

000 001 002 003 004 005 006 007 ERNAV: A UNIFIED, REALISTIC BENCHMARK 008 FOR EMBODIED AI WITH EXPLORATION, REP- 009 RESENTATION, AND NAVIGATION 010 011

012 **Anonymous authors**
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037

Paper under double-blind review
009
010
011
012

ABSTRACT

013 Current embodied AI benchmarks typically focus only on the final stage of the
014 embodied process, such as following instructions or answering scene-related ques-
015 tions. These evaluations often unrealistically assume access to perfect perception
016 data of the environment and overlook the earlier stages of exploration and rep-
017 resentation construction, which are indispensable for real-world deployment. In ad-
018 dition, these benchmarks are often restricted to smaller-scale, room-level environ-
019 ments and short, object-centric instructions, failing to capture the complexity of
020 larger buildings where agents must operate across multiple rooms and floors while
021 reasoning over long instructions tied to global layouts. To address these gaps,
022 we introduce ERNav, the first unified benchmark for embodied AI that integrates
023 **Exploration, Representation, and Navigation** into an end-to-end task pipeline. In
024 ERNav, agents must actively explore the environment, construct global repres-
025 entations, and then localize targets directly from natural language instructions that
026 often require reasoning over entire buildings. This unified formulation differs
027 from existing benchmarks by aligning all stages of the embodied pipeline and
028 scaling evaluation to realistic building-level settings, creating a challenging and
029 practical testbed for embodied AI. We also propose 3D-LangNav as a strong base-
030 line. As a divide-and-conquer framework, it employs a dual-sighted exploration
031 strategy to collect diverse observations and construct high-quality 3D repres-
032 entations, followed by language grounding and spatial reasoning via a fine-tuned
033 large language model (LLM). Extensive experiments show that ERNav poses sig-
034 nificant new challenges for existing methods, while 3D-LangNav achieves strong
035 performance, reaching more than twice the success rate (SR) of state-of-the-art
036 3D-MLLMs. Moreover, by structuring the task into three progressively harder,
037 sequentially dependent subtasks as a whole pipeline, ERNav enables systematic
038 analysis of how each stage contributes to overall performance, providing clear
039 directions for future research.

040 1 INTRODUCTION 041

042 Embodied AI aims to develop agents that can perceive, act, and reason in realistic environments,
043 enabling applications such as household assistance (Erickson et al., 2020) and robotics (Yuan et al.,
044 2025). A long-standing challenge lies in evaluating such agents systematically in settings that re-
045 flect both the complexity of real-world environments and the interdependence among perception,
046 representation, and reasoning. Recent advances in Large Language Models (LLMs) (Brown et al.,
047 2020; Guo et al., 2025) and Multimodal LLMs (MLLMs) (Achiam et al., 2023; Bai et al., 2025)
048 have driven progress in vision-language reasoning. However, their limitations in 3D perception and
049 embodied tasks remain evident (Zha et al., 2025), underscoring the need for benchmarks that better
050 capture the demands of embodied AI.

051 In response, several benchmarks (Ma et al., 2023; Achlioptas et al., 2020; Zhang et al., 2023) have
052 been proposed for 3D scene understanding. However, two critical gaps remain. First, most bench-
053 marks assume “free” access to complete RGB-D observations or ground-truth point clouds and eval-
054 uate only the final step—such as answering questions or grounding language in pre-scanned scenes.
055 This design bypasses the earlier but essential stages of exploration and representation construction in
056 real deployments. For example, SQA3D (Ma et al., 2023) provides complete scans and egocentric

videos upfront, making performance highly dependent on curated inputs rather than autonomous perception. Second, the environments in these benchmarks (e.g., ScanQA (Azuma et al., 2022), ScanRefer (Chen et al., 2020)) are typically restricted to single rooms or a few connected rooms (Zhi et al., 2025). Such settings limit instructions to short, object-centric references. In contrast, real-world scenarios involve multi-room and multi-floor buildings, where following instructions requires reasoning over long-range spatial contexts with complex layouts.

To address these gaps, we introduce **ERNav**, the first unified benchmark that integrates **E**xploration, **R**epresentation, and **N**avigation into an end-to-end embodied task. ERNav reframes Vision-and-Language Navigation (VLN) (Anderson et al., 2018) from a robotics-inspired map-and-plan perspective (Durrant-Whyte & Bailey, 2006). Agents must first explore to construct a representation based on noisy RGB-D observations and then localize targets directly from natural language instructions. Unlike traditional navigation tasks, ERNav emphasizes destination identification, since low-level point-goal navigation has been extensively studied and is considered near-solved (Wijmans et al., 2019; Chaplot et al., 2020b). Instead, ERNav targets the practical challenge of interpreting language instructions while reasoning over large-scale environments. By combining diverse buildings from Matterport3D (Chang et al., 2017) with complex instructions from REVERIE (Qi et al., 2020), ERNav jointly evaluates active exploration and building-level spatial reasoning, two critical capabilities overlooked by existing benchmarks, as illustrated in Fig. 1.

To facilitate systematic analysis, we decompose ERNav into three interdependent subtasks: (1) **EnvExp**: efficient exploration for robust representation construction; (2) **EnvRep**: building global representations from exploration data (e.g., scene graphs or 3D language fields); (3) **EnvNav**: interpreting instructions over the constructed representation to identify the destination.

This modular, step-wise design is deliberately chosen over an end-to-end formulation to enhance interpretability and provide granular optimization targets. By isolating exploration, perception, and reasoning into separate stages, ERNav enables precise diagnosis of whether failures stem from insufficient coverage, flawed representation, or reasoning errors, rather than relying on a single binary success metric. This design philosophy is inspired by the step-by-step evaluation paradigm commonly adopted in Chain-of-Thought (CoT) reasoning, where intermediate steps are explicitly analyzed to better understand and improve model behavior. Moreover, this pipeline reflects real-world embodied systems that follow a “map-and-plan” paradigm, where a persistent global representation is built once and reused for subsequent tasks. In contrast to joint exploration–navigation approaches that must re-explore the environment for each new instruction, ERNav naturally supports a one-to-many evaluation setting, in which a single exploration pass can serve multiple navigation tasks, significantly reducing redundant computation and improving overall efficiency.

Figure 1: Comparison with VLN and existing 3D benchmarks. ERNav provides a realistic end-to-end setting: the agent actively explores a building-level environment, constructs a global representation, and grounds natural language instructions to directly predict the destination. The three subtasks—exploration, representation, and navigation—are interdependent, making ERNav a unified and realistic benchmark that extends beyond 2D-only navigation or room-level question answering.

108 One central challenge in ERNav lies in the scale of building-level environments. Processing large
 109 point clouds with thousands of objects demands both computational efficiency and strong generalization
 110 beyond room-scale datasets. To address this, we propose **3D-LangNav**, a divide-and-conquer
 111 baseline designed for ERNav. It employs a dual-sighted exploration strategy to improve reconstruction,
 112 builds object- and region-level representations through segmentation and graph aggregation,
 113 and leverages a fine-tuned LLM for spatial reasoning. This design reduces the reasoning problem to
 114 subgraphs centered on instruction-relevant landmarks, improving both efficiency and accuracy.

115 We benchmark a wide range of methods on ERNav and show that existing approaches fail to scale
 116 to building-level complexity. In contrast, 3D-LangNav achieves strong performance, attaining more
 117 than twice the success rate of state-of-the-art 3D-MLLMs. Importantly, it is the only method that
 118 unifies all three stages of ERNav while handling noise propagation across stages. Together, ER-
 119 Nav and 3D-LangNav establish a challenging and realistic testbed, and demonstrate the promise of
 120 structured exploration-mapping-reasoning pipelines for building-level embodied AI. **In summary,**
 121 **our main contributions are:**

- 122 • We introduce ERNav, the first unified benchmark that integrates embodied exploration,
 123 global 3D representation, and language-conditioned navigation in realistic building-scale
 124 environments, enabling the study of complete end-to-end embodied navigation workflows.
- 125 • We design novel task formulations and evaluation metrics for the three subtasks, including
 126 an object-centric coverage metric (ObjCov) for exploration, an auxiliary 3D representation
 127 evaluation for navigation, and a 3D scene understanding reformulation of VLN that, for the
 128 first time, enables 3D-MLLMs to perform language-grounded navigation.
- 129 • We propose 3D-LangNav, a technically novel end-to-end method with dual-sighted explo-
 130 ration, bi-level scene-graph matching, and LLM-based spatial reasoning, achieving strong
 131 performance across all ERNav subtasks and providing a strong baseline for future work.
- 132 • We conduct the first systematic cross-paradigm analysis of VLN agents, 3D representa-
 133 tion methods, and 3D-MLLMs on a unified benchmark, revealing their complementary
 134 strengths and limitations and offering concrete insights for future embodied AI research in
 135 complex indoor environments.

137 2 RELATED WORK

138 **3D Scene Understanding Benchmarks.** A number of benchmarks (Ma et al., 2023; Achlioptas
 139 et al., 2020; Zhang et al., 2023) have been proposed for 3D scene understanding. Foundation datasets
 140 such as ScanNet (Dai et al., 2017) and Habitat-Matterport 3D (Ramakrishnan et al., 2021) provide
 141 large-scale RGB-D scans that support tasks including segmentation and detection (Kolodizhnyi
 142 et al., 2024; 2025). Building on these, ScanRefer (Chen et al., 2020) enables 3D visual ground-
 143 ing from natural language, while ScanQA (Azuma et al., 2022) extends this to question answering.
 144 However, most benchmarks focus on small-scale, single-room settings rather than building-level
 145 reasoning. More recently, XR-Scene and XR-QA (Zhi et al., 2025) introduce cross-room reasoning,
 146 but remain limited to only a few connected rooms. **A closely related benchmark is MSR3D** (Linghu
 147 et al., 2024), which provides multimodal inputs and diverse QA-style tasks for 3D scene under-
 148 standing and short-range navigation, primarily based on ScanNet environments. In contrast, ERNav
 149 operates in building-scale Matterport3D environments and targets long-horizon, language-conditioned
 150 navigation, requiring agents to reason over multi-room and multi-floor layouts. In addition, these
 151 benchmarks typically assume access to ground-truth scans or curated RGB-D sequences, bypassing
 152 the embodied challenges of exploration, noisy observations, and representation construction. ER-
 153 Nav departs from this paradigm by requiring agents to actively explore entire buildings, construct
 154 their own representations, and reason over multi-room, multi-floor layouts.

155 **Vision-and-Language Navigation (VLN).** Traditional VLN tasks such as R2R (Anderson et al.,
 156 2018) and SOON (Zhu et al., 2021) evaluate agents’ ability to follow natural language instructions
 157 in photorealistic 3D environments. These tasks primarily assess step-by-step trajectory execution in
 158 previously unseen scenarios. Variants such as pre-explore settings (Wang et al., 2019) allow agents
 159 to survey the environment before navigation. However, they often rely on data augmentations such as
 160 back-translation (Wang et al., 2020) or panorama synthesis (Li & Bansal, 2024), and remain bound
 161 to discrete settings rather than continuous space (Krantz et al., 2020). Other extensions, including
 162 IVLN (Krantz et al., 2023) and GSA-VLN (Hong et al., 2025), adopt map-and-plan strategies with
 163 multiple trajectories in one environment, but their maps mainly support local decisions rather than

162 global reasoning. In contrast, ERNav reframes VLN as a 3D scene understanding problem. Agents
 163 explore once, build a global representation, and ground arbitrary instructions at the building level.
 164

165 **Multimodal Scene Representations.** Recent work explores semantic-geometric representations
 166 of 3D environments by embedding objects and spatial relations within unified spaces. Early ap-
 167 proaches (Zhang et al., 2022; Peng et al., 2023) align point clouds with CLIP features, while sub-
 168 sequent methods (Ding et al., 2023; Gu et al., 2024) incorporate relational and structural cues to
 169 support open-vocabulary queries. These representations facilitate tasks such as referring expression
 170 comprehension (Qiao et al., 2020), visual grounding (Roh et al., 2022), and open-vocabulary 3D un-
 171 derstanding (Wu et al., 2024). Parallel efforts leverage multimodal LLMs (Xiong et al., 2025; Deng
 172 et al., 2025) for embodied tasks such as question answering (QA), dialogue, and planning, while
 173 more recent works (Kerr et al., 2023; Qin et al., 2024; Li et al., 2025) extend beyond point clouds
 174 by combining Neural Radiance Fields (Mildenhall et al., 2020) or 3D Gaussian Splatting (Kerbl
 175 et al., 2023) with vision-language features. For fair comparison, we focus on methods that directly
 176 process language queries, excluding those that require synthesizing RGB observations from camera
 177 poses, since this is impractical for embodied navigation. Nevertheless, most existing representations
 178 remain limited to object-centric reasoning, whereas ERNav evaluates long-range spatial reasoning
 over multiple landmarks—including both objects and regions—at the building scale.

179 3 THE ERNAV BENCHMARK

180 We now present the ERNav benchmark in detail, including the task formulation, and the definitions
 181 of its three subtasks.

182 3.1 TASK FORMULATION

183 ERNav differs from standard VLN by adopting a map-and-plan paradigm inspired by robotics:
 184 agents must first explore to construct a representation from RGB-D observations, and then local-
 185 ize the target directly from natural language instructions. Compared to the conventional setup where
 186 agents execute instructions step by step in an unseen environment, this formulation is both more
 187 realistic and more challenging. Formally, the agent is placed in an unseen environment E . Instead
 188 of immediately following instructions, it must perform a single exploration pass to collect RGB-D
 189 observations for representation construction. Let $T = \{\langle p_0, h_0 \rangle, \langle p_1, h_1 \rangle, \dots, \langle p_N, h_N \rangle\}$ denote the
 190 exploration trajectory, where p_i is the i -th position and h_i its heading. Unlike VLN, ERNav assumes
 191 realistic egocentric observations o_i rather than full panoramas O . From T , the agent builds a repre-
 192 sentation $R = f(T)$ which may take free form but must support open-vocabulary language queries.
 193 In the subsequent instruction-following stage, the agent is provided with an instruction X and a start-
 194 ing point, and must directly predict the 3D coordinates $\hat{p}_t = (\hat{x}, \hat{y}, \hat{z})$ of the target location without
 195 further interaction with the environment. A prediction is considered correct if $\|\hat{p}_t - p_t\|_2 \leq 3$ m,
 196 where p_t is the ground-truth target coordinate.

197 3.2 SUBTASKS

198 To enable controlled evaluation across the pipeline, ERNav is decomposed into three subtasks.

200 3.2.1 ENVEXP

201 In this subtask, the agent explores the environment once from a given starting point. We adopt
 202 Matterport3D (Chang et al., 2017) scenes with depth sensing restricted to $d_{max} = 10$ m follow-
 203 ing common practice (Chaplot et al., 2020a). To ensure fair comparison, we allow a sufficiently
 204 large step budget so that different exploration methods can fully cover the environment. Since Mat-
 205 terport3D contains multiple floors and cross-level exploration introduces unnecessary complexity,
 206 agents explore each floor independently. The final global trajectory is then obtained by connecting
 207 floors through the shortest paths across staircases.

208 **Metric.** Traditional exploration metrics emphasize map coverage, i.e., whether each region has
 209 been observed at least once. However, 3D reconstruction requires not only coverage but also multi-
 210 view observations of objects from diverse viewpoints and distances to capture fine details and reduce
 211 noise. Therefore, pure coverage fails to reflect the adequacy of exploration for reconstruction. To
 212 address this, we introduce a novel metric, ObjCov (object-wise distance coverage), which combines
 213 a coverage term D and an efficiency term E . For each object $o \in \mathcal{O}$, we define its valid observation
 214 range as $[d_{min}(o), d_{max}(o)]$, where $d_{min}(o)$ and $d_{max}(o)$ denote the nearest and farthest observable

distances, with o ($0 \leq d_{\min}(o) \leq d_{\max}(o) \leq d_{\max}$). We further define the effective distance range as $[L(o), U(o; \theta)]$, where $L(o) = d_{\min}(o)$ and $U(o; \theta) = \min(d_{\max}(o), \theta)$, with θ representing a reliability threshold for reconstruction. If $[\hat{d}_{\min}(o), \hat{d}_{\max}(o)]$ denotes the actual distance range from which o is observed during exploration, the normalized distance coverage for o is:

$$d(o; \theta) = \max \left(\frac{\min(\hat{d}_{\max}(o), U(o; \theta)) - \hat{d}_{\min}(o)}{U(o; \theta) - L(o)}, 0 \right). \quad (1)$$

The average object-wise coverage is then given by:

$$D(\theta) = \frac{1}{|\mathcal{O}|} \sum_{o \in \mathcal{O}} d(o; \theta) \quad (2)$$

To penalize redundant trajectories, we introduce an efficiency term $E = 1 - \sqrt{\frac{S_{\text{actual}}}{S_{\text{max}}}}$, where S_{actual} is the number of steps taken and S_{max} is the brute-force step count required to visit all positions. Since most objects can be reliably observed at 3 m, we set $\theta = 3$ and define the final metric as:

$$\text{ObjCov} = D(\theta) \times E \quad (3)$$

Besides these exploration-related metrics, EnvExp further assesses how exploration trajectories affect the quality of subsequent reconstruction. Specifically, we back-project all 2D pixels into the 3D map to build point clouds and compare them with the ground-truth reconstructions using metrics such as F1 score and the Chamfer-L1 distance.

3.2.2 ENVREP

Given the exploration observations $O = \langle o_1, o_2, \dots, o_n \rangle$, the agent is required to construct a 3D representation $R = f(O)$ that supports natural language queries for retrieving 3D coordinates. To ensure comparability, we provide standardized trajectories generated by our 3D-LangNav baseline as well as ground-truth point clouds for evaluation. Unlike reconstruction-focused tasks, EnvRep emphasizes the utility of representations for navigation rather than visual fidelity. Therefore, instead of evaluating with traditional downstream tasks such as semantic segmentation, we design an auxiliary evaluation aligned with ERNav instructions. Specifically, we parse landmarks from the instructions and query the built representation R to retrieve candidate positions for each landmark. We then measure performance using ranking-based metrics: Recall@ k , which measures the fraction of cases where the ground-truth landmark is ranked within the top k ; MR (mean rank), which computes the average position of the ground-truth in the ranking; and MRR (mean reciprocal rank), which evaluates the average reciprocal rank across cases. An effective representation achieves high Recall@ k and MRR while maintaining low MR, thereby ensuring that navigation instructions can be accurately grounded to 3D coordinates.

3.2.3 ENVNAV

In EnvNav, the agent is given a starting position (x_0, y_0, z_0) and a natural language instruction W describing the target or its surrounding context. We adopt object-centric instructions from REVERIE (Qi et al., 2020), which reflect realistic navigation goals, and leave the inclusion of other tasks like R2R (Anderson et al., 2018) and SOON (Zhu et al., 2021) for future work. The agent must predict the destination coordinates using the instruction W and the representation R built in EnvRep, without any further interaction with the environment. Unlike retrieval or grounding tasks such as ScanRefer (Chen et al., 2020) that require exact object localization, EnvNav only demands identifying the vicinity of the target. This design follows the VLN convention, where fine-grained localization and manipulation can be deferred to 2D image-based methods, which are more robust to real-world dynamics (e.g., objects being moved slightly after exploration). For evaluation, we adopt two standard VLN metrics: (1) Success Rate (SR): the proportion of predictions that fall within 3 m of the ground-truth destination. (2) Navigation Error (NE): the Euclidean distance between the predicted location and the target.

3.3 DATASET STATISTICS

ERNav is constructed by reorganizing and integrating several well-established datasets, rather than collecting new raw data from scratch. All data used in the benchmark are therefore inherited from

Figure 2: Overview of 3D-LangNav, including the dual-sighted exploration strategy for EnvExp, hierarchical mapping for EnvRep, and LLM-based spatial reasoning for EnvNav.

widely adopted, carefully curated sources, whose quality and reliability have been extensively validated in prior work.

EnvExp. The EnvExp subtask is built upon the validation and test splits of Matterport3D. We perform floor-level exploration over 29 scenes, covering a total of 61 floors. For each floor, three starting positions are randomly sampled, resulting in 183 exploration episodes in total.

EnvRep and EnvNav. Both EnvRep and EnvNav are built upon the unseen validation split of REVERIE, which contains 10 large-scale indoor scenes and 3,573 trajectory–instruction pairs. This split is directly used for the navigation evaluation in EnvNav. However, because the unseen scenes contain relatively few region-level landmarks, we additionally incorporate region-level landmarks from the REVERIE training split to ensure sufficient semantic coverage for representation evaluation. As a result, EnvRep consists of 3,297 object-level landmarks and 1,324 region-level landmarks, all sourced from REVERIE’s official annotations. All data used in EnvNav are therefore derived from rigorously validated benchmarks, ensuring both data quality and representativeness.

4 3D-LANGNAV

We now describe 3D-LangNav, a strong baseline that adopts a divide-and-conquer strategy for EnvNav, as shown in Fig. 2.

4.1 METHOD OVERVIEW

We formulate instruction-following navigation as a scene-graph matching problem, where the instruction is represented as a subgraph and the environment as a graph of landmarks and spatial relations. Landmarks may correspond to objects (e.g., a table) or regions (e.g., a bedroom), while edges encode spatial relations such as adjacency or containment. A key challenge is that region-level landmarks are inherently ambiguous, since rooms often lack clear boundaries. Prior work, such as HOV-SG (Werby et al., 2024), relies on rule-based segmentation, but this approach introduces brittle assumptions, tightly couples performance to segmentation quality, and ignores linguistic subjectivity. For example, a kitchen and living room without a dividing wall may be perceived as a single region or two distinct ones. Thus, instead of requiring exact room inference, we aim to construct representations that allow robust grounding of both object- and region-level landmarks, while keeping the subsequent matching process computationally efficient.

324 4.2 DUAL-SIGHTED EXPLORATION
325326 Standard exploration methods prioritize coverage but often fail to balance detailed local views and
327 global contextual observations, producing reconstructions that are both sparse and noisy. Conse-
328 quently, existing 3D scene understanding approaches frequently rely on human-collected trajec-
329 tories, which are costly and biased (see Appendix for visualizations of exploration trajectories).
330331 We propose a training-free dual-sighted exploration strategy that can be seamlessly integrated into
332 existing exploration methods. The agent is equipped with two complementary “eyes”. The first
333 is a near-sighted eye with perception limited to d_{near} meters for dense local observations, and the
334 other is a far-sighted eye, which is restricted to beyond d_{far} for capturing global spatial relations.
335 During exploration, the agent maintains two frontier sets (p_{near}, p_{far}) and updates two coverage maps
336 in parallel. By default, the agent prioritizes p_{near} except when (i) no near frontiers remain, or (ii) p_{far}
337 lies in a region already covered locally but not from a distance. This allows near-sighted exploration
338 to ensure dense local coverage, while far-sighted exploration complements it with contextual cues.
339 Note that although perception is separated, all recorded observations still retain the maximum depth
340 d_{max} . The strategy produces one-pass trajectories that ensure dense local coverage while preserving
341 global context, reducing redundancy, and supporting high-quality 3D reconstruction.
342343 4.3 3D REPRESENTATION CONSTRUCTION
344345 We then build a hierarchical representation of the environment. For objects, we follow HOV-
346 SG (Werby et al., 2024) to first use a class-agnostic segmentation model (Kirillov et al., 2023)
347 to segment each frame and extract its CLIP embedding. These segments are then projected into 3D,
348 merged across frames, and denoised with DBSCAN (Ester et al., 1996) to construct the object map.
349 For regions, we argue that exact room inference is unnecessary for navigation. Instead, the agent
350 only needs to verify whether a sub-region belongs to the described room type. To this end, we create
351 a region map using the Voronoi algorithm applied to the viewpoints bypassed during exploration.
352 These points cover the entire environment while maintaining sufficient spacing, such that each point
353 effectively represents a spatially coherent area. Each node is assigned the mean CLIP features aggre-
354 gated from nearby RGB observations. This design avoids brittle rule-based segmentation, mitigates
355 ambiguity, and ensures full spatial coverage.
356357 4.4 BI-LEVEL SCENE-GRAPH MATCHING
358359 We reduce ERNav to finding the best-matching subgraph between the instruction graph and the en-
360 vironment graph. Previous global matching approaches suffer from combinatorial complexity, while
361 attention-based methods such as LSceneLLM (Zhi et al., 2025) require bi-level optimization. In con-
362 trast, 3D-LangNav adopts a node-first, edge-verification strategy: candidate landmarks are matched
363 first, and spatial relations are verified afterwards. This substantially reduces search complexity while
364 maintaining robust alignment (see Appendix for analysis).
365366 We first perform hierarchical queries utilizing the 3D representations constructed. For object- and
367 region-level landmarks, we compute similarity scores between text and visual embeddings and then
368 apply both thresholding α and top- k selection to filter candidates for both easy queries like “table”
369 and hard ones like “leopard decoration”. For higher-level queries such as “the first floor”, we defer
370 reasoning to the spatial reasoning module as it requires no visual information. Given candidate
371 landmarks, we then resolve their spatial relations according to the instructions.
372373 Existing methods either (i) verify relations pairwise with MLLMs on 2D images, or (ii) encode all
374 possible relations into large scene graphs. Both approaches are inefficient and not suitable for long-
375 range reasoning. We instead leverage the reasoning capability of LLMs to perform spatial ground-
376 ing in a single step. Specifically, we perform parameter-efficient finetuning (PEFT) on a powerful
377 LLM, Qwen2.5-72B (Team, 2024). Training data are generated from ground-truth segmentations
378 and OpenScene (Peng et al., 2023) features from the train split of REVERIE. Prompts are designed
379 to include five parts: the instruction, starting coordinates, candidate landmarks, the target, and nav-
380 igible points for floor/structural reasoning. To enhance robustness, we augment data by perturbing
381 coordinates and varying candidate set sizes. The fine-tuned LLM directly predicts the final target
382 coordinates, avoiding multi-stage optimization and enabling efficient, robust spatial reasoning.
383

378
379

Table 1: Exploration and reconstruction metrics of different methods in EnvExp.

Methods	Exploration			Reconstruction			
	Coverage% \uparrow	$M(3)\%$ \uparrow	ObjCov% \uparrow	F1% \uparrow	Precision% \uparrow	Recall% \uparrow	Chamfer-L1 (m) \downarrow
FBE	93.9	33.1	27.2	45.4	69.8	33.7	0.507
ANS	91.5	35.8	29.0	47.7	70.3	36.1	0.428
PONI	88.0	33.6	27.0	39.6	67.8	27.9	0.589
LFE	92.2	34.7	27.9	43.7	69.2	31.9	0.516
Human	96.2	31.1	23.2	45.7	70.4	33.6	0.569
ANS+DSS	99.4	60.7	41.0	52.9	71.2	42.4	0.343

380
381
382
383
384
385
386

Table 2: Comparison of different 3D representation-based methods in EnvRep.

Methods	Seg.	Object-level					Region-level				
		R@1% \uparrow	R@10% \uparrow	R@20% \uparrow	MR \downarrow	MRR% \uparrow	R@1% \uparrow	R@10% \uparrow	R@20% \uparrow	MR \downarrow	MRR% \uparrow
OpenScenes-2D	Pred.	23.4	61.4	77.0	18.6	35.8	23.3	49.8	63.8	35.0	32.4
	GT	26.2	74.4	90.0	8.6	41.2	18.5	67.6	88.9	11.8	34.7
OpenScenes-3D	Pred.	10.4	37.0	52.2	50.9	18.8	10.8	35.5	50.2	53.6	19.6
	GT	9.5	48.8	69.1	21.4	21.6	14.3	54.0	65.9	19.0	25.2
OpenScenes-Ens	Pred.	10.4	44.5	57.9	32.1	21.5	9.1	49.1	63.4	23.6	20.6
	GT	13.6	56.8	74.5	18.2	26.6	9.4	57.1	79.1	13.0	26.2
ConceptGraphs	Pred.	18.5	59.4	73.3	27.5	31.2	18.1	71.4	87.5	14.6	32.9
	HOV-SG	17.5	69.9	84.2	12.1	34.5	12.2	68.9	75.0	21.5	32.5
3D-LangNav	Pred.	17.5	69.9	84.2	12.1	34.5	35.2	78.7	88.9	8.0	50.3

387
388

5 EXPERIMENTS

389

5.1 EXPERIMENTAL SETUP

400
401
402
403
404
405
406
407

Baseline Methods. For EnvExp, we evaluate representative exploration methods, including FBE (Yamauchi, 1997), ANS (Chaplot et al., 2020a), PONI (Ramakrishnan et al., 2022), and LFE (Li et al., 2023). We also include human demonstrations, partly from VLMaps (Huang et al., 2023) and partly manually collected. For EnvRep, we benchmark methods capable of constructing 3D representations from RGB-D observations or point clouds. These include three variants of OpenScenes (Peng et al., 2023), ConceptGraphs (Gu et al., 2024), and HOV-SG (Werby et al., 2024). For EnvNav, we consider three categories of methods: (i) VLN models, (ii) representation-based methods, and (iii) 3D-MLLMs. Details of these baselines are provided in the Appendix.

408
409
410
411
412
413
414
415
416

Implementation Details. In EnvExp, each method is run from three different starting positions, and the trajectory with the largest coverage is retained. We set $d_{\text{near}} = 1$ m and $d_{\text{far}} = 3$ m for the 3D-LangNav exploration. The instructions and environments are from the val unseen split of REVERIE. For region-level landmarks, we additionally include data from the train split for EnvRep evaluation. For 3D-MLLMs, we adapt their preprocessing strategies to Matterport3D for fair comparison. For 3D-LangNav, candidate proposals are generated with $\alpha = 0.25$ and $k = 25$. LoRA finetuning uses rank $r = 8$ across all layers, learning rate 1×10^{-4} , and is implemented with Llama-Factory (Zheng et al., 2024) on 16 NVIDIA H100 GPUs. **More implementation details for the baselines can be found in the appendix.**

417
418
419

5.2 MAIN RESULTS

5.2.1 ENVEXP

421
422
423
424
425
426
427
428
429
430
431

Tab. 1 reports the results of our Dual-Sighted exploration Strategy (DSS) against baselines, evaluated on both exploration and reconstruction metrics. For exploration metrics, DSS significantly improves both traditional coverage and the proposed $M(3)$ and ObjCov, demonstrating its ability to produce more diverse and efficient object observations. For reconstruction metrics, DSS consistently outperforms baselines across F1, precision, recall, and Chamfer-L1 distance, confirming that our metrics reliably correlate with downstream reconstruction quality. **Although DSS typically requires more exploration, this additional cost is already explicitly penalized in our ObjCov metric, and the superior performance of DSS indicates that the gain in multi-view observation quality outweighs the efficiency trade-off.** Moreover, because ERNav targets 3D reconstruction rather than 2D free-space discovery, additional viewpoints are physically necessary, making fixed-step comparisons both technically infeasible and misaligned with real-world “map-and-plan” workflows. Together, these findings highlight two conclusions: (1) DSS enables more effective exploration than prior methods, and (2) The proposed metrics capture exploration quality beyond simple coverage.

432 5.2.2 ENVREP
433

434 We evaluate the grounding performance of different 3D representations using ERNav instructions.
 435 To evaluate with different types of queries, we classify landmarks into object-level and region-level
 436 categories using GPT-4 (Achiam et al., 2023) and report their results separately in Tab. 2. Since
 437 OpenScenes only provides point-wise features without object segmentation, we evaluate it under
 438 two conditions: (1) using ground-truth segmentation, and (2) using DBSCAN-based segmentation
 439 to cluster points into objects, as in prior work (Huang et al., 2025b).

440 The results reveal two key findings. First, better segmentation improves object-level
 441 grounding, but has little effect on region-level ones. This is intuitive as object features
 442 are computed by averaging point cloud
 443 features, making a more accurate segmentation produces better-aligned and less noisy
 444 features. In contrast, many region-level
 445 landmarks (e.g., “hallway”) cannot be in-
 446 ferred from the presence of individual ob-
 447 jects, since such objects are often common
 448 to multiple regions. Second, despite sharing
 449 the same object-level pipeline as HOV-SG,
 450 3D-LangNav achieves substantially higher
 451 region-level performance. This improvement
 452 benefits from our design of using naviga-
 453 ble nodes and a hierarchical query strategy,
 454 which aggregates contextual features without
 455 relying on brittle room segmentation. These
 456 results highlight the importance of robust
 457 region-level reasoning and demonstrate that
 458 3D-LangNav better bridges language with
 459 3D scene representations. **Although 3D-**
460 LangNav achieves a slightly lower R@1%
461 compared to point-based methods, this re-
462 flects a deliberate trade-off between fine-
463 grained texture precision and object-level ro-
464 bustness through feature aggregation. More
465 importantly, for navigation, improving Re-
466 call@k and region-level grounding is more
467 critical than optimizing Top-1 precision, and
468 3D-LangNav consistently outperforms base-
469 lines on both, which directly contributes to
470 its superior downstream navigation per-
471 mance.

472 5.2.3 ENVNAV
473

474 We evaluate three categories of methods on
 475 EnvNav, with results in Tab. 3. Strictly speak-
 476 ing, existing VLN methods are not directly
 477 comparable, as they omit exploration and represen-
 478 tation and instead explore interactively during
 479 inference. Nevertheless, we include them for comparison since they share the same ultimate goal of
 localizing a destination from natural language instructions.

480 A key distinction revealed in Tab. 3 is the subtask coverage. VLN methods address only navigation,
 481 while representation-based methods and 3D-MLLMs incorporate instruction reasoning over 3D rep-
 482 resentations but bypass exploration. 3D-LangNav is the only approach covering all three subtasks,
 483 enabling a fully end-to-end solution. This makes the setting more realistic but also more challeng-
 484 ing, as errors and noise from exploration and representation propagate into navigation. Despite this,
 485 3D-LangNav achieves results on par with the strongest VLN methods (e.g., Dynam3D) and substan-
 tially outperforms all representation-based and 3D-MLLM baselines, while requiring only one-shot

434 Table 3: Comparison of three types of methods in
 435 EnvNav. Each category highlights subtask cover-
 436 age. 3D-LangNav is the only method that covers all
 437 three subtasks, enabling an end-to-end solution.

Methods	NE↓	SR↑
<i>VLN methods</i>		
Exp: \times Rep: \times Nav: \checkmark		
VLNBERT (Hong et al., 2021)	5.74	44
CM ² (Georgakis et al., 2022)	7.02	34
DUET (Chen et al., 2022)	5.14	37
GridMM (Wang et al., 2023)	4.21	49
InstructNav (Long et al., 2024)	6.89	31
NaVid (Zhang et al., 2024b)	5.47	37
Uni-NaVid (Zhang et al., 2024a)	5.58	47
RAM (Wei et al., 2025)	4.95	44
COSMO (Zhang et al., 2025)	-	47
Dynam3D (Wang et al., 2025)	5.34	53
<i>Representation-Based Methods</i>		
Exp: \times Rep: \checkmark Nav: \checkmark		
OpenScenes-2D (Peng et al., 2023)	8.80	23
OpenScenes-3D (Peng et al., 2023)	9.71	10
OpenScenes-Ens (Peng et al., 2023)	9.04	14
ConceptGraphs (Gu et al., 2024)	10.01	17
HOV-SG (Map) (Werby et al., 2024)	10.59	15
HOV-SG (Nav) (Werby et al., 2024)	9.54	27
<i>3D-MLLMs</i>		
Exp: \times Rep: \checkmark Nav: \checkmark		
ChatScene (Huang et al., 2024)	8.31	15
Reason3D (Huang et al., 2025b)	10.55	8
LSceneLLM (Zhi et al., 2025)	11.03	5
3D-LLaVA (Deng et al., 2025)	8.96	13
LLaVA-3D (Zhu et al., 2025)	7.80	18
Human	-	81
3D-LangNav (Exp: \checkmark Rep: \checkmark Nav: \checkmark)	5.15	50

486 inference without environment interaction. Beyond competitive SR, the proposed map-and-plan
 487 paradigm provides additional structural advantages over step-wise VLN agents, including reusable
 488 global maps for one-to-many instructions, optimal path execution via classical planners, and ex-
 489 plicit interpretability across exploration, representation, and reasoning stages. While coordinate-
 490 based prediction may incur higher NE than continuous path-following agents, it directly reflects the
 491 difficulty of global target localization and is more aligned with real-world deployment, where iden-
 492 tifying the correct destination is more critical than stopping near it. These results demonstrate that
 493 3D-LangNav is not only competitive with strong VLN baselines, but also establishes a scalable and
 494 interpretable alternative for building-scale language-conditioned navigation.

495 Representation-based methods perform close to their R@1 scores in Tab. 2, reflecting their
 496 grounding-oriented design and limited ability to interpret complex navigation instructions. HOV-
 497 SG improves performance by hierarchically parsing instructions into floors, rooms, and objects, but
 498 assumes single-entity references and perfect room segmentation. By removing these constraints,
 499 3D-LangNav nearly doubles the SR of HOV-SG.

500 Another important finding is that current 3D-MLLMs perform poorly on EnvNav, with SR con-
 501 sistently below 20%. We attribute this to two factors. First, EnvNav involves significantly larger
 502 point clouds and more complex instructions, exceeding the capacity of models trained on room-
 503 level scenes with localized references. Second, most 3D-MLLMs are trained with QA-style super-
 504 vision, which brings strong semantic understanding but weak coordinate prediction. For example,
 505 ChatScene (Huang et al., 2024) relies only on implicit local spatial relations from DINOv2 (Oquab
 506 et al., 2023) features without explicit relational encoding. While effective on ScanRefer, this de-
 507 sign fails on EnvNav, which requires long-range reasoning and explicit coordinate awareness. 3D-
 508 LangNav addresses these challenges by combining structured representation with LLM-based rea-
 509 soning, reformulating open-ended coordinate prediction as a multi-choice problem. Although im-
 510 plemented as a two-stage baseline, it is the first to span exploration, representation, and navigation,
 511 demonstrating the feasibility of an end-to-end embodied solution.

512 5.3 ABLATION STUDY

513 **Different LLMs.** Table 4 compares 3D-
 514 LangNav in EnvNav using different LLM back-
 515 bones. For Llama3.1-8B (Dubey et al., 2024)
 516 and Qwen2.5-7B (Team, 2024), we apply full
 517 finetuning, as this generally yields stronger per-
 518 formance. For Qwen2.5-72B, we adopt LoRA
 519 finetuning due to the prohibitive cost of full
 520 finetuning. The results show that model ca-
 521 pacity is the dominant factor in performance,
 522 as the base Qwen2.5-72B significantly outper-
 523 forms fully finetuned 7B and 8B models in both
 524 metrics. The 72B model also shows the greatest potential for improvement, achieving the largest SR
 525 gain (+8%) even with LoRA. These findings suggest that advances in LLMs will further enhance
 526 the performance of 3D-LangNav.

527 **Impact of Data Augmentation.** We also
 528 study the effect of different augmentation
 529 strategies during LLM finetuning, summarized
 530 in Tab. 5. Three augmentations are consid-
 531 ered: (1) Candidate Shuffle (CS), randomly
 532 shuffling landmark orders and identifiers; (2)
 533 Candidate Varying (CV), altering α and k to
 534 vary the size of candidate sets; (3) Position Bias
 535 (PB), adding random offsets to candidate co-
 536 ordinates. Additionally, we evaluate a variant
 537 that removes the navigable node information
 538 in #1. Each augmentation brings measurable
 539 gains. The navigable nodes prove particularly important, as they provide structural and level infor-
 mation critical for grounding instructions. CS improves robustness to variable candidate sets and
 mitigates dataset-specific biases. CV exposes the model to a broader range of candidate distribu-

Table 4: Comparison of 3D-LangNav with different LLMs in EnvNav.

LLM	Train	NE \downarrow	SR \uparrow
Llama3.1-8B	\times	6.35	32
	\checkmark	6.09	35
Qwen2.5-7B	\times	6.16	35
	\checkmark	6.02	37
Qwen2.5-72B	\times	5.69	42
	\checkmark	5.15	50

Table 5: Ablation of augmentation strategies for 3D-LangNav in EnvNav.

#	Augmentation	NE \downarrow	SR \uparrow
0	Base (no aug.)	5.33	47.8
1	w/o navigable nodes	5.50	45.8
2	Candidate shuffle (CS)	5.25	48.5
3	Candidate varying (CV)	5.28	48.7
4	Position bias (PB)	5.22	49.4
Ours	All (CS+CV+PB)	5.15	49.9

540 tions, while PB enforces reasoning over relative spatial relations rather than memorizing absolute
 541 coordinates. Finally, combining all augmentations achieves the best performance.
 542

543 6 CONCLUSION

544 In this paper, we present ERNav, a novel benchmark for building-level scene understanding in em-
 545 bodied navigation. By interpreting VLN from a scene understanding perspective, ERNav introduces
 546 three complementary subtasks—environment exploration, map construction, and scene comprehen-
 547 sion—that together establish a realistic, end-to-end evaluation pipeline for real-world navigation.
 548 To accompany this benchmark, we proposed 3D-LangNav, a strong baseline that combines a dual-
 549 sighted exploration strategy with a two-stage reasoning framework: generating landmark candi-
 550 dates followed by LLM-based spatial reasoning. Through extensive experiments across all sub-
 551 tasks, we show that ERNav enables systematic evaluation of embodied navigation methods, while
 552 3D-LangNav consistently outperforms strong baselines and highlights the importance of unified
 553 solutions. We hope this work will inspire further research into more generalizable and scalable
 554 approaches for embodied navigation in complex 3D environments.
 555

556 REFERENCES

557 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 558 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 559 report. *arXiv preprint arXiv:2303.08774*, 2023.

560 Panos Achlioptas, Ahmed Abdelreheem, Fei Xia, Mohamed Elhoseiny, and Leonidas Guibas.
 561 Referit3d: Neural listeners for fine-grained 3d object identification in real-world scenes. In *Euro-
 562 pean conference on computer vision*, pp. 422–440. Springer, 2020.

563 Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
 564 Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting
 565 visually-grounded navigation instructions in real environments. In *Proceedings of the IEEE con-
 566 ference on computer vision and pattern recognition*, pp. 3674–3683, 2018.

567 Daichi Azuma, Taiki Miyanishi, Shuhei Kurita, and Motoaki Kawanabe. Scanqa: 3d question an-
 568 swering for spatial scene understanding. In *proceedings of the IEEE/CVF conference on computer
 569 vision and pattern recognition*, pp. 19129–19139, 2022.

570 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 571 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 572 2025.

573 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 574 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 575 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

576 Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis Savva,
 577 Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor
 578 environments. *arXiv preprint arXiv:1709.06158*, 2017.

579 Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and Ruslan Salakhutdinov.
 580 Learning to explore using active neural slam. *arXiv preprint arXiv:2004.05155*, 2020a.

581 Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Abhinav Gupta, and Russ R Salakhutdinov.
 582 Object goal navigation using goal-oriented semantic exploration. *Advances in Neural Information
 583 Processing Systems*, 33:4247–4258, 2020b.

584 Dave Zhenyu Chen, Angel X Chang, and Matthias Nießner. Scanrefer: 3d object localization in
 585 rgb-d scans using natural language. In *European conference on computer vision*, pp. 202–221.
 586 Springer, 2020.

587 Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, Cordelia Schmid, and Ivan Laptev. Think
 588 global, act local: Dual-scale graph transformer for vision-and-language navigation. In *CVPR*, pp.
 589 16537–16547, 2022.

594 Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
 595 Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *Proceedings of the*
 596 *IEEE conference on computer vision and pattern recognition*, pp. 5828–5839, 2017.

597 Jiajun Deng, Tianyu He, Li Jiang, Tianyu Wang, Feras Dayoub, and Ian Reid. 3d-llava: Towards
 598 generalist 3d llms with omni superpoint transformer. In *Proceedings of the Computer Vision and*
 599 *Pattern Recognition Conference*, pp. 3772–3782, 2025.

600 Runyu Ding, Jihan Yang, Chuhui Xue, Wenqing Zhang, Song Bai, and Xiaojuan Qi. Pla: Language-
 601 driven open-vocabulary 3d scene understanding. In *Proceedings of the IEEE/CVF conference on*
 602 *computer vision and pattern recognition*, pp. 7010–7019, 2023.

603 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 604 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 605 *arXiv e-prints*, pp. arXiv–2407, 2024.

606 Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: part i. *IEEE robotics*
 607 & *automation magazine*, 13(2):99–110, 2006.

608 Zackory Erickson, Yijun Gu, and Charles C. Kemp. Assistive vr gym: Interactions with real peo-
 609 ple to improve virtual assistive robots. *IEEE International Conference on Robot and Human*
 610 *Interactive Communication (RO-MAN)*, 2020.

611 Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for
 612 discovering clusters in large spatial databases with noise. In *kdd*, volume 96, pp. 226–231, 1996.

613 Georgios Georgakis, Karl Schmeckpeper, Karan Wanchoo, Soham Dan, Eleni Miltsakaki, Dan Roth,
 614 and Kostas Daniilidis. Cross-modal map learning for vision and language navigation. In *Proceed-
 615 ings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15460–15470,
 616 2022.

617 Qiao Gu, Ali Kuwajerwala, Sacha Morin, Krishna Murthy Jatavallabhula, Bipasha Sen, Aditya
 618 Agarwal, Corban Rivera, William Paul, Kirsty Ellis, Rama Chellappa, et al. Conceptgraphs:
 619 Open-vocabulary 3d scene graphs for perception and planning. In *2024 IEEE International Con-
 620 ference on Robotics and Automation (ICRA)*, pp. 5021–5028. IEEE, 2024.

621 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 622 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 623 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

624 Haodong Hong, Sen Wang, Zi Huang, Qi Wu, and Jiajun Liu. Navigating beyond instructions:
 625 Vision-and-language navigation in obstructed environments. In *Proceedings of the 32nd ACM*
 626 *International Conference on Multimedia*, pp. 7639–7648, 2024.

627 Haodong Hong, Yanyuan Qiao, Sen Wang, Jiajun Liu, and Qi Wu. General scene adaptation for
 628 vision-and-language navigation. In *The Thirteenth International Conference on Learning Repre-
 629 sentations*, 2025.

630 Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-Opazo, and Stephen Gould. Vln bert: A
 631 recurrent vision-and-language bert for navigation. In *Proceedings of the IEEE/CVF conference*
 632 *on Computer Vision and Pattern Recognition*, pp. 1643–1653, 2021.

633 Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram Burgard. Visual language maps for robot
 634 navigation. In *Proceedings of the IEEE International Conference on Robotics and Automation*
 635 (*ICRA*), London, UK, 2023.

636 Chenguang Huang, Shengchao Yan, and Wolfram Burgard. Bye: Build your encoder with one
 637 sequence of exploration data for long-term dynamic scene understanding. *IEEE Robotics and*
 638 *Automation Letters*, 2025a.

639 Haifeng Huang, Yilun Chen, Zehan Wang, Rongjie Huang, Runsen Xu, Tai Wang, Luping Liu, Xize
 640 Cheng, Yang Zhao, Jiangmiao Pang, et al. Chat-scene: Bridging 3d scene and large language
 641 models with object identifiers. *Advances in Neural Information Processing Systems*, 37:113991–
 642 114017, 2024.

648 Kuan-Chih Huang, Xiangtai Li, Lu Qi, Shuicheng Yan, and Ming-Hsuan Yang. Reason3d: Search-
 649 ing and reasoning 3d segmentation via large language model. In *International Conference on 3D*
 650 *Vision 2025*, 2025b.

651 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
 652 ting for real-time radiance field rendering, 2023. URL <https://arxiv.org/abs/2308.04079>.

653 Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf: Lan-
 654 guage embedded radiance fields. In *International Conference on Computer Vision (ICCV)*, 2023.

655 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 656 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-
 657 ings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

658 Maksim Kolodiazhnyi, Anna Vorontsova, Matvey Skripkin, Danila Rukhovich, and Anton
 659 Konushin. Unidet3d: Multi-dataset indoor 3d object detection. In *Proceedings of the AAAI
 660 Conference on Artificial Intelligence*, volume 39, pp. 4365–4373, 2025.

661 Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, and Danila Rukhovich. Oneformer3d:
 662 One transformer for unified point cloud segmentation. In *Proceedings of the IEEE/CVF Confer-
 663 ence on Computer Vision and Pattern Recognition*, pp. 20943–20953, 2024.

664 Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra, and Stefan Lee. Beyond the nav-graph:
 665 Vision-and-language navigation in continuous environments. In *ECCV*, pp. 104–120, 2020.

666 Jacob Krantz, Shurjo Banerjee, Wang Zhu, Jason Corso, Peter Anderson, Stefan Lee, and Jesse
 667 Thomason. Iterative vision-and-language navigation. In *CVPR*, pp. 14921–14930, 2023.

668 Jialu Li and Mohit Bansal. Panogen: Text-conditioned panoramic environment generation for
 669 vision-and-language navigation. *NeurIPS*, 36, 2024.

670 Yimeng Li, Arnab Debnath, Gregory J Stein, and Jana Košecká. Learning-augmented model-based
 671 planning for visual exploration. In *2023 IEEE/RSJ International Conference on Intelligent Robots
 672 and Systems (IROS)*, pp. 5165–5171. IEEE, 2023.

673 Yue Li, Qi Ma, Runyi Yang, Huapeng Li, Mengjiao Ma, Bin Ren, Nikola Popovic, Nicu Sebe, Ender
 674 Konukoglu, Theo Gevers, et al. Scenesplat: Gaussian splatting-based scene understanding with
 675 vision-language pretraining. *arXiv preprint arXiv:2503.18052*, 2025.

676 Xiongkun Linghu, Jiangyong Huang, Xuesong Niu, Xiaojian Shawn Ma, Baoxiong Jia, and Siyuan
 677 Huang. Multi-modal situated reasoning in 3d scenes. *Advances in Neural Information Processing
 678 Systems*, 37:140903–140936, 2024.

679 Yuxing Long, Wenzhe Cai, Hongcheng Wang, Guanqi Zhan, and Hao Dong. Instructnav: Zero-
 680 shot system for generic instruction navigation in unexplored environment. *arXiv preprint
 681 arXiv:2406.04882*, 2024.

682 Xiaojian Ma, Silong Yong, Zilong Zheng, Qing Li, Yitao Liang, Song-Chun Zhu, and Siyuan Huang.
 683 Sq3d: Situated question answering in 3d scenes. In *International Conference on Learning Rep-
 684 resentations*, 2023.

685 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
 686 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis, 2020. URL
 687 <https://arxiv.org/abs/2003.08934>.

688 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 689 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 690 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

691 Songyou Peng, Kyle Genova, Chiyu Jiang, Andrea Tagliasacchi, Marc Pollefeys, Thomas
 692 Funkhouser, et al. Openscene: 3d scene understanding with open vocabularies. In *Proceedings of
 693 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 815–824, 2023.

702 Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang, William Yang Wang, Chunhua Shen, and Anton
 703 van den Hengel. Reverie: Remote embodied visual referring expression in real indoor environments.
 704 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 705 pp. 9982–9991, 2020.

706 Yanyuan Qiao, Chaorui Deng, and Qi Wu. Referring expression comprehension: A survey of meth-
 707 ods and datasets. *IEEE Transactions on Multimedia*, 23:4426–4440, 2020.

709 Minghan Qin, Wanhua Li, Jiawei Zhou, Haoqian Wang, and Hanspeter Pfister. Langsplat: 3d lan-
 710 guage gaussian splatting. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 711 *Pattern Recognition*, pp. 20051–20060, 2024.

712 Santhosh K Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alex Clegg,
 713 John Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X Chang, et al.
 714 Habitat-matterport 3d dataset (hm3d): 1000 large-scale 3d environments for embodied ai. *arXiv*
 715 preprint *arXiv:2109.08238*, 2021.

716 Santhosh Kumar Ramakrishnan, Devendra Singh Chaplot, Ziad Al-Halah, Jitendra Malik, and Kris-
 717 ten Grauman. Poni: Potential functions for objectgoal navigation with interaction-free learning.
 718 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 719 18890–18900, 2022.

721 Junha Roh, Karthik Desingh, Ali Farhadi, and Dieter Fox. Languageref: Spatial-language model
 722 for 3d visual grounding. In *Conference on Robot Learning*, pp. 1046–1056. PMLR, 2022.

723 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2, 2024.

725 Hanqing Wang, Wenguan Wang, Tianmin Shu, Wei Liang, and Jianbing Shen. Active visual infor-
 726 mation gathering for vision-language navigation. In *ECCV*, pp. 307–322, 2020.

727 Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao, Dinghan Shen, Yuan-Fang Wang,
 728 William Yang Wang, and Lei Zhang. Reinforced cross-modal matching and self-supervised imi-
 729 tation learning for vision-language navigation. In *CVPR*, pp. 6629–6638, 2019.

730 Zihan Wang, Xiangyang Li, Jiahao Yang, Yeqi Liu, and Shuqiang Jiang. Gridmm: Grid memory
 731 map for vision-and-language navigation. In *ICCV*, pp. 15625–15636, 2023.

733 Zihan Wang, Seungjun Lee, and Gim Hee Lee. Dynam3d: Dynamic layered 3d tokens empower
 734 vlm for vision-and-language navigation. *arXiv preprint arXiv:2505.11383*, 2025.

735 Ziming Wei, Bingqian Lin, Yunshuang Nie, Jiaqi Chen, Shikui Ma, Hang Xu, and Xiaodan Liang.
 736 Unseen from seen: Rewriting observation-instruction using foundation models for augmenting
 737 vision-language navigation. *arXiv preprint arXiv:2503.18065*, 2025.

739 Abdelrhman Werby, Chenguang Huang, Martin Büchner, Abhinav Valada, and Wolfram Burgard.
 740 Hierarchical open-vocabulary 3d scene graphs for language-grounded robot navigation. In *First*
 741 *Workshop on Vision-Language Models for Navigation and Manipulation at ICRA 2024*, 2024.

742 Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Manolis Savva,
 743 and Dhruv Batra. Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion frames.
 744 *arXiv preprint arXiv:1911.00357*, 2019.

745 Yanmin Wu, Jiarui Meng, Haijie Li, Chenming Wu, Yahao Shi, Xinhua Cheng, Chen Zhao,
 746 Haocheng Feng, Errui Ding, Jingdong Wang, et al. Opengaussian: Towards point-level 3d
 747 gaussian-based open vocabulary understanding. *Advances in Neural Information Processing Sys-
 748 tems*, 37:19114–19138, 2024.

750 Haomiao Xiong, Yunzhi Zhuge, Jiawen Zhu, Lu Zhang, and Huchuan Lu. 3ur-llm: An end-to-end
 751 multimodal large language model for 3d scene understanding. *IEEE Transactions on Multimedia*,
 752 2025.

753 Brian Yamauchi. A frontier-based approach for autonomous exploration. In *Proceedings 1997*
 754 *IEEE International Symposium on Computational Intelligence in Robotics and Automation*
 755 *CIRA'97.'Towards New Computational Principles for Robotics and Automation'*, pp. 146–151.
 IEEE, 1997.

756 Yifu Yuan, Haiqin Cui, Yaoting Huang, Yibin Chen, Fei Ni, Zibin Dong, Pengyi Li, Yan Zheng,
 757 and Jianye Hao. Embodied-r1: Reinforced embodied reasoning for general robotic manipulation,
 758 2025. URL <https://arxiv.org/abs/2508.13998>.

759

760 Jirong Zha, Yuxuan Fan, Xiao Yang, Chen Gao, and Xinlei Chen. How to enable l1lm with 3d
 761 capacity? a survey of spatial reasoning in l1lm. *arXiv preprint arXiv:2504.05786*, 2025.

762

763 Jiazhao Zhang, Kunyu Wang, Shaoan Wang, Minghan Li, Haoran Liu, Songlin Wei, Zhongyuan
 764 Wang, Zhizheng Zhang, and He Wang. Uni-navid: A video-based vision-language-action model
 765 for unifying embodied navigation tasks. *arXiv preprint arXiv:2412.06224*, 2024a.

766

767 Jiazhao Zhang, Kunyu Wang, Rongtao Xu, Gengze Zhou, Yicong Hong, Xiaomeng Fang, Qi Wu,
 768 Zhizheng Zhang, and He Wang. Navid: Video-based vlm plans the next step for vision-and-
 769 language navigation. *arXiv preprint arXiv:2402.15852*, 2024b.

770

771 Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xupeng Miao, Bin Cui, Yu Qiao, Peng Gao, and
 772 Hongsheng Li. Pointclip: Point cloud understanding by clip. In *Proceedings of the IEEE/CVF*
 773 conference on computer vision and pattern recognition, pp. 8552–8562, 2022.

774

775 Siqi Zhang, Yanyuan Qiao, Qunbo Wang, Zike Yan, Qi Wu, Zhihua Wei, and Jing Liu. Cosmo: Com-
 776 bination of selective memorization for low-cost vision-and-language navigation. *arXiv preprint*
 777 *arXiv:2503.24065*, 2025.

778

779 Yiming Zhang, ZeMing Gong, and Angel X Chang. Multi3drefer: Grounding text description to
 780 multiple 3d objects. In *Proceedings of the IEEE/CVF International Conference on Computer*
 781 *Vision*, pp. 15225–15236, 2023.

782

783 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 784 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. *arXiv*
 785 *preprint arXiv:2403.13372*, 2024.

786

787 Hongyan Zhi, Peihao Chen, Junyan Li, Shuailei Ma, Xinyu Sun, Tianhang Xiang, Yinjie Lei,
 788 Mingkui Tan, and Chuang Gan. Lscenellm: Enhancing large 3d scene understanding using
 789 adaptive visual preferences. In *Proceedings of the Computer Vision and Pattern Recognition*
 790 Conference, pp. 3761–3771, 2025.

791

792 Chenming Zhu, Tai Wang, Wenwei Zhang, Jiangmiao Pang, and Xihui Liu. Llava-3d: A simple yet
 793 effective pathway to empowering lmms with 3d-awareness. In *ICCV*, 2025.

794

795 Fengda Zhu, Xiwen Liang, Yi Zhu, Qizhi Yu, Xiaojun Chang, and Xiaodan Liang. Soon: Sce-
 796 nario oriented object navigation with graph-based exploration. In *Proceedings of the IEEE/CVF*
 797 Conference on Computer Vision and Pattern Recognition, pp. 12689–12699, 2021.

798

799

800

801

802

803

804

805

806

807

808

809

810
811

A APPENDIX

812 This document provides additional method details, supplementary experiments, and further analysis
813 to complement the main paper, including:
814

- 815 • Appendix A.1: detailed descriptions of the baseline methods.
- 816 • **Appendix A.2: implementation details of the baseline methods.**
- 817 • Appendix A.3: more experimental results on EnvExp.
- 818 • **Appendix A.4: ablation study on different camera configurations.**
- 819 • **Appendix A.5: experiments on the influence of early stages on final navigation.**
- 820 • Appendix A.6: complexity analysis of our 3D-LangNav.
- 821 • Appendix A.7: discussions the real-world applications of applying ERNav.
- 822 • Appendix A.8: visualizations of exploration trajectories from different methods.
- 823 • Appendix A.9: prompt templates used in 3D-LangNav.
- 824 • **Appendix A.10: how 3D-LangNav deal with dynaic scenes.**
- 825 • **Appendix A.11: explanations of the noises in ERNav.**
- 826 • Appendix A.12: the use of LLMs in this work.
- 827 • Appendix A.13: discussions on the limitations and future directions of this work.

830
831

A.1 BASELINE METHODS

832 In this section, we provide detailed descriptions of the baseline methods used in our experiments.
833834
835

A.1.1 ENVEXP BASELINES

836 **Frontier-based Exploration (FBE) (Yamauchi, 1997)** is a classic heuristic strategy that guides
837 the agent toward the closest unexplored frontier at each step. Without relying on learning, it greedily
838 expands coverage by incrementally pushing the boundary of known space. This simple rule-based
839 approach serves as a strong traditional baseline for evaluating exploration methods.
840841 **Active Neural SLAM (ANS) (Chaplot et al., 2020a)** combines deep reinforcement learning with
842 classical frontier-based planning. A global policy, trained to maximize coverage, proposes long-term
843 goals from the agent’s occupancy map and visitation history, while the nearest frontier to that goal
844 is chosen for navigation to improve robustness. This hybrid design allows the method to leverage
845 learned strategies while retaining stability from rule-based exploration.
846847 **PONI (Ramakrishnan et al., 2022)** builds on frontier-based exploration by ranking frontiers ac-
848 cording to their spatial and semantic potential. In this simplified variant, only the learned area
849 estimation from the UNet is used, and the agent consistently selects the frontier with the largest
850 predicted coverage. This results in a purely greedy but informed exploration strategy.
851852 **Learning-Augmented Model-Based Frontier-Based Exploration (LFE) (Li et al., 2023)** tack-
853 les exploration under strict time limits by combining learning with model-based planning. It predicts
854 both the unexplored area behind each frontier and the steps needed to reach it, allowing the planner to
855 balance efficiency and completeness. By integrating semantic cues and structured decision-making,
856 it improves over purely greedy or RL-based strategies in coverage.
857858
859

A.1.2 ENVREP BASELINES

860 **OpenScenes (Peng et al., 2023)** introduces a zero-shot framework for open-vocabulary 3D scene
861 understanding by aligning 3D points with both text and image features in the CLIP space. It extracts
862 three types of features: a 2D branch, where multi-view pixel features are fused after back-projecting
863 points into posed images; a 3D branch, where sparse convolutions capture geometric structure di-
864 rectly from the point cloud; and an ensemble branch, which combines the two for richer, more robust
865 representations. This hybrid design allows OpenScenes to ground natural language queries in 3D
866 scenes with greater accuracy and flexibility than either 2D or 3D features alone.
867

864 **ConceptGraphs (Gu et al., 2024)** proposes a graph-structured representation of 3D scenes that
 865 moves beyond dense per-point features. By leveraging 2D foundation models and fusing their out-
 866 puts into 3D through multi-view association, it builds compact graphs where nodes capture semantic
 867 entities and edges encode their spatial relationships. This design not only supports open-vocabulary
 868 generalization to novel classes but also enables downstream planning tasks that demand higher-level
 869 reasoning over both spatial and semantic concepts.

870 **HOV-SG (Werby et al., 2024)** introduces a hierarchical open-vocabulary scene graph for 3D map-
 871 ping and navigation. Instead of relying on dense per-point features, it organizes environments into
 872 a multi-level structure of floors, rooms, and objects, each enriched with language-aligned represen-
 873 tations from vision foundation models. This hierarchy makes large and complex spaces more man-
 874 ageable, enabling efficient cross-floor navigation and stronger performance in language-conditioned
 875 tasks while keeping the representation compact.

877 A.1.3 ENVNAV BASELINES: VLN

879 **VLNBERT (Hong et al., 2021)** adapts the transformer architecture to the navigation setting by
 880 introducing a recurrent mechanism that preserves cross-modal state over time. This design allows
 881 the model to handle partially observable environments while aligning language instructions with
 882 visual inputs. It simplifies the navigation pipeline, achieving strong results without the need for
 883 more complex encoder-decoder structures.

884 **CM² (Georgakis et al., 2022)** takes a different angle on VLN by grounding language directly
 885 into spatial maps rather than relying solely on sequence models or raw attention over observations.
 886 It learns to infer semantic top-down maps, even for unseen areas, and then plans navigation paths
 887 as waypoints guided by language. This explicit map-based reasoning leads to more structured and
 888 interpretable navigation compared to purely end-to-end approaches.

890 **DUET (Chen et al., 2022)** introduces a dual-scale graph transformer that balances local ground-
 891 ing with global planning in VLN. It constructs a topological map during navigation for efficient
 892 long-term reasoning, while also attending to fine-grained visual-language alignment through local
 893 observations. By combining these two levels of representation, DUET achieves strong performance
 894 across both coarse and fine-grained navigation tasks.

895 **GridMM (Wang et al., 2023)** tackles VLN by introducing a grid-based memory map that grows
 896 dynamically as the agent explores. It projects past observations into a unified top-down grid to
 897 capture spatial structure, while also aggregating instruction-relevant details within each grid cell.
 898 This combination of global spatial reasoning and local language grounding leads to strong navigation
 899 performance across multiple benchmarks.

900 **InstructNav (Long et al., 2024)** is designed as a general-purpose system for handling diverse
 901 navigation instructions without relying on task-specific training or pre-built maps. It introduces
 902 a Dynamic Chain-of-Navigation (DCoN) to unify planning across different instruction types and
 903 leverages Multi-sourced Value Maps to translate language into executable trajectories. This flexible
 904 design enables strong zero-shot performance across multiple navigation tasks, including real-world
 905 robot experiments.

906 **NaVid (Zhang et al., 2024b)** introduces a video-based large vision-language model that performs
 907 navigation directly from RGB streams, without relying on maps, odometry, or depth inputs. By
 908 treating navigation as spatio-temporal reasoning over continuous video and language instructions, it
 909 mimics how humans navigate and avoids common Sim2Real issues. This design enables NaVid to
 910 achieve strong performance in both simulated and real-world environments, highlighting the poten-
 911 tial of VLMs for robust instruction-following navigation.

912 **Uni-NaVid (Zhang et al., 2024a)** extends the idea of video-based navigation to a broader scope,
 913 aiming to unify diverse embodied tasks such as instruction following, object search, and human
 914 tracking within a single model. By standardizing inputs and outputs across tasks, it enables a gen-
 915 eralist agent that can seamlessly handle mixed long-horizon navigation demands in unseen environ-
 916

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
999

ments. Trained on millions of samples from multiple subtasks, Uni-NaVid demonstrates both strong benchmark performance and practical effectiveness in real-world trials.

RAM (Wei et al., 2025) tackles the persistent problem of data scarcity in VLN by generating fresh observation–instruction pairs through rewriting rather than collecting new simulator or web data. It enriches observations with diverse objects and layouts using VLM–LLM rewriting plus text-to-image synthesis, and then produces aligned instructions by reasoning over the differences from the originals. Combined with a tailored training strategy, this approach diversifies the data distribution while keeping noise in check, leading to stronger generalization across both discrete and continuous VLN benchmarks.

COSMO (Zhang et al., 2025) aims to strike a balance between performance and efficiency in VLN, addressing the rising complexity of transformer-based methods that often depend on external knowledge or maps. It combines state-space and transformer modules, introducing two tailored components: RSS for stronger inter-modal interactions and CS3 for dual-stream cross-modal reasoning. This design achieves competitive results across multiple VLN benchmarks while notably lowering computational overhead.

Dynam3D (Wang et al., 2025) tackles the key shortcomings of applying Video-VLMs to real-world navigation, such as weak 3D reasoning, limited long-term memory, and poor adaptability to dynamic settings. It projects CLIP features into 3D space and builds hierarchical patch-, instance-, and zone-level representations that update online, enabling both geometric understanding and robust memory across changing environments. With large-scale 3D-language pretraining, Dynam3D achieves state-of-the-art results on multiple VLN benchmarks and shows strong potential for real-world deployment.

A.1.4 ENVNAV BASELINES: 3D-MLLMs

ChatScene (Huang et al., 2024) reformulates 3D scene understanding by shifting focus from global scene embeddings to object-centric representations. It breaks scenes into object proposals with unique identifiers, allowing precise grounding and flexible interaction across tasks. This design unifies diverse 3D scene-language problems under a QA framework, yielding strong gains on multiple benchmarks with minimal fine-tuning.

Reason3D (Huang et al., 2025b) extends multimodal LLMs into richer 3D scene understanding by coupling language reasoning with dense visual outputs. Instead of stopping at text or numbers, it links point clouds and prompts to generate both responses and segmentation masks, supporting tasks like reasoning-driven segmentation, referring, and QA. A hierarchical mask decoder refines object predictions from coarse to fine, enabling more accurate comprehension of large, complex 3D scenes.

LSceneLLM (Zhi et al., 2025) tackles the challenge of extracting task-relevant details from dense 3D scenes by adaptively focusing on the most important regions. It uses an LLM-guided token selector to identify where to look, then applies a scene magnifier module to refine fine-grained details, combining them with global context for richer understanding. Alongside this framework, the authors introduce XR-Scene, a benchmark for cross-room scene understanding, where LSceneLLM achieves clear improvements over existing 3D-VLMs.

3D-LLaVA (Deng et al., 2025) is designed as a lightweight yet powerful assistant for 3D scene understanding and interaction. Instead of relying on multi-stage pipelines, it directly operates on point clouds through its Omni Superpoint Transformer, which unifies feature selection, visual prompt encoding, and mask generation. With hybrid pretraining and unified instruction tuning, 3D-LLaVA achieves strong results across multiple benchmarks while keeping the architecture simple and versatile.

LLaVA-3D (Zhu et al., 2025) extends the strong 2D priors of LLaVA into 3D scene understanding through a streamlined framework. By enriching 2D CLIP patches with 3D position embeddings, it forms 3D-aware patches that support accurate spatial outputs such as 3D bounding boxes. Joint

972 2D–3D instruction tuning enables a unified model that trains more efficiently than prior 3D LMMs,
 973 achieves state-of-the-art results on 3D tasks, and preserves robust 2D vision-language capabilities.
 974

975 **A.2 IMPLEMENTATION DETAILS FOR BASELINES**

978 We evaluate heterogeneous model families under a unified EnvNav task formulation and consistent
 979 metrics, including representation-based methods, VLN agents, and 3D-MLLMs. All models
 980 are tested using their officially released checkpoints and native pipelines, without any architectural
 981 modification or task-specific fine-tuning, in order to faithfully reflect their inherent capacity for
 982 global spatial reasoning in building-scale environments.

983 **Representation-based methods.** These methods are evaluated following their original object-goal
 984 navigation pipelines, which map language descriptions to 3D coordinates via learned 3D language
 985 fields. To preserve their intended functionality while enabling fair comparison under ERNav, we
 986 use an LLM only to extract the target landmark phrase from each instruction, which serves as the
 987 object-goal query required by these methods. The subsequent localization process strictly follows
 988 their original implementation, without any change to the model weights or architecture. For HOV-
 989 SG, which additionally supports structured instruction parsing, we report results for both its standard
 990 and navigation variants, following the official codebase.

991 **3D-MLLMs.** All 3D-MLLMs are evaluated in a zero-shot manner using their released inference
 992 pipelines, without further fine-tuning. This choice is made for two reasons: (i) most existing 3D-
 993 MLLMs do not provide practical training or fine-tuning utilities, and (ii) ERNav is designed to
 994 evaluate the intrinsic generalization and spatial reasoning ability of existing models rather than task-
 995 specific optimization. Although the proposed 3D-LangNav model is fine-tuned, its training data are
 996 independently generated by us and have no overlap with the ERNav scenes or instructions, ensuring
 997 that the comparison remains fair.

998 Despite the heterogeneity of model architectures, all methods are evaluated under identical con-
 999 ditions in EnvNav, requiring them to predict a 3D target location based on a natural language in-
 1000 struction. We rely on each method’s native output format and reasoning pathway, and standardize
 1001 only the evaluation metrics (e.g., NE, SR) for comparison. This protocol ensures both fairness and
 1002 interpretability of the results in Tab. 3, while allowing each method family to operate in its most
 1003 representative and intended manner.

1004 **A.3 MORE EXPERIMENTS ON ENVEXP**

1007 We report additional results of different methods on EnvExp under varying thresholds θ in ObjCov,
 1008 as shown in Tab. 6. We also provide statistics on steps, the efficiency term E , and a brute-force
 1009 baseline that exhaustively visits all possible positions.

1010 The results show that our dual-sighted exploration strategy introduces extra steps due to observing
 1011 objects from multiple viewpoints, but this overhead is modest and acceptable, especially compared
 1012 with the brute-force baseline. Moreover, even with $d_{far} = 3$ m fixed, DSS consistently outperforms
 1013 other baselines across different θ , demonstrating robustness to objects and scenes of varying sizes.

1015 1016 **Table 6: Exploration metrics of different methods in EnvExp.**

1017 Methods	1018 Steps	1019 Coverage% \uparrow	1020 $M(3)\%\uparrow$	1021 $M(5)\%\uparrow$	1022 $M(10)\%\uparrow$	1023 $E\%\uparrow$	1024 ObjCov% \uparrow
FBE	638	93.9	33.1	29.8	24.3	82.1	27.2
ANS	727	91.5	35.8	31.5	26.2	80.9	29.0
PONI	767	88.0	33.6	31.1	26.0	80.4	27.0
LFE	761	92.2	34.7	31.6	26.2	80.5	27.9
Human	1,279	96.2	31.1	26.1	20.3	74.7	23.2
Brute-force	19,935	100.0	100.0	100.0	100.0	0.0	0.0
ANS+DSS	2,104	99.4	60.7	54.7	47.0	67.5	41.0

Table 7: Influence of camera HFOV and height on ERNav performance.

Setting	EnvExp (Cov)	EnvExp (ObjCov)	EnvExp (F1)	EnvRep (R@20)	EnvRep (MR)	EnvNav (SR)
Default (90°, 1.25m)	99.4	41.0	52.9	84.2	12.1	50
HFOV = 60°	99.4	39.6	52.1	82.5	12.8	48
HFOV = 120°	99.4	38.2	53.3	83.8	12.3	49
Height = 1.00m	99.5	40.8	23.1	71.9	16.1	37
Height = 1.50m	99.2	40.5	54.4	84.0	12.2	50

Table 8: Influence of exploration quality on representation and navigation performance.

Exploration Strategy	EnvExp (ObjCov)	EnvRep (R@20)	EnvRep (MR)	EnvNav (SR)
FBE	27.2	72.6	18.4	39
ANS	29.0	78.3	15.2	44
PONI	27.0	71.5	21.9	37
LFE	27.9	77.1	16.2	45
Ours	41.0	84.2	12.1	50

A.4 GENERALIZATION TO CAMERA CONFIGURATIONS

In ERNav, only the exploration stage directly depends on the camera configuration, while the representation and navigation stages operate purely on the reconstructed 3D map and the extracted features. To evaluate the robustness of our pipeline to different sensor configurations, we conduct an additional sensitivity analysis by varying the exploration camera parameters along two axes: horizontal field of view (HFOV) {60°, 90°, 120°} and camera height {1.00m, 1.25m, 1.50m}, while keeping all other components fixed.

The results in Tab. 7 demonstrate that ERNav is highly robust to variations in camera configurations, with downstream navigation performance remaining within a narrow range. Varying the HFOV from 60° to 120° leads to only minor differences in Success Rate, indicating that the multi-view aggregation and Dual-Sighted Strategy (DSS) effectively mitigate changes in single-frame coverage and pixel density.

In contrast, setting the camera height to 1.00m results in a noticeable performance drop, especially in geometric F1 and navigation success. This is expected, as a lower viewpoint is more prone to occlusion by furniture, particularly for objects located on tables and higher surfaces, leading to reduced observability. Once the camera clears major occlusions (1.25m and 1.50m), the performance recovers and stabilizes, confirming that the method remains robust as long as sufficient visibility is preserved.

These results highlight an important structural advantage of ERNav: the decoupling between hardware-dependent exploration and representation-based navigation. Unlike end-to-end VLN agents that are often tightly coupled to specific sensor configurations, ERNav allows one platform to perform exploration and a different platform to navigate using the constructed map, making the system inherently robust to robot heterogeneity.

A.5 INFLUENCE OF EARLY STAGES ON END-TO-END NAVIGATION

Since ERNav follows a modular pipeline, it is important to understand how the quality of earlier stages affects performance in downstream navigation. From the main results in Tabs. 1 to 3, we already observe a consistent dependency across stages. Specifically, higher exploration quality (Table 1) leads to improved 3D representations, while stronger representations (Table 2) consistently translate into better navigation performance (Table 3).

To explicitly quantify this dependency, we conduct a controlled experiment in which the representation and navigation modules are fixed (using the proposed 3D-LangNav architecture), while only the exploration strategy is varied. This allows us to directly measure how exploration quality propagates to the final task.

1080 As shown in Tab. 8, there is a clear and monotonic relationship across stages. Higher object coverage
 1081 in the exploration stage leads to more informative and complete scene representations, as reflected
 1082 by higher Recall@20 and lower Mean Rank. In turn, these stronger representations directly improve
 1083 navigation success. Low-coverage strategies are consistently bottlenecked at $SR \leq 39\%$, whereas
 1084 our high-coverage strategy achieves a SR of 50%.

1085 These results demonstrate that exploration quality directly determines the upper bound of represen-
 1086 tation quality, which in turn constrains navigation performance. Thus, the relatively lower navi-
 1087 gation performance of baseline methods is primarily due to insufficient perceptual coverage in the
 1088 exploration stage, rather than deficiencies in language reasoning.
 1089

1090 A.6 COMPLEXITY ANALYSIS OF 3D-LANGNAV.

1091 We provide the complexity analysis to prove the advantage of our node-first, edge-verification strat-
 1092 egy in 3D-LangNav. Let $n = |\mathcal{V}|$ be the node count in the scene graph \mathcal{G} , and m the number of
 1093 landmarks mentioned in the instruction graph \mathcal{G}_{inst} . Naive global matching approach is equivalent
 1094 to the problem of subgraph isomorphism, which in the worst case requires checking all $\binom{n}{m} \cdot m!$
 1095 possible mappings, resulting in *exponential* complexity $\mathcal{O}(n^m \cdot m!)$, making it infeasible for large-
 1096 scale environments in ERNav. Our divide-and-conquer strategy decomposes the matching into two
 1097 stages. Each landmark is independently matched to a set of k candidate nodes using vision-language
 1098 similarity queries in the 3D language field, reducing the search space from n^m combinations to
 1099 k^m . Verifying spatial relationships for each candidate set requires $\mathcal{O}(m^2)$ pairwise checks, giving
 1100 $\mathcal{O}(k^m \cdot m^2)$. Since $k \ll n$ in practice, the total complexity becomes $\mathcal{O}(m \cdot n \cdot c_q + k^m \cdot m^2 \cdot c_v)$,
 1101 representing an exponential reduction in the search space compared to direct subgraph matching.
 1102

1103 A.7 REAL-WORLD APPLICATIONS

1104 Once the target coordinates are predicted by ERNav, different strategies can be employed to guide
 1105 the agent to the destination. We outline several complementary approaches below: **(1) Classical**
 1106 **path planning**. Since exploration provides an occupancy map, the agent can directly plan a path
 1107 from the start position to the target using standard shortest-path algorithms such as A* or Dijkstra.
 1108 This approach leverages the geometric structure of the explored environment and produces efficient
 1109 paths when the map is sufficiently complete. **(2) Graph-based navigation**. To maintain consistency
 1110 with the discrete VLN setting, we can build a navigation graph over all navigable locations observed
 1111 during exploration. The agent then traverses between viewpoints along graph edges, using the off-
 1112 the-shelf point-goal navigation controller DD-PPO (Wijmans et al., 2019) to execute local motions
 1113 between consecutive nodes. **(3) Trajectory replay**. Exploration inherently yields a complete walk-
 1114 ing trajectory around the building, staying within 1 meter of the navigation boundary. Therefore, a
 1115 simple but effective strategy is to first move the agent to the closest point on this trajectory, and then
 1116 follow it until reaching the location closest to the predicted target. This avoids redundant planning
 1117 and guarantees connectivity to most navigable regions. **(4) Cross-level and failure recovery**. For
 1118 vertical transitions (e.g., stairs, elevators), the agent reuses the paths observed during exploration,
 1119 ensuring reliable cross-level navigation. In cases where the agent becomes stuck near obstacles, we
 1120 employ a lightweight heuristic: the agent rotates in place and attempts to move forward, after which
 1121 control is handed back to DD-PPO for local correction. Together, these strategies provide a flexible
 1122 toolkit for integrating ERNav with both classical and learned navigation pipelines, enabling robust
 1123 execution across different environment configurations.
 1124

1125 A.8 EXPLORATION TRAJECTORY VISUALIZATIONS

1126 We further visualize the exploration trajectories generated by different methods in Fig. 3. With the
 1127 integration of our DSS, the agent captures both close-up views of objects for detailed information
 1128 and distant views for relational context, thereby achieving the highest map coverage as well as the
 1129 highest ObjCov.
 1130

1131 A.9 PROMPT TEMPLATE FOR 3D-LANGNAV

1132 In this section, we provide the prompt templates used in our 3D-LangNav, with the system prompt
 1133 shown in Fig. 4 and the user prompt in Fig. 5.

Figure 3: Visualization of exploration trajectories generated by different methods.

System Prompt for 3D-LangNav

You are an advanced 3D environment understanding assistant. Your main objective is to interpret a language-based instruction describing an indoor environment and identify which candidate landmark best matches the specified target.

The inputs are presented in the following formats:

- Instruction:** A natural language description involving spatial relationships (e.g., relative positions, distances) among landmarks.
- Candidates:** A list of candidates for all landmarks mentioned in the instruction. Each landmark belongs to one of the following types:
 - Floor: No explicit candidate data is provided. The positions belonging to this floor must be inferred from the connectivity map. (Note: floor index starts from 1.)
 - Room: The candidates are a list of nodes in the connectivity map.
 - Object: Includes the object's unique identifier and the 3D coordinates of its center.
- Target:** The specific landmark name within the instruction that must be located among the given candidates.
- Navigable Nodes:** A representation of the environment layout, including a list of key positions.
- Start Position:** The agent's initial 3D location, which may be referenced in the instruction.

Coordinate System

All 3D positions (x, y, z) follow the convention:

- x-axis: Left to right, increasing to the right.
- y-axis: Floor to ceiling, increasing upward.
- z-axis: Front to back, increasing forward.

Your Task

Analyze the provided information to decide which candidate is the correct match for the target. Consider all clues from the natural language description, especially spatial relationships, and compare them with the bounding boxes and 3D positions of the candidates.

Output Format

You must identify a single candidate as the correct match in the following format:
 "The correct candidate is <Candidate_ID>."

Figure 4: System Prompt for spatial reasoning in 3D-LangNav.

A.10 DYNAMIC SCENES

The current version of ERNav focuses on static indoor environments, and we explicitly acknowledge this as a limitation of the benchmark. At the same time, we emphasize that the absence of dynamic scenes does not compromise the effectiveness or validity of ERNav for evaluating embodied navigation systems. ERNav is designed to assess an agent's ability to explore environments, construct spatial representations, and reason over them to perform navigation, which remains a fundamental capability even when the environment undergoes future changes.

In practice, dynamic scenes can be viewed as updated versions of previously observed environments, where the core challenges of exploration, representation, and navigation remain unchanged. This

```

1188
1189 User Prompt for 3D-LangNav
1190
1191 1. Instruction: {instruction}
1192 2. Candidates:
1193   • Landmark 0: {landmark_name} ({landmark_type})
1194     • Candidate 0: {pos: {candidate_position}, bounding box: {candidate_bounding_box}}
1195     • Candidate 1: {pos: {candidate_position}, bounding box: {candidate_bounding_box}}
1196     ...
1197     • Landmark 1: {landmark_name} ({landmark_type})
1198     ...
1199 3. Target: {target_name}
1200 4. Navigable Nodes:
1201   • Node 0: {node position}
1202   • Node 1: {node position}
1203 ...
1204 5. Start Position: {start_pos}
1205
1206
1207
1208
1209

```

Figure 5: User prompt template for spatial reasoning in 3D-LangNav.

assumption is consistent with prior work in embodied navigation; for example, ObVLN (Hong et al., 2024) points out that most existing VLN benchmarks also assume static environments, yet they continue to serve as effective testbeds for evaluating navigation capabilities. Similarly, the broader map-and-plan literature has shown that dynamic changes are often handled through incremental updates rather than requiring a fundamentally different benchmark design. Existing works have explored mechanisms such as continuous map refinement, change detection, and selective re-exploration to handle environmental dynamics (Huang et al., 2025a; Gu et al., 2024).

ERNav naturally supports such extensions. An agent can update its internal representation during EnvNav or trigger partial re-exploration when observed discrepancies exceed a predefined threshold. These directions represent important future work that will further enhance the real-world applicability of the benchmark. Importantly, they are orthogonal to the core contribution of ERNav, which lies in providing the first unified benchmark that explicitly evaluates how exploration and representation jointly influence downstream navigation performance at building scale.

A.11 NOISES IN ERNAV

The noises in ERNav mainly comes from the inherent imperfections and artifacts present in real-world RGB-D scans (e.g., Matterport3D (Chang et al., 2017)), rather than synthetic noise artificially injected into clean data. This distinction is well recognized in the 3D scene understanding literature (Dai et al., 2017), where real scanning data is characterized by natural noise patterns and occlusions that differ fundamentally from synthetic environments.

In ERNav, these realistic noise sources mainly arise from two aspects. First, commodity RGB-D sensors introduce depth quantization errors, boundary noise, and missing measurements, particularly on reflective or transparent surfaces. Second, since agents construct representations from partial, egocentric observations during exploration (instead of relying on pre-processed global point clouds), the reconstructed data naturally contains artifacts such as outliers, floaters, and occlusion-induced incompleteness. In contrast, camera poses are not treated as a source of noise in our benchmark, as we follow Habitat’s standard protocol and directly use the simulator-provided sensor poses.

Although we do not perform a synthetic noise ablation study, ERNav is explicitly designed to be robust to these realistic imperfections. This robustness is achieved through three key mechanisms: (i) multi-view feature aggregation to reduce transient sensor noise, (ii) density-based outlier rejection (DBSCAN) to filter geometric artifacts, and (iii) hierarchical abstraction into object- and region-level representations, which smooths high-frequency noise before reasoning. Our experimental results in

1242
1243 Tab. 2 and Tab. 3 demonstrate that the proposed method can reliably reconstruct and reason over
1244 such imperfect observations.
1245

1246 A.12 LLM USAGE STATEMENT 1247

1248 LLMs were used in this work only as a writing-assist tool. Their role was limited to checking
1249 grammar, polishing language, and verifying formatting consistency. They were **not** used for research
1250 ideation, content generation, data analysis, or development of results. All ideas, methodologies, and
1251 conclusions presented in this paper were conceived and written by the authors. The authors take full
1252 responsibility for the contents of the manuscript.
1253

1254 A.13 DISCUSSION 1255

1256 **Limitations.** Although 3D-LangNav achieves competitive performance, several limitations re-
1257 main. First, the current framework cannot handle dynamic environments, where objects or layouts
1258 may change after exploration, which can cause failures in target localization. Second, the repre-
1259 sentation construction process is not real-time, limiting applicability to time-sensitive robotic tasks.
1260 Moreover, deploying a 72B model on real robots is impractical under current hardware constraints.
1261 Finally, because the method relies on candidate selection for prediction, it may still miss valid targets
1262 in cluttered or ambiguous scenes, resulting in performance degradation.
1263

1264 **Future Work.** In future work, we aim to address these limitations in several directions. We plan
1265 to leverage more advanced LLMs with full finetuning to further enhance instruction grounding and
1266 coordinate prediction. We will also expand the set of baselines for ERNav by incorporating NeRF-
1267 and 3DGS-based scene representations as well as video-based navigation methods, providing a more
1268 comprehensive evaluation. Moreover, we intend to fine-tune a multimodal LLM under our current
1269 candidate-filtering framework, improving its ability to identify and retain true target objects more
1270 reliably.
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295