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Abstract

The estimation of cumulative distribution functions (CDF) is an important learning task
with a great variety of downstream applications, such as risk assessments in predictions
and decision making. In this paper, we study functional regression of contextual CDFs
where each data point is sampled from a linear combination of context dependent CDF basis
functions. We propose functional ridge-regression-based estimation methods that estimate
CDFs accurately everywhere. In particular, given n samples with d basis functions, we show
estimation error upper bounds of rOp

a
d{nq for fixed design, random design, and adversarial

context cases. We also derive matching information theoretic lower bounds, establishing
minimax optimality for CDF functional regression. Furthermore, we remove the burn-in time
in the random design setting using an alternative penalized estimator. Then, we consider
agnostic settings where there is a mismatch in the data generation process. We characterize
the error of the proposed estimators in terms of the mismatched error, and show that the
estimators are well-behaved under model mismatch. Moreover, to complete our study, we
formalize infinite dimensional models where the parameter space is an infinite dimensional
Hilbert space, and establish a self-normalized estimation error upper bound for this setting.
Notably, the upper bound reduces to the rOp

a
d{nq bound when the parameter space is

constrained to be d-dimensional. Our comprehensive numerical experiments validate the
e�cacy of our estimation methods in both synthetic and practical settings.

1 Introduction

Estimating cumulative distribution functions (CDF) of random variables is a salient theoretical problem that
underlies the study of many real-world phenomena. For example, Huang et al. (2021) and Leqi et al. (2022)
recently showed that estimating CDFs is su�cient for risk assessment, thereby making CDF estimation a
key building block for such decision-making problems. In a similar vein, it is known that CDFs can also
be used to directly compute distorted risk functions (Wirch & Hardy, 2001), coherent risks (Artzner et al.,
1999), conditional value-at-risk and mean-variance (Cassel et al., 2023), and cumulative prospect theory risks
(Prashanth et al., 2016). Furthermore, CDFs are also useful in calculating various risk functionals appearing
in insurance premium design, portfolio design, behavioral economics, behavioral finance, and healthcare
applications (Rockafellar et al., 2000; Shapiro et al., 2014; Prashanth et al., 2016; Wong et al., 2022). Given
the broad utility of estimating CDFs, there is a vast (and fairly classical) literature that tries to understand
this problem.

In particular, the renowned Glivenko-Cantelli theorem (Cantelli, 1933; Glivenko, 1933) states that given
independent samples of a random variable, one can construct a consistent estimator for its CDF. Tight
non-asymptotic sample complexity rates for such estimation using the Kolmogorov-Smirnov (KS) distance as
the loss have also been established in the literature (Cantelli, 1933; Glivenko, 1933; Dvoretzky et al., 1956;
Massart, 1990). However, these results are all limited to the setting of a single random variable. In contrast,
many modern learning problems, such as doubly-robust estimators in contextual bandits, treatment e�ects,
and Markov decision processes (Huang et al., 2021; Kallus et al., 2019; Huang et al., 2022), require us to
simultaneously learn the CDFs of potentially infinitely many random variables from limited data. Hence, the
classical results on CDF estimation do not address the needs of such emerging learning applications.
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Contributions. In this work, as a first step towards developing general CDF estimation methods that
fulfill the needs of the aforementioned learning problems, we study functional linear regression of CDFs,
where samples are generated from CDFs that are convex combinations of context-dependent CDF bases. Our
model resembles the well-studied linear regression and stochastic linear bandits problem. In linear regression,
researchers analyzed finite-dimensional parametric models with pre-selected feature functions. These pre-
designed features result from extensive feature engineering processes carried out for the underlying task.
Similarly, within the domain of contextual bandits, researchers studied the stochastic linear bandit problem
using a linear model (Lattimore & Szepesvári, 2020, Equation (19.1)) with finite dimension and known feature
map. Thus, it is natural to commence the analysis assuming the access to known “feature” CDFs, which
ultimately bestows the advantages intrinsic to linear regression. As our main contribution, we define both
least-squares regression and ridge regression estimators for the unknown linear weight parameter, and establish
corresponding estimation error bounds for the fixed design, random design, adversarial, and self-normalized
settings. In particular, given n samples with d CDF bases, we prove estimation error upper bounds that scale
like rOp

a
d{nq (neglecting sub-dominant factors). Our results achieve the same problem-dependent scaling as

in canonical finite dimensional linear regression (Abbasi-Yadkori et al., 2011b;a; Hsu et al., 2012b). Moreover,
we derive �p

a
d{nq information theoretic lower bounds for functional linear regression of CDFs. This

establishes minimax estimation rates of r�p

a
d{nq for the CDF functional regression problem. We later show

that this result directly implies the concentration of CDFs in KS distance. We also propose a new penalized
estimator that theoretically eliminates the requirement on the burn-in time of sample size in the random
design setting. Then, we consider agnostic settings where there is a mismatch between our linear model and
the actual data generation process. We characterize the estimation error of the proposed estimator in terms of
the mismatch error, and demonstrate that the estimator is well-behaved under model mismatch. To complete
our study, we generalize the parameter space in the linear model from finite-dimensional Euclidean spaces to
general infinite-dimensional Hilbert spaces, extend the ridge regression estimator to the infinite-dimensional
model with proper regularization, and establish a corresponding self-normalized estimation error upper bound
which immediately recovers our previous rOp

a
d{nq upper bound when the parameter space is restricted to be

d-dimensional. Finally, we present numerical results for synthetic and real data experiments to illustrate the
performance of our estimation methods.

Related works. A complementary approach to the proposed CDF regression framework is quantile
regression (Koenker & Bassett Jr, 1978). Although quantile regression may appear to be closely related
to CDF regression at first glance, the two problems have very di�erent flavors. Indeed, unlike CDFs,
quantiles are not su�cient for law invariant risk assessment. Furthermore, due to their infinite range, quantile
estimation is quite challenging, resulting in analyses that only consider pointwise estimation (Takeuchi et al.,
2006). Perhaps more importantly, quantile regression can be ill-posed in many machine learning settings. For
example, quantiles are not estimatable in decision-making problems and games with mixed random variables
(which take both discrete and continuous values). For these reasons, our focus in this paper will be on CDF
regression.

Several works have delved into the realm of conditional CDF estimation. Hall et al. (1999) estimated
conditional CDFs for fixed cuto� y and context x using local logistic methods and adjusted Nadaraya-Watson
estimators. However, their analysis necessitates the assumption of strong regularity conditions on the
conditional CDF (including at least continuous second-order derivatives), the marginal CDF of the context,
and the data generating process. They established asymptotic convergence only for fixed cuto� and context.
Ferraty et al. (2006) introduced a kernel-type nonparametric estimator for conditional CDFs at a fixed context
x. Their analysis mandates that the samples are independent and identically distributed (iid), in addition to
some regularity assumptions concerning the marginal distribution of x and the smoothness of the conditional
CDF. Their theoretical findings, too, revolve around asymptotic scenarios and apply solely to fixed contexts.
Chung & Dunson (2009) proposed a special class of conditional CDFs based on probit stick-breaking process
mixture models. They developed an MCMC algorithm for posterior sampling of parameters but did not
furnish theoretical assurances regarding consistency. Distinguishing itself from existing endeavors, this paper
introduces a novel linear model (1) or (18) where we presume knowledge of an arbitrary family of contextual
CDFs and aim to estimate the weight parameter ◊˚. Consequently, our model possesses the capability to
encompass any conditional CDF, enabling the estimation of the conditional CDF across all values of the
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context x and cuto� y by estimating one parameter. Furthermore, we embrace an adversarial data generation
process (see Scheme I in Section 2), which surpasses the limitations of the iid setting in terms of generality.
We provide tight non-asymptotic analysis of the estimation error by showing matching upper bounds and
lower bounds of the error. Additionally, our model (1) or (18) readily accommodates the integration of
estimated CDFs from previous works on conditional CDF estimation into the family of feature contextual
CDFs, thereby enhancing the overall quality of the conditional CDF estimates.

Chernozhukov et al. (2013) and Koenker et al. (2013) study “distribution regression” where for a fixed cuto� y,
they estimate parameters in conditional CDF models by maximizing log likelihood of ty • Yiu for outcome
samples Y1, . . . , Yn. Thus, both works require specific models for conditional CDFs. Chernozhukov et al.
(2013) introduced a “distribution regression” model where the conditional CDF takes the form of a link
function evaluated at the inner product of vector transformations of the context X and outcome Y . However,
due to the dependence of the log likelihood on the cuto� y within this model, their estimator is inherently
pointwise. They established asymptotic convergence of the estimated conditional CDF. Nonetheless, this
hinges on certain assumptions concerning the true parameter functions, which is challenging to validate.
Koenker et al. (2013) considered the “linear local-scale model” where the outcome is the summation of a linear
local function of the context and the product of a linear scale function of the context and an independent
random error boasting a smooth density. Their convergence results are of an asymptotic nature, assuming iid
samples, alongside other conditions on the expected log likelihood and the asymptotic covariance function
which also pose substantial verification challenges. Furthermore, the maximum likelihood estimation (MLE)
used in both papers only accesses the indicators denoting whether the samples Y1, . . . , Yn surpass a fixed cuto�
y, which underutilizes the wealth of information inherent in the samples. In stark contrast, our estimator (2)
or (21) uses the one-sample empirical CDFs ( tYi § ¨u) which fully exploit the sample information. Moreover,
as previously mentioned, the estimated CDFs derived in the above distribution regression problems can be
seamlessly integrated into our proposed model.

In some literature, “distribution regression” takes on a distinctive meaning, referring to the model where the
context is a sequence of samples from some distribution which, together with the outcome, is sampled from
some meta joint distribution (Póczos et al., 2013; Szabó et al., 2016). The task is to learn a mapping from
the distribution of the context to the outcome. Contrastingly, our model (1) or (18) operates in a di�erent
realm: the outcome is a sample from a mixture of contextual CDFs and the task is to learn the weight
parameter ◊˚. Thus, our model diverges from the above notion of distribution regression. Our focus is not
on estimating a mapping from distributions to outcomes but on estimating a parameter that governs the
condition distribution. Moreover, there is no meta distribution that the samples follow in our adversarial
data generating process.

Outline. We briefly outline the rest of the paper. Notation and formal setup for our problem are given in
Section 2. We propose our estimation paradigm and analyze its theoretical performance in Section 3. We
derive corresponding lower bounds on the estimation error in Section 4. We establish upper bounds on the
estimation error under the existence of a mismatch in our proposed model in Section 5. We generalize the
problem from estimating finite dimensional parameters to estimating infinite dimensional parameters, extend
our estimation paradigm to this infinite dimensional setting, and prove an upper bound on estimation error in
Section 6. Numerical results are displayed in Section 7. Conclusions are drawn and future research directions
are suggested in Section 8. All the proofs and additional results are presented in the appendices.

2 Preliminaries

In this section, we introduce the notation used in the paper and set up the learning problem of contextual
CDF regression.

Notation. Let N denote the set of positive integers. For any n P N, let rns denote the set t1, . . . , nu.
For any measure space p�, F ,mq, define the Hilbert space L

2
p�,mq :“ tf : � Ñ R

ˇ̌ ≥
� |f |

2dm † 8u with
L

2-norm }f}L2p�,mq :“
b≥

� |f |2dm for f P L
2
p�,mq. For any positive definite matrix A P Rdˆd, define

} ¨ }A to be the weighted ¸2-norm in Rd induced by A, i.e., }x}A “

?

xJAx for x P Rd. For the standard
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Euclidean (or ¸2-) norm } ¨ }Id , where Id denotes the d ˆ d identity matrix, we omit the subscript Id and
simply write } ¨ }. For any square matrix A, let µminpAq denote the smallest eigenvalue of A, µmaxpAq denote
the largest eigenvalue of A and }A}2 denote the spectral norm of the matrix A, i.e., }A}2 :“

a
µmaxpAJAq.

Let KSpF1, F2q :“ supxPR |F1pxq ´ F2pxq| denote the KS distance between two CDFs F1 and F2. Finally, let
t¨u denote the indicator function. More technical notation dealing with measurability issues is provided at

the beginning of Appendix B.

Problem setup. In this paper, we consider the problem of functional linear regression of CDFs. To define
this problem, let X denote the context space, and let F px, ¨q : R Ñ r0, 1s be the CDF of some R-valued
random variable for any x P X . We assume that X is a Polish space throughout the paper. For a context
x P X , we observe a sample y from its corresponding CDF F px, ¨q. We next summarize two schemes to
generate px, yq samples:

• Scheme I (Adversarial). For each j P N, an adversary picks xpjq
P X (either deterministically or

randomly) in an adaptive way given knowledge of the previous ypiq’s for i † j, and then ypjq
P R is sampled

from F pxpjq, ¨q. This includes the canonical fixed design setting as a special case, where all xpjq’s are
fixed a priori without knowledge of ypjq’s.

• Scheme II (Random). For each j P N, xpjq
P X is sampled from some probability distribution P pjq

X
on X independently, and then ypjq

P R is sampled from F pxpjq, ¨q independently. This is known as the
random design setting in the regression context.

Scheme I and Scheme II generalize the assumptions of the data generation process in canonical ridge regression
in Abbasi-Yadkori et al. (2011a) and Hsu et al. (2012b) to the problem of CDF estimation, respectively.
Note that although the random design setting in Scheme II is a special case of Scheme I, we emphasize it
because it has specific properties that deserve a separate treatment. The adversarial setting in Scheme I is
more general than what is typically considered for regression, and our corresponding self-normalized analysis
has several potential future applications in risk assessment for reinforcement learning, e.g., in contextual
bandits (Abbasi-Yadkori et al., 2011a).

The task of contextual CDF regression is to recover F from a sample tpxpjq, ypjq
qujPrns of size n. As an

initial step towards this problem, inspired by the well-studied linear regression and linear contextual bandits
problems (Lattimore & Szepesvári, 2020, Equation (19.1)), where finite-dimensional parametric models with
pre-selected feature functions are assumed, we consider a linear model for F . Let d be a fixed positive integer.
For each i P rds and x P X , let „ipx, ¨q : R Ñ r0, 1s be a feature function that is a CDF of a R-valued random
variable with range contained in some Borel set S Ñ R, and assume that „i is measurable. Then, we define the
vector-valued function � : X ˆ R Ñ r0, 1s

d, �px, tq “ r„1px, tq, . . . , „dpx, tqs
J. We assume that there exists

some unknown ◊˚ P �d´1, where �d´1 :“ tp◊1, . . . , ◊dq P Rd :
∞d

i“1 ◊i “ 1, ◊i • 0 for 1 § i § du denotes the
probability simplex in Rd, such that,

F px, tq “ ◊J
˚ �px, tq, @ x P X , t P R. (1)

Thus, we can view � as a “basis” for contextual CDF learning.

We visualize the sample generation process in Figure 1 where the contextual CDFs are shown in the left
column and the one-sample empirical CDFs ( ty § ¨u for sample y) are shown in the right column. It is
worth mentioning the di�erences between our model and the mixture model with known basis distributions in
the statistics literature. First, the basis distributions in our model depend on the context of the sample and
are not fixed. Second, in mixture models, the samples are assumed to be independent while in our Scheme I,
the samples can be dependent since xpjq is picked adversarially given knowledge of the previous ypiq’s. Thus,
the mixture model with known basis distributions only corresponds to the fixed design setting with the same
context xpjq

“ x for all samples.

As explained in the sampling schemes above, given xpjq at the jth sample, the observation ypjq is generated
according to the CDF F pxpjq, ¨q “ ◊J

˚ �pxpjq, ¨q. For notational convenience, we will often refer to the
vector-valued function �pxpjq, ¨q as �jp¨q for all j P rns, so that F pxpjq, ¨q “ ◊J

˚ �jp¨q. Under the linear model
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Figure 1: A visualization of the data generating process. For each j with context xpjq
P X , the left column

shows the d contextual CDFs („ipxpjq, ¨q, i P rds) under the context xpjq. For ypjq drawn from the CDF
F pxpjq, ¨q “ ◊J

˚ �pxpjq, ¨q where �pxpjq, ¨q :“ r„ipxpjq, ¨q, . . . , „dpxpjq, ¨qs
J, the right column shows the sample

empirical CDF Iypjq p¨q :“ typjq
§ ¨u.

in (1), our goal is to estimate the unknown parameter ◊˚ from the sample tpxpjq, ypjq
qujPrns in a (regularized)

least-squares error sense. This in turn recovers the contextual CDF function F .

3 Upper bounds on estimation error

In this section, we propose an estimation paradigm for the unknown parameter ◊˚ in Section 3.1, derive the
upper bounds on the associated estimation error in Section 3.2, and propose a new penalized estimator that
theoretically eliminates the burn-in time of the sample size in the random setting in Section 3.3.

3.1 Ridge regression estimator

We begin by formally stating our least-squares functional regression optimization problem to learn ◊˚. Given
a probability measure m on S, the sample tpxpjq, ypjq

qujPrns, and the set of basis functions t�jujPrns, we
propose to estimate ◊˚ by minimizing the (ridge or) ¸2-regularized squared L

2
pS,mq-distance between the

estimated and empirical CDFs:

p◊⁄ :“ arg min
◊PRd

nÿ

j“1
}Iypjq ´ ◊J�j}

2
L2pS,mq ` ⁄}◊}

2, (2)

where ⁄ • 0 is the hyper-parameter that determines the level of regularization, and the function observation
Iypjq ptq :“ typjq

§ tu is an empirical CDF of ypjq that forms an unbiased estimator for F pxpjq, ¨q conditioned
on past contexts and observations. Hence, in Scheme I, we only require that Iypjq ´◊J�j is a zero-mean function
given past contexts and observations, making our analysis suitable for online learning problems where the
later contexts can depend on the past contexts and observations. Notice further that p◊⁄ in (2) is an improper
estimator since it may not lie in �d´1. However, since �d´1 is compact in Rd, r◊⁄ :“ arg minËP�d´1 }Ë ´ p◊⁄}A
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exists for any positive definite A P Rdˆd. Moreover, since �d´1 is also convex, we have }r◊⁄ ´ ◊}A § }p◊⁄ ´ ◊}A

(Beck, 2014, Theorem 9.9) for any ◊ P �d´1 including ◊˚. This means that an upper bound on }p◊⁄ ´ ◊˚}A is
also an upper bound on }r◊⁄ ´ ◊˚}A. Therefore, we focus our analysis on the improper estimator p◊⁄, noting
that its projection onto �d´1 yields an estimator r◊⁄ for which the same upper bounds hold.

When ⁄ ° 0, the objective function in (2) is a p2⁄q-strongly convex function of ◊ P Rd (see, e.g., Bertsekas
et al., 2003, for the definition), and is uniquely minimized at

p◊⁄ “

˜
nÿ

j“1

ª

S
�j�J

j dm ` ⁄Id

¸´1 ˜
nÿ

j“1

ª

S
Iypjq�jdm

¸
. (3)

For the unregularized case where ⁄ “ 0, we omit the subscript ⁄ and write p◊ to denote a corresponding
estimator in (2). Note that when ⁄ “ 0, if µminp

∞n
j“1

≥
S �j�J

j dmq ° 0, the objective function in (2) is still
strongly convex, and is uniquely minimized at p◊ given in (3) with ⁄ “ 0. In practice, one can deploy standard
numerical methods to compute the integral in (3), and the computational complexity of the matrix inversion
is cubic in the dimension d. However, iterative methods can be used to obtain better dimension dependence
in the running time. As a remark, since the probability density functions (PDFs) of the basis distributions
may not exist, the samples in Scheme I can be dependent, and the distributions of the contexts in Scheme II
are unknown, the likelihood function of the samples generally does not exist in our problem setting, which
rules out the usage of MLE. But our estimator (2) always exists. Moreover, we focus on non-asymptotic
analysis of our estimator and prove self-normalized upper bounds for the estimation error, which is rarely
analyzed for MLEs.

Lastly, it is worth remarking upon the choice of measure m used above. In order for the estimator in
(2) to be well-defined, since Iyptq, ◊J�px, tq P r0, 1s for any t, y P R and x P X , it su�ces to ensure that
mpSq † 8 (i.e., m is a finite measure). This is the reason why we restrict m to be a probability measure on
S. Furthermore, the probability measure m can in general be chosen to adapt to specific problem settings.
For example, the uniform measure mU on S is often easy to compute for some choices of S. Specifically, if
0 † LebpSq † 8, where Leb denotes the Lebesgue measure, mU is defined by dmU

dLeb “
1

LebpSq , where dmU
dLeb is the

Radon-Nikodym derivative. If S is a finite set with cardinality #S, mU “
1

#S

∞
sPS ”s, where ”s denotes the

Dirac measure at s. On the other hand, when S “ R, m can be set to the Gaussian measure “c,‡2 defined by
“c,‡2 pdxq “

1?
2fi‡2 e´px´cq2{p2‡2qdx with c P R and ‡2

° 0.

3.2 Self-normalized bounds in various settings

For samples generated according to Scheme I, we prove self-normalized upper bounds on the error p◊⁄ ´ ◊˚.
For any probability measure m on S, define Un :“

∞n
j“1

≥
S �j�J

j dm and Unp⁄q “ Un ` ⁄Id for n P N and
⁄ • 0. For n, d P N, ⁄, · P p0, 8q, and ” P p0, 1q, define

Á⁄pn, d, ”q :“
a

d log p1 ` n{⁄q ` 2 logp1{”q `

?

⁄}◊˚} and (4)

Ápn, d, ”, ·q :“
ˆ

?

d `

a
8d logp1{”q `

4
3

a
d{n logp1{”q

˙
{
?

· . (5)

The next theorem states our self-normalized upper bound on the estimation error.
Theorem 1 (Self-normalized bound in adversarial setting). Assume m is a probability measure on S and
tpxpjq, ypjq

qujPN is sampled according to Scheme I with F defined in (1). For any ⁄ ° 0 and ” P p0, 1q, with
probability at least 1 ´ ”, for all n P N, the estimator defined in (2) satisfies

}p◊⁄ ´ ◊˚}Unp⁄q § Á⁄pn, d, ”q. (6)

Moreover, for the unregularized case, we have the following result.
Proposition 2 (Self-normalized bound in adversarial setting for unregularized estimator). Under the same
assumptions as Theorem 1, if UN is positive definite for a fixed N P N, then for any ” P p0, 1q and n • N ,
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with probability at least 1 ´ ”, the estimator defined in (2) with ⁄ “ 0 satisfies

}p◊ ´ ◊˚}Un § Á pn, d, ”, µminpUnq{nq . (7)

The proofs of Theorem 1 and Proposition 2 are provided in Appendix B.1. Informally, Theorem 1 and
Proposition 2 convey that with high probability, the self-normalized errors }p◊⁄ ´ ◊˚}Unp⁄q and }p◊ ´ ◊˚}Un

scale as rOp

?

dq in the ¸2-regularized and unregularized cases, where rOp¨q ignores logarithmic and other sub-
dominant factors. We note that Theorem 1 and Proposition 2 also imply upper bounds on the (un-normalized)
error }p◊⁄ ´ ◊˚}. Indeed, for any positive definite matrix A P Rdˆd and vector a P Rd, we have }a} §

µminpAq
´1{2

}a}A. Thus, for example, (6) in Theorem 1 implies that }p◊⁄ ´ ◊˚} § µminpUnp⁄qq
´1{2Á⁄pn, d, ”q “

rO
`a

d{p1 ` µminpUnqq
˘

with high probability. Then, for the projected estimator r◊⁄ P �d´1, we have
}r◊⁄ ´ ◊˚} § rO

`
mint1,

a
d{p1 ` µminpUnqqu

˘
by the property of �d´1. When µminpUnq “ �pnq, we have

}p◊⁄ ´ ◊˚} “ rO
`a

d{n
˘
.

The key idea in the proof of Theorem 1 is to first notice that p◊⁄ ´ ◊˚ “ Unp⁄q
´1Wn ´

Unp⁄q
´1

p⁄◊˚q, where Wn :“
∞n

j“1
≥
SpIypjq�j ´ ◊J

˚ �j�jqdm. We next show that tÑMnun•0 where ÑMn :“
⁄d{2

detpUnp⁄qq1{2 exp
´

1
2 }Wn}

2
Unp⁄q´1

¯
is a super-martingale. Doob’s maximal inequality for super-martingales is

then used in conjunction with some careful algebra to establish (6). To prove Proposition 2, we use a vector
Bernstein inequality for bounded martingale di�erence sequences (Hsu et al., 2012a, Proposition 1.2) to show
a high probability upper bound for }Wn}. Note that UN being positive definite implies that Un is positive
definite for n • N . Since }p◊ ´ ◊˚}Un “ }Wn}U´1

n
§ }Wn}{

a
µminpUnq, we establish (7).

Since the fixed design is a special case of the adversarial setting, Theorem 1 and Proposition 2 imply the
same rO

`?

d
˘
-style upper bounds as a corollary in the fixed design setting.

Corollary 3 (Self-normalized bound in fixed design setting). For an arbitrary probability measure m on S
and an arbitrary sequence txpjq

ujPN P X
N, assume that ypjq is sampled from F pxpjq, ¨q independently for each

j P N with F defined in (1). For any ⁄ ° 0 and ” P p0, 1q, with probability at least 1 ´ ”, the estimator defined
in (2) satisfies (6) for all n P N.

If UN is positive definite for some fixed N P N, then for any ” P p0, 1q and n • N , with probability at least
1 ´ ”, the estimator defined in (2) with ⁄ “ 0 satisfies (7).

The proof of Corollary 3 is inline with those of Theorem 1 and Proposition 2.

Furthermore, based on Theorem 1 and Proposition 2, we prove self-normalized upper bounds on the estimation
error under Scheme II, which corresponds to the random design setting in linear regression. For any probability
measure m on S Ñ R, define �pjq :“ E

xpjq„P pjq
X

“≥
S �j�J

j dm
‰

and �n :“
∞n

j“1 �pjq for j, n P N.

Theorem 4 (Self-normalized bound in random design setting). Assume m is a probability measure on S,
tpxpjq, ypjq

qujPN is sampled according to Scheme II with F defined in (1), and µmin
`
�pjq˘

• ‡min for some
constant ‡min ° 0 and all j P N. For any ” P p0, 1{2q and n •

32d2

‡2
min

logp
d
” q, with probability at least 1 ´ 2”, the

estimator in (2) with ⁄ “ 0 satisfies

}p◊ ´ ◊˚}�n § 2Á pn, d, ”, ‡minq . (8)

Moreover, for regularized estimators, we have the following result.
Proposition 5 (Self-normalized bound in random design setting for regularized estimator). Under the same
assumptions as Theorem 4, for any ⁄ ° 0, ” P p0, 1{2q, and n •

32d2

‡2
min

log
`

d
”

˘
, with probability at least 1 ´ 2”,

the estimator defined in (2) satisfies

}p◊⁄ ´ ◊˚}�n §

?

2Á⁄pn, d, ”q. (9)

The proofs of Theorem 4 and Proposition 5 are given in Appendix B.2. As before, they convey that in the
random design setting, the self-normalized errors }p◊⁄ ´ ◊˚}�n and }p◊ ´ ◊˚}�n scale as rO

`?

d
˘

with high

7
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probability in the ¸2-regularized and unregularized cases. Moreover, we once again note that Theorem 4
and Proposition 5 imply upper bounds on the (un-normalized) error }p◊⁄ ´ ◊˚}. For example, since ‡min
is a positive constant, (8) implies that }p◊ ´ ◊˚} § 2µminp�nq

´1{2Á pn, d, ”, ‡minq “ rO
`a

d{n
˘

with high
probability since µminp�nq • n‡min by Weyl’s inequality (Weyl, 1912). Moreover, it is not hard to show
that for general �n and ⁄ ° 0, (9) can be generalized to }p◊⁄ ´ ◊˚}�np⁄q “ rOp

?

dq which again implies that
}p◊⁄ ´ ◊˚} “ rOpmint1,

a
d{pµminp�nq ` 1quq.

The main idea in the proofs of Theorem 4 and Proposition 5 is to establish a high probability lower bound on
µminp�nq, where �n :“ �´ 1

2
n pUn ´ �nq �´ 1

2
n . This can be achieved using the matrix Hoe�ding’s inequality

(Tropp, 2012, Theorem 1.3). Then, we show that for any ⁄ • 0, }p◊⁄´◊˚}�n § p1`µmin p�nqq
´1{2

}p◊⁄´◊˚}Unp⁄q.
For Theorem 4, we prove that µminpUnq • µminp�nqpµminp�nq ` 1q. Then, we can lower bound µminpUnq

in (7) by a multiple of µminp�nq with high probability. Thus, (8) follows from (7) and the high probability
lower bound on µminp�nq. For Proposition 5, (9) follows from (6) and the high probability lower bound on
µminp�nq.

We briefly compare our results in this section with related results in the literature. In the (canonical, finite
dimensional) adversarial linear regression setting, Abbasi-Yadkori et al. (2011a) show an rO

`?

d
˘

upper bound
for the self-normalized error of the ridge least-squares estimator. The functional regression upper bound in
(6) aligns precisely with this scaling (neglecting sub-dominant factors). In the (canonical, finite dimensional)
random design linear regression setting, Hsu et al. (2012b) show an rO

`?

d
˘

upper bound for the self-normalized
error of the unregularized least-squares estimator under some conditions on the distribution of covariates.
The upper bound in (8) for the unregularized case also matches this scaling (neglecting sub-dominant factors).
Nevertheless, it’s crucial to acknowledge that our linear model (1) is characterized by a unique complexity.
Unlike the canonical linear regression framework, where the features are finite-dimensional vectors, and the
response is a scalar, both features and response are functions in our model. This intricacy introduces numerous
analytical challenges, setting it apart from the conventional linear regression paradigm. Furthermore, in our
infinite dimensional model (18) studied later, we elevate the parameter from a finite-dimensional vector to a
function, ushering in even more formidable complexities and challenges during the analysis.

Finally, we note that an upper bound on }p◊⁄ ´ ◊˚} immediately implies an upper bound on the KS distance
between our estimated CDF and the true one. Let pF⁄px, ¨q :“ r◊J

⁄ �px, ¨q denote the estimated CDF for any
x P X . Then, under the linear model (1), we have

sup
xPX

KSp pF⁄px, ¨q, F px, ¨qq “ sup
xPX ,tPS

|pr◊⁄ ´ ◊˚q
J�px, tq| §}r◊⁄ ´ ◊˚} sup

xPX ,tPS
}�px, tq}

§

?

d}p◊⁄ ´ ◊˚},

where we use the Cauchy-Schwarz inequality and the fact that supxPX ,tPS }�px, tq} §

?

d. Since }p◊⁄ ´ ◊˚} “

rO
`

mint1,
a

d{p1 ` µminpUnqqu
˘

(see discussion below Proposition 2 and 5) and pF⁄, F P r0, 1s, we have
supxPX

KSp pF⁄px, ¨q, F px, ¨qq“ rO
`

mint1, d{

a
p1 ` µminpUnqqu

˘
. It is worth mentioning that the above upper

bound on the estimation error in KS distance may not be sharp because we focus on a tight analysis of
the estimation of ◊˚ instead of F px, ¨q for some x P X . Nevertheless, in Appendix A, we show that when
µminpUnq “ 0 (µminp�nq “ 0), the minimax risk in terms of the uniform KS distance for the estimation of F
is lower bounded by �p1q for the adversarial (random) setting.

3.3 Burn-in-time-free upper bound

Note that the theoretical guarantees in Theorem 4 and Proposition 5 require a burn-in time of the sample
size n: n •

32d2

‡2
min

logp
d
” q. Motivated by Pires & Szepesvári (2012), we propose a new estimator q◊⁄ in (10) to

eliminate the burn-in time of n:

q◊⁄ P arg min
◊PRd

`
}Unp⁄q◊ ´ un} ` �U

n p”q}◊}
˘

, (10)

8
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where ⁄ • 0, ” P p0, 1q, un :“
∞n

j“1
≥
S Iypjq�jdm, and �U

n p”q is a positive number such that �U
n p”q • }Un´�n}

with probability at least 1 ´ ”. For notatoinal convenience, we use q◊ to denote q◊0. To calculate q◊⁄ in (10), it
is necessary to first choose �U

n p”q for which we prove a lower bound in the following lemma.
Lemma 6. Assume m is a probability measure on S and tpxpjq, ypjq

qujPN is sampled according to Scheme II
with F defined in (1). For any ” P p0, 1q and n P N, any �U

n p”q • d
a

8n logpd{”q satisfies �U
n p”q • �U

n with
probability at least 1 ´ ”.

The proof of Lemma 6 follows from the matrix Hoe�ding’s inequality (Tropp, 2012, Theorem 1.3) and the
boundedness of CDFs, and is provided in Appendix E. Then, we show the following upper bound on the
estimation error of q◊⁄.
Theorem 7 (Self-normalized bound in random setting without burn-in time). Under the same assumptions
as Lemma 6, for any ” P p0, 1{2q and n P N, if µmin p�nq ° 0, then, with probability at least 1 ´ 2”, the
estimator defined in (10) with ⁄ “ 0 satisfies

}q◊ ´ ◊˚} § 1
µminp�nq

„
2d

a
8n logpd{”q}◊˚} ` 2

ˆ?
nd `

a
8nd logp1{”q ` 4

3
?

d logp1{”q
˙⇢

. (11)

The proof of Theorem 7 is provided in Appendix B.3. It conveys that for any n P N, as long as µp�nq ° 0,
}q◊ ´ ◊˚} § rO

` d
?

n
µminp�nq

˘
holds with high probability. Under the assumption that µminp�pjq

q • ‡min for any
j P N as in Theorem 4 and Proposition 5, we have that }q◊ ´ ◊˚} § rO

`
d{

?
n

˘
with high probability for any

n P N. Compared with the rO
`a

d{n
˘

upper bound of the estimation error of p◊ in Theorem 4, q◊ su�ers a
larger error rate with respect to (wrt) the dimension d in order to eliminate the burn-in time of the sample
size n. Thus, q◊ is more applicable to the estimation of ◊˚ for small sample size and small dimension.

The proof of Theorem 7 builds on the upper bound shown in Pires & Szepesvári (2012) for the estimator
that minimizes the unsquared penalized loss as in (10). By Pires & Szepesvári (2012, Theorem 3.4), we have
that with probability at least 1 ´ ”,

}�np⁄qq◊⁄ ´ �n◊˚} § p⁄ ` 2�U
n p”qq}◊˚} ` 2}un ´ Eruns}.

Then, we can bound }un ´ Eruns} with high probability by the vector Bernstein inequality (Hsu et al., 2012a,
Proposition 1.2). By setting ⁄ “ 0 and �U

n p”q “ d
a

8n logpd{”q as is guaranteed by Lemma 6, we obtain (11)
after some derivation.

4 Minimax lower bounds

To show that our estimator (2) is minimax optimal, we prove information theoretic lower bounds on the
¸2-norm of the estimation error for any estimator. Recall that for a distribution family Q and (parameter)
function › : Q Ñ Rd, the minimax ¸2-risk is defined as,

Rp›pQqq :“ inf̂
›

sup
QPQ

Ez„Qr}›̂pzq ´ ›pQq}s, (12)

where the infimum is over all (possibly randomized) estimators ›̂ of › based on a sample z, and the supremum
is over all distributions in the family Q. To specialize this definition for our problem, for any x P X and ◊ P Rd,
let P �

Y |x;◊ denote the probability measure defined by the CDF ◊J�px, ¨q. Moreover, for any sequence x1:n :“

pxp1q, . . . , xpnq
q P X

n, define the collection of product measures, P
d
x1:n :“

!
b

n
j“1P �

Y |xpjq;◊ : ◊ P �d´1, � P Bd

)
,

where

Bd :“ tr„1, . . . , „ds
J : „i : X ˆ R Ñ r0, 1s is measurable and „ipx, ¨q is a CDF on R, @i P rdsu.

For any distribution P P P
d
x1:n , let ◊pP q be a parameter in �d´1 such that P “ b

n
j“1P �

Y |xpjq;◊. Then, we have
the following theorem in the adversarial setting.

9
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Theorem 8 (Information theoretic lower bound in adversarial setting). For any d • 2 and any sequence
x1:n

“ pxp1q, . . . , xpnq
q P X

n, we have

Rp◊pP
d
x1:n qq “ �

´
mint1,

a
d{p1 ` µminpUnqqu

¯
. (13)

The proof uses Fano’s method (Fano, 1961) and is given in Appendix C.1. Note that strictly speaking, the
above theorem is written for the fixed design setting. However, a lower bound in the fixed design setting also
implies the same lower bound in adversarial setting. Furthermore, by our discussion below Theorem 1, (6)
implies that in the adversarial setting,

P
„

}p◊⁄ ´ ◊˚}
2

•
C1d logpnq ` C2 ` C3r

1 ` µminpUnq

⇢
§ e´r

for r ° 0 and some constants C1, C2, and C3, which immediately implies that Er}p◊⁄ ´ ◊˚}s “

rOp

a
d{p1 ` µminpUnqqq and Er}r◊⁄´◊˚}s “ rOpmint1,

a
d{p1 ` µminpUnqquq. Thus, our estimator r◊⁄ is minimax

optimal. When µminpUnq “ �pnq, the optimal rate is r�p

a
d{nq in the adversarial setting.

In the proof of Theorem 8, we construct a family of �pa{

?

dq-packing subsets of �d´1 for a P p0, 1q under
¸2-distance. We then show that when „1, . . . , „d are the CDFs of d Bernoulli distributions, for any ◊p1q

‰ ◊p2q

in such a packing subset, the Kullback-Leibler (KL) divergence (see definition in Appendix C.1) satisfies

DpPY |xpjq;◊p1q }PY |xpjq;◊p2q q “ Opa2
p1 ` µminpUnqq{dq

for any j P rns. Since the above family of Bernoulli distributions is a subset of P
d
x1:n , we are able to show that

Rp◊pPx1:n qq “ �
`a

d{p1 ` µminpUnqq
˘

using Fano’s method and the aforementioned bound on KL divergence.

Next, to analyze minimax ¸2-risk under the random setting, let DX denote the set of all probability
distributions on X . For any PX P DX , let PXP �

Y |X;◊ denote the joint distribution of pX, Y q such that the
marginal distribution of X is PX and the conditional distribution of Y given X “ x is P �

Y |x;◊. Define the
distribution family

P
d
n :“

 
b

n
j“1 P pjq

X P �
Y |X;◊ : ◊ P Rd, � P Bd, P pjq

X P DX

(
,

and for any P P P
d
n, let ◊pP q denote the parameter in �d´1 such that P “ b

n
j“1P pjq

X P �
Y |X;◊. Clearly, for

any x1:n
P X

n, we have
 

b
n
j“1”xpjqPY |X;◊ : ◊ P �d´1(

Ñ P
d
n. Thus, each P

d
x1:n is a collection of marginal

distributions of elements belonging to such subsets of P
d
n. Then, by the definition of minimax ¸2-risk, Theorem

8 immediately implies the following corollary.
Corollary 9 (Information theoretic lower bound in random setting). For any d • 2,

Rp◊pP
d
nqq “ �

´
mint1,

a
d{p1 ` µminp�nqqu

¯
(14)

The proof is given in Appendix C.2. By the discussion below Proposition 5, our estimator r◊⁄ (⁄ ° 0) is
minimax optimal. When µminp�nq “ �pnq as in Theorem 4 and Corollary 5, the lower bound on the Euclidean
norm of the estimation error is also �

`a
d{n

˘
in random setting. Following the discussion below Theorem

4, (8) implies that in random setting, Pr}p◊ ´ ◊˚} • C1
a

d{n ` C2
a

rd{n ` C3r
?

d{ns § e´r for r ° 0 and
constants C1, C2, and C3, which immediately implies that Er}p◊ ´ ◊˚}s “ rOp

a
d{nq. Thus, the estimator (2)

is minimax optimal with rate r�p

a
d{nq in random setting when µminp�nq “ �pnq.

5 Mismatched model

In general, a mismatch may exist between the true target function and our linear model (1) with basis �. So,
in analogy with canonical linear regression where additive Gaussian random variables are used to model the
error term (Montgomery et al., 2021), we consider the following mismatched model:

F px, tq “ ◊J
˚ �px, tq ` epx, tq, @ x P X , t P R, (15)

10
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where an additive error function depending on the context is included to model the mismatch in (1). Note that
in (15), each F px, ¨q is a CDF and e : X ˆ S Ñ r´1, 1s is a measurable function. One equivalent interpretation
of (15) is as follows. Suppose that their exists another contextual CDF function „e such that F px, ¨q is a
mixture of the linear model ◊J

˚ �px, ¨q and the new feature function „epx, ¨q, i.e., for some q P r0, 1s,

F px, tq “ p1 ´ qq◊J
˚ �px, tq ` q„epx, tq “ ◊J

˚ �px, tq ` q
`
„epx, tq ´ ◊J

˚ �px, tq
˘

, @ x P X , t P R.

Then, we naturally obtain an additive error function epx, tq “ q
`
„epx, tq ´ ◊J

˚ �px, tq
˘
.

Given a sample tpxpjq, ypjq
qujPrns generated using the mismatched model (15), let ejptq denote epxpjq, tq for

j P rns. Moreover, define En :“
∞n

j“1
≥
S ej�jdm and Bn :“ ErEns “

∞n
j“1 E

“≥
S ej�jdm

‰
. Then, we have the

following theoretical guarantees for the task of estimating ◊˚ using the estimator in (2) in the adversarial and
random settings.
Theorem 10 (Self-normalized bound in mismatched adversarial setting). Assume m is a probability measure
on S and tpxpjq, ypjq

qujPN is sampled according to Scheme I with F defined in (15). For any ⁄ ° 0 and
” P p0, 1q, with probability at least 1 ´ ”, the estimator defined in (2) satisfies that for all n P N,

}p◊⁄ ´ ◊˚}Unp⁄q § Á⁄pn, d, ”q ` }En}{

?

⁄. (16)

The proof of Theorem 10 follows the same approach as the proof of Theorem 1, and it is provided in Appendix
I.1. Furthermore, Theorem 10 implies Corollary 11 for the mismatched random setting.
Corollary 11 (Self-normalized bound in mismatched random setting). Assume m is a probability measure on
S, tpxpjq, ypjq

qujPN is sampled according to Scheme II with F defined in (15), and µminp�pjq
q • ‡min for some

‡min ° 0 and all j P N. For any ⁄ ° 0, ” P p0, 1{2q, and n •
32d2

‡2
min

log
`

d
”

˘
, with probability at least 1 ´ 2”, the

estimator defined in (2) satisfies

}p◊⁄ ´ ◊˚}�n §

?

2Á⁄pn, d, ”q `

a
2{⁄}Bn}. (17)

The proof of Corollary 11 is given in Appendix I.2. It follows from the proofs of Theorem 10 and Proposition
5.

In the adversarial setting, comparing (16) in Theorem 10 with (6) in Theorem 1, we see that the e�ect of the
additive error in the mismatched model is captured by the additional }En}{

?

⁄ term in our self-normalized
error upper bound. Similarly, in the random setting, comparing (17) in Corollary 11 with (9), we again see
that the e�ect of the additive error is captured by the additional

a
2{⁄}Bn} term in the self-normalized upper

bound.

6 Infinite dimensional model

So far, we have been assuming finite-dimensional models where the number of base contextual CDFs „i’s
per sample is finite. It is natural to consider generalizing the linear model to be infinite-dimensional and
estimating an infinite dimensional parameter ◊˚ which shall be considered as a function on the “index” space
of the base functions. In Section 6.1, we formally introduce the infinite-dimensional linear model. We present
necessary definitions and technical facts for the statement of the estimator and theorem in Section 6.2. We
extend the estimator p◊⁄ in (2) with properly chosen regularization and provide a high probability upper
bound on the estimation error of the generalized estimator in Section 6.3.

6.1 Formal model

First, we introduce the infinite dimensional index space � and the generalized basis function �. Assume
that p�, F�, nq is a measure space with np�q † 8 and � : X ˆ � ˆ R Ñ r0, 1s, px, Ê, tq fiÑ �px, Ê, tq is a
pBpX q b F� b BpRqq{Bpr0, 1sq-measurable function (see Appendix B for the explanations of notation) such
that for any x P X and n-a.e. Ê P �, �px, Ê, ¨q is the CDF of some R-valued random variable with its range

11
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contained in some Borel set S Ñ R. Define the following mapping,

x¨, ¨y : L
2
p�, nq ˆ L

2
p�, nq Ñ R, pf, gq fiÑ

ª

�
fgdn.

Then, x¨, ¨y is an inner product on L
2
p�, nq and pL

2
p�, nq, x¨, ¨yq is a Hilbert space. Let } ¨ } denote the norm

by induced x¨, ¨y on L
2
p�, nq. Assume that pL

2
p�, nq, x¨, ¨yq is separable. Then, there exists a countable

orthonormal basis on pL
2
p�, nq, x¨, ¨yq. For notational convenience, we write L

2
p�, nq to represent the

Hilbert space pL
2
p�, nq, x¨, ¨yq. Let e “ teiu

8
i“1 be an arbitrary countable orthonormal basis of L

2
p�, nq and

‡ “ t‡iuiPN be an arbitrary real sequence such that
∞8

i“1 |‡i| † 8. Assume that there exists some unknown
◊˚ P H‡,e such that ◊˚ • 0 n-a.e.,

≥
� ◊˚n “ 1, and the target function F satisfies the following model

F px, tq “ x◊˚p¨q, �px, ¨, tqy, @ x P X , t P R. (18)

6.2 Technical preliminaries

The proofs of the theoretical results in this section are provided in Appendix F. Given the sample
tpxpjq, ypjq

qujPN Ñ X ˆ R, define the function �j : � ˆ R Ñ r0, 1s, pÊ, tq fiÑ �pxj , Ê, tq for any j P N.
Since np�q † 8 and |�px, Ê, tq| § 1 for any x P X , n-a.e. Ê P �, and any t P R, we have �j P L

2
p�, nq for

any j P N. Then, for any j P N, we define,

�j : L
2
p�, nq ˆ S Ñ R, p◊, tq fiÑ x◊p¨q, �jp¨, tqy.

Then, by Holder’s inequality, for any j P N and ◊ P L
2
p�, nq, we have suptPR |�jp◊, tq| § np�q

≥
� |◊|

2dn † 8.
It follows that �jp◊, ¨q P L

2
pS,mq. Moreover, we have that for any n P N, any ◊ P L

2
p�, nq, and n-a.e. Ê P �,

ˇ̌
ˇ̌
ˇ

nÿ

j“1

ª

S
�jp◊, tq�jpÊ, tqmpdtq

ˇ̌
ˇ̌
ˇ §

nÿ

j“1

ª

S
|�jp◊, tq�jpÊ, tq|mpdtq § nnp�q

ª

�
|◊|

2dn.

Since np�q † 8, it follows that the function Ê fiÑ
∞n

j“1
≥
S �jp◊, tq�jpÊ, tqmpdtq is in L

2
p�, nq. Thus, for any

n P N, we can define an operator Un : L
2
p�, nq Ñ L

2
p�, nq by

pUn◊qpÊq :“
nÿ

j“1

ª

S
�jp◊, tq�jpÊ, tqmpdtq “

nÿ

j“1

ª

S
x◊p¨q, �jp¨, tqy�jpÊ, tqmpdtq (19)

for any ◊ P L
2
p�, nq. We show the following properties of Un.

Lemma 12. For any n P N, Un is a self-adjoint positive Hilbert-Schmidt integral operator with }Un} § nnp�q.
Thus, it is also a compact operator.

Now, we assume that Un satisfies Assumption 13 for some n P N.
Assumption 13. Assume that ei is an eigenfunction of Un with the corresponding eigenvalue denoted with
⁄i for any i P N.

Under the Assumption 13 on Un, we can conclude from Lemma 12 that:
Corollary 14. Assume that Un satisfies Assumption 13 for some n P N. Then, we have 0 § ⁄i § nnp�q for
any i P N and ⁄i Ñ 0.

Define the set L
2
‡p�, nq :“

!
◊ P L

2
p�, nq :

∞8
i“1

|xei,◊y|2

‡4
i

† 8

)
. Then, we have that

Lemma 15. For any ‡ “ t‡iuiPN Ñ R satisfying
∞8

i“1 |‡i| † 8, L
2
‡p�, nq is a linear subspace of L

2
p�, nq.

For any ◊ P L
2
‡p�, nq, we have

8ÿ

i“1

ˇ̌
ˇ̌⁄i `

1
‡2

i

ˇ̌
ˇ̌
2

|xei, ◊y|
2

§

8ÿ

i“1
2⁄2

i |xei, ◊y|
2

`

8ÿ

i“1

2
‡4

i

|xei, ◊y|
2

§ 2}Un◊}
2

` 2
8ÿ

i“1

|xei, ◊y|
2

‡4
i

† 8,

12
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which implies that t
∞m

i“1p⁄i `
1

‡2
i

qxei, ◊yeiumPN is a Cauchy sequence and thus converges in L
2
p�, nq to

∞8
i“1p⁄i `

1
‡2

i
qxei, ◊yei P L

2
p�, nq. Therefore, we can define the operator Un,‡ : L

2
‡p�, nq Ñ L

2
p�, nq,

◊ fiÑ
∞8

i“1

´
⁄i `

1
‡2

i

¯
xei, ◊yei for which we show the following lemma.

Lemma 16. Un,‡ is bijective linear operator from L
2
‡p�, nq onto L

2
p�, nq. U´1

n,‡ is a bounded linear operator
on L

2
p�, nq with }U´1

n,‡} § supiPN ‡2
i and U´1

n,‡◊ “
∞8

i“1
‡2

i xei,◊y
1`⁄i‡2

i
ei for any ◊ P L

2
p�, nq. Moreover, U´1

n,‡ is
positive and self-adjoint.

Consequently, we can define the following mapping

} ¨ }Un,‡ : L2
‡p�, nq Ñ r0, 8q, ◊ fiÑ

a
x◊, Un,‡◊y “

gffe}◊}2
Un

`
8ÿ

i“1

|xei, ◊y|2
‡2

i

, (20)

where }◊}Un :“
a

x◊, Un◊y for any ◊ P L
2
p�, nq. Define the set

H‡,e :“
#

◊ P L
2
p�q :

8ÿ

i“1
|xei, ◊y|

2
{‡2

i † 8

+

and the mapping x¨, ¨y‡,e : H‡,e ˆ H‡,e Ñ R, pf, gq fiÑ
∞8

i“1
xei,fyxei,gy

‡2
i

. Similar to the proofs of Lemma 15,
we can show that H‡,e is a linear subspace of L

2
p�, nq. Moreover, pH‡,e, x¨, ¨y‡,eq is also a separable Hilbert

space with t‡ieiuiPN being an orthonormal basis. For notational convenience, we write H‡,e to represent the
Hilbert space pH‡,e, ¨, x¨y‡,eq and use } ¨ }‡,e to denote the induced norm on H‡,e. Moreover, we show the
following lemma.
Lemma 17. For any real sequence ‡ “ t‡iuiPN with limiÑ8 ‡i “ 0, H‡,e Ñ L

2
‡p�, nq.

6.3 Self-normalized upper bound

Since we have proved that �jp◊, ¨q P L
2
pS,mq for any j P N and ◊ P L

2
p�, nq, the following loss function is

well-defined on H‡,e,

Lp◊; ‡q :“
nÿ

j“1
}Iypjq p¨q ´ �jp◊, tq}

2
L2pS,mq `

8ÿ

i“1

|xei, ◊y|
2

‡2
i

.

In fact, assuming the convention that 0{0 “ 0 and 1{0 “ 8, we can extend the domain of Lp¨; ‡q to L
2
p�, nq

by extending its codomain from r0, 8q to r0, 8s.

We propose to estimate ◊˚ by minimizing the above loss function over H‡,e:

p◊‡ :“ arg min
◊PH‡,e

Lp◊; ‡q. (21)

Since
∞8

i“1
|xei,◊y|2

‡2
i

“ 8 for any ◊ P L
2
p�, nq, we also have p◊‡ “ arg min◊PL2p�,nq Lp◊; ⁄q. We have the

following formula for p◊‡ in (21).
Proposition 18. The solution to the optimization problem (21) is given as the following,

p◊‡ “ U´1
n,‡

˜
nÿ

j“1

ª

S
Iypjq ptq�jp¨, tqmpdtq

¸
. (22)

The proof of Proposition 18 is provided in Appendix G. Under the adversarial setting, we show the following
upper bound for the self-normalized estimation error of p◊‡ in (21).

13
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Theorem 19 (Self-normalized bound in adversarial setting for infinite dimensional model). Assume m is
a probability measure on pS, BpSqq, n is a finite measure on p�, F�q, e “ teiu

8
i“1 is an orthonormal basis

of L
2
p�, nq, ‡ “ t‡iuiPN is a real sequence satisfying

∞8
i“1 |‡i| † 8, ◊˚ P H‡,e satisfies ◊˚ • 0 n-a.e. and≥

� ◊˚n “ 1, and tpxpjq, ypjq
qujPN is sampled according to Scheme I with F defined in (18).

For any given n P N and any ” P p0, 1q, if Un defined in (19) satisfies Assumption 13 and ‡ satisfies that
|‡i| †

1?
⁄i

for any i P N, then, with probability at least 1 ´ ”, the estimator p◊‡ defined in (21) satisfies

}p◊‡ ´ ◊˚}Un,‡ §

gffe
˜ 8ÿ

i“1
log p1 ` ⁄i‡2

i q

¸
` 2 log 1

”
` }◊˚}‡,e. (23)

In particular, for any given n P N and any ” P p0, 1q, if Un defined in (19) satisfies Assumption 13 and ‡

satisfies that |‡i| †
1?

nnp�q for any i P N, then, with probability at least 1 ´ ”, the estimator p◊‡ defined in
(21) satisfies

}p◊‡ ´ ◊˚}Un,‡ §

gffe
˜ 8ÿ

i“1
log p1 ` nnp�q‡2

i q

¸
` 2 log 1

”
` }◊˚}‡,e. (24)

The detailed proof of Theorem 19 is provided in Appendix D. Since
∞8

i“1 |‡i| † 8 and ◊˚ P H‡,e, we have
that }◊˚}‡,e † 8 and

∞8
i“1 |‡i|

2
† 8 which implies that

8ÿ

i“1
log

`
1 ` ⁄i‡

2
i

˘
§

8ÿ

i“1
log

`
1 ` nnp�q‡2

i

˘
† 8.

Thus, the RHS terms in (23) and (24) are finite and p◊‡ ´ ◊˚ P L
2
‡p�, nq. (24) conveys that with high

probability,

}p◊‡ ´ ◊˚}Un,‡ § rO

¨

˝1 `

gffe
8ÿ

i“1
logp1 ` nnp�q‡2

i q

˛

‚.

When � “ rds for some d P N and n is the counting measure on �, (21) reduces to (2) after setting ei “ tiu
and ‡i “

1?
⁄

for any i P rds and some ⁄ ° 0. Then, by (20) and (24), we have }p◊‡ ´ ◊˚}Un § rO
`?

d
˘

and

}p◊‡ ´ ◊˚}Un § rO
`a

d{p1 ` µminpUnqq
˘
,

which also recovers the result in Theorem 1. Thus, Theorem 19 is a generalization of Theorem 1 for the
possibly infinite dimensional model (18).

The proof of Theorem 19 generalizes the approach used in the proof of Theorem 1 to the setting of the
infinite dimensional model (18). However, there are plenty of technical challenges in dealing with the infinite
dimensional L

2 space. First of all, since the vectors in the proof of Theorem 1 are generalized to functions
and the matrices are generalized to operators, we need to ensure that these functions are well-defined
in some proper spaces and figure out the domain/codomain and properties (e.g., linearity, boundedness,
self-adjointness, positivity, compactness, invertibility, etc) of those operators. As in the proof of Theorem 1,
we would like to write p◊‡ ´ ◊˚ “ U´1

n,‡Wn ´ U´1
n,‡pÎ◊˚q where,

Wn :“
nÿ

j“1

ª

S
Iypjq ptq�jpÊ, tqmpdtq ´

ª

S
�jp◊˚, tq�jpÊ, tqmpdtq,

and Î◊˚ :“
∞8

i“1
xei,◊˚y

‡2
i

ei. However, this sequence t
∞m

i“1
xei,◊˚y

‡2
i

eiumPN only converges for ◊˚ P L
2
‡p�, nq but

not H‡,e. Thus, for general ◊˚ P H‡,e, Î◊˚ does not exist and we instead consider the finite-rank operator
Îm : ◊ fiÑ

∞m
i“1

xei,◊y
‡2

i
ei on L

2
p�, nq and the sequence t◊˚,m :“ U´1

n,‡pUn◊˚ ` Îm◊˚qumPN which we show satisfies
}◊˚,m ´ ◊˚}Un,‡ Ñ 0 as m Ñ 8. Then, since it su�ces to bound

}p◊‡ ´ ◊˚,m}Un,‡ § }U´1
n,‡Wn}Un,‡ ` }U´1

n,‡Îm◊˚}Un,‡ § }Wn}U´1
n,‡

` }◊˚}‡,e.

14
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To bound }Wn}U´1
n,‡

, we use the martingale approach as in the proof of Theorem 1. However, after proving
that

 
Mnp–q :“ exp

`
x–, Wny ´

1
2 }–}

2
Un

˘(
n•0 is a super-martingale for any – P L

2
p�, nq wrt the natural

filtration tFn :“ ‡px1, y1, . . . , xn, yn, xn`1qun•0, it is di�cult to pick a properly defined “Gaussian” random
variable in L

2
p�, nq. Inspired by Lifshits (2012, Example 2.2), we define — “

∞8
i“1 ‡i’iei with t’iuiPN being a

sequence of independent Np0, 1q-random variables. Note that — P L
2
p�, nq a.s. if

∞8
i“1 ‡2

i † 8. Thus, we can
define ÑMn :“ ErMnp—q|F8s with F8 :“ ‡pY

8
n“1Fnq. Then, we prove that tMnun•0 is also a super-martingale

wrt tFnun•0 and the question remained is to calculate Mn. However, directly generalizing (41), we would get

“}Wn}
2
U´1

n,‡
´ }— ´ U´1

n,‡Wn}
2
Un,‡

“ 2x—, Wny ´ }—}
2
Un,‡

”

which does not make sense because }—}Un,‡ could be 8 with positive probability. Since it is hard to deal
with this in the integration over the the law of —, we instead adopt the similar approach as we do for ◊˚.
Define —m :“

∞m
i“1 ‡i’iei and Wn,m :“

∞m
i“1xei, Wnyei. Then, after some calculation, we get

}Wn,m}
2
U´1

n,‡
´ }—m ´ U´1

n,‡Wn,m}
2
Un,‡

“ 2x—m, Wn,my ´ }—m}
2
Un,‡

and

ErexppHmq|F8s “
1a±m

i“1p1 ` ⁄i‡2
i q

exp
ˆ

1
2}Wn,m}

2
U´1

n,‡

˙
,

where exppHmq :“ exp
 

x—m, Wn,my ´
1
2 }—m}

2
Un

(
. Afterwards, we use dominated convergence theorem to

conclude that,
lim

mÑ8
ErexppHmq|F8s “ ErMn|F8s “ ÑMn, a.s..

The verification the integrability of the dominating function exp
´

n
∞8

i“1 |‡i’i| `
1
2
∞8

i“1 ⁄i‡2
i ’2

i

¯
is also

quite technical, during which the condition that
∞8

i“1 |‡i| † 8 is used. Finally, we obtain that ÑMn “

1?±8
i“1p1`⁄i‡2

i q exp
´

1
2 }Wn}

2
U´1

n,‡

¯
. Then, by applying Doob’s maximal inequality for super-martingales, we

can bound }Wn}
2
U´1

n,‡
which yields the final bound on }p◊‡ ´ ◊˚}Un,‡ in (23). (24) immediately follows from

(23) and Corollary 14.

7 Numerical studies

In this section, we demonstrate the scaling of estimation errors of the proposed estimator empirically in our
synthetic data experiments in Section 7.1 and illustrate the practical utility of the proposed estimator in our
real data experiments in Section 7.2.

7.1 Synthetic data experiments

This section contains the experimental results on discrete and continuous synthetic data.

Bernoulli data experiments. To illustrate that our estimator (2) achieves the ¸2-error rate of
r�p

a
d{p1 ` µminpUnqqq in the estimation of ◊ under model (1), we consider the Bernoulli data generated

according to the hard instance used to show the lower bound in the proof of Theorem 8 in Appendix C.1.
Specifically, after choosing a true parameter ◊˚ P �d´1 of dimension d P N, for any j P N, we set „ipxj , ¨q

as the CDF of Bernoullippjiq for i P rds, where pj :“ rpj1, . . . , pjds
J

P r0, 1s
d is defined as follows. When

j P rds, we set pji “ 1 ´
cj

2d3 ´
cj ti“ju

2d3 ; when j ° d, we set pji “ 1 ´
cjµminpRj´1q

2d2 ´
cjµminpRj´1q ti“pj mod dqu

2d2 ,
where mod denotes the modulo operation, cj ’s are constants independent of d, and Rj :“ qjqJ

j `
1
n

∞j´1
k“1 qkqJ

k

for any j • d with qj :“ r1 ´ pj1, . . . , 1 ´ pjds
J. Then, we sample yj independently from Bernoullip◊J

˚ pjq

whose CDF is ◊J
˚ �j . Given n samples, we calculate p◊⁄ using di�erent values of ⁄ according to (21) with

S “ r0, 1s and m “ Lebpr0, 1sq. We evaluate the performance using the un-normalized ¸2-error }p◊⁄ ´ ◊˚}, the
self-normalized error }p◊⁄ ´ ◊˚}Unp⁄q, and the KS distance KSp pF⁄px, ¨q, F px, ¨qq (for KS distance, we consider
the family of Bernoulli distributions with parameters in r1 ´

1
d2 , 1 ´

1
2d2 s to align with the setting of pj in
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Figure 2: Means and 90% confidence intervals of un-normalized ¸2-errors }p◊⁄ ´ ◊˚}, KS distances
KSp pF⁄px, ¨q, F px, ¨qq, and self-normalized errors }p◊⁄ ´ ◊˚}Unp⁄q against sample size n in logarithmic scale in
Bernoulli synthetic data experiments.

data generation). We repeat the experiments 100 times to calculate means and 90% confidence intervals of
the errors.

We first study the dependence of estimation errors of our estimator (2) on sample size n with the dimension
d “ 5. Specifically, for ⁄ “ 0.001, 0.1, and 10, we run the experiments with n ranging from 104 to 106 and
plot the means and 90% confidence intervals of the errors against n (both in logarithmic scale) in Figure 2.
According to Figure 2, for di�erent values of ⁄, the slopes of the curves of log }p◊⁄ ´◊˚}, log KSp pF⁄px, ¨q, F px, ¨qq,
and log }p◊⁄ ´ ◊˚}Unp⁄q against log n are around ´0.5, ´0.5, and 0.025, which obeys the r�p

a
d{nq, rOpd{

?
nq

(assuming µminpUnq grows linearly with n), and Op

a
d logp1 ` n{⁄qq upper bounds on the errors }p◊⁄ ´ ◊˚},

KSp pF⁄px, ¨q, F px, ¨qq, and }p◊⁄ ´ ◊˚}Unp⁄q respectively according to Theorem 1 and 8.

Then, we study the dependence of estimation errors of estimator (2) on dimension d with the sample size
n “ 106. For ⁄ “ 0.001, 0.1, and 10, we run the experiments with d ranging from 10 to 100. Then, we plot the
means and 90% confidence intervals of log }p◊⁄´◊˚} and log KSp pF⁄px, ¨q, F px, ¨qq against log d´log µminpUnp⁄qq

as well as log }p◊⁄ ´ ◊˚}Unp⁄q against log d in Figure 3. According to Figure 3, for di�erent values of ⁄, the
slopes of the curves of log }p◊⁄ ´ ◊˚} and log KSp pF⁄px, ¨q, F px, ¨qq against log d ´ log µminpUnp⁄qq are around
0.5 and ´0.5 respectively, and the slopes of the curves of log }p◊⁄ ´ ◊˚}Unp⁄q against log d are around 0.5.
These results also obey the r�p

a
d{p1 ` µminpUnqqq, rOpd{

a
p1 ` µminpUnqquq , and Op

a
d logp1 ` n{⁄qq upper

bounds on the errors }p◊⁄ ´ ◊˚}, KSp pF⁄px, ¨q, F px, ¨qq, and }p◊⁄ ´ ◊˚}Unp⁄q respectively according to Theorem 1
and 8.

Polynomial CDF data experiments. For d P N, rpiq :“ i if 1 § i §
d`1

2 , and rpiq :“ 2
2i´d`1 if

d`1
2 † i § d, we consider the following basis CDFs:

„ipx, tq “ tt P r0, 1{xsupxtqrpiq
` tt ° 1{xu, i P rds. (25)
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Figure 3: Means and 90% confidence intervals of un-normalized ¸2-errors }p◊⁄ ´ ◊˚}, KS distances
KSp pF⁄px, ¨q, F px, ¨qq, and self-normalized errors }p◊⁄ ´ ◊˚}Unp⁄q against d{µminpUnp⁄qq and dimension d in
logarithmic scale in Bernoulli synthetic data experiments.

To simulate n samples, we first choose a true parameter ◊˚. For each j P rns, xj is sampled independently
from the uniform distribution on r0.5, 2s. Then, we sample yj independently from the CDF ◊J

˚ �pxj , ¨q using
the inverse CDF method for j P rns. Given the simulated sample, we calculate p◊⁄ using (3) with S “ r0, 2s,
m chosen as the uniformly distribution mU on S, and di�erent values of ⁄. We evaluate the performance by
calculating ¸2-error }p◊⁄ ´ ◊˚}, the self-normalized errors }p◊⁄ ´ ◊˚}Unp⁄q and }p◊⁄ ´ ◊˚}�n , and the KS distance
KSp pF⁄px, ¨q, F px, ¨qq. To obtain stable results, we repeat the simulation independently 100 times in each
setting to calculate 90% confidence intervals and means of the errors.

Fixing d “ 5, we study the dependence of estimation errors of our estimator (2) on sample size n using
⁄ “ 0.001, 0.1, and 10. We run the experiments with n ranging from 104 to 106 and plot the means and
90% confidence intervals of the errors against n (both in logarithmic scale) in Figure 4. According to Figure
4, for di�erent values of ⁄, the slopes of the curves of log }p◊⁄ ´ ◊˚}Unp⁄q and }p◊⁄ ´ ◊˚}�n against log n are
around 0, which obeys the Op

a
d logp1 ` n{⁄qq upper bounds proved in Theorem 1 and Proposition 5. When

⁄ is negligible compared to µminpUnqq, the rOp

a
d{p⁄ ` µminpUnqqq bound on ¸2-error followed from Theorem

1 implies the rOp

a
d{nq ¸2-error bound if µminpUnqq grows linearly with n. Indeed, for small ⁄ “ 0.001, the

slope of the curve of log }p◊⁄ ´ ◊˚} against log n in Figure 4a is around ´0.5. When ⁄ is comparable with
µminpUnqq, as is observed in Figure 4b and 4c, the slopes of the curves of ¸2-errors are larger than ´0.5, which
is expected from the rOp

a
d{p⁄ ` µminpUnqqq bound. The slopes of the curves of the KS distances against

log n are smaller than 0.5, also obeying the rOpd{

a
p⁄ ` µminpUnqqq bound implied by Theorem 1.

Next, fixing n “ 105, we run the experiments with d ranging from 10 to 100 using ⁄ “ 0.001, 0.1, and 10. We
plot the means and 90% confidence intervals of the errors against d (both in logarithmic scale) in Figure 5.
According to Figure 5, for di�erent values of ⁄, the slopes of the curves of log }p◊⁄ ´◊˚}, log }p◊⁄ ´◊˚}Unp⁄q, and
log }p◊⁄´◊˚}�n against log d are around 0, obeying the respective rOp

a
d{p⁄ ` µminpUnqqq, Op

a
d logp1 ` n{⁄qq,

and Op

a
d logp1 ` n{⁄qq bounds proved in Theorem 1 and Proposition 5. The slopes of the curves of the
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Figure 4: Means and 90% confidence intervals of un-normalized ¸2-errors }p◊⁄ ´ ◊˚}, KS distances
KSp pF⁄px, ¨q, F px, ¨qq, and self-normalized errors }p◊⁄ ´ ◊˚}Unp⁄q and }p◊⁄ ´ ◊˚}�n against sample size n in
logarithmic scale in polynomial CDF synthetic data experiments.

KS distances are smaller than 1, which also obeys the rOpd{

a
p⁄ ` µminpUnqqq bound implied by Theorem 1.

Since the lower bounds are proved for the worst case of any estimator, the results above do not violate our
theoretical results on lower bound.

7.2 Real data experiments

We compare the empirical performance of our estimator (2) and other methods on two real-world datasets:
the California house price dataset and the adult income dataset.

California house price dataset. We evaluate the performance of estimator (2) on the California house
price dataset (Mohapatra, 2022) of size n “ 20, 640 from Kaggle. There are 10 attributes among which we
use median house value as the samples y from target CDFs and all other attributes as the contexts x (d “ 9).
We standardize all the ordinal variables.

We apply the proposed estimator (2) and three other methods, MLE, empirical CDF (ECDF), and kernel
density estimation (KDE) to estimate contextual CDFs for this dataset. Specifically, for ECDF, given
samples yp1q, . . . , ypnq, the empirical CDF is as follows,

pFEptq :“ 1
n

nÿ

j“1
Iypjq ptq “

1
n

nÿ

j“1
typjq

§ tu. (26)

For KDE, we apply the function “density” in the R package “stats” with Gaussian, rectangular, and triangular
kernels. Note that only the samples y are used to estimate one CDF without considering the contexts x in
ECDF and KDE. For the proposed estimator and MLE, we assume the linear model (1). We consider the
following family of basis CDFs:

„ipx, tq “ p1 ´ wqFN pt; —p1q
N,ixi ` —p0q

N,i, ‡2
i q ` wFLpt; —p1q

L,ixi ` —p0q
L,i, biq, t P R, i P rds, (27)
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Figure 5: Means and 90% confidence intervals of un-normalized ¸2-errors }p◊⁄ ´ ◊˚}, KS distances
KSp pF⁄px, ¨q, F px, ¨qq, and self-normalized errors }p◊⁄ ´ ◊˚}Unp⁄q and }p◊⁄ ´ ◊˚}�n against dimension d in
logarithmic scale in polynomial CDF synthetic data experiments.

where x “ px1, . . . , xdq is the context, FN p¨; µ, ‡2
q is the CDF of the Gaussian distribution Npµ, ‡2

q, FLp¨; µ, bq

is the CDF of the Laplace distribution Laplacepµ, bq, w is the weight of Laplace distributions, —p1q
N,i (—p0q

N,i) is
the coe�cient (intercept) in the Gaussian linear model of xi, and —p1q

L,i (—p0q
L,i) is the coe�cient (intercept) in

the Laplace linear model of xi.

We split the whole dataset into subsets of fractions 1{3, 1{2, and 1{6. 1{3 data points are used to estimate the
coe�cients and intercepts under Gaussian or Laplace linear models separately by maximizing log likelihood.
For Laplace linear model, it corresponds to the least absolute residual regression which we solve using the
function “lad” in the R package “L1pack” (Osorio & Wolodzko, 2023). Afterwards, we estimate ‡2

i ’s and bi’s
using the sample variance and the mean absolute deviation of the their corresponding residuals respectively.
Then, we apply di�erent methods on the second subset (training dataset) of 1{2 data points. For the proposed
estimator, we calculate p◊⁄ using (3) with S “ R, m “ “0,100, and ⁄ “ 0.1, 1, 5. For MLE, we can formulate
the likelihood function of the parameter ◊ in (1) with � specified in (27). Let p◊MLE denote a maximizer of
likelihood function. Since under (1), MLE corresponds to solving a convex minimization problem in a convex
set (the probability simplex �d´1), we use the solver “SCS” in the R package “CVXR” (Fu et al., 2020) to
calculate p◊MLE . Let pFE denote the ECDF calculated by (26) using the training dataset. Let pFKG, pFKR, and
pFKT denote the CDF calculated by KDE with Gaussian, rectangular, and triangular kernels respectively
using the training dataset. Given samples yp1q, . . . , ypnq, we define the L

2-error of an estimated CDF pF as

1
n

nÿ

j“1
}Iypjq ´ pF }

2
L2pS,mq, (28)

where we also set S “ R and m “ “0,100. Note that when S “ R and m “ LebpRq, the L
2-error in (28)

corresponds to the renowned Continuous Ranked Probability Score (CRPS) (Hersbach, 2000) used to assess
the performance of a CDF in approximating data distribution. We calculate L

2-errors on the third subset

19



Under review as submission to TMLR

ECDF KG KR KT MLE 0.1 1.0 5.0
estimators

0.014

0.016

0.018

0.020

0.022

L
2 -

er
ro

rs

(a) w “ 0

ECDF KG KR KT MLE 0.1 1.0 5.0
estimators

0.014

0.016

0.018

0.020

0.022

L
2 -

er
ro

rs
(b) w “ 0.5

ECDF KG KR KT MLE 0.1 1.0 5.0
estimators

0.014

0.016

0.018

0.020

0.022

L
2 -

er
ro

rs

(c) w “ 1

Figure 6: Box plots of L
2-errors in the California house price data experiment. “ECDF” refers to the empirical

CDF defined in (26). “KG”, “KR”, and “KT” refer to the kernel density estimation method using Gaussian,
rectangular, and triangular kernels respectively. “0.1”, “1.0”, and “5.0” refer to our estimator p◊⁄ in (2) with
⁄ “ 0.1, 1.0, and 5.0 respectively.

(test dataset) of 1{6 data points for the four methods described previously. For ECDF and KDE, we plug
pFE , pFKG, pFKR, and pFKT in (28). For MLE and the proposed estimator, we calculate L

2-errors using
1
n

∞n
j“1 }Iypjq ´ p◊J

MLE�j}
2
L2pS,mq and 1

n

∞n
j“1 }Iypjq ´ p◊J

⁄ �j}
2
L2pS,mq with di�erent values of ⁄.

We run the experiments with w “ 0, 0.5, and 1 in (27). To get stable results, we permute the dataset
uniformly at random independently and repeat the experiments 100 times to calculate L

2-errors. We draw
the box plots of the L

2-errors of di�erent methods with di�erent values of w in Figure 6. As is shown in the
figure, ECDF and KDE have comparable L

2-errors which are much larger than the other two methods. For
all choices of w and ⁄, our estimator (2) achieves the smallest L

2-error than any other method, indicating
that its performance is very robust in the choices of basis CDFs and regularization level. Also, L

2-error
of our estimator decreases with the value of ⁄ as expected. Thus, with di�erent basis contextual CDFs,
our estimator (2) has better performance in approximating target data distributions and the performance is
stable wrt the value of ⁄ in (2).

Adult income dataset. The adult income dataset (Becker & Kohavi, 1996) was extracted from the 1994
census bureau database. The typical learning task is to predict whether income exceeds $50K/yr based on
other attributes in the census data. Thus, we use the attributes age, workclass, education, marital-status,
occupation, relationship, race, sex, capital-gain, capital-loss, hours-per-week, and native-country as the
contexts x (d “ 12), and use income (i.e., whether income exceeds $50K/yr) as the samples y from target
CDFs. We standardize all of the ordinal attributes. The total number of samples is n “ 48, 842.

Since the samples follow Bernoulli distributions, KDE is not considered. We apply our estimator (2), MLE,
and ECDF on this dataset. For our estimator and MLE, we assume model (1) and use the following mixtures
of logistic and probit models as basis CDFs:

„ipx, tq “ wFBpt; flogip—
p1q
L,ixi ` —p0q

L,iqq ` p1 ´ wqFBpt; FN p—p1q
P,ixi ` —p0q

P,i; 0, 1qq, i P rds, (29)

where t P R, x “ px1, . . . , xdq denotes the context, FBp¨; pq denotes the CDF of the Bernoulli distribution
with parameter p, flogipaq :“ 1{p1 ` e´a

q for any a P R, w is the weight of the logistic model, —p1q
L,i (—p0q

L,i)
denotes the coe�cient (intercept) in the logistic model of xi, and —p1q

P,i (—p0q
P,i) denotes the coe�cient (intercept)

in the probit model of xi. We split the whole dataset into subsets of fractions 1{3, 1{2, and 1{6. 1{3 data
points are used to estimate the coe�cients and intercepts in (29) with the function “glm” in the R package
“stats”.

We apply all methods on the second subset (training dataset) of 1{2 data points. For our estimator, we
calculate p◊⁄ using (3) with S “ r0, 1s, m “ Lebpr0, 1sq, and ⁄ “ 0.1, 1, 5. For MLE, we also use the solver
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Figure 7: Box plots of L
2-errors in adult income data experiments. “ECDF” refers to the empirical CDF

defined in (26). “0.1”, “1.0”, and “5.0” refer to the estimator p◊⁄ (2) with ⁄ “ 0.1, 1.0, and 5.0 respectively.

“SCS” in the R package “CVXR” (Fu et al., 2020) to calculate p◊MLE as in the previous example. We use pFE

to denote the ECDF calculated by (26) using the training dataset. Then, we calculate L
2-errors (28) with

S “ r0, 1s and m “ Lebpr0, 1sq for the three methods on the third subset (test dataset) of 1/6 data points.

We run the experiments described above using w “ 0, 0.5, and 1 in (29) 100 times with the dataset permuted
randomly in each run to get stable results. In Figure 7, we report the calculated L

2-errors in box plots.
According to the figure, our estimator (2) achieves the smallest L

2-errors for all choices of ⁄ and weight w
and ECDF has the largest L

2-error for all choices of w. Moreover, the performance of our estimator is very
robust wrt ⁄ and w. Thus, with a wide range of the basis contextual CDFs, our estimator (2) achieves good
and robust performance in approximating target data distributions.

8 Conclusion

In this paper, we propose a linear model for contextual CDFs and estimators for the coe�cient parameter in
this model. We prove rOp

a
d{nq upper bounds on the estimation error of our estimator under the adversarial

and random settings, and show that the upper bounds are tight up to logarithmic factors by proving �p

a
d{nq

information theoretic lower bounds. Additionally, when a mismatch exists in the linear model, we prove that
the estimation error of our estimator only increases by an amount commensurate with the mismatch error.
Furthermore, we increase the generality of our linear model by expanding the parameter space into an infinite
dimensional Hilbert space. Within this framework, we generalize our estimator and subsequently establish
self-normalized upper bounds for this general estimator. Moreover, we elucidate the scaling of the estimation
error of our estimator empirically and showcase its practical utility on real-world datasets. Our current work
assumes that the bases are known a priori. So, a fruitful future research direction would be to focus on the
basis selection problem for CDF regression with possibly infinitely many base functions.
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