) uses the twice-nested parameterized SVD to iteratively project the to-
ken representations onto mutually orthogonal planes. Mo-SARA (Gu et al., 2024) initializes the
singular vectors with principal components of the pre-trained network parameters. They freeze the
singular vectors and fine-tune only the randomly initialized singular values under the same eigen-
vector mappings with the pre-trained network parameters. Therefore, recent studies design LoRA
based on the parameterized SVD (i.e., Equation (9)), which differ in their specific design strategies.

2.3 CATASTROPHIC FORGETTING AND LORA

Catastrophic forgetting refers to the phenomenon where the models forget previously acquired
knowledge during adaptation to new tasks, a well-known issue in the field of deep learning (Mc-
Closkey & Cohen, 1989; French, 1999; Kirkpatrick et al., 2017). To address this challenge, recent
studies have proposed various approaches, including knowledge distillation (Li & Hoiem, 2017;
Hou et al., 2019), rehearsal (Riemer et al., 2018; Yang et al., 2023) and dynamic architectures (Yan
et al., 2021). This issue is particularly severe in large language models (LLMs), which learn ex-
tensive world knowledge through the pre-training process on massive datasets. During the fine-
tuning process, where task-specific information is learned based on this world knowledge, forgetting
the pre-trained knowledge can significantly undermine the stability and scalability of the models.
Catastrophic forgetting has also been observed in parameter-efficient fine-tuning methods, includ-
ing LoRA, prompting recent studies to propose various approaches to mitigate this issue (Wang
et al., 2024; Yang et al., 2024b; Ren et al., 2024; Yang et al., 2024a; Dou et al., 2024).

3 PROPOSED METHOD

3.1 MOTIVATIONS

In LoRA, there are some key insights on the singular components of the network parameters.

Relationship between singular components and adaptation. It is known that the dominant sin-
gular components with large singular values handle global information, while fine-grained singular
components with smaller singular values and capture fine-grained details for full-rank matrix, such
as weight matrix in deep learning. This distinction plays a crucial role in how the network pro-
cesses tasks. To analyze how the pre-trained parameters are aligned with the fine-tuning task across
various singular components, we decompose the pre-trained network parameters into singular com-
ponent groups and measure the Fisher overlap (Kirkpatrick et al., 2017; Yao & Hansen, 2022; Qian
et al., 2024) on each group for both tasks. A higher Fisher overlap indicates that the pre-trained
network parameters are already aligned with the fine-tuning task and can be efficiently adapted
by reusing them, as both tasks share knowledge and rely on a similar set of weights. Fig. 1 (a)
illustrates the changes in the Fisher overlap for the pre-training and fine-tuning tasks, segmented
from low to fine-grained singular components of the pre-trained network parameters. Notably, the
pre-trained parameters reconstructed in the dominant singular value range exhibit a relatively high
overlap ratio, while the overlap ratio decreases as the singular increases. This observation suggests
that the dominant singular components of the pre-trained network parameters are already aligned to
the fine-tuning task and can be reused for the fine-tuning task to a great extent; the higher-singular
components become more task-specific and thus require a significant adaptation.

Relationship between singular components and catastrophic forgetting. The optimization of
deep learning models, including LoRA, is to perform a Maximum A Posteriori (MAP) estimation of
the network parameters θ on the training data. In transfer learning, the models are pre-trained using
the pre-training dataset DA and fine-tuned on the fine-tuning dataset DB . As revealed in Kirkpatrick
et al. (2017), the posterior that needs to be maximized in MAP estimation is as follows:

p(θ|DA,DB) =
p(DB |θ)p(θ|DA)

p(DB |DA)
, (4)
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where DB is assumed to be independent of DA. By taking the logarithm of the posterior, the
objective of MAP becomes as follows:

θ∗ = argmax
θ

log p(θ|DA,DB) = argmax
θ

[
log p(DB |θ) + log p(θ|DA)

]
. (5)

The first term is the likelihood of DB given the parameters and expressed as the loss function for
the fine-tuning task. The second term represents the prior of the parameters given DA. During fine-
tuning, we incorporate the posterior of the pre-trained task p(θ|DA) as the prior of the fine-tuning
task. However, since the true posterior probability is intractable, it can be expressed as a function
f(θ) and approximated using the Laplace approximation, a well-established method in Bayesian
deep learning for handling intractable posteriors (Kirkpatrick et al., 2017; Ritter et al., 2018; Wang
et al., 2021; Matena & Raffel, 2022; Gawlikowski et al., 2023). The Laplace approximation of the
posterior is derived from a second-order Taylor expansion around its mode θ0 as:

log p(θ|DA) ≃ log p̂(θ|DA) = f(θ0)−
1

2
(θ − θ0)

⊤F (θ − θ0), (6)

where F is the Fisher information matrix (Fisher, 1922). During fine-tuning, if the prior probability
of the parameters decreases while learning a new task, it implies that the pre-trained knowledge is
not sufficiently preserved. The following theorem shows that the prior probability is upper-bounded
by the singular values of the difference between pre-trained and fine-tuned parameters.
Theorem 3.1. Let θ0 and θ be the pre-trained and fine-tuned weights, respectively. Then the log
probability of the prior log p(θ|DA) for fine-tuning task can be approximated using Laplace Ap-
proximation as log p(θ|DA) ≃ f(θ0) − 1

2 (θ − θ0)
⊤F (θ − θ0). From this, the approximated log

probability of the prior is upper-bounded as follows:

log p̂(θ|DA) ≤ f(θ0)− λmin(F )

√√√√ r∑
n=1

σ2
n, (7)

where λmin(·) indicates the smallest eigenvalue and σn is n-th singular value of θ − θ0.

The proof is described in Appendix F. It is worth to note that the negligibility of higher-order terms
in the Laplace approximation is a well-established literature in (Kass et al., 1990), and we provide
details in Appendix G. According to Theorem 3.1, log p̂(θ|DA) is upper bounded by the singular
values of the parameter difference, which is adapter in LoRA. Specifically, larger singular values
of the adapter lead to a decrease in the posterior from the pre-training task, resulting in the loss of
pre-trained knowledge, the phenomenon called catastrophic forgetting. The catastrophic forgetting
problem undermines the strengths of pre-trained models and hinders their adaptability to new tasks,
making it crucial to address in order to maintain scalability and reliability in transfer learning (Wang
et al., 2024; Yang et al., 2024b; Ren et al., 2024; Yang et al., 2024a; Dou et al., 2024).

In stochastic optimization, however, the spectral norm of weight matrices grows rapidly (Zhai et al.,
2023). It is commonly assumed that stochastic gradients at a certain point can be expressed as
g = µ + ϵ ∈ Rd×d, where µ is the mean and ϵ is a random variable representing noise. The
following proposition establishes a lower bound on the spectral norm of the ideal update ∥∆∥.
Proposition 3.2. From Zhai et al. (2023), it holds that:

∥∆∥ ≥
√
d

√√√√1− 1

d2

d∑
i,j=1

ω2
i,j

µ2i, j + ω2
i,j

. (8)

The noise second moment ω2 is typically in the order of µ2. Hence, Proposition 3.2 indicates that
the spectral norm of the ideal update should be large, growing linearly with

√
d. Moreover, for large

batch sizes we would have ω2 ≪ 1, resulting in ∥∆∥ ∼
√
d. The proposition demonstrates that the

spectral norm of weight matrices grows rapidly for large dimensions when equipped with adaptive
optimizers. Therefore, in a general probabilistic optimization, the spectral norm is learned in the
direction of increasing in the transfer learning including LoRA. This means that the largest singular
value increases, which reduces the probability of the pre-trained knowledge in MAP and causes
catastrophic forgetting. Fig. 1 (b) shows that the singular values of the adapter in LoRA increase
significantly in the early stage of fine-tuning. This increase results in the performance degradation
of the pre-trained task, which suggests that LoRA is also vulnerable to catastrophic forgetting.
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Figure 2: The architectures of LoRA and FCLoRA. FCLoRA employs parameterized SVD, where
the learnable singular values are constrained by the pre-defined upper bound σ̄.

3.2 LOW-RANK ADAPTATION WITH FINE-GRAINED COMPONENT INJECTION

Building upon these insights, we propose a Low Rank Adaptation method with Fine-grained
Component injection method, called FCLoRA, to adapt effectively for new tasks while retaining the
pre-trained knowledge. Fig. 2 illustrates the architectures of the traditional LoRA and our proposed
FCLoRA. While LoRA interprets ∆W as an adapter residual to the original pre-trained weights
W0, FCLoRA treats ∆W as an injected fine-grained singular component to W0. To define ∆W
as a matrix of learnable components with appropriate range of singular values, we parameterize the
introduced modules in the form of singular value decomposition, based on the following common
framework of the parameterized SVD-based LoRA (Zhang et al., 2023; Cao, 2024; Zhang et al.,
2024), with our enhancement in managing the learnable singular components:

W = W0 +∆W = W0 + UΣV ⊤, (9)

where U ∈ Rd1×r, V ⊤ ∈ Rd2×r are parameterized left and right singular vectors, respectively, and
Σ ∈ Rr contains the parameterized singular values {σn}1≤n≤r. U, V are initialized with random r
singular vectors of W0, or U is initialized with zero and V with a random Gaussian. Note that SVD
on W0 is performed only once before fine-tuning as in (Wang et al., 2024; Meng et al., 2024), and
the actual operation does not involve any explicit decomposition or reconstruction of W0 during the
fine-tuning process. As mentioned earlier, we maintain the singular components of the introduced
modules at an appropriate range. We set the lower bound of the singular values as zero according
to the definition of SVD, ensuring the singular values to be non-negative. To enable the adapter
to effectively inject fine-grained information for learning the new task, we constrain the injected
singular values to lie below a pre-defined upper bound σ̄, as expressed by the following equation:

σn = min(max(σn, 0), σ̄), (10)

where σ̄ can hold the q-th quartile of the singular values of W0, denoted as σ(q). To enforce the
orthogonality of the singular vectors, i.e., U⊤U = V V ⊤ = I , we apply the regularization term as:

R(U, V ) = ∥U⊤U − I∥+ ∥V V ⊤ − I∥ (11)

where I ∈ Rr×r indicates an identity matrix. This regularization term is controlled by the orthog-
onal regularization coefficient γ. We verify the orthogonality of the parameterized singular vectors
in Appendix O.4. We present the training process in Algorithm 1 of Appendix J.

4 EXPERIMENTS

In this section, we empirically verify that FCLoRA efficiently adapts to the new task and improves
the performance over other LoRA-based methods.

4.1 EXPERIMENTS ON NATURAL LANGUAGE UNDERSTANDING

Experimental setup. We evaluate FCLoRA on the General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018a). Following Hu et al. (2021) and Zhang et al. (2023), we
adopt the pre-trained RoBERTabase and DeBERTabase as the backbone models, respectively. We
report Matthews correlation for CoLA, Spearman correlations for STS-B, and accuracy scores for
the other tasks. The detailed descriptions are provided in Appendix M.1.2.
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Table 1: Comparison of various methods with RoBERTabase on GLUE tasks with different random
seeds. Full results with standard deviations are provided in Appendix M.1.4.

Method # Params MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B Avg.

LoRA 1.33M 87.93 94.80 64.49 90.94 92.73 80.39 89.05 90.87 86.40
AdaLoRA 1.27M 87.21 95.07 61.37 89.75 92.54 81.11 89.05 90.62 85.84
PiSSA 1.33M 87.95 94.53 64.66 90.97 92.53 79.18 89.79 90.96 86.32
rsLoRA 1.33M 85.26 92.35 65.17 70.76 92.48 79.54 89.05 90.88 83.19
LoRA+ 1.33M 86.96 93.92 63.32 90.69 92.77 81.59 88.97 90.84 86.13
MiLoRA 1.33M 87.88 94.69 64.31 91.02 92.96 81.35 89.30 90.96 86.56
DoRA 1.41M 87.81 95.11 64.23 90.65 92.93 81.35 89.54 91.01 86.58
FCLoRA 1.33M 87.95 95.37 64.79 90.76 93.09 83.15 90.32 91.22 87.08

Table 2: Comparison of various methods with DeBERTaV3base on GLUE tasks with different ran-
dom seeds. The results for the baselines are copied from Zhang et al. (2023). Full results with
standard deviations are provided in Appendix M.1.4.

Method # Params MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B Avg.

Full FT 184M 89.90 95.63 69.19 92.40 94.03 83.75 89.46 91.60 88.09

BitFit 0.10M 89.37 94.84 66.96 88.41 92.24 78.70 87.75 91.35 86.02
HAdapter 1.22M 90.13 95.53 68.64 91.91 94.11 84.48 89.95 91.48 88.12
PAdapter 1.18M 90.33 95.61 68.77 92.04 94.29 85.20 89.46 91.54 88.24
LoRAr=8 1.33M 90.65 94.95 69.82 91.99 93.87 85.20 89.95 91.60 88.34
AdaLoRA 1.27M 90.76 96.10 71.45 92.23 94.55 88.09 90.69 91.84 89.31
FCLoRA 1.33M 90.36 96.33 71.49 92.33 94.57 89.41 91.58 92.19 89.78

HAdapter 0.61M 90.12 95.30 67.87 91.65 93.76 85.56 89.22 91.30 87.93
PAdapter 0.60M 90.15 95.53 69.48 91.62 93.98 84.12 89.22 91.52 88.04
HAdapter 0.31M 90.10 95.41 67.65 91.54 93.52 83.39 89.25 91.31 87.60
PAdapter 0.30M 89.89 94.72 69.06 91.40 93.87 84.48 89.71 91.38 87.90
LoRAr=2 0.33M 90.30 94.95 68.71 91.61 94.03 85.56 89.71 91.68 88.15
AdaLoRA 0.32M 90.66 95.80 70.04 91.78 94.49 87.36 90.44 91.63 88.86
FCLoRA 0.33M 90.66 96.18 71.83 91.82 94.50 89.89 91.83 92.00 89.84

Experimental results. In Table 1, MiLoRA, which is closely related to our model, fails to achieve
optimal performance due to information loss caused by directly modifying the fine-grained singu-
lar components. In contrast, motivated by the tendency of network parameter overlap, FCLoRA
efficiently adapts to fine-tuning tasks by injecting the fine-grained singular components.

4.2 EXPERIMENTS ON QUESTION ANSWERING

Experimental setup. We evaluate FCLoRA on two question answering (QA) tasks:
SQuADv1.1 (Rajpurkar, 2016) and SQuADv2.0 (Rajpurkar et al., 2018). Following Zhang et al.
(2023), we fine-tune a DeBERTaV3base (He et al., 2021). We measured the performance using the
Exact Match (EM) and F1 metrics. The detailed descriptions are provided in Appendix M.2.2.

Experimental results. Table 3 reports the experimental results of fine-tuning DeBERTabase on
the QA task under four different budget settings: 0.08%, 0.16%, 0.32%, and 0.65% of the total
pre-trained parameters. The proposed method outperformed the baselines across most settings, high-
lighting that fine-grained singular information can be effectively and efficiently adapted to new tasks

4.3 EXPERIMENTS ON COMMONSENSE REASONING

Experimental setup. We evaluate FCLoRA on the commonsense reasoning tasks. Following Hu
et al. (2023), we amalgamate the training datasets from all 8 tasks to create the final training dataset
and evaluate with individual testing for each task. We fine-tune LLaMA-7B (Touvron et al., 2023a)
and LLaMA2-7B (Touvron et al., 2023b). The detailed descriptions are provided in Appendix M.3.2.

Experimental results. Table 4 reports the results on commonsense reasoning tasks. FCLoRA
outperforms other methods, highlighting the effectiveness of fine-grained singular components of
adapters even in larger models. The result suggests that fine-tuning with fine-grained singular com-
ponents plays a crucial role in enhancing reasoning performance across diverse tasks.
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Table 3: Comparison of various methods with DeBERTaV3base on SQuAD datasets

Method SQuADv1.1 SQuADv2.0

0.08% 0.16% 0.32% 0.65% 0.08% 0.16% 0.32% 0.65%

Full FT* 86.0 / 92.7 85.4 / 88.4

HAdapter 84.4/91.5 85.3/92.1 86.1/92.7 86.7/92.9 83.4/86.6 84.3/87.3 84.9/87.9 85.4/88.3
PAdapter 84.4/91.7 85.9/92.5 86.2/92.8 86.6/93.0 84.2/87.2 84.5/87.6 84.9/87.8 84.5/87.5
LoRA 86.4/92.8 86.6/92.9 86.7/93.1 86.7/93.1 84.7/87.5 83.6/86.7 84.5/87.4 85.0/88.0
AdaLoRA 87.2/93.4 87.5/93.6 87.5/93.7 87.6/93.7 85.6/88.7 85.7/88.8 85.5/88.6 86.0/88.9
FCLoRA 87.6/93.6 88.1/93.9 88.2/94.1 88.6/94.3 85.3/88.3 85.9/88.7 86.0/88.8 86.2/89.0

Table 4: Comparison of various methods with LLaMA on commonsense reasoning tasks

Model Method #Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

ChatGPT - - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLaMA-7B

Prefix 0.11 64.3 76.8 73.9 42.1 72.1 72.9 54.0 60.6 64.6
Series 0.99 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8
Parallel 3.54 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.2
LoRA 0.83 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7
DoRA† 0.43 70.0 82.6 79.7 83.2 80.6 80.6 65.4 77.6 77.5
DoRA 0.84 69.7 83.4 78.6 87.2 81.0 81.9 66.2 79.2 78.4
FCLoRA 0.83 70.5 82.2 79.3 86.2 81.5 81.7 66.9 80.2 78.6

LLaMA2-7B

LoRA 0.83 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
DoRA† 0.43 72.0 83.1 79.9 89.1 83.0 84.5 71.0 81.2 80.5
DoRA 0.84 71.8 83.7 76.0 89.1 82.6 83.7 68.2 82.4 79.7
FCLoRA 0.83 73.2 82.9 79.8 91.9 83.0 85.2 71.6 82.6 81.3

5 DISCUSSIONS ON CATASTROPHIC FORGETTING

This section discusses how FCLoRA mitigates catastrophic forgetting compared to LoRA variants.

5.1 COMPARISON WITH OTHER LORA-BASED METHODS

The traditional LoRA freezes the whole pre-trained network parameters and learns adapters which
are initialized to zero. PiSSA (Meng et al., 2024) and MiLoRA (Wang et al., 2024) adapt to new
tasks by directly adjusting the r highest/lowest singular values, respectively, making them highly
relevant to FCLoRA in terms of employing singular values. However, existing methods suffer from
catastrophic forgetting since: i) PiSSA and MiLoRA directly modify a subset of pre-trained param-
eters, leading to the loss of pre-trained knowledge, and ii) the lack of constraints on the singular
values in the adapters during fine-tuning causes singular values to grow and results in reducing the
posterior of the pre-trained task (see Theorem 3.1). In contrast, FCLoRA restricts the upper bound
of the singular values of adapters during fine-tuning. This prevents the growth of spectral norms in
adapters without incurring overhead, thereby effectively mitigating catastrophic forgetting.

5.2 SPECTRAL ANALYSIS OF ∆W

Proposition 3.2 demonstrates that the spectral norm of large weight matrices increases rapidly when
adaptive optimizers are applied. However, FCLoRA prevents this increase by restricting the range
of the singular value of ∆W during fine-tuning, ensuring that the spectral norm does not grow
excessively. To empirically verify this difference, Fig. 3 (a) illustrates the evolution of the spectral
norm of ∆W across various methods during the fine-tuning. While LoRA and its variants tend
to increase the spectral norm during fine-tuning, FCLoRA maintains a smaller spectral norm. This
suggests that, unlike other LoRA-based methods, FCLoRA adapts to fine-tuning tasks by effectively
incorporating new information with the fine-grained singular components.

5.3 EXPERIMENTS ON MITIGATING CATASTROPHIC FORGETTING

We previously demonstrated that the spectral norm of existing LoRA-based methods growth rapidly
during fine-tuning. Fig. 3 (b) and (c) empirically show the accuracy and evaluation loss on the
pre-trained task with the BookCorpus dataset. As the fine-tuning progresses, LoRA and its variants
rapidly degrade the accuracy on the pre-trained task, dropping from the original performance of 0.6
to below 0.1, and the evaluation loss increases by more than 4 times. As mentioned earlier, without
restrictions on the range of singular values of ∆W during fine-tuning, the model undergoes a rapid
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Figure 3: Changes during fine-tuning RoBERTabase on the MRPC dataset: (a) Spectral norm of ∆W
in the query layer; (b, c) accuracy and evaluation loss on the pre-trained task (BookCorpus dataset).

growth of the spectral norm, leading to catastrophic forgetting of the pre-trained knowledge. In
contrast, FCLoRA effectively mitigates catastrophic forgetting by restricting the range of singular
values of ∆W . This prevents excessive growth of the spectral norm, ensuring it remains at an ap-
propriate level during fine-tuning and minimizing performance degradation on pre-trained tasks. We
further validate the effectiveness of FCLoRA on mitigating catastrophic forgetting in Appendix N.

6 ADDITIONAL STUDIES

In Appendix O, we examine the effects of γ, σ̄ and r as the sensitivity analysis.

6.1 ABLATION STUDY ON THE INJECTED COMPONENTS

Table 5: Ablation on the injected compo-
nents

Model MRPC SST-2

Acc.fine-tune Acc.pre-train Acc.fine-tune Acc.pre-train

Pre-trained - 61.64 - 61.64

LoRA 89.05 3.77 94.81 32.35
LoRAUV ⊤ 89.22 3.12 94.75 39.39
LoRASVD 89.62 17.57 95.03 49.65
FCLoRA 90.32 32.00 95.37 51.29

To analyze the influence of the injected components in
FCLoRA on the performance of both pre-trained and
fine-tuned knowledge, we conduct an ablation study
on the following variants: i) ‘LoRA’ refers to the tradi-
tional LoRA; ii) ‘LoRAUV ⊤ ’ applies orthogonal reg-
ularization to the singular vectors without the singular
values; iii) ‘LoRASVD’ initializes the singular values as
ones, allowing them to be learnable from LoRAUV ⊤ ;
and iv) ‘FCLoRA’ refers to the proposed method. We
measure the accuracy on both the fine-tuning tasks
with MRPC and SST-2 from the GLUE task, and
the pre-trained task with BookCorpus dataset. In Ta-
ble 5, LoRA significantly sacrifices pre-training per-
formance to adapt on fine-tuning task. For the MRPC dataset, accuracy on the pre-trained task
drops from 61.64 to 3.77, while it achieves comparable accuracy on the fine-tuning task. LoRAUV ⊤

has limited expressiveness since its singular values are fixed, sacrificing either performance of pre-
trained or fine-tuning task. LoRASVD performs better due to its learnable singular values than
LoRAUV ⊤ . Notably, FCLoRA constraints the singular values to learn with the fine-grained singu-
lar components, ensuring both effective adaptation on fine-tuning task and retention of pre-trained
information. For both datasets, FCLoRA achieves the best performance on both tasks.

7 CONCLUSION

We propose a novel low-rank adaptation method called FCLoRA, motivated by the following two
rigorous analyses regarding the singular components of network parameters: i) We, for the first
time, analyze LoRA via the Fisher overlap across the singular components. Specifically, the dom-
inant singular components of pre-trained weights can be reused for fine-tuning tasks, whereas the
fine-grained singular components are more task-specific and require significant adaptation. ii) The
growth of singular values in the adapters directly causes catastrophic forgetting from the perspective
of MAP estimation. From these analyses, we design FCLoRA, which injects the pre-trained model
with fine-grained singular components. Experimental results show that FCLoRA achieves strong
performance on fine-tuning tasks and successfully retains the pre-trained knowledge.

Limitation. Despite the advantages of FCLoRA, the optimal range of singular values to compose
fine-grained singular components may vary across datasets, requiring further tuning in some cases.
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A REPRODUCIBILITY STATEMENT

In an effort to ensure reproducibility, we report the description of dataset in Appendix M.1.1, Ap-
pendix M.2.1 and Appendix M.3.1. Also we report the best hyperparameters of our experiments
in Appendix M.1.3, Appendix M.2.3 and Appendix M.3.3. Our FCLoRA code to reproduce the
experiment can be found at https://bit.ly/3ElHoYb.

B ETHICAL STATEMENT

We utilized publicly available datasets, including GLUE, SQuAD and commonsense reasoning,
which are commonly employed in academic research, and all sources have been appropriately cited.
This research does not involve any personal or confidential information, thereby eliminating con-
cerns related to privacy. Our proposed approach and the resulting insights contribute to the advance-
ment of artificial intelligence while adhering to principles of ethical innovation and responsibility.

C BROADER IMPACT STATEMENT

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted.

D USE OF LLMS

In accordance with ICLR 2026 policy, we acknowledge the use of LLMs in the preparation of this
paper. Their use was limited solely to improving translation accuracy and ensuring grammatical
correctness.

E FORMULATION & ADDITIONAL VISUALIZATION OF FISHER OVERLAP
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(e) QQP
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Figure 4: The Fisher overlap (Kirkpatrick et al., 2017) between the pre-trained task (BookCorpus)
and the fine-tuning task (MRPC), evaluated over partial reconstructions of the pre-trained network
parameters obtained by grouping singular components sorted from large to small according to their
singular values.

Following Kirkpatrick et al. (2017), to examine whether different tasks solved by the same network
rely on overlapping parameter subsets (see Fig. 1 (a)), we assessed the similarity of each task’s
Fisher information matrix. Specifically, we first computed the Fisher matrices for the two tasks,
denoted by F1 and F2. We then normalized each matrix so that its trace was equal to 1, yielding F̂1

and F̂2. Next, we measure how closely these matrices aligned by computing the Fréchet distance, a
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metric on positive-semidefinite matrices, given as:

d2(F̂1, F̂2) =
1

2
tr
(
F̂1 + F̂2 − 2(F̂1F̂2)

1/2
)
=

1

2
∥F̂ 1/2

1 − F̂
1/2
2 ∥F , (12)

where this quantity lies between 0 and 1. We then define the overlap of the two tasks’ Fisher
matrices as 1 − d2. Hence, an overlap of 0 implies that the two tasks employ entirely distinct sets
of parameters, whereas an overlap of 1 indicates that one Fisher matrix is simply a scaled version of
the other (i.e., F1 = αF2 for some α > 0).

Then, to verify the Fisher overlap across the singular components of the pre-trained network param-
eters, we perform SVD on the pre-trained parameters of the RoBERTabase model, trained on multiple
datasets including BookCorpus. We group the singular components sorted by their singular values
and reconstruct partial versions of the parameters from each group. Fig. 4 shows the Fisher overlap
computed for the BookCorpus task as well as for each task in the GLUE benchmark. Across all
tasks, the Fisher overlap progressively decreases as we move from groups containing larger singu-
lar values to those with smaller ones, indicating that fine-tuning increasingly struggles to reuse the
finer-grained partial reconstructions of the pre-trained parameters.

F PROOF OF THEOREM 3.1

Theorem 3.1. Let θ0 and θ be the pre-trained and fine-tuned weights, respectively. Then the log
probability of the prior log p(θ|DA) for fine-tuning task can be approximated using Laplace Ap-
proximation as log p(θ|DA) ≃ f(θ0) − 1

2 (θ − θ0)
⊤F (θ − θ0). From this, the approximated log

probability of the prior is upper-bounded as follows:

log p̂(θ|DA) ≤ f(θ0)− λmin(F )

√√√√ r∑
n=1

σ2
n, (13)

where λmin(·) indicates the smallest eigenvalue and σn is n-th singular value of θ − θ0.

Proof. The optimization of neural networks can be considered as a process of estimating the network
parameters θ through maximum a posteriori (MAP) estimation using the training data. This involves
the pre-training dataset DA and the fine-tuning dataset DB . The pre-trained weights are denoted as
θ0, and the fine-tuned weights are represented as θ.

The posterior to be maximized in the MAP estimation is formulated as:

p(θ|DA,DB) =
p(DB |θ,DA)p(θ|DA)

p(DB |DA)
=

p(DB |θ)p(θ|DA)

p(DB |DA)
. (14)

Taking a logarithm of the posterior, the MAP objective becomes:

θ∗ = argmax
θ

log p(θ|DA,DB) = argmax
θ

[
log p(DB |θ) + log p(θ|DA)

]
. (15)

Since the true posterior is intractable, we approximate the posterior using Laplace Approximation.
log p(θ|DA) can be expressed as a function f(θ) and approximated near the optimal point f(θ0),
where θ0 represents the pre-trained parameters, and ∇f(θ0) = 0. Subsequently, a second-order
Taylor expansion of f(θ) around θ0 is performed as follows:

log p(θ|DA) ≃ f(θ0) +
1

2
(θ − θ0)∇2f(θ0)(θ − θ0) = f(θ0) +

1

2
(θ − θ0)

⊤H(θ − θ0), (16)

where H denotes the Hessian matrix of f(θ) evaluated at θ0. The expected value of the Hessian
over the data distribution corresponds to the Fisher information matrix (FIM) F , defined as F =
−EDA

[H]. Following (MacKay, 1992; Kirkpatrick et al., 2017), we approximate the posterior as a
Gaussian distribution with mean given by the parameters θ0 and a diagonal precision given by the
diagonal of the Fisher information matrix F . Given this approximation, the log probability can be
expressed as:

log p(θ|DA) ≃ log p̂(θ|DA) = f(θ0)−
1

2
(θ − θ0)

⊤F (θ − θ0), (17)
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where the F is symmetric and positive semi-definite, i.e., for any vector v, vFv⊤ ≥ 0. Then using
the singular value decomposition (SVD) on θ−θ0 = ∆θ = UΣV ⊤ where U ∈ Rd1×r, V ∈ Rr×d2 ,
and Σ ∈ Rr with {σn}1≤n≤r. As U, V are orthonormal singular vectors and F is a positive semi-
definite matrix,

∆θ⊤F∆θ ≥ λmin(F )∥∆θ∥F = λmin(F )∥Σ∥F . (18)

Therefore, the log probability of the approximated prior for the fine-tuning task from the pre-trained
task is upper bounded as:

log p̂(θ|DA) = f(θ0)− 1
2 (θ − θ0)

⊺F (θ − θ0) ≤ f(θ0)− λmin(F ) ∥Σ∥F

= f(θ0)− λmin(F )

√√√√ r∑
n=1

σ2
n

(19)

G WELL-ESTABLISHED PROPERTIES ON LAPLACEㅁAPPROXIMATION

G.1 ERROR BOUND OF LAPLACE APPROXIMATION

In Bayesian inference, one of the most widely used methods for approximating the posterior distri-
bution is the Laplace approximation (Kass et al., 1990; Kirkpatrick et al., 2017; Ritter et al., 2018;
Wang et al., 2021; Matena & Raffel, 2022; Gawlikowski et al., 2023). This method expands the log-
posterior function around its mode (i.e., the MAP estimate) using a Taylor series and retains terms
up to the second order, thereby approximating the posterior distribution by a Gaussian distribution.
In other words, higher-order terms beyond the quadratic expansion are discarded, and the resulting
approximation error is generally limited and asymptotically negligible.

In particular, under standard regularity conditions, it is well established that the relative error of
Laplace approximation is no worse than Op(n

−1) under standard regularity conditions, where Op

refers to stochastic boundedness (Kass et al., 1990; Bilodeau et al., 2023). This ensures that, as the
sample size n increases, the approximation error vanishes at the rate of n−1. Moreover, in deep
learning, where the number of training samples n is typically very large, the accuracy of the Laplace
approximation is further reinforced. Consequently, the Laplace approximation provides not only a
practical tool but also a theoretically justified method for posterior approximation in both Bayesian
inference and large-scale probabilistic modeling.

G.2 DECAY RATE OF THE INTEGRAL OVER THE MODE-DISTANT REGION

Laplace approximation is applied when the target function is sharply concentrated around a single
mode θ0 and decays rapidly as θ moves away from it. The method rewrites the integral in expo-
nential form and then approximates the log-posterior by a second-order Taylor expansion around its
mode. The region where θ − θ0 is large corresponds to the tail of the function. The approxima-
tion error in this region should not be judged solely by the magnitude of |θ − θ0|; rather, its actual
contribution to the integral must be considered. Kass et al. (1990) rigorously demonstrates that this
tail contribution is negligible. First, as the sample size increases, the likelihood function becomes
increasingly peaked, so the posterior concentrates around the mode θ0. Second, the integral over
regions distant from θ0 decays exponentially with n, that is, it is bounded by exp(−nc) for some
c > 0. Consequently, the integral over the mode-distant region converges to zero, and the dominant
contribution to the integral arises near the mode.

H EXPONENTIAL DECAY OF SINGULAR VALUES

To find the best possible n-dimensional subspace Vn such that the closest approximation v ∈ Vn to
W minimizes the error ∥W − v∥X , the definition of Kolmogorov n-width is formulated as follows:

dn(W,X) = inf
Vn⊂X

dimVn=n

inf
v∈Vn

∥W − v∥X , (20)
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Figure 5: The error rate of the normalized singular values for: (i) the final output projection layer
weights W0 in the self-attention mechanism of DeBERTaV3base, and (ii) an ideal low-rank matrix
with rank r = 64. The marker indicates the n-value where the approximation error reaches 5%.

where Vn is n-dimensional subspace of X , v is an element from the subspace Vn. ‘inf’ stands
for infimum. When using the Frobenius norm (or spectral norm) with matrices, the Kolmogorov
n-width is computed by the singular values of W as follows:

dn(W,X) = σn+1, (21)

where σn+1 is the (n + 1)-th largest singular value of the matrix W . The Kolmogorov n-width
measures how well a set W can be approximated by an n-dimensional subspace. In other words, it
represents the minimal maximum error when approximating with an n-dimensional subspace. Then
we can determine the optimal dimensionality needed to achieve a desired approximation accuracy.

If the singular values decrease rapidly, W can be well approximated even for small n, and the
Kolmogorov n-width also decreases quickly. Therefore, the singular value decay rate α, which
plays a pivotal role in determining how effectively a matrix can be approximated, is commonly
modeled by an exponential decay function as follows:

σ′
n = Ce−αn, (22)

where σ′
n represents the n-th modeled singular values, C > 0 is a constant, and α > 0 is the decay

rate. When the decay rate α is low, the singular values decrease gradually, resulting in large errors
when approximating with the same n dimensions. To minimize the approximation errors, a larger n
is required, indicating that significant information is contained in the lower singular values.

Empirical analysis of the Kolmogorov n-width. To empirically analyze the Kolmogorov n-
width of the pre-trained language model, we present error rates based on low-rank approximation
under the same conditions as shown in Fig. 1 (b) of Introduction. The formulation of error rates
EW (n) is as follows:

EW (n) =

(
∥W − v∥F
∥W∥F

)
× 100%, (23)

where W is the original matrix and v is the approximated matrix obtained by truncating the SVD
to rank n. The error rates for the pre-trained model and the ideal low-rank matrix are presented in
Fig. 5, with markers indicating the n-value where the error rate reaches 5%. For the ideal low-rank
matrix, the rank at which the error rate reaches 5% is 63. This suggests that the matrix has a low-
dimensional structure, with the most important information concentrated in the top singular values.
The lower singular values have little effect on the approximation and can be considered noise. In
contrast, for the pre-trained model, the n-value required to reach 95% approximation is 661, which
is significantly larger than ideal row rank matrix. This indicates that the data is complex and high-
dimensional, and the lower singular values contain important information rather than merely noise.

I DISCUSSION ON CONSTRAINING THE FROBENIUS NORM OF ∆W

Theorem 3.1 provides an upper bound of approximated posterior based on the Frobenius norm of ∆θ
and the minimum eigenvalue of the Fisher Information Matrix (FIM), λmin(F ). However, simply
constraining the Frobenius norm is not sufficient. This is because the FIM F encodes information
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about important directions about the pre-trained task in the parameter space. Specifically, Equa-
tion (6) provides the approximated log posterior of pre-trained task using Laplace approximation.
The FIM F is a positive semi-definite matrix. The quadratic term quantifies how much the parameter
shift ∆θ = θ−θ0 affects the output distribution of the original task. In low-rank update methods like
LoRA, the parameter update can be expressed as ∆θ = UΣV ⊤. Due to the low-rank nature of the
update, the singular values σi often become concentrated in a small number of singular directions.

Even for the same Frobenius norm of ∆θ, if σn is heavily concentrated in certain directions, and
those directions align with sensitive ones in the FIM (i.e., those with large eigenvalues), the penalty
term ∆θ⊤F∆θ can become significantly larger (not ∆θ⊤∆θ). As a result, the approximated poste-
rior decreases more sharply, which intensifies catastrophic forgetting on the pre-trained task. There-
fore, the Frobenius norm merely controls the total magnitude of change, but does not prevent the
change from being concentrated in directions that are crucial for the original task. In contrast,
FCLoRA explicitly controls individual singular values via clipping, thereby directly limiting up-
dates in directions where the model is most sensitive. This goes beyond a simple norm constraint
and introduces a structural bias that suppresses updates in forgetting-prone directions. Therefore,
while the Frobenius norm constrains only the total size of the update, FCLoRA enables fine-grained
control over which components grow, effectively mitigating catastrophic forgetting in a more tar-
geted and principled way. This is also well-described in Kirkpatrick et al. (2017), where L2-norm
cannot mitigate catastrophic forgetting because important parameters from previous tasks are not
adequately preserved. The standard L2-norm regularization treats all parameters uniformly, failing
to account for their varying importance, and thus cannot effectively mitigate this problem.

J ALGORITHM OF FCLORA

In this section, we summarize the detailed algorithm of FCLoRA in Algorithm 1.

Algorithm 1 How to train FCLoRA
Input: Dataset D; total iterations T ; learning rate η; γ, σ̄.
for t = 1, . . . , T do

Σ
(t)
k = min(max(Σ(t)

k , 0), σ̄)

W
(t)
k = W0 + U

(t)
k Σ

(t)
k (V

(t)
k )⊤

Update U
(t+1)
k = U

(t)
k − η∇Uk

(L(U (t)
k ,Σ

(t)
k , V

(t)
k ) + γR(U

(t)
k , V

(t)
k ))

Update V
(t+1)
k = V

(t)
k − η∇Vk

(L(U (t)
k ,Σ

(t)
k , V

(t)
k ) + γR(U

(t)
k , V

(t)
k ))

Update Σ
(t+1)
k = Σ

(t)
k − η∇Σk

L(U (t)
k ,Σ

(t)
k , V

(t)
k )

end
Output: The fine-tuned parameters {U (T ),Σ(T ), V (T )}; W (T ) = W0 + U (T )Σ(T )(V (T ))⊤.

K LORA WITH DISCRETE FOURIER TRANSFORM

Table 6: Comparison of various methods with RoBERTabase on GLUE tasks with the experimental
setup from Gao et al. (2024). The results for the baselines are copied from Gao et al. (2024). The
best performance is set in bold, and the second best is set in underline.

Method # Params SST-2 MRPC CoLA QNLI RTE STS-B Avg.

FT 125M 94.8±0.2 90.2±0.6 63.6±2.6 92.8±0.2 78.7±0.7 91.2±0.5 85.2

BitFit 0.1M 93.7±0.3 92.7±0.6 62.0±1.9 91.8±0.2 81.5±0.8 90.8±0.6 85.4
AdptD 0.3M 94.2±0.1 88.5±1.1 60.8±1.1 93.1±0.4 71.5±2.7 89.7±0.7 83.0
AdptD 0.9M 94.7±0.3 88.4±0.1 62.6±0.9 93.0±0.2 75.9±0.4 90.3±0.2 84.2
LoRA 0.3M 95.1±0.2 89.7±0.7 63.4±1.0 93.3±0.2 78.4±0.2 91.5±0.2 85.2
AdaLoRA 0.3M 94.5±0.2 88.7±0.5 62.0±0.5 93.1±0.3 81.0±0.9 90.5±0.2 85.0
DyLoRA 0.3M 94.3±0.2 89.5±0.6 61.1±0.9 92.2±0.4 78.7±1.0 91.1±0.3 84.5
FourierFT 0.024M 94.2±0.3 90.0±0.3 63.8±1.6 92.2±0.1 79.1±0.2 90.8±0.4 85.0
FCLoRA 0.3M 95.0±0.2 90.0±0.7 65.1±0.1 93.4±0.2 83.0±1.0 91.3±0.1 86.3
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Discrete Fourier Transform (DFT) (Briggs & Henson, 1995) converts a finite sequence of equally-
spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-
time Fourier transform (DTFT), which is a complex-valued function of frequency. Recent studies
have proposed the DFT-based parameter efficient fine-tuning method. FouRA (Borse et al., 2024)
transforms the hidden vectors in the latent space into the singular domain using DFT and compute
LoRA, followed by reconstruction through inverse DFT. FourierFT (Gao et al., 2024) considers the
adapter as a 2D spatial-domain matrix and transforms into a 2D DFT spectrum. Therefore, existing
methods have focused on DFT-based approaches to either flexibly select adapter ranks depending
on the input or reduce the number of parameters. On the other hand, FCLoRA leverages a param-
eterized SVD in the parameter space, and injects the fine-grained singular components with upper
bounded singular values to achieve effective adaptation and mitigation of catastrophic forgetting.

We conduct additional experiments following experimental setup of FourierFT (Gao et al., 2024),
one of the LoRA variants that employs the concept of DFT. Strictly following (Gao et al., 2024),
we fine-tune RoBERTabase, adapting only the query and value projection matrices using LoRA. We
maintain the same experimental settings as the original work, while only searching for the learning
rate from {1 × 10−3, 8 × 10−4, 6 × 10−4, }, γ from {1 × 10−2, 3 × 10−3, 1 × 10−3}, and σ̄ from
{σ(1), σ(2), σ(3), σ(4)} and the results are reported in Table 6.

L HOW DOES THE ADAPTERS ∆W COMPARED TO W ?

Table 7: The Frobenius norm of U⊤WV , where U and V are the left and right top r singular vector
directions of either: (1) ∆Wq , (2) Wq , or (3) a random matrix. (4) The Frobenius norm of U⊤∆WV ,
where U and V are from Wq . (5) The Frobenius norm of ∆W . (6,7) The introduced factors. The
weights are taken from the last query layer of RoBERTabase, fine-tuned on STS-B dataset with r = 8.

Model ∥U⊤WV ∥F ∥U⊤
Wq

∆WVWq∥F ∥∆W∥F FactorW → ∆W Factor∆W → W

∆Wq Wq Random

LoRA 0.48 11.22 0.32 0.16 3.81 7.94 23.82
PiSSA 0.38 11.22 0.35 0.11 2.49 6.54 22.60

MiLoRA 0.45 11.22 0.35 0.08 3.11 6.91 38.86
FCLoRA 0.36 11.22 0.38 0.03 0.94 2.60 31.18

We explore the relationship between ∆W and W by measuring the correlation between ∆W and
W as well as the magnitude of ∆W in comparison to its corresponding directions in W . To do so,
we introduce two key factors:

• FactorW → ∆W is a factor formulated as ∥∆W∥F /∥U⊤
∆WWV∆W ∥F , which indicates

the ratio of the norm of difference over the norm of projected W on the r-dimensional
subspace of ∆W . This factor is also called amplification factor (Hu et al., 2021), measuring
how the new information of ∆W is related to the existing information of W . A larger ratio
refers that the task-specific information of W has been amplified in ∆W .

• Factor∆W → W is a factor formulated as ∥∆W∥F /∥U⊤
W∆WVW ∥F , which is the ratio

of the norm of difference over the norm of projected ∆W on the r-dimensional subspace
of W . It indicates the extent to which the change aligns with W . A larger ratio refers that
∆W has learned new information that is not present in W .

Following Hu et al. (2021), we project W onto the r-dimensional subspace of ∆W by computing
U⊤WV , where U and V are the left and right singular vectors of ∆W , W , and the random ma-
trix. Additionally, we project ∆W onto the subspace of W by computing U⊤∆WV . As shown in
Table 7, FCLoRA and other methods exhibit similar Frobenius norms when W is projected onto
the subspace of ∆W , W and random matrix. However, compared to the baselines, the projection of
∆W onto the subspace of W in FCLoRA shows the lowest correlation with a value of 0.02, which
is less than half of the smallest baseline. This suggests that FCLoRA processes the existing infor-
mation in W similarly to other methods, while being better at learning independent new information
without relying on the existing information in W . Furthermore, considering the Frobenius norm of
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∆W , both LoRA and PiSSA exhibit a large FactorW→∆W and a small Factor∆W→W , indi-
cating that ∆W primarily amplifies information already present in W . MiLoRA also shows a large
Factor∆W→W , but this results from the large magnitude of ∆W , leading to significant changes
from the pre-trained weights. In contrast, FCLoRA exhibits a relatively small FactorW→∆W of
4.25 but a large Factor∆W→W of 46.77. Given the small magnitude of ∆W , this indicates that
FCLoRA stands out for its ability to learn new information that is not already in W with minimal
deviation from the pre-trained weights.

M EXPERIMENTAL SETUP

M.1 NATURAL LANGUAGE UNDERSTANDING

M.1.1 DATASET DESCRIPTION

We describe the benchmark datasets of GLUE (Wang et al., 2018a) below 1.

• CoLA. The Corpus of Linguistic Acceptability (Warstadt et al., 2019) provides a dataset of
English sentences, where each sentence is judged for grammatical acceptability based on
data from books and journal articles. The objective is a binary classification to determine
whether a sentence is grammatically correct or incorrect. The dataset consists of 8.5k
samples for training, 1k samples for validation, and 1k samples for test.

• SST-2. The Stanford Sentiment Treebank (Socher et al., 2013) includes sentences from
movie reviews, along with human-provided sentiment annotations. The goal is to classify
the sentiment of each sentence as either positive or negative. The dataset consists of 67k
samples for training, 872 samples for validation, and 1.8k samples for test.

• MRPC. The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) contains
pairs of sentences automatically extracted from online news sources. Human annotators
label each pair, and the task is to identify whether the two sentences in a pair convey
the same meaning. The dataset consists of 3.7k samples for training, 408 samples for
validation, and 1.7k samples for test.

• QQP. The Quora Question Pairs dataset (Chen et al., 2018) consists of question pairs taken
from Quora, a community-driven question-and-answer platform. The task is to determine
if two given questions are semantically identical. The dataset consists of 364k samples for
training, 40k samples for validation, and 391k samples for test.

• MNLI. The Multi-Genre Natural Language Inference Corpus (Williams et al., 2017) in-
cludes sentence pairs with textual entailment annotations collected through crowdsourcing.
Given a premise and a hypothesis, the task is to predict whether the premise entails the hy-
pothesis, contradicts it, or is neutral. The dataset includes both in-domain and cross-domain
evaluations using a hidden test set. The dataset consists of 393k samples for training, 20k
samples for validation, and 20k samples for test.

• QNLI. The Question-Answering Natural Language Inference dataset (Wang et al., 2018b)
consists of question-paragraph pairs from which an answer must be found. The task in-
volves determining whether a specific sentence from the paragraph answers the correspond-
ing question. The dataset consists of 108k samples for training, 5.7k samples for validation,
and 5.7k samples for test.

• RTE. The Recognizing Textual Entailment dataset (Bentivogli et al., 2009) comes from
a series of annual challenges focusing on textual entailment. The task is to classify sen-
tence pairs as either entailment or non-entailment. The dataset consists of 2.5k samples for
training, 276 samples for validation, and 3k samples for test.

• STS-B. The Semantic Textual Similarity Benchmark (Cer et al., 2017) features sentence
pairs drawn from various sources, including news headlines and image captions, with
human-assigned similarity scores. The task is a regression problem where the model must
predict a similarity score ranging from 0 to 5. The dataset consists of 7k samples for train-
ing, 1.5k samples for validation, and 1.4k samples for test.

1https://huggingface.co/datasets/nyu-mll/glue
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M.1.2 EXPERIMENTAL SETUP

We evaluate FCLoRA on the General Language Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2018a), which includes 3 categories of natural language understanding tasks:
i) single-sentence (CoLA and SST-2); ii) similarity and paraphrasing (MRPC, QQP, and STS-B);
iii) natural language inference tasks (MNLI, QNLI, and RTE). For a fair comparison, following
Hu et al. (2021), we adopt the pre-trained RoBERTabase as the backbone model. We use 1 GPU
of NVIDIA RTX A6000 for experiments. We report Matthews correlation for CoLA, Spearman
correlations for STS-B, and accuracy scores for the other tasks. We conduct the experiments in
Huggingface Framework 2.

M.1.3 HYPERPARAMETERS

Table 8: Best hyperparameters for FCLoRA in natural language understanding for RoBERTabase

Dataset Learning rate Batch size #Epochs Metric σ̄ γ How to initialize U, V

CoLA 4× 10−4 32 25 Matthews correlation σ(2) 3× 10−2 random r singular vectors
MNLI 5× 10−4 32 7 Accuracy σ(2) 1× 10−1 0, random Gaussian
MRPC 4× 10−4 16 30 Accuracy σ(2) 1× 10−2 random r singular vectors
QNLI 4× 10−4 32 5 Accuracy σ(1) 1× 10−1 0, random Gaussian
QQP 5× 10−4 32 5 Accuracy σ(1) 1× 10−3 0, random Gaussian
RTE 5× 10−4 32 50 Accuracy σ(4) 5× 10−2 0, random Gaussian
SST-2 5× 10−4 32 24 Accuracy σ(4) 1× 10−1 0, random Gaussian
STS-B 4× 10−4 32 25 Pearson correlation σ(1) 1× 10−1 0, random Gaussian

Table 9: Best hyperparameters for FCLoRA in natural language understanding for DeBERTaV3base
with r = 8

Dataset Learning rate Batch size #Epochs Metric σ̄ γ

CoLA 8× 10−4 32 25 Matthews correlation σ(4) 5× 10−1

MNLI 5× 10−4 32 7 Accuracy σ(3) 1× 10−2

MRPC 1× 10−3 32 30 Accuracy σ(3) 5× 10−1

QNLI 5× 10−4 32 5 Accuracy σ(3) 1× 10−1

QQP 8× 10−4 32 5 Accuracy σ(1) 1× 10−2

RTE 1.2× 10−3 32 50 Accuracy σ(3) 1× 10−1

SST-2 8× 10−4 32 24 Accuracy σ(4) 1× 10−1

STS-B 2.2× 10−3 32 25 Pearson correlation σ(2) 5× 10−1

Table 10: Best hyperparameters for FCLoRA in natural language understanding for DeBERTaV3base
with r = 2

Dataset Learning rate Batch size #Epochs Metric σ̄ γ

CoLA 8× 10−4 32 25 Matthews correlation σ(4) 1.1× 10−1

MNLI 5× 10−4 32 7 Accuracy σ(3) 1× 10−1

MRPC 1× 10−3 32 30 Accuracy σ(2) 1× 10−2

QNLI 7× 10−4 32 5 Accuracy σ(3) 1× 10−1

QQP 8× 10−4 32 5 Accuracy σ(1) 5× 10−3

RTE 1.2× 10−3 32 50 Accuracy σ(3) 1× 10−1

SST-2 8× 10−4 32 24 Accuracy σ(4) 5× 10−1

STS-B 2.2× 10−3 32 25 Pearson correlation σ(4) 6× 10−1

To tune FCLoRA with RoBERTabase, we search for the learning rate from {4× 10−4, 5× 10−4}, σ̄
from {σ(2), σ(3), σ(4)} and γ from {1× 10−1, 7× 10−2, 5× 10−2, 3× 10−2, 1× 10−2, 1× 10−3}.

2https://github.com/huggingface/transformers
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The learnable singular vectors U/V can be initialized as i) random r singular vectors of W0, ii)
U with zeros, V with random Gaussian initialization. To tune FCLoRA with DeBERTaV3base, we
search σ̄ from {σ(2), σ(3), σ(4)} and γ from {1× 10−1, 1.1× 10−1, 1× 10−2, 5× 10−1, 6× 10−1}.
The learnable singular vectors U/V are be initialized as U with zeros and V with random Gaussian
initialization. We report the best hyperparameters of FCLoRA in Table 8 to Table 10.

M.1.4 EXPERIMENTAL RESULT WITH STANDARD DEVIATIONS

We report the experimental results on GLUE tasks with standard deviation of Robertabase and
DeBERTabaseV3 in Table 11 and Table 12, respectively. Note that the results for Table 12 are copied
from Zhang et al. (2023), the results with standard deviation are reported only for FCLoRA.

Table 11: Comparison of various methods on GLUE tasks with different random seeds.

Method MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B Avg.

LoRA 87.93±0.15 94.80±0.11 64.49±0.64 90.94±0.04 92.73±0.11 80.39±0.74 89.05±0.12 90.87±0.08 86.40
PiSSA 87.95±0.01 94.53±0.19 64.66±0.98 90.97±0.05 92.53±0.14 79.18±0.68 89.79±1.41 90.96±0.08 86.32
AdaLoRA 87.21±0.05 95.07±0.32 61.37±1.01 89.75±0.10 92.54±0.08 81.11±0.85 89.05±0.31 90.62±0.11 85.84
rsLoRA 85.26±3.34 92.35±0.33 65.17±0.82 70.76±10.71 92.48±0.27 79.54±1.33 89.05±0.31 90.88±0.13 83.19
LoRA+ 86.96±0.65 93.92±0.00 63.32±0.69 90.69±0.07 92.77±0.01 81.59±1.18 88.97±0.35 90.84±0.14 86.13
DoRA 87.81±0.04 95.11±0.19 64.23±0.10 90.65±0.11 92.93±0.10 81.35±0.95 89.54±0.23 91.01±0.16 86.58
MiLoRA 87.88±0.11 94.69±0.30 64.31±0.97 91.02±0.04 92.96±0.21 81.35±1.23 89.30±0.12 90.96±0.05 86.56
FCLoRA 87.95±0.12 95.37±0.29 64.79±0.20 90.76±0.08 93.09±0.14 83.15±0.17 90.32±0.86 91.22±0.05 87.08

M.2 QUESTION ANSWERING

M.2.1 DATASET DESCRIPTION

We describe the benchmark dataset of SQuAD (Rajpurkar, 2016; Rajpurkar et al., 2018). The Stan-
ford Question Answering Dataset (SQuAD) is a benchmark for reading comprehension, featuring
questions based on Wikipedia articles. Each question is answered with a specific text segment (or
span) from the corresponding passage, though some questions may have no answer at all.

• SQuADv1.1. Over 100,000 question-answer pairs derived from more than 500 articles.
The dataset consists of 87,599 samples for training and 10,570 for validation. 3

• SQuADv2.0. 4 Combines the 100,000 questions in SQuADv1.1 with over 50,000 unan-
swerable questions to closely resemble answerable ones. To perform well on SQuADv2.0,
systems must not only provide correct answers when availabㅑㅜle but also recognize when
a question cannot be answered based on the given passage and abstain from responding.
The dataset consists of 130,319 samples for training and 11,873 for validation.

M.2.2 EXPERIMENTAL SETUP

We evaluate FCLoRA on two question answering (QA) tasks: SQuAD v1.1 (Rajpurkar, 2016) and
SQuADv2.0 (Rajpurkar et al., 2018). Following Zhang et al. (2023), we fine-tune a pre-trained
DeBERTaV3base (He et al., 2021) with FCLoRA and set the rank r of LoRA as {1, 2, 4, 8}. These
tasks are considered as a sequence labeling problem, where the goal is to predict the probability of
each token being the start and end of the answer span. We measured the performance of model using
the Exact Match (EM) and F1 metrics. We use 1 GPU of NVIDA RTX 3090 24GB for experiments.
We conduct the experiments in Huggingface Framework.

M.2.3 HYPERPARAMETERS

To tune FCLoRA, we fix the batch size as 16, and train 10 epochs for SQuADv1.1 and 12 epochs for
SQuADv2.0, respectively. We search for the learning rate from {1× 10−3, 2× 10−3, 3× 10−3}, σ̄

3https://huggingface.co/datasets/rajpurkar/squad
4https://huggingface.co/datasets/rajpurkar/squad_v2
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Table 12: Performance comparison of various methods with DeBERTaV3base on GLUE tasks with
different random seeds. The results for the baselines are copied from (Zhang et al., 2023).

Method # Params MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B Avg.

Full FT 184M 89.90 95.63 69.19 92.40 94.03 83.75 89.46 91.60 88.09

BitFit 0.10M 89.37 94.84 66.96 88.41 92.24 78.70 87.75 91.35 86.02
HAdapter 1.22M 90.13 95.53 68.64 91.91 94.11 84.48 89.95 91.48 88.12
PAdapter 1.18M 90.33 95.61 68.77 92.04 94.29 85.20 89.46 91.54 88.24
LoRAr=8 1.33M 90.65 94.95 69.82 91.99 93.87 85.20 89.95 91.60 88.34
AdaLoRA 1.27M 90.76 96.10 71.45 92.23 94.55 88.09 90.69 91.84 89.31
FCLoRA 1.33M 90.36±0.03 96.33±0.41 71.49±0.60 92.33±0.01 94.57±0.05 89.41±0.17 91.58±1.21 92.19±0.07 89.78

HAdapter 0.61M 90.12 95.30 67.87 91.65 93.76 85.56 89.22 91.30 87.93
PAdapter 0.60M 90.15 95.53 69.48 91.62 93.98 84.12 89.22 91.52 88.04
HAdapter 0.31M 90.10 95.41 67.65 91.54 93.52 83.39 89.25 91.31 87.60
PAdapter 0.30M 89.89 94.72 69.06 91.40 93.87 84.48 89.71 91.38 87.90
LoRAr=2 0.33M 90.30 94.95 68.71 91.61 94.03 85.56 89.71 91.68 88.15
AdaLoRA 0.32M 90.66 95.80 70.04 91.78 94.49 87.36 90.44 91.63 88.86
FCLoRA 0.33M 90.66±0.02 96.18±0.14 71.83±1.08 91.82±0.07 94.50±0.00 89.89±1.47 91.83±0.90 92.00±0.23 89.83

Table 13: Best hyperparameters for FCLoRA in question answering

Dataset r Learning rate σ̄ γ

SQuADv1.1

1 2× 10−3 σ(2) 5× 10−1

2 2× 10−3 σ(2) 1× 10−1

4 1× 10−3 σ(2) 1× 10−2

8 2× 10−3 σ(2) 1× 10−1

SQuADv2.0

1 2× 10−3 σ(3) 7× 10−2

2 2× 10−3 σ(3) 5× 10−2

4 3× 10−3 σ(3) 5× 10−1

8 3× 10−3 σ(3) 5× 10−1

from {σ(2), σ(3), σ(4)} and γ from 5×10−1, 1×10−1, 7×10−2, 5×10−2, 1×10−2}. The learnable
singular vectors U/V are be initialized as U with zeros and V with random Gaussian initialization.
We report the best hyperparameters of FCLoRA in Table 13.

M.3 COMMONSENSE REASONING

M.3.1 DATASET DESCRIPTION

The commonsense reasoning tasks are intended to require the model to go beyond pattern recogni-
tion. Instead, the model should use “common sense” or world knowledge to make inferences. The
commonsense reasoning tasks comprise 8 sub-tasks, each with a predefined training and testing set.

• BoolQ. The model answers yes/no questions about short passages, testing its ability to
understand statements.

• PIQA. The model chooses the most plausible solution for a physical interaction, focusing
on practical reasoning.

• SIQA. The model infers the most suitable outcome or rationale in everyday social contexts.

• HellaSwag. The model selects the most coherent continuation of a short scenario, empha-
sizing commonsense inference.

• WinoGrande. The model resolves ambiguous pronoun references that require broad com-
monsense to disambiguate.

• ARC-e. The model tackles elementary-level science questions assessing basic scientific
knowledge.
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• ARC-c. The model addresses harder, more nuanced science questions requiring deeper
reasoning.

• OBQA. OpenBookQA. The model answers questions using a provided ‘open book’ of
facts, testing its ability to integrate and apply specific knowledge.

M.3.2 EXPERIMENTAL SETUP

We follow the setting of Hu et al. (2023) and amalgamate the training datasets from all 8 tasks to
create the final training dataset and conduct evaluations on the individual testing dataset for each
task.

M.3.3 HYPERPARAMETERS

To tune FCLoRA, the learnable singular vectors U/V are initialized as U with zeros, V with random
Gaussian initialization. We report the best hyperparameters of FCLoRA in Table 14.

Table 14: Best hyperparameters for FCLoRA in commonsense reasoning

Model Learning rate Batch size #Epochs σ̄ γ

LLaMA-7B 2× 10−4 16 3 σ(2) 5× 10−1

LLaMA2-7B 3× 10−4 16 3 σ(4) 1× 10−2

N FURTHER EXPERIMENTS ON MITIGATING CATASTROPHIC FORGETTING

In this section, we validate the effectiveness of FCLoRA on mitigating the catastrophic forgetting,
following Section 5.

N.1 MITIGATING CATASTROPHIC FORGETTING WITH OTHER MODELS

Table 15: Catastrophic forgetting across various models. ‘Acc.’ denotes accuracy (higher is better),
and ‘PPL’ represents perplexity (lower is better).

Model RoBERTaMRPC RoBERTaSST-2 LLaMA-7B

Acc.fine-tune Acc.pre-train Acc.fine-tune Acc.pre-train Acc.fine-tune PPLpre-train

Pre-trained - 68.21 - 68.21 - 6.66

LoRA 89.05 18.36 94.81 54.33 74.7 8.69
FCLoRA 90.32 47.28 95.37 65.67 78.6 7.78

To further validate the effectiveness of FCLoRA on mitigating catastrophic forgetting, we report
RoBERTabase trained on MRPC and SST-2 with accuracy for the pre-trained task with the Open-
WebText (Gokaslan et al., 2019) dataset in Table 15. Furthermore, we also report the results for the
large-scale model with LLaMA-7B trained on commonsense reasoning for pre-trained task with PG-
19 (Rae et al., 2019). FCLoRA adapts to the new task with improved performance while preserving
the pre-training task performance.

N.2 CATASTROPHIC FORGETTING WITH EXPLICIT SVD-BASED LORA

To validate the catastrophic forgetting in parameterized SVD-based LoRA, we measure the accuracy
on both fine-tuning and pre-training task with LoRA and its variants, including AdaLoRA (Zhang
et al., 2023) and SORSA (Cao, 2024). As reported in Table 16, both AdaLoRA and SORSA exhibit
significant drops in the pre-trained task accuracy after fine-tuning, with SORSA being particularly
affected. In contrast, FCLoRA effectively mitigates catastrophic forgetting, achieving substantially
higher accuracy on pre-trained tasks, while also maintaining competitive fine-tuned task perfor-
mance. These results highlight the effectiveness of FCLoRA in retaining the pre-trained knowledge
while adapting to the new task.
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Table 16: Comparison of catastrophic forgetting across parameterized SVD-based LoRA methods

Model RoBERTaMRPC RoBERTaSTS-B

Acc.fine-tune Acc.pre-train Acc.fine-tune Acc.pre-train

Pre-trained - 61.64 - 61.64

LoRA 89.05 18.36 90.87 14.86
SORSA 89.05 6.45 90.72 10.37
AdaLoRA 89.05 25.58 90.62 28.49
FCLoRA 90.32 47.28 91.22 43.72
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Figure 6: Sensitivity studies

O.1 SENSITIVITY STUDY ON THE ORTHOGONAL REGULARIZATION COEFFICIENT γ

The orthogonal regularization applied to U and V is used to learn the singular values that consists
the injected fine-grained singular components. We further conduct sensitivity study on the effect
of the orthogonal regularization coefficient γ. We fine-tuned the DeBERTaV3base model on the
SQuADv2.0 dataset. As shown in Fig. 6 (a), appropriate regularization induces the orthogonalization
of singular values, leading to improved convergence during fine-tuning and enhanced performance.
However, excessive regularization results in performance degradation, indicating the need for an
optimal balance that maximizes the benefits of regularization without hindering the ability of model
to learn task-specific patterns.

O.2 SENSITIVITY ON THE UPPER BOUND OF INJECTED SINGULAR VALUE σ̄

We constraint the maximum value of the parameterized singular values with the hyperparameter σ̄ to
learn the injected fine-grained singular components. To analyze the impact of σ̄ on performance, we
fine-tune the DeBERTaV3base model on the SQuADv2.0 dataset and report EM/F1 score according
to σ̄. In our experiments, σ̄ holds the q-th quantile value of the singular values distribution of W0,
denoted as σ(q). As illustrated in Fig. 6 (b), the performance peaks when σ̄ = σ(3), indicating that
σ̄ at the appropriately small value level allows the model to optimally learn the injected fine-grained
singular components while maintaining best accuracy. However, reducing or increasing σ̄ too much
leads to a degradation in both EM and F1 scores, suggesting that an inappropriate scale disrupts the
capability of model to learn fine-grained details effectively.

O.3 SENSITIVITY ON THE RANK r ON CATASTROPHIC FORGETTING

To verify whether FCLoRA maintains its performance and continues to mitigate forgetting as the
rank increases, we conduct sensitivity study on the rank r on MRPC and STS-B dataset. Specifically,
we measured the largest singular value and Frobenius norm of the difference between the pre-trained
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model and the fine-tuned model. Also, we evaluated the accuracy and the evaluation loss on the pre-
trained task.

Table 17: The effect of rank r on catastrophic forgetting

r Metric 8 16 64

MRPC
Spectral norm 0.94 0.70 0.36
Eval. losspre-train 4.35 4.18 3.20
Acc.pre-train 32.00 33.58 41.32

STSB
Spectral norm 0.94 1.40 1.12
Eval. losspre-train 3.18 2.49 2.53
Acc.pre-train 43.72 51.15 48.79

As reported in Table 17, as r changes, the largest singular value also varies, which, in turn affects
the performance on the pre-trained task. The performance on the pre-trained task, however, does not
degrade but rather shows an improvement. This indicates that the proposed model retains its ability
to effectively mitigate catastrophic forgetting even as the rank increases.

O.4 ORTHOGONAL REGULARIZATION ON PARAMETERIZED SINGULAR VECTORS
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Figure 7: The orthogonal loss curves of parameterized singular vectors U and V when fine-tuning
RoBERTabase on STS-B dataset

Fig. 7 shows the orthogonal loss curve of parameter singular vectors U and V of RoBERTabase
fine-tuned on STS-B dataset. The singular vectors are orthogonally optimized as indicated by the
consistent reduction in orthogonal loss.

O.5 GRAM-SCHMIDT ORTHOGONALIZATION ON PARAMETERIZED SINGULAR VECTORS

Table 18: Comparison of Gram-Schmidt orthogonalization and orthogonal regularization on various
datasets. Metrics are reported as “accuracy (%) ↑ / minutes per epoch ↓”.

CoLA RTE MRPC STS-B

Gram-Schmidt ortho. 57.31±0.85/3.6 67.27±1.23/1.1 87.58±1.02/2.0 89.88±0.19/2.6
Ortho. Regularization 64.79±0.20/2.9 83.15±0.17/0.8 90.32±0.86/1.3 91.22±0.05/2.1

Orthogonal regularization is a widely used method for implementing parameterized SVD in
LoRA (Zhang et al., 2023; Cao, 2024; Zhang et al., 2024). Unlike orthogonal regularization, Gram-
Schmidt orthogonalization—one of the orthogonalization methods—produces strictly orthogonal
vectors. However, since it refines each subsequent vector based on the previously orthogonalized
ones, it has the disadvantage of being difficult to parallelize compared to the regularization ap-
proach. Furthermore, as shown in Fig. 7, the orthogonal error rapidly decreases to below 10−2 in
the early stages of fine-tuning, indicating that the singular vectors can be sufficiently trained. We
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conduct an ablation study with orthogonal regularization by replacing it with Gram-Schmidt-based
orthogonalization. We measured the performance and training speed in Table 18.

P COMPARISON OF COMPUTATIONAL COMPLEXITY

Increased number of trainable parameters. For the hidden dimension d and the rank of adapter
r, conventional LoRA learns 2dr parameters per layer. FCLoRA introduces only an additional r
parameter to the existing LoRA, resulting in a total of 2dr + r parameters per layer. For instance,
when r = 2 as shown in Table 10, conventional LoRA learns 331,776 parameters, whereas FCLoRA
learns a total of 331,920 parameters—the additional parameters are only 144.

Increased computational cost. In inference stage, conventional LoRA involves computations
with complexity O(d2r) per layer, whereas FCLoRA includes the process of multiplying the param-
eterized singular value with the parameterized singular vector, resulting in an additional complexity
of O(d2r+dr), which is comparable. Note that the explicit SVD is performed only once during the
initialization stage and is not required during fine-tuning.

Table 19: Comparison of training time (min per epoch) and peak GPU usage (GB)

Method MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B

LoRA 105.9/24.9 18.2/24.9 2.3/24.9 98.1/24.9 28.3/24.9 0.7/24.9 1.0/12.5 1.6/24.9
PiSSA 106.2/24.9 18.1/24.9 2.3/24.9 98.1/24.9 28.2/24.9 0.7/24.9 1.0/12.5 1.5/24.9
AdaLoRA 123.4/25.6 21.1/25.6 2.7/25.6 114.4/25.6 33.1/25.6 0.8/25.6 1.3/13.1 1.8/25.6
MiLoRA 106.0/24.9 18.1/24.9 2.3/24.9 98.1/24.9 28.2/24.9 0.7/24.9 1.0/12.5 1.5/24.9
FCLoRA 128.9/25.2 22.1/25.2 2.8/25.2 119.4/25.2 34.3/25.2 0.8/25.2 1.3/12.8 1.9/25.2

Table 20: Comparison of inference time (min per epoch) and peak GPU usage (GB)

Method MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B

LoRA 0.85/0.3 0.08/0.3 0.10/0.3 3.46/0.3 0.47/0.3 0.03/0.3 0.05/0.3 0.14/0.3
PiSSA 0.84/0.3 0.08/0.3 0.09/0.3 3.47/0.3 0.47/0.3 0.03/0.3 0.04/0.3 0.13/0.3
AdaLoRA 1.32/0.3 0.13/0.3 0.15/0.3 5.43/0.3 0.74/0.3 0.05/0.3 0.07/0.3 0.21/0.3
MiLoRA 0.84/0.3 0.08/0.3 0.09/0.3 3.47/0.3 0.47/0.3 0.03/0.3 0.04/0.3 0.13/0.3
FCLoRA 1.01/0.3 0.10/0.3 0.12/0.3 4.15/0.3 0.57/0.3 0.04/0.3 0.05/0.3 0.16/0.3

Empirical complexity analysis. We conduct additional experiments on empirical time complexity
and GPU usage during fine-tuning and inference phase. Table 19 summarizes the empirical train-
ing time (min per epoch) and peak GPU usage (GB) of RoBERTabase fine-tuned on GLUE tasks.
The GPU usage showed a very slight increase compared to the original LoRA, and the additional
runtime occurs in FCLoRA and AdaLoRA. This increase arises from the orthogonal regularization
of singular vectors generated by parameterized SVD. However, fine-tuning typically requires fewer
epochs, and considering the improved performance and the ability to retain pre-trained knowledge
compared to the baseline model, this increase is negligible. Table 20 reports the empirical infer-
ence time (min per epoch) and peak GPU usage (GB) of RoBERTabase fine-tuned on GLUE tasks.
FCLoRA exhibits a marginal increase in inference latency and peak GPU memory relative to vanilla
LoRA; nonetheless, both metrics remain lower than those of AdaLoRA and are practically compa-
rable overall.
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