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ABSTRACT

Vision-Language Models (VLMs) are increasingly being employed as the
decision-making “brains” of embodied agents. Effectively harnessing their pow-
erful generalization capabilities in dynamic, context-specific tasks remains a sig-
nificant challenge. Chain-of-Thought (COT) prompting is often utilized for com-
plex task execution, but existing methods either rely on static strategies that fail
to adapt to changing environments or fine-tune on offline datasets, which are in-
sufficient for optimizing agent decision-making through interaction. In this paper,
we propose a novel approach that focuses on optimizing the COT reasoning pro-
cess rather than just the final action tokens. By aligning the COT process through
preference-based reinforcement learning, specifically Direct Preference Optimiza-
tion (DPO), we enhance the agent’s ability to make accurate decisions in dynamic
environments while mitigating model degradation during fine-tuning. Our method
models the environment as a Markov decision process, requiring the agent to re-
flect on the current state in real time to generate adaptive plans and actions. By
prioritizing the optimization of the COT process over the final actions, we enhance
the agent’s reasoning adaptability while effectively mitigating model degradation
during fine-tuning. Experiments in the ALFWorld environment demonstrate an
average success rate of 26.67%, which is a 6% improvement over RL4VLM, and
show that our method effectively mitigates model degradation post fine-tuning.
These results highlight the potential of integrating preference-based reinforcement
learning techniques with COT processes to enhance the decision-making capabil-
ities of vision-language models in embodied agents.

1 INTRODUCTION

Large Language Models (LLMs) and Large Multimodal Models (LMMs) have achieved remarkable
success in natural language understanding and generation tasks (Brown, 2020; Achiam et al., 2023).
Recent studies have explored how LLMs can be leveraged to manage other AI models and tools
for complex language or multimodal tasks (Shen et al., 2024; Lu et al., 2024), assist in playing
sophisticated games such as TextWorld (Yao et al., 2022), Handi (Hu & Sadigh, 2023), and Minecraft
(Wang et al., 2023a), or be deployed on robots for real-world interactions (Ahn et al., 2022; Driess
et al., 2023). Recently, large multimodal models have garnered significant attention due to their
ability to process various input modalities (text, images, videos, etc.). This has spurred increased
research in embodied AI, where language-vision models are employed for decision-making and
task planning in both simulated environments and the real physical world. While LLMs and Vision-
Language Models (VLMs) can provide insightful suggestions for complex generation tasks, they
often fail in solving simple decision-making tasks due to misalignment issues (Ahn et al., 2022).

To enhance decision-making capabilities, utilizing Chain-of-Thought (COT) reasoning has become a
common approach. COT has been demonstrated to improve model performance in logical reasoning
by facilitating the output of correct results through step-by-step reasoning. Mu et al. (2023) enhanced
static planning capabilities by fine-tuning models on the EgoCOT dataset, integrating high-level task
planning with low-level task control in a closed-loop manner, achieving promising performance in
multiple specific tasks. In contrast, dynamic re-planning for decision-making has been shown to be
more adaptive than static generation. Song et al. (2023b) introduced a few-shot planning method
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leveraging in-context learning and a grounded re-planning mechanism to dynamically adjust high-
level plans based on environmental observations.

Nevertheless, planning based solely on a model’s generative capabilities is insufficient, especially
in complex tasks, partially observable scenarios, and multi-task environments. Agent models must
possess the ability for continual learning, continuously deriving insights from failures and aligning
online within specific task environments to make more accurate decisions. Aligning through rein-
forcement learning (RL) is a common approach. RL learns agents’ policies from scratch through trial
and error in environments (Sutton, 2018), ensuring that LMM-based agents are well-aligned with
their environments. A notable example is RL4VLM (Zhai et al., 2024), which combines Proximal
Policy Optimization (PPO) with COT reasoning to fine-tune vision-language models for decision-
making tasks. This integration allows the model to learn more effectively from task rewards through
interaction, improving exploration, adaptability, and reasoning. RL4VLM proposes to mitigate the
effect of the COT reasoning tokens by focusing the primary optimization target on the final action
tokens. Most RL methods start with random policies, which are updated based on returns from the
environment. This leads to poor sample efficiency, as initial policies perform poorly during the early
stages of learning. One way to improve sample efficiency is to incorporate prior knowledge into the
policy initialization and exploration during training (Kumar et al., 2022). LLMs are ideal sources
of prior knowledge for RL agents, as they are trained on vast amounts of data from diverse corpora.
Therefore, leveraging RL to align LLMs with embodied environments for decision-making tasks
can simultaneously address the misalignment issues in LLMs and the sample efficiency challenges
in RL.

Unlike RL4VLM, we believe that the COT process holds the key to optimization. Since the action
is the outcome of the COT process and is closely related to it, we focus more on the consistency
between the action and the COT. Our framework is based on Direct Preference Optimization (DPO).
DPO has recently emerged as a prominent method due to its efficient alignment without the need for
reward design, and it is widely used in the post-SFT stage of large models. To our knowledge, there
is no precedent for its use in embodied agent tasks. Therefore, we consider introducing the DPO
algorithm to efficiently learn strategies from sparse or no-reward interactions. Furthermore, we have
made improvements to DPO with a focus on optimizing the COT process and ensuring consistency
in model responses, thereby adapting it to our algorithmic framework for interactive alignment of
VLMs.

In summery, our contributions can be summarized in the following four points:

1. We propose an algorithmic framework, InteractiveCOT, for online alignment of the COT pro-
cess in embodied agents through interaction with the environment, supporting both PPO and DPO
alignment schemes.

2. We have made adaptive adjustments to DPO, designing a data sampling and sample pair construc-
tion framework tailored to the interaction characteristics of embodied agents, thereby improving the
sample utilization efficiency of the alignment algorithm.

3. We emphasize that aligning the COT is more important than aligning the final action in align-
ment tasks. Based on this, we have improved the DPO algorithm to enhance output consistency,
alleviating the issue of output degradation during model training.

4. We validate our approach through experiments in the ALFWorld environment, demonstrating
a 6% increase in average success rates compared to baseline methods. Our results highlight the
potential of integrating preference-based reinforcement learning techniques with COT processes
to enhance the decision-making capabilities of vision-language models in embodied agents. This
advancement highlights the importance of optimizing the thought process itself to achieve better
performance and adaptability in complex, dynamic tasks.

2 RELATED WORK

Embodied Agent with LLMs The successful integration of language as a semantically rich input
for interactive decision-making highlights the crucial role of LLMs in facilitating interaction and
decision-making processes (Abramson et al., 2020; Karamcheti et al., 2022; Li et al., 2022). LLMs
are also applied in various environments to aid robot navigation (Parisi et al., 2022; Hong et al.,
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2021; Majumdar et al., 2020) and manipulation (Jiang et al., 2022; Ren et al., 2023; Karamcheti
et al., 2022). Recently, there have been a large number of methods that utilize LLMs to enhance
agents’ planning and reasoning capabilities in embodied agents. SayCan (Ahn et al., 2022) as-
sesses the affordance of candidate actions by multiplying their probabilities under LLMs with a
value function. (Zeng et al., 2022) combine the LLM with a visual-language model and a pre-
trained language-conditioned policy (Shridhar et al., 2022) to enable open vocabulary robotic tasks.
(Huang et al., 2022a) demonstrate that LLMs can be employed for planning and executing simple
household tasks. They ground LLM-generated actions by comparing their embeddings with a pre-
defined list of acceptable actions. To incorporate environment feedback, Inner Monologue (Huang
et al., 2022b) extends SayCan using a closed-loop principle. This principle is also applied in related
works such as (Yao et al., 2023; Huang et al., 2022b; Kim et al., 2024; Singh et al., 2023; Liang
et al., 2023; Shinn et al., 2023; Wang et al., 2023b) to continuously monitor agent behaviors and
refine and adjust plans accordingly for tasks such as computer automation, Minecraft, etc. Further-
more, there are approaches that prompt LLMs to generate temporal-abstracted actions (Zheng et al.,
2023). (Dasgupta et al., 2023) employ the LLM as a planner and success detector for an agent with
their actor module necessitates pre-training with RL to enable the agent to follow natural language
instructions. While these works demonstrate impressive results, they rely too heavily on the inherent
capabilities of powerful LLMs, like GPT4 and PaLM (Chowdhery et al., 2023), which are difficult
to apply to smaller LLMs with weaker reasoning abilities, like LLaMA-7B.

Concurrent to our work, GLAM (Carta et al., 2023) utilizes RL finetuning to achieve functional
grounding of LLMs. However, they focus on simple primitive actions (turn left, turn right, go
forward, etc.) evaluated in toy environments, BabyAI (Chevalier-Boisvert et al., 2018) with a much
smaller encoder-decoder LLM, Flan-T5-780M. These primitive actions have a similar number of
tokens and less meaningful semantics, resulting in underutilizing the capabilities of LLMs, and
failing to observe the impact of prompt design and address the unbalance over action space, resulting
in additional instability and poor robustness.

Preference Learning Preference learning has become a pivotal area in machine learning, aiming
to develop predictive models that capture human preferences from observational data. Recent ad-
vances in deep learning and optimization algorithms have driven significant progress in this field,
particularly in applications such as recommender systems, information retrieval, and personalized
user interfaces.

Current preference learning methods can be categorized into pointwise, pairwise, and listwise ap-
proaches. Among these, Direct Preference Optimization (DPO) (Rafailov et al., 2024) has emerged
as a novel and efficient paradigm, directly optimizing user preferences without intermediary ranking
steps. DPO achieves more precise alignment with user preferences by constructing loss functions
that directly reflect these preferences. Chen et al. (2024) introduces OPTune, an efficient method
for online preference tuning in RLHF. By selectively regenerating low-reward responses and using
a weighted DPO loss to focus on response pairs with larger reward gaps, OPTune improves train-
ing speed and model alignment while reducing computational costs Recent pioneering studies have
further expanded DPO’s applications and effectiveness. Step-DPO Lai et al. (2024) stands out as a
significant advancement over Direct Preference Optimization (DPO) for tasks requiring long-chain
reasoning, such as mathematical problem-solving. Unlike DPO, Step-DPO optimizes individual
reasoning steps. By focusing on pinpointing the first erroneous step in a sequence and optimizing
for more fine-grained accuracy, Step-DPO improves both factuality and reasoning in large language
models. Pal et al. (2024), in their DPO-Positive study, advanced practical applications of DPO by
focusing on positive direct preference optimization in sentiment-aware recommendations. The DPO-
Positive method not only enhances user satisfaction but also incorporates sentiment information into
the recommendation process, resulting in more accurate and user-aligned outcomes.

3 METHODS

3.1 ONLINE TRAINING OF REPLANNING FRAMEWORK

In previous work (Ahn et al., 2022; Song et al., 2023a), long-term planning using large language
models (LLM) or large multimodal models (LMM) has typically been approached as static plan-
ning, the transition and planning between the initial and final states of a task is accomplished
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Figure 1: Main framework of our method. In our approach, we sample two different trajectories
for the same stepx and assess their preference based on task completion rates. This allows us to
determine the preference level of different actions in the current state. We then fine-tune the vision-
language model (VLM) using preference methods such as Direct Preference Optimization (DPO).

through a single planning instance. For once planning instance, planner output the planning results
{planner : s0, a1, a2, · · · , an, sgoal}, where s denote states and a for actions. This static planning
often considers the completeness of adjacent decisions and planning costs. However, it frequently
lacks the capability to timely correct erroneous plans. Consequently, the feedback provided by the
environment following each planning action may not be utilized in a timely manner to adjust sub-
sequent actions. The primary distinction between re-planning and static planning processes lies
in the ability to make timely adjustments based on environmental feedback. Re-planning captures
factors that change dynamically within the environment, providing different responses based on var-
ious states on each decision-making steps and generating new execution plans. Compared to static
planning, this approach offers greater adaptability and robustness. Additionally, dynamic planning
involves deeper interaction with the environment.

Our algorithm is designed based on the re-planning framework, which can be seen in Figure 1.
Specifically, in each natural step of interaction between the agent and the environment, the planning
result of next several time-steps is regenerated according to the current observation. We incorporate
camera images and environmental feedback into the design of prompts, providing feedback to the
agent at each step, requiring it to give subsequent plans step-by-step based on observations. Under
the re-planning framework, a well-fine-tuned model base can already perform quite well. However,
there are still some complex situations that the agent cannot handle effectively, such as navigation
tasks where target objects are not observable and complex tasks with numerous steps. We ponder
whether the agent can learn and improve its planning abilities through interaction with the environ-
ment. Reinforcement learning algorithms are a good choice, but they require a precisely designed
reward function and must also consider potential reward hacking phenomena. Based on this, our
framework aligns through the construction of preference sample pairs. During the interaction pro-
cess, we sample and use the success rate of trajectories as a preference for alignment. When applying
DPO to fintune VLM, the loss function is

L(θ) = −Eζ

[
log σ

(
β log

πθ(a
t
win|τ

t−1
1 )

πref (atwin|τ
t−1
1 )

− β log
πθ(a

t
lose|τ

t−1
2 )

πref (atlose|τ
t−1
2 )

)]
(1)

where ζ is a tuple of (ot, st−1, awin, alose) , s1∼t−1 is the state-action decision trajectory from time
0 to time t− 1, awin and alose represent the preference and not preference decision-making actions
at current timestep t. πθ and πref denote the policy generated by VLM, πref refers to the policy
generated by the unrefined output of VLM. This approach enables a more granular alignment of
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preferences, focusing on fine-tuning for each individual decision rather than aligning preferences
for the entire trajectory. Consequently, while introducing step-wise preference information, we
improve upon previous methods that used the PPO algorithm for fine-tuning VLMs by adopting
DPO for preference alignment. This allows us to align preferences for different decisions at each
segment of the trajectory.

3.2 TRAINING COT WITH DPO

In completing each task, the input prompt for the VLM includes observations and action trajectories.
Through the design of input prompts and instruction-following mechanisms, VLM can generate de-
cision actions based on the current state, produce feasible actions, and provide a textual description
of the current observation along with the formatted output. This structured approach enables the
model to maintain context and make informed decisions effectively. The response output by the
VLM includes a chain-of-thought reasoning process for the current action, immediately followed by
the keyword “action”, which indicates the model’s current decision action. This structured format
allows for clarity in the decision-making process, ensuring that the reasoning is explicitly linked to
the chosen action.

3.2.1 THE METHOD OF CONSTRUCTING SAMPLE PAIRS

Compared to classic MLP-based policy networks, a advantage of VLM policies is that they can
output neutral language, thus leverage COT reasoning for efficient exploration by performing inter-
mediate reasoning steps that lead to the final decision. However, training a VLM policy πθ with
RL presents additional challenges. First, due to the sparse rewards obtained from the online interac-
tions between VLM and the environment, many state transition processes receive a reward feedback
scalar value of 0. In the case of state transition samples with a reward value of 0, employing the PPO
(Proximal Policy Optimization) architecture for fine-tuning the VLM makes it challenging for the
model to learn effective strategies for interacting with the environment. Consequently, the sample
efficiency of fine-tuning the VLM using these state transition samples is relatively low. In some
studies, researchers often design reward functions manually to mitigate the issue of sparse rewards.
On the other hand, preference-based methods can construct preference pairs using different reward
values

{
τ twin =

{
a1t , r

1
t , τ

t−1
1

}
, τ tlose =

{
a2t , r

2
t , τ

t−1
1

}}
, whereby trajectories with higher reward

values can be treated as preferred trajectories, for example, τwin has a higher reward r1t and τlose
has a lower reward r2t . This approach allows for a more nuanced representation of preferences, fa-
cilitating the learning process in environments characterized by sparse feedback. By employing this
method, preference-based approaches can effectively leverage state transition samples with lower
reward values, thereby enhancing sample efficiency. This strategy allows the model to learn from
a broader range of experiences, improving its ability to identify and optimize preferred trajectories
within the environment.

3.2.2 THINKING IS MORE IMPORTANT THAN DECISION-MAKING

It is worth noting that by outputting the text of the chain of thought, we enable the VLM to produce
reasonable actions through autonomous reasoning. However, the reasoning ability of the VLM stems
from its training on massive datasets. Jointly fine-tuning the COT text and the text actions output by
the VLM is proven to be a better method adapting the VLM to embodied scenarios. This method
often focuses on optimizing action output, and when designing loss functions, it tends to minimize
the impact of the COT process or only consider the final action decision. The fine-tuning process
breaks the coherence of the language output formed during pre-training, leading to model collapse.
To solve this problem, we used two methods to constrain the fine-tuning process. First, we constrain
the distributional distance between the fine-tuned output text and the unfine-tuned reference model
output text, thus ensuring that the model does not deviate too much from the logicality of the original
model language output due to fine-tuning. Similar to the derivation process of the DPO model, we
set

Q(s, a) = β log
πθ(a|s)
πref (a|s)

(2)

Then, we can fine-tune the output strategy of VLM by optimizing the Q value, while limiting the
output distance between the fine-tuned model and the reference model without fine-tuning by adding
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a regularization term of KL divergence to the optimization objective, which is as follows

max
πθ

Es∼D,a∼πθ(a|s)[Q(s, a)]− βDKL[πθ ∥ πref ] (3)

Based on this optimization objective, combined with some mathematical derivations of Yang et al.
(2024), we can derive the following step-wise optimization formula:

L = −Eζ log σ

(
β log

p(at1|T t
1 )πθ(T t

1 |τ t−1
1 )

πref (at1, T t
1 |τ

t−1
1 )

− β log
p(at2|T t

2 )πθ(T t
2 |τ t−1

2 )

πref (at2, T t
2 |τ

t−1
2 )

)
(4)

∇θL = −βEζ [Λ[∇θ log πθ(T t
1 |τ t−1

1 )−∇θ log πθ(T t
2 |τ t−1

2 )]] (5)

The detailed derivation can be found in Appendix A. In the formula, T t
i is the output text of the

thinking chain at step t, and a is the output action after the thinking chain. However, by calculating
the gradient of 4, we can see that the gradient term in Equation 5 directly eliminates the influence
of action probabilities, where Λ = σ(Q̂θ(a

t
1, T t

1 , τ
t−1
1 )− Q̂θ(a

t
2, T t

2 , τ
t−1
2 )). Therefore, in practice,

we adopt the following action probability weighting (APW) form:

L̃ = −Eζ log σ

(
βp(at1|T t

1 ) log
πθ(T t

1 |τ t−1
1 )

πref (at1, T t
1 |τ

t−1
1 )

− βp(at2|T t
2 ) log

πθ(T t
2 |τ t−1

2 )

πref (at2, T t
2 |τ

t−1
2 )

)
(6)

We will later analyze the errors of both and demonstrate that our approach is feasible. Intuitively,
the gradient term of the “action” probability adds weight to the “thoughts” probability. Actions with
higher output probabilities after COT indicate a better alignment with the thoughts process, while
lower probabilities suggest greater randomness in action generation. The weighting term can reduce
the generation of highly random positive samples and encourage the generation of deterministic
positive samples.

3.2.3 MAKE DECISIONS THAT ARE MORE CONSISTENT WITH REASONING

In the second method, we consider adding a regularization term to the final action text output. Fine-
tuning the reasoning chain may alter the model’s language output conventions, potentially leading to
model collapse. Aligning the action text output with the reference standard model ensures that the
model adheres to the prompt’s formatting requirements, thus generating valid actions. This approach
helps maintain the integrity of the output while allowing for effective task execution, the effects of
this regularization can be observed in Figure 2.

To further ensure the consistency between the COT process of generating text and the final action, we
consider adding a stronger constraint to the above formula. We believe that the pre-trained model
has already been well-optimized for modeling the process from thoughts to actions. Therefore,
in the subsequent interaction phase, we will maintain alignment with the pre-training results in
the dimension of generating actions based on thoughts. We will add a mean square error (MSE)
regularization term of action policy consistency constraint (APC), specifically:

LInteractiveCOT = L̃+ κMSE(πθ(a
t
1|T t

1 ), πref (a
t
1|T t

1 )) (7)

Where κ is a hyper-parameter that regulates the strength of constraints. Note that this is different
from the KL divergence used in the DPO derivation process with the reference model; Here, the fo-
cus is more on aligning the process of deriving actions from thoughts. In the comparison experiment
of action consistency constraint, we extracted an output sample at the training step of 2000, both with
and without the action probability consistency constraint, as shown in Figure 2. The sample clearly
demonstrates the difference between the COT process and the final decision action output. In the
sample with the action consistency constraint, the model’s COT process provides a clear analysis
and identifies the valid action to be taken next. In contrast, in the sample without the consistency
constraint, although the agent provides reasonable thoughts and analysis, it ultimately outputs an
irrelevant action in the final decision, which does not fall within the scope of valid actions.

Finally, we provide a simple illustration of Equation 6 to demonstrate that our approximation is
reasonable. We assume that the pre-trained model has achieved good alignment, so p(a|T ) will be
close to 1. We have:
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Figure 2: Use or not use action policy consistency constraint cases. When employing the use action
policy consistency constraint strategy, the output actions are more likely to be valid actions. This
approach helps to ensure that the generated actions align with the established policy, thereby en-
hancing the reliability and appropriateness of the actions in the context of the task being performed.

∆(p(ati|T t
i )) = log

p(ati|T t
i )πθ(T t

i |τ
t−1
i )

πref (ati, T t
i |τ

t−1
i )

− p(ati|T t
i ) log

πθ(T t
i |τ

t−1
i )

πref (ati, T t
i |τ

t−1
i )

(8)

= log p(ati|T t
i ) + (1− p(ati|T t

i )) log
πθ(T t

i |τ
t−1
i )

πref (ati, T t
i |τ

t−1
i )

(9)

This variable will approach zero as p(a|T ) approaches 1. In practice, we have calculated the ap-
proximate distribution of action probabilities and demonstrated that our assumption is well-founded,
which can be shown in Figure 6b.

4 EXPERIMENTS

In this part we perform experiments to validate three key questions:

• How does our framework enhance the decision-making capabilities of VLM?
• Can the regularization term effectively constrain the action distribution to prevent deviation

from the original policy?
• Does action-weighting mitigate the issue of degradation?

we conducted experiments in the ALFWorld environment and recorded improvements in the visual
semantic reasoning capabilities of the Vision-Language Model. ALFWorld encompasses six types
of household planning tasks: Pick & Place , Pick Two & Place, Clean & Place, Cool & Place, Heat
& Place, and Examine in Light. For convenience, we will refer to them as Pick, Pick2, Clean, Cool,
Heat and Look hereafter. During the experiments, the agent captures a visual observation through
egocentric view in the current state and a textual instruction describing the task to be completed. The
agent must plan and navigate based on the visual information to accomplish the specified tasks. We
instantiate our method on top of the llava-v1.6-mistral-7b model, and build the agent based on this
model. During interactive, we package the observation picture into a special prompt to get LLaVA’s
answer.

Prompt Our COT prompt consists of the following parts: First, we clarify the task requirements.
The tasks in ALFWorld are semantically rearranged. For example, both “examine the pillow with
the desklam” and “look at the pillow under the desklam” indicate that the agent needs to find the
pillow, pick it up, then locate and navigate to the desklamp. Secondly, we specify the range of valid
actions. Each state in ALFWorld environment is accompanied by different valid action transitions.
For instance, if the action is to pick up pillow 1, the prerequisite is that the agent must be close
enough to reach the pillow. If the action is to put down an object, it must have previously executed the
pick-up action. Therefore, one of the criteria for evaluating the agent’s capability in the experiment
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is whether the actions it outputs are valid. Finally, we specify the output format of the agent’s LLaVA
model, which must strictly follow the JSON format containing “thoughts” and “action”. The action
must be derived from the thoughts and should not produce irrelevant actions. Our prompt design is
shown in Figure 3:

Figure 3: Prompt used in ALFWorld tasks. The prompt provides the embodied agent with several
key components: the task to be completed, the current egocentric observations, the feasible actions
available, the output format for the thought process in the reasoning chain, the format for action text
output, and constraints on the length of the output text. This structured approach helps ensure that
the VLM can generate coherent and contextually relevant responses, facilitating effective decision-
making and task execution.

Implementation Our implementation consists of two parts. First, we conduct one epoch of model
SFT (supervised fine-tuning) on the open-source dataset LEVI-Project/sft-data (Zhai et al., 2024)
to ensure the model’s ability of formatted output . The LEVI-Project/sft-data dataset is an expert
trajectory dataset sampled by a GPT-4-based agent, containing 45k different state samples, each
adhering to the JSON format of COT outputs. After SFT, we employ the model to interact with the
environment, optimizing its COT capabilities during these interactions and monitoring performance
in real-time during training.

4.1 HOW MUCH BETTER WE ARE AT MAKING DECISIONS

The aim of experiments in this section is to validate the performance of the InteractiveCOT method.
To evaluate whether the algorithm can consistently generate decisions through the COT process, we
use the success rate of task execution as a reference and select PPO from the RL4VLM (Zhai et al.,
2024) framework as the baseline. ALFWorld does not provide a reward function during interactions;
it only indicates whether the current task is successfully executed and returns the task’s progress.
For instance, if a task requires checking an object under a table lamp, finding and picking up the
object results in a 50% progress update. Given that such progress updates are sparse in a larger
action space, we construct preference criteria for preference learning. The preference score for each
trajectory is calculated using Equation 10:

P = 50 ∗ success rate− ⊮{invalid} (10)

⊮{invalid} =

{
1 if action not in admissible action

0 otherwise

where ⊮{invalid} represents our stronger rejection of illegal actions given the same success rate.
During the exploration phase, the agent collects trajectory data and constructs sample pairs based
on the six task types mentioned above. Higher preference scores indicate greater sample preference.
In practice, considering the achievement of long-term goals, we calculate preference scores using
a method similar to discount factor weighting in reinforcement learning returns. Due to the high
randomness of ALFWorld, we set up experimental environments with different seeds and calculated
mean and variance of each results.

We use Equation 7 for the model weight update with κ = 0.1, measure the agent’s performance by
the average success rate of each task. The final results are shown in Figure 4.
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(a) Average success rate during training (all 6 tasks) (b) Average success rate of each task at 2000 steps

Figure 4: We demonstrate that fine-tuning the vision-language model (VLM) using Interactive Chain
of Thought (InteractiveCOT) and Proximal Policy Optimization (PPO) results in varying task com-
pletion rates and average task completion rates in ALFworld. Our findings indicate that, for the
majority of tasks, fine-tuning the model using preference methods yields better results than using
reinforcement learning approaches. Additionally, we observe that through online interaction with
the environment, the preference method achieves the same average task completion rate with fewer
interaction steps, indicating higher sample efficiency and more minimal model degradation.

ALFWorld gives task randomly so we calculate the overall success rate as the weighted average of
success rates under all tasks. InteractiveCOT shows an improvement in the overall success rate, in-
dicating that our algorithm can learn more efficiently from interactions. In our experiments, we used
approximations such as log(π(a|T , τ)π(T |τ)) ≈ π(a|T , τ) log(π(T |τ)) when π(a|T , τ) → 1, We
calculated the occurrence probability distribution of action tokens in the experiments to demonstrate
that our approximations are reasonable.

4.2 WHAT ROLE DOES ACTION POLICY CONSISTENCY CONSTRAINT PLAY?

We pointed out that during training, to enhance stability, we introduced the regularization of ac-
tion token probabilities between finetune model and reference model. This section will explore the
impact of regularization on the results and investigate its role. We designed ablation experiments,
where we conducted trials with different regularization weight values κ under the same parameter
settings, and recorded the average success rate of the agent during training. In this experiment,
we use Equation 1 with the regular term as the loss function, with other conditions the same as in
Section 4.1.

Figure 5: Parameter study of APC

The results in Figure 5 show that different values of κ significantly impact the success rate. As
the parameter increases, the action policy consistency constraint strengthens, leading to improved
model performance. This validates the importance of regularization. However, when κ is set to 1, the
algorithm’s performance declines, indicating that κ should neither be too large nor too small, with

9
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a value around 0.1 yielding near-optimal performance. Given the importance of the κ parameter, its
optimal value may vary across different environments or tasks. Due to space constraints, we do not
explore this further in this paper.

4.3 MORE CERTAIN, MORE STABLE

In Section 3.2.2, we mentioned that the gradient weighted by action probability would prefer more
certain successful strategies, which indirectly achieves the unification of thoughts and actions—the
larger the conditional probability of an action, the more closely it is linked to the content of the COT.
To verify this idea, we conducted following ablation experiments. We used loss functions with and
without action probability weighting, Equation 6 and Equation 4, keeping all other settings identical
to the main experiment. Figure 6a shows the comparison between the two sets of experiments,
and Figure 6b presents the probability distribution of all actions in the first 2000 training steps.
It is evident that under the APW condition, the probability distribution of action tokens is mostly
concentrated around 1, indicating more certain and robust decision-making, which also leads to a
higher success rate. In contrast, the results without weighting show a more dispersed distribution
of action probabilities, with some probabilities falling below 0.8, which is not conducive to the
convergence of the algorithm.

(a) Comparison of the average success rates between APW
and non-APW methods (b) Action tokens probability distribution

Figure 6: Validate the impact of APW in interactions.

5 CONCLUSIONS, LIMITATIONS AND FUTURE DIRECTIONS

This work introduces an algorithmic framework, InteractiveCOT, for online interactive fine-tuning
of multimodal models during the COT process, supporting both PPO and DPO algorithms. Based
on LLaVA-7B, we execute household tasks in embodied scenarios through dynamic replan, achiev-
ing better decision-making by aligning COT capabilities. We emphasize the core importance of
COT, moving away from previous approaches that primarily focused on training actions. Instead,
we maintain the consistency between COT and actions through APW and APC. Empirical results
demonstrate that InteractiveCOT outperforms reinforcement learning algorithms in average perfor-
mance within ALFWorld. Ablation studies further confirm the critical role of APW and APC in the
algorithm’s convergence effectiveness.

One limitation of this study is the lack of validation across a broader range of environments and tasks,
which will be addressed in future work. We aim to further optimize the generalization performance.
Another limitation is the consideration of non-Markovian processes. Since the pre-training datasets
in the SFT phase are all Markovian, our interaction experiments were conducted under the same
conditions. Non-Markovian processes are more common in complex decision-making tasks, and
effectively handling historical information is a crucial capability for agents. In future work, we will
first deploy our algorithm framework in more simulated environments and datasets to enrich the
experimental results. Additionally, we will consider modeling non-Markovian processes, focusing
on the agent’s performance with long historical information.
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A DERIVATION OF FORMULAS

We provide a simple derivation of Equation 4. During the RL phase with reward model, the object
of training is to maximize returns. Following prior works the optimization is formulated as:

max
πθ

Es∼D,a∼πθ(a|s)[Q(s, a)]− βDKL[πθ ∥ πref ] (11)

which can be rewritten as:

max
πθ

Es∼D,a∼πθ(a|s)[Q(s, a)]− βDKL[πθ ∥ πref ]

= max
πθ

Es∼D,a∼πθ(a|s)[Q(s, a)− β log
π(a|s)

πref (a|s)
]

= min
πθ

Es∼D,a∼πθ(a|s)[log
π(a|s)

πref (a|s)
− 1

β
Q(s, a)]

= min
πθ

Es∼D,a∼πθ(a|s)[log
π(a|s)

πref (a|s) exp ( 1βQ(s, a))
]

= min
πθ

Es∼D[DKL[π(a|s) ∥ π̃(a|s)]]

where π̃(a|s) = πref (a|s) exp ( 1βQ(s, a)). KL-divergence is minimized at zero if and only if the
two distributions are identical. Therefore, in the case of the optimal solution we get:

π(a|s) = π̃(a|s) = πref (a|s) exp (
1

β
Q(s, a))

A simple transformation yields:

Q(s, a) = β log
π(a|s)

πref (a|s)
(12)

We can know from Yang et al. (2024) that the Q-value form of Bradley-Terry preference distribution
can be expressed as:

p(τ1 > τ2|ati, sti, at−1
i ..., s0i )i∈{1,2} =

exp(Q(st1, a
t
1))∑

i∈{1,2} exp (Q(sti, a
t
i))

(13)

Combining Eq. 12 and Eq. 13, replacing sti with τ t−1
i and ati with (ati, T t

i ), we derive the following
loss function:

L = −Eζ log σ

(
β log

πθ(a
t
1, T t

1 |τ t−1
1 )

πref (at1, T t
1 |τ

t−1
1 )

− β log
πθ(a

t
2, T t

2 |τ t−1
2 )

πref (at2, T t
2 |τ

t−1
2 )

)
(14)

which is similar to Eq. 4
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