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ABSTRACT

Current embodied AI benchmarks typically focus only on the final stage of the
embodied process, such as following instructions or answering scene-related ques-
tions. These evaluations often unrealistically assume access to perfect perception
data of the environment and overlook the earlier stages of exploration and repre-
sentation construction, which are indispensable for real-world deployment. In ad-
dition, these benchmarks are often restricted to smaller-scale, room-level environ-
ments and short, object-centric instructions, falling to capture the complexity of
larger buildings where agents must operate across multiple rooms and floors while
reasoning over long instructions tied to global layouts. To address these gaps,
we introduce ERNav, the first unified benchmark for embodied AI that integrates
Exploration, Representation, and Navigation into an end-to-end task pipeline. In
ERNav, agents must actively explore the environment, construct global represen-
tations from noisy RGB-D observations, and then localize targets directly from
natural language instructions that often require reasoning over entire buildings.
This unified formulation differs from existing benchmarks by aligning all stages
of the embodied pipeline and scaling evaluation to realistic building-level settings,
creating a challenging and practical testbed for embodied AI. We also propose 3D-
LangNav as a strong baseline. As a divide-and-conquer framework, it employs
a dual-sighted exploration strategy to collect diverse observations and construct
high-quality 3D representations, followed by language grounding and spatial rea-
soning via a fine-tuned large language model (LLM). Extensive experiments show
that ERNav poses significant new challenges for existing methods, while 3D-
LangNav achieves strong performance, reaching more than twice the success rate
(SR) of state-of-the-art 3D-MLLMs. Moreover, by structuring the task into three
progressively harder, sequentially dependent subtasks as a whole pipeline, ERNav
enables systematic analysis of how each stage contributes to overall performance,
providing clear directions for future research.

1 INTRODUCTION

Embodied AI aims to develop agents that can perceive, act, and reason in realistic environments,
enabling applications such as household assistance (Erickson et al., 2020) and robotics (Yuan et al.,
2025). A long-standing challenge lies in evaluating such agents systematically in settings that re-
flect both the complexity of real-world environments and the interdependence among perception,
representation, and reasoning. Recent advances in Large Language Models (LLMs) (Brown et al.,
2020; Guo et al., 2025) and Multimodal LLMs (MLLMs) (Achiam et al., 2023; Bai et al., 2025)
have driven progress in vision-language reasoning. However, their limitations in 3D perception and
embodied tasks remain evident (Zha et al., 2025), underscoring the need for benchmarks that better
capture the demands of embodied AI.

In response, several benchmarks (Ma et al., 2023; Achlioptas et al., 2020; Zhang et al., 2023) have
been proposed for 3D scene understanding. However, two critical gaps remain. First, most bench-
marks assume “free” access to complete RGB-D observations or ground-truth point clouds and eval-
uate only the final step—such as answering questions or grounding language in pre-scanned scenes.
This design bypasses the earlier but essential stages of exploration and representation construction in
real deployments. For example, SQA3D (Ma et al., 2023) provides complete scans and egocentric
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videos upfront, making performance highly dependent on curated inputs rather than autonomous
perception. Second, the environments in these benchmarks (e.g., ScanQA (Azuma et al., 2022),
ScanRefer (Chen et al., 2020)) are typically restricted to single rooms or a few connected rooms (Zhi
et al., 2025). Such settings limit instructions to short, object-centric references. In contrast, real-
world scenarios involve multi-room and multi-floor buildings, where following instructions requires
reasoning over long-range spatial contexts with complex layouts.

VLN

Existing 3D Scene Understanding Tasks (e.g., 3D QA)

ERNav

Environment

Instruction: “Go to the 
kitchen and pick up the 
scale on the counter”

Instruction: “Go to the 
kitchen and pick up the 
scale on the counter”

Pre-defined

RGB-D 

Sequences

GT point 

clouds

2D observations

Agent

…

Action

Question: “What is the 
color of the bed?”

or

Model Answer

Building-level 

Environment

Exploration

RGB-D Observations

Room-level

Representation

Reconstructed MapModel
Destination

Coordinates

Navigation

Figure 1: Comparison with VLN and existing 3D
benchmarks. ERNav provides a realistic end-to-
end setting: the agent actively explores a building-
level environment, constructs a global represen-
tation, and grounds natural language instructions
to directly predict the destination. The three
subtasks—exploration, representation, and naviga-
tion—are interdependent, making ERNav a unified
and realistic benchmark that extends beyond 2D-
only navigation or room-level question answering.

To address these gaps, we introduce ERNav,
the first unified benchmark that integrates
Exploration, Representation, and Navigation
into an end-to-end embodied task. ER-
Nav reframes Vision-and-Language Naviga-
tion (VLN) (Anderson et al., 2018) from
a robotics-inspired map-and-plan perspec-
tive (Durrant-Whyte & Bailey, 2006). Agents
must first explore to construct a represen-
tation based on noisy RGB-D observations
and then localize targets directly from natu-
ral language instructions. Unlike traditional
navigation tasks, ERNav emphasizes desti-
nation identification, since low-level point-
goal navigation has been extensively studied
and is considered near-solved (Wijmans et al.,
2019; Chaplot et al., 2020b). Instead, ER-
Nav targets the practical challenge of inter-
preting language instructions while reasoning
over large-scale environments. By combining
diverse buildings from Matterport3D (Chang
et al., 2017) with complex instructions from
REVERIE (Qi et al., 2020), ERNav jointly
evaluates active exploration and building-
level spatial reasoning, two critical capabil-
ities overlooked by existing benchmarks, as
illustrated in Fig. 1.

To facilitate systematic analysis, we decom-
pose ERNav into three interdependent sub-
tasks: (1) EnvExp: efficient exploration for
robust representation construction; (2) En-
vRep: building global representations from
exploration data (e.g., scene graphs or 3D lan-
guage fields); (3) EnvNav: interpreting in-
structions over the constructed representation
to identify the destination. By providing stan-
dardized data at each stage, ERNav allows
methods to begin from different subtasks, en-
abling controlled analysis of how each stage
affects overall performance.

One central challenge in ERNav lies in the scale of building-level environments. Processing large
point clouds with thousands of objects demands both computational efficiency and strong generaliza-
tion beyond room-scale datasets. To address this, we propose 3D-LangNav, a divide-and-conquer
baseline designed for ERNav. It employs a dual-sighted exploration strategy to improve reconstruc-
tion, builds object- and region-level representations through segmentation and graph aggregation,
and leverages a fine-tuned LLM for spatial reasoning. This design reduces the reasoning problem to
subgraphs centered on instruction-relevant landmarks, improving both efficiency and accuracy.

We benchmark a wide range of methods on ERNav and show that existing approaches fail to scale
to building-level complexity. In contrast, 3D-LangNav achieves strong performance, attaining more
than twice the success rate of state-of-the-art 3D-MLLMs. Importantly, it is the only method that
unifies all three stages of ERNav while handling noise propagation across stages. Together, ER-
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Nav and 3D-LangNav establish a challenging and realistic testbed, and demonstrate the promise of
structured exploration-mapping-reasoning pipelines for building-level embodied AI.
2 RELATED WORK

3D Scene Understanding Benchmarks. A number of benchmarks (Ma et al., 2023; Achlioptas
et al., 2020; Zhang et al., 2023) have been proposed for 3D scene understanding. Foundation datasets
such as ScanNet (Dai et al., 2017) and Habitat-Matterport 3D (Ramakrishnan et al., 2021) provide
large-scale RGB-D scans that support tasks including segmentation and detection (Kolodiazhnyi
et al., 2024; 2025). Building on these, ScanRefer (Chen et al., 2020) enables 3D visual grounding
from natural language, while ScanQA (Azuma et al., 2022) extends this to question answering.
However, most benchmarks focus on small-scale, single-room settings rather than building-level
reasoning. More recently, XR-Scene and XR-QA (Zhi et al., 2025) introduce cross-room reasoning,
but remain limited to only a few connected rooms. In addition, these benchmarks typically assume
access to ground-truth scans or curated RGB-D sequences, bypassing the embodied challenges of
exploration, noisy observations, and representation construction. ERNav departs from this paradigm
by requiring agents to actively explore entire buildings, construct their own representations, and
reason over multi-room, multi-floor layouts.

Vision-and-Language Navigation (VLN). Traditional VLN tasks such as R2R (Anderson et al.,
2018) and SOON (Zhu et al., 2021) evaluate agents’ ability to follow natural language instructions
in photorealistic 3D environments. These tasks primarily assess step-by-step trajectory execution in
previously unseen scenarios. Variants such as pre-explore settings (Wang et al., 2019) allow agents
to survey the environment before navigation. However, they often rely on data augmentations such as
back-translation (Wang et al., 2020) or panorama synthesis (Li & Bansal, 2024), and remain bound
to discrete settings rather than continuous space (Krantz et al., 2020). Other extensions, including
IVLN (Krantz et al., 2023) and GSA-VLN (Hong et al., 2025), adopt map-and-plan strategies with
multiple trajectories in one environment, but their maps mainly support local decisions rather than
global reasoning. In contrast, ERNav reframes VLN as a 3D scene understanding problem. Agents
explore once, build a global representation, and ground arbitrary instructions at the building level.

Multimodal Scene Representations. Recent work explores semantic-geometric representations
of 3D environments by embedding objects and spatial relations within unified spaces. Early ap-
proaches (Zhang et al., 2022; Peng et al., 2023) align point clouds with CLIP features, while sub-
sequent methods (Ding et al., 2023; Gu et al., 2024) incorporate relational and structural cues to
support open-vocabulary queries. These representations facilitate tasks such as referring expression
comprehension (Qiao et al., 2020), visual grounding (Roh et al., 2022), and open-vocabulary 3D un-
derstanding (Wu et al., 2024). Parallel efforts leverage multimodal LLMs (Xiong et al., 2025; Deng
et al., 2025) for embodied tasks such as question answering (QA), dialogue, and planning, while
more recent works (Kerr et al., 2023; Qin et al., 2024; Li et al., 2025) extend beyond point clouds
by combining Neural Radiance Fields (Mildenhall et al., 2020) or 3D Gaussian Splatting (Kerbl
et al., 2023) with vision-language features. For fair comparison, we focus on methods that directly
process language queries, excluding those that require synthesizing RGB observations from camera
poses, since this is impractical for embodied navigation. Nevertheless, most existing representations
remain limited to object-centric reasoning, whereas ERNav evaluates long-range spatial reasoning
over multiple landmarks—including both objects and regions—at the building scale.

3 THE ERNAV BENCHMARK

We now present the ERNav benchmark in detail, including preliminaries, task formulation, and the
definitions of its three subtasks.
3.1 PRELIMINARIES

In VLN, an agent is given a natural language instruction X = (x1, x2, ..., xL) consisting of
L words and must navigate to a target location within an environment. We adopt the continu-
ous setting (Krantz et al., 2020) with low-level movements in free space for its realism. For-
mally, the agent begins at an initial position p0. At each time step t, it selects an action at
from the set {turn-left 15◦,turn-right 15◦,move-forward 0.25m,stop} based
on its current RGB-D panoramic observation Ot, the instruction X , and the navigation history
Ht = {O0, a0, O1, a1, . . . , Ot−1, at−1}. An episode terminates when the agent either reaches the
step limit or executes the [STOP] action. Navigation is considered successful if the final stopping
position lies within 3m of the target location.
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3.2 TASK FORMULATION

ERNav differs from standard VLN by adopting a map-and-plan paradigm inspired by robotics:
agents must first explore to construct a representation from noisy RGB-D observations, and then
localize the target directly from natural language instructions. Compared to the conventional setup
where agents execute instructions step by step in an unseen environment, this formulation is both
more realistic and more challenging. Formally, the agent is placed in an unseen environment E.
Instead of immediately following instructions, it must perform a single exploration pass to collect
RGB-D observations for representation construction. Let T = {⟨p0, h0⟩, ⟨p1, h1⟩, . . . , ⟨pN , hN ⟩}
denote the exploration trajectory, where pi is the i-th position and hi its heading. Unlike VLN, ER-
Nav assumes realistic egocentric observations oi rather than full panoramas O. From T , the agent
builds a representation R = f(T ) which may take free form but must support open-vocabulary
language queries. In the subsequent instruction-following stage, the agent is provided with an in-
struction X and a starting point, and must directly predict the 3D coordinates p̂t = (x̂, ŷ, ẑ) of the
target location without further interaction with the environment. A prediction is considered correct
if ∥p̂t − pt∥2 ≤ 3m, where pt is the ground-truth target coordinate.

3.3 SUBTASKS

To enable controlled evaluation across the pipeline, ERNav is decomposed into three subtasks.

3.3.1 ENVEXP

In this subtask, the agent explores the environment once from a given starting point. We adopt
Matterport3D (Chang et al., 2017) scenes with depth sensing restricted to dmax = 10m follow-
ing common practice (Chaplot et al., 2020a). To ensure fair comparison, we allow a sufficiently
large step budget so that different exploration methods can fully cover the environment. Since Mat-
terport3D contains multiple floors and cross-level exploration introduces unnecessary complexity,
agents explore each floor independently. The final global trajectory is then obtained by connecting
floors through the shortest paths across staircases.

Metric. Traditional exploration metrics emphasize map coverage, i.e., whether each region has
been observed at least once. However, 3D reconstruction requires not only coverage but also multi-
view observations of objects from diverse viewpoints and distances to capture fine details and reduce
noise. Therefore, pure coverage fails to reflect the adequacy of exploration for reconstruction. To
address this, we introduce a novel metric, ObjCov (object-wise distance coverage), which combines
a coverage term D and an efficiency term E. For each object o ∈ O, we define its valid observation
range as [dmin(o), dmax(o)], where dmin(o) and dmax(o) denote the nearest and farthest observable
distances, with o (0 ≤ dmin(o) ≤ dmax(o) ≤ dmax). We further define the effective distance range
as [L(o), U(o; θ)], where L(o) = dmin(o) and U(o; θ) = min(dmax(o), θ), with θ representing a
reliability threshold for reconstruction. If [d̂min(o), d̂max(o)] denotes the actual distance range from
which o is observed during exploration, the normalized distance coverage for o is:

d(o; θ) = max

(
min(d̂max(o), U(o; θ))− d̂min(o)

U(o; θ)− L(o)
, 0

)
. (1)

The average object-wise coverage is then given by:

D(θ) =
1

|O|
∑
o∈O

d(o; θ) (2)

To penalize redundant trajectories, we introduce an efficiency term E = 1−
√

Sactual
Smax

, where Sactual is
the number of steps taken and Smax is the brute-force step count required to visit all positions. Since
most objects can be reliably observed at 3m, we set θ = 3 and define the final metric as: ObjCov =
D(3) × E. Besides these exploration-related metrics, EnvExp further assesses how exploration
trajectories affect the quality of subsequent reconstruction. Specifically, we back-project all 2D
pixels into the 3D map to build point clouds and compare them with the ground-truth reconstructions
using metrics such as F1 score and the Chamfer-L1 distance.

3.3.2 ENVREP

Given the exploration observations O = ⟨o1, o2, . . . , on⟩, the agent is required to construct a 3D
representation R = f(O) that supports natural language queries for retrieving 3D coordinates. To
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Figure 2: Overview of 3D-LangNav, including the dual-sighted exploration strategy for EnvExp,
hierarchical mapping for EnvRep, and LLM-based spatial reasoning for EnvNav.
ensure comparability, we provide standardized trajectories generated by our 3D-LangNav baseline
as well as ground-truth point clouds for evaluation. Unlike reconstruction-focused tasks, EnvRep
emphasizes the utility of representations for navigation rather than visual fidelity. Therefore, in-
stead of evaluating with traditional downstream tasks such as semantic segmentation, we design an
auxiliary evaluation aligned with ERNav instructions. Specifically, we parse landmarks from the
instructions and query the built representation R to retrieve candidate positions for each landmark.
We then measure performance using ranking-based metrics: Recall@k, which measures the frac-
tion of cases where the ground-truth landmark is ranked within the top k; MR (mean rank), which
computes the average position of the ground-truth in the ranking; and MRR (mean reciprocal rank),
which evaluates the average reciprocal rank across cases. An effective representation achieves high
Recall@k and MRR while maintaining low MR, thereby ensuring that navigation instructions can
be accurately grounded to 3D coordinates.

3.3.3 ENVNAV

In EnvNav, the agent is given a starting position (x0, y0, z0) and a natural language instruction
W describing the target or its surrounding context. We adopt object-centric instructions from
REVERIE (Qi et al., 2020), which reflect realistic navigation goals, and leave the inclusion of other
tasks like R2R (Anderson et al., 2018) and SOON (Zhu et al., 2021) for future work. The agent
must predict the destination coordinates using the instruction W and the representation R built in
EnvRep, without any further interaction with the environment. Unlike retrieval or grounding tasks
such as ScanRefer (Chen et al., 2020) that require exact object localization, EnvNav only demands
identifying the vicinity of the target. This design follows the VLN convention, where fine-grained
localization and manipulation can be deferred to 2D image-based methods, which are more robust to
real-world dynamics (e.g., objects being moved slightly after exploration). For evaluation, we adopt
two standard VLN metrics: (1) Success Rate (SR): the proportion of predictions that fall within
3m of the ground-truth destination. (2) Navigation Error (NE): the Euclidean distance between the
predicted location and the target.

4 3D-LANGNAV

We now describe 3D-LangNav, a strong baseline that adopts a divide-and-conquer strategy for ER-
Nav, as shown in Fig. 2.

4.1 METHOD OVERVIEW

We formulate instruction-following navigation as a scene-graph matching problem, where the in-
struction is represented as a subgraph and the environment as a graph of landmarks and spatial
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relations. Landmarks may correspond to objects (e.g., a table) or regions (e.g., a bedroom), while
edges encode spatial relations such as adjacency or containment. A key challenge is that region-level
landmarks are inherently ambiguous, since rooms often lack clear boundaries. Prior work, such as
HOV-SG (Werby et al., 2024), relies on rule-based segmentation, but this approach introduces brittle
assumptions, tightly couples performance to segmentation quality, and ignores linguistic subjectiv-
ity. For example, a kitchen and living room without a dividing wall may be perceived as a single
region or two distinct ones. Thus, instead of requiring exact room inference, we aim to construct rep-
resentations that allow robust grounding of both object- and region-level landmarks, while keeping
the subsequent matching process computationally efficient.

4.2 DUAL-SIGHTED EXPLORATION

Standard exploration methods prioritize coverage but often fail to balance detailed local views and
global contextual observations, producing reconstructions that are both sparse and noisy. Conse-
quently, existing 3D scene understanding approaches frequently rely on human-collected trajecto-
ries, which are costly and biased (see Appendix for visualizations of exploration trajectories).

We propose a training-free dual-sighted exploration strategy that can be seamlessly integrated into
existing exploration methods. The agent is equipped with two complementary “eyes”. The first
is a near-sighted eye with perception limited to dnear meters for dense local observations, and the
other is a far-sighted eye, which is restricted to beyond dfar for capturing global spatial relations.
During exploration, the agent maintains two frontier sets (pnear, pfar) and updates two coverage maps
in parallel. By default, the agent prioritizes pnear except when (i) no near frontiers remain, or (ii) pfar
lies in a region already covered locally but not from a distance. This allows near-sighted exploration
to ensure dense local coverage, while far-sighted exploration complements it with contextual cues.
Note that although perception is separated, all recorded observations still retain the maximum depth
dmax. The strategy produces one-pass trajectories that ensure dense local coverage while preserving
global context, reducing redundancy, and supporting high-quality 3D reconstruction.

4.3 3D REPRESENTATION CONSTRUCTION

We then build a hierarchical representation of the environment. For objects, we follow HOV-
SG (Werby et al., 2024) to first use a class-agnostic segmentation model (Kirillov et al., 2023)
to segment each frame and extract its CLIP embedding. These segments are then projected into 3D,
merged across frames, and denoised with DBSCAN (Ester et al., 1996) to construct the object map.
For regions, we argue that exact room inference is unnecessary for navigation. Instead, the agent
only needs to verify whether a sub-region belongs to the described room type. To this end, we create
a region map using the Voronoi algorithm applied to the viewpoints bypassed during exploration.
These points cover the entire environment while maintaining sufficient spacing, such that each point
effectively represents a spatially coherent area. Each node is assigned the mean CLIP features aggre-
gated from nearby RGB observations. This design avoids brittle rule-based segmentation, mitigates
ambiguity, and ensures full spatial coverage.

4.4 BI-LEVEL SCENE-GRAPH MATCHING

We reduce ERNav to finding the best-matching subgraph between the instruction graph and the en-
vironment graph. Previous global matching approaches suffer from combinatorial complexity, while
attention-based methods such as LSceneLLM (Zhi et al., 2025) require bi-level optimization. In con-
trast, 3D-LangNav adopts a node-first, edge-verification strategy: candidate landmarks are matched
first, and spatial relations are verified afterwards. This substantially reduces search complexity while
maintaining robust alignment (see Appendix for analysis).

We first perform hierarchical queries utilizing the 3D representations constructed. For object- and
region-level landmarks, we compute similarity scores between text and visual embeddings and then
apply both thresholding α and top-k selection to filter candidates for both easy queries like “ta-
ble” and hard ones like “leopard decoration”. For higher-level queries such as “the first floor”, we
defer reasoning to the spatial reasoning module as it requires no visual information. Given can-
didate landmarks, we then resolve their spatial relations according to the instructions. Existing
methods either (i) verify relations pairwise with MLLMs on 2D images, or (ii) encode all possible
relations into large scene graphs. Both approaches are inefficient and not suitable for long-range
reasoning. We instead leverage the reasoning capability of LLMs to perform spatial grounding in a
single step. Specifically, we perform parameter-efficient finetuning (PEFT) on a powerful LLM,
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Table 1: Exploration and reconstruction metrics of different methods in EnvExp.

Methods Exploration Reconstruction
Coverage%↑ M(3)%↑ ObjCov%↑ F1%↑ Precision%↑ Recall%↑ Chamfer-L1 (m)↓

FBE 93.9 33.1 27.2 45.4 69.8 33.7 0.507
ANS 91.5 35.8 29.0 47.7 70.3 36.1 0.428
PONI 88.0 33.6 27.0 39.6 67.8 27.9 0.589
LFE 92.2 34.7 27.9 43.7 69.2 31.9 0.516
Human 96.2 31.1 23.2 45.7 70.4 33.6 0.569

ANS+DSS 99.4 60.7 41.0 52.9 71.2 42.4 0.343

Table 2: Comparison of different 3D representation-based methods in EnvRep.

Methods Seg. Object-level Region-level
R@1%↑ R@10%↑ R@20%↑ MR↓ MRR%↑ R@1%↑ R@10%↑ R@20%↑ MR↓ MRR%↑

OpenScenes-2D Pred. 23.4 61.4 77.0 18.6 35.8 23.3 49.8 63.8 35.0 32.4
GT 26.2 74.4 90.0 8.6 41.2 18.5 67.6 88.9 11.8 34.7

OpenScenes-3D Pred. 10.4 37.0 52.2 50.9 18.8 10.8 35.5 50.2 53.6 19.6
GT 9.5 48.8 69.1 21.4 21.6 14.3 54.0 65.9 19.0 25.2

OpenScenes-Ens Pred. 10.4 44.5 57.9 32.1 21.5 9.1 49.1 63.4 23.6 20.6
GT 13.6 56.8 74.5 18.2 26.6 9.4 57.1 79.1 13.0 26.2

ConceptGraphs Pred. 18.5 59.4 73.3 27.5 31.2 18.1 71.4 87.5 14.6 32.9
HOV-SG Pred. 17.5 69.9 84.2 12.1 34.5 12.2 68.9 75.0 21.5 32.5

3D-LangNav Pred. 17.5 69.9 84.2 12.1 34.5 35.2 78.7 88.9 8.0 50.3

Qwen2.5-72B (Team, 2024). Training data are generated from ground-truth segmentations and
OpenScene (Peng et al., 2023) features from the train split of REVERIE. Prompts are designed
to include five parts: the instruction, starting coordinates, candidate landmarks, the target, and nav-
igable points for floor/structural reasoning. To enhance robustness, we augment data by perturbing
coordinates and varying candidate set sizes. The fine-tuned LLM directly predicts the final target
coordinates, avoiding multi-stage optimization and enabling efficient, robust spatial reasoning.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baseline Methods. For EnvExp, we evaluate representative exploration methods, including
FBE (Yamauchi, 1997), ANS (Chaplot et al., 2020a), PONI (Ramakrishnan et al., 2022), and
LFE (Li et al., 2023). We also include human demonstrations, partly from VLMaps (Huang et al.,
2023) and partly manually collected. For EnvRep, we benchmark methods capable of construct-
ing 3D representations from RGB-D observations or point clouds. These include three variants of
OpenScenes (Peng et al., 2023), ConceptGraphs (Gu et al., 2024), and HOV-SG (Werby et al., 2024).
For EnvNav, we consider three categories of methods: (i) VLN models, (ii) representation-based
methods, and (iii) 3D-MLLMs. Details of these baselines are provided in the Appendix.

Implementation Details. In EnvExp, each method is run from three different starting positions,
and the trajectory with the largest coverage is retained. We set dnear = 1m and dfar = 3m for the 3D-
LangNav exploration. The instructions and environments are from the val unseen split of REVERIE.
For region-level landmarks, we additionally include data from the train split for EnvRep evaluation.
For 3D-MLLMs, we adapt their preprocessing strategies to Matterport3D for fair comparison. For
3D-LangNav, candidate proposals are generated with α = 0.25 and k = 25. LoRA finetuning uses
rank r = 8 across all layers, learning rate 1×10−4, and is implemented with Llama-Factory (Zheng
et al., 2024) on 16 NVIDIA H100 GPUs.

5.2 MAIN RESULTS

5.2.1 ENVEXP

Tab. 1 reports the results of our Dual-Sighted exploration Strategy (DSS) against baselines, eval-
uated on both exploration and reconstruction metrics. For exploration metrics, DSS significantly
improves both traditional coverage and the proposed M(3) and ObjCov, demonstrating its ability
to produce more diverse and efficient object observations. For reconstruction metrics, DSS con-
sistently outperforms baselines across F1, precision, recall, and Chamfer-L1 distance, confirming
that our metrics reliably correlate with downstream reconstruction quality. Together, these findings
highlight two conclusions: (1) DSS enables more effective exploration than prior methods, and (2)
The proposed metrics capture exploration quality beyond simple coverage.
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5.2.2 ENVREP

We evaluate the grounding performance of different 3D representations using ERNav instructions.
To evaluate with different types of queries, we classify landmarks into object-level and region-level
categories using GPT-4 (Achiam et al., 2023) and report their results separately in Tab. 2. Since
OpenScenes only provides point-wise features without object segmentation, we evaluate it under
two conditions: (1) using ground-truth segmentation, and (2) using DBSCAN-based segmentation
to cluster points into objects, as in prior work (Huang et al., 2025).

The results reveal two key findings. First, better segmentation improves object-level grounding,
but has little effect on region-level ones. This is intuitive as object features are computed by aver-
aging point cloud features, making a more accurate segmentation produces better-aligned and less
noisy features. In contrast, many region-level landmarks (e.g., “hallway”) cannot be inferred from
the presence of individual objects, since such objects are often common to multiple regions. As a
result, segmentation accuracy does not translate directly into improved region-level grounding. Sec-
ond, despite sharing the same object-level pipeline as HOV-SG, 3D-LangNav achieves substantially
higher region-level performance. This improvement benefits from our design of using navigable
nodes and a hierarchical query strategy, which aggregates contextual features without relying on
brittle room segmentation. These results highlight the importance of robust region-level reasoning
and demonstrate that 3D-LangNav better bridges language with 3D scene representations.

5.2.3 ENVNAV Table 3: Comparison of three types of methods in
EnvNav. Each category highlights subtask cover-
age. 3D-LangNav is the only method that covers all
three subtasks, enabling an end-to-end solution.

Methods NE↓ SR↑
VLN methods

Exp:✗ Rep:✗ Nav:✓

VLNBERT (Hong et al., 2021) 5.74 44
CM2 (Georgakis et al., 2022) 7.02 34
DUET (Chen et al., 2022) 5.14 37
GridMM (Wang et al., 2023) 4.21 49
InstructNav (Long et al., 2024) 6.89 31
NaVid (Zhang et al., 2024b) 5.47 37
Uni-NaVid (Zhang et al., 2024a) 5.58 47
RAM (Wei et al., 2025) 4.95 44
COSMO (Zhang et al., 2025) - 47
Dynam3D (Wang et al., 2025) 5.34 53

Representation-Based Methods
Exp:✗ Rep:✓ Nav:✓

OpenScenes-2D (Peng et al., 2023) 8.80 23
OpenScenes-3D (Peng et al., 2023) 9.71 10
OpenScenes-Ens (Peng et al., 2023) 9.04 14
ConceptGraphs (Gu et al., 2024) 10.01 17
HOV-SG (Map) (Werby et al., 2024) 10.59 15
HOV-SG (Nav) (Werby et al., 2024) 9.54 27

3D-MLLMs
Exp:✗ Rep:✓ Nav:✓

ChatScene (Huang et al., 2024) 8.31 15
Reason3D (Huang et al., 2025) 10.55 8
LSceneLLM (Zhi et al., 2025) 11.03 5
3D-LLaVA (Deng et al., 2025) 8.96 13
LLaVA-3D (Zhu et al., 2025) 7.80 18

3D-LangNav (Exp:✓ Rep:✓ Nav:✓) 5.15 50

We evaluate three categories of methods on
EnvNav, with results in Tab. 3. Strictly speak-
ing, existing VLN methods are not directly
comparable, as they omit exploration and rep-
resentation and instead explore interactively
during inference. Nevertheless, we include
them for comparison since they share the
same ultimate goal of localizing a destination
from natural language instructions.

A key distinction revealed in Tab. 3 is the sub-
task coverage. VLN methods address only
navigation, while representation-based meth-
ods and 3D-MLLMs incorporate instruction
reasoning over 3D representations but bypass
exploration. 3D-LangNav is the only ap-
proach covering all three subtasks, enabling
a fully end-to-end solution. This makes the
setting more realistic but also more challeng-
ing, as errors and noise from exploration and
representation propagate into navigation. De-
spite this, 3D-LangNav achieves results on
par with the strongest VLN methods (e.g.,
Dynam3D) and substantially outperforms all
representation-based and 3D-MLLM base-
lines, while requiring only one-shot inference
without environment interaction.

Representation-based methods perform close
to their R@1 scores in Tab. 2, reflecting their
grounding-oriented design and limited abil-
ity to interpret complex navigation instruc-
tions. HOV-SG improves performance by hi-
erarchically parsing instructions into floors,
rooms, and objects, but assumes single-entity
references and perfect room segmentation.
By removing these constraints, 3D-LangNav
nearly doubles the SR of HOV-SG.
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Another important finding is that current 3D-MLLMs perform poorly on EnvNav, with SR con-
sistently below 20%. We attribute this to two factors. First, EnvNav involves significantly larger
point clouds and more complex instructions, exceeding the capacity of models trained on room-
level scenes with localized references. Second, most 3D-MLLMs are trained with QA-style super-
vision, which brings strong semantic understanding but weak coordinate prediction. For example,
ChatScene (Huang et al., 2024) relies only on implicit local spatial relations from DINOv2 (Oquab
et al., 2023) features without explicit relational encoding. While effective on ScanRefer, this de-
sign fails on EnvNav, which requires long-range reasoning and explicit coordinate awareness. 3D-
LangNav addresses these challenges by combining structured representation with LLM-based rea-
soning, reformulating open-ended coordinate prediction as a multi-choice problem. Although im-
plemented as a two-stage baseline, it is the first to span exploration, representation, and navigation,
demonstrating the feasibility of an end-to-end embodied solution.

5.3 ABLATION STUDY

Table 4: Comparison of 3D-LangNav with differ-
ent LLMs in EnvNav.

LLM Train NE↓ SR↑

Llama3.1-8B × 6.35 32
✓ 6.09 35

Qwen2.5-7B × 6.16 35
✓ 6.02 37

Qwen2.5-72B × 5.69 42
✓ 5.15 50

Different LLMs. Table 4 compares 3D-
LangNav in EnvNav using different LLM back-
bones. For Llama3.1-8B (Dubey et al., 2024)
and Qwen2.5-7B (Team, 2024), we apply full
finetuning, as this generally yields stronger per-
formance. For Qwen2.5-72B, we adopt LoRA
finetuning due to the prohibitive cost of full
finetuning. The results show that model ca-
pacity is the dominant factor in performance,
as the base Qwen2.5-72B significantly outper-
forms fully finetuned 7B and 8B models in both
metrics. The 72B model also shows the greatest potential for improvement, achieving the largest SR
gain (+8%) even with LoRA. These findings suggest that advances in LLMs will further enhance
the performance of 3D-LangNav.

Table 5: Ablation of augmentation strategies for
3D-LangNav in EnvNav.

# Augmentation NE↓ SR↑
0 Base (no aug.) 5.33 47.8
1 w/o navigable nodes 5.50 45.8
2 Candidate shuffle (CS) 5.25 48.5
3 Candidate varying (CV) 5.28 48.7
4 Position bias (PB) 5.22 49.4

Ours All (CS+CV+PB) 5.15 49.9

Impact of Data Augmentation. We also
study the effect of different augmentation
strategies during LLM finetuning, summarized
in Tab. 5. Three augmentations are consid-
ered: (1) Candidate Shuffle (CS), randomly
shuffling landmark orders and identifiers; (2)
Candidate Varying (CV), altering α and k to
vary the size of candidate sets; (3) Position Bias
(PB), adding random offsets to candidate co-
ordinates. Additionally, we evaluate a variant
that removes the navigable node information
in #1. Each augmentation brings measurable
gains. The navigable nodes prove particularly important, as they provide structural and level infor-
mation critical for grounding instructions. CS improves robustness to variable candidate sets and
mitigates dataset-specific biases. CV exposes the model to a broader range of candidate distribu-
tions, while PB enforces reasoning over relative spatial relations rather than memorizing absolute
coordinates. Finally, combining all augmentations achieves the best performance.

6 CONCLUSION

In this paper, we present ERNav, a novel benchmark for building-level scene understanding in em-
bodied navigation. By interpreting VLN from a scene understanding perspective, ERNav introduces
three complementary subtasks—environment exploration, map construction, and scene comprehen-
sion—that together establish a realistic, end-to-end evaluation pipeline for real-world navigation.
To accompany this benchmark, we proposed 3D-LangNav, a strong baseline that combines a dual-
sighted exploration strategy with a two-stage reasoning framework: generating landmark candi-
dates followed by LLM-based spatial reasoning. Through extensive experiments across all sub-
tasks, we show that ERNav enables systematic evaluation of embodied navigation methods, while
3D-LangNav consistently outperforms strong baselines and highlights the importance of unified
solutions. We hope this work will inspire further research into more generalizable and scalable
approaches for embodied navigation in complex 3D environments.
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A APPENDIX

This document provides additional method details, supplementary experiments, and further analysis
to complement the main paper, including:

• Appendix A.1: detailed descriptions of the baseline methods.
• Appendix A.2: more experimental results.
• Appendix A.3: complexitity analysis of our 3D-LangNav.
• Appendix A.4: discussions the real-world applications of applying ERNav.
• Appendix A.5: visualizations of exploration trajectories from different methods.
• Appendix A.6: prompt templates used in 3D-LangNav.
• Appendix A.7: the use of LLMs in this work.
• Appendix A.8: discussions on the limitations and future directions of this work.

A.1 BASELINE METHODS

In this section, we provide detailed descriptions of the baseline methods used in our experiments.

A.1.1 ENVEXP BASELINES

Frontier-based Exploration (FBE) (Yamauchi, 1997) is a classic heuristic strategy that guides
the agent toward the closest unexplored frontier at each step. Without relying on learning, it greedily
expands coverage by incrementally pushing the boundary of known space. This simple rule-based
approach serves as a strong traditional baseline for evaluating exploration methods.

Active Neural SLAM (ANS) (Chaplot et al., 2020a) combines deep reinforcement learning with
classical frontier-based planning. A global policy, trained to maximize coverage, proposes long-term
goals from the agent’s occupancy map and visitation history, while the nearest frontier to that goal
is chosen for navigation to improve robustness. This hybrid design allows the method to leverage
learned strategies while retaining stability from rule-based exploration.

PONI (Ramakrishnan et al., 2022) builds on frontier-based exploration by ranking frontiers ac-
cording to their spatial and semantic potential. In this simplified variant, only the learned area
estimation from the UNet is used, and the agent consistently selects the frontier with the largest
predicted coverage. This results in a purely greedy but informed exploration strategy.

Learning-Augmented Model-Based Frontier-Based Exploration (LFE) (Li et al., 2023) tack-
les exploration under strict time limits by combining learning with model-based planning. It predicts
both the unexplored area behind each frontier and the steps needed to reach it, allowing the planner to
balance efficiency and completeness. By integrating semantic cues and structured decision-making,
it improves over purely greedy or RL-based strategies in coverage.

A.1.2 ENVREP BASELINES

OpenScenes (Peng et al., 2023) introduces a zero-shot framework for open-vocabulary 3D scene
understanding by aligning 3D points with both text and image features in the CLIP space. It extracts
three types of features: a 2D branch, where multi-view pixel features are fused after back-projecting
points into posed images; a 3D branch, where sparse convolutions capture geometric structure di-
rectly from the point cloud; and an ensemble branch, which combines the two for richer, more robust
representations. This hybrid design allows OpenScenes to ground natural language queries in 3D
scenes with greater accuracy and flexibility than either 2D or 3D features alone.

ConceptGraphs (Gu et al., 2024) proposes a graph-structured representation of 3D scenes that
moves beyond dense per-point features. By leveraging 2D foundation models and fusing their out-
puts into 3D through multi-view association, it builds compact graphs where nodes capture semantic
entities and edges encode their spatial relationships. This design not only supports open-vocabulary
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generalization to novel classes but also enables downstream planning tasks that demand higher-level
reasoning over both spatial and semantic concepts.

HOV-SG (Werby et al., 2024) introduces a hierarchical open-vocabulary scene graph for 3D map-
ping and navigation. Instead of relying on dense per-point features, it organizes environments into
a multi-level structure of floors, rooms, and objects, each enriched with language-aligned represen-
tations from vision foundation models. This hierarchy makes large and complex spaces more man-
ageable, enabling efficient cross-floor navigation and stronger performance in language-conditioned
tasks while keeping the representation compact.

A.1.3 ENVNAV BASELINES: VLN

VLNBERT (Hong et al., 2021) adapts the transformer architecture to the navigation setting by
introducing a recurrent mechanism that preserves cross-modal state over time. This design allows
the model to handle partially observable environments while aligning language instructions with
visual inputs. It simplifies the navigation pipeline, achieving strong results without the need for
more complex encoder–decoder structures.

CM2 (Georgakis et al., 2022) takes a different angle on VLN by grounding language directly
into spatial maps rather than relying solely on sequence models or raw attention over observations.
It learns to infer semantic top-down maps, even for unseen areas, and then plans navigation paths
as waypoints guided by language. This explicit map-based reasoning leads to more structured and
interpretable navigation compared to purely end-to-end approaches.

DUET (Chen et al., 2022) introduces a dual-scale graph transformer that balances local ground-
ing with global planning in VLN. It constructs a topological map during navigation for efficient
long-term reasoning, while also attending to fine-grained visual–language alignment through local
observations. By combining these two levels of representation, DUET achieves strong performance
across both coarse and fine-grained navigation tasks.

GridMM (Wang et al., 2023) tackles VLN by introducing a grid-based memory map that grows
dynamically as the agent explores. It projects past observations into a unified top-down grid to
capture spatial structure, while also aggregating instruction-relevant details within each grid cell.
This combination of global spatial reasoning and local language grounding leads to strong navigation
performance across multiple benchmarks.

InstructNav (Long et al., 2024) is designed as a general-purpose system for handling diverse
navigation instructions without relying on task-specific training or pre-built maps. It introduces
a Dynamic Chain-of-Navigation (DCoN) to unify planning across different instruction types and
leverages Multi-sourced Value Maps to translate language into executable trajectories. This flexible
design enables strong zero-shot performance across multiple navigation tasks, including real-world
robot experiments.

NaVid (Zhang et al., 2024b) introduces a video-based large vision-language model that performs
navigation directly from RGB streams, without relying on maps, odometry, or depth inputs. By
treating navigation as spatio-temporal reasoning over continuous video and language instructions, it
mimics how humans navigate and avoids common Sim2Real issues. This design enables NaVid to
achieve strong performance in both simulated and real-world environments, highlighting the poten-
tial of VLMs for robust instruction-following navigation.

Uni-NaVid (Zhang et al., 2024a) extends the idea of video-based navigation to a broader scope,
aiming to unify diverse embodied tasks such as instruction following, object search, and human
tracking within a single model. By standardizing inputs and outputs across tasks, it enables a gen-
eralist agent that can seamlessly handle mixed long-horizon navigation demands in unseen environ-
ments. Trained on millions of samples from multiple subtasks, Uni-NaVid demonstrates both strong
benchmark performance and practical effectiveness in real-world trials.
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RAM (Wei et al., 2025) tackles the persistent problem of data scarcity in VLN by generating
fresh observation–instruction pairs through rewriting rather than collecting new simulator or web
data. It enriches observations with diverse objects and layouts using VLM–LLM rewriting plus
text-to-image synthesis, and then produces aligned instructions by reasoning over the differences
from the originals. Combined with a tailored training strategy, this approach diversifies the data
distribution while keeping noise in check, leading to stronger generalization across both discrete
and continuous VLN benchmarks.

COSMO (Zhang et al., 2025) aims to strike a balance between performance and efficiency in
VLN, addressing the rising complexity of transformer-based methods that often depend on exter-
nal knowledge or maps. It combines state-space and transformer modules, introducing two tailored
components: RSS for stronger inter-modal interactions and CS3 for dual-stream cross-modal rea-
soning. This design achieves competitive results across multiple VLN benchmarks while notably
lowering computational overhead.

Dynam3D (Wang et al., 2025) tackles the key shortcomings of applying Video-VLMs to real-
world navigation, such as weak 3D reasoning, limited long-term memory, and poor adaptability to
dynamic settings. It projects CLIP features into 3D space and builds hierarchical patch-, instance-,
and zone-level representations that update online, enabling both geometric understanding and ro-
bust memory across changing environments. With large-scale 3D-language pretraining, Dynam3D
achieves state-of-the-art results on multiple VLN benchmarks and shows strong potential for real-
world deployment.

A.1.4 ENVNAV BASELINES: 3D-MLLMS

ChatScene (Huang et al., 2024) reformulates 3D scene understanding by shifting focus from
global scene embeddings to object-centric representations. It breaks scenes into object proposals
with unique identifiers, allowing precise grounding and flexible interaction across tasks. This de-
sign unifies diverse 3D scene-language problems under a QA framework, yielding strong gains on
multiple benchmarks with minimal fine-tuning.

Reason3D (Huang et al., 2025) extends multimodal LLMs into richer 3D scene understanding
by coupling language reasoning with dense visual outputs. Instead of stopping at text or numbers,
it links point clouds and prompts to generate both responses and segmentation masks, supporting
tasks like reasoning-driven segmentation, referring, and QA. A hierarchical mask decoder refines
object predictions from coarse to fine, enabling more accurate comprehension of large, complex 3D
scenes.

LSceneLLM (Zhi et al., 2025) tackles the challenge of extracting task-relevant details from dense
3D scenes by adaptively focusing on the most important regions. It uses an LLM-guided token
selector to identify where to look, then applies a scene magnifier module to refine fine-grained
details, combining them with global context for richer understanding. Alongside this framework, the
authors introduce XR-Scene, a benchmark for cross-room scene understanding, where LSceneLLM
achieves clear improvements over existing 3D-VLMs.

3D-LLaVA (Deng et al., 2025) is designed as a lightweight yet powerful assistant for 3D scene un-
derstanding and interaction. Instead of relying on multi-stage pipelines, it directly operates on point
clouds through its Omni Superpoint Transformer, which unifies feature selection, visual prompt en-
coding, and mask generation. With hybrid pretraining and unified instruction tuning, 3D-LLaVA
achieves strong results across multiple benchmarks while keeping the architecture simple and ver-
satile.

LLaVA-3D (Zhu et al., 2025) extends the strong 2D priors of LLaVA into 3D scene understanding
through a streamlined framework. By enriching 2D CLIP patches with 3D position embeddings, it
forms 3D-aware patches that support accurate spatial outputs such as 3D bounding boxes. Joint
2D–3D instruction tuning enables a unified model that trains more efficiently than prior 3D LMMs,
achieves state-of-the-art results on 3D tasks, and preserves robust 2D vision-language capabilities.
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A.2 MORE EXPERIMENTS

We report additional results of different methods on EnvExp under varying thresholds θ in ObjCov,
as shown in Tab. 6. We also provide statistics on steps, the efficiency term E, and a brute-force
baseline that exhaustively visits all possible positions.

The results show that our dual-sighted exploration strategy introduces extra steps due to observing
objects from multiple viewpoints, but this overhead is modest and acceptable, especially compared
with the brute-force baseline. Moreover, even with dfar = 3m fixed, DSS consistently outperforms
other baselines across different θ, demonstrating robustness to objects and scenes of varying sizes.

Table 6: Exploration metrics of different methods in EnvExp.

Methods Steps Coverage%↑ M(3)%↑ M(5)%↑ M(10)%↑ E%↑ ObjCov%↑
FBE 638 93.9 33.1 29.8 24.3 82.1 27.2
ANS 727 91.5 35.8 31.5 26.2 80.9 29.0
PONI 767 88.0 33.6 31.1 26.0 80.4 27.0
LFE 761 92.2 34.7 31.6 26.2 80.5 27.9
Human 1,279 96.2 31.1 26.1 20.3 74.7 23.2
Brute-force 19,935 100.0 100.0 100.0 100.0 0.0 0.0

ANS+DSS 2,104 99.4 60.7 54.7 47.0 67.5 41.0

A.3 COMPLEXITY ANALYSIS OF 3D-LANGNAV.

We provide the complexity analysis to prove the advantage of our node-first, edge-verification strat-
egy in 3D-LangNav. Let n = |V| be the node count in the scene graph G, and m the number of
landmarks mentioned in the instruction graph Ginst. Naive global matching approach is equivalent
to the problem of subgraph isomorphism, which in the worst case requires checking all

(
n
m

)
· m!

possible mappings, resulting in exponential complexity O(nm ·m!), making it infeasible for large-
scale environments in ERNav. Our divide-and-conquer strategy decomposes the matching into two
stages. Each landmark is independently matched to a set of k candidate nodes using vision-language
similarity queries in the 3D language field, reducing the search space from nm combinations to
km. Verifying spatial relationships for each candidate set requires O(m2) pairwise checks, giving
O(km ·m2). Since k ≪ n in practice, the total complexity becomes O(m · n · cq + km ·m2 · cv),
representing an exponential reduction in the search space compared to direct subgraph matching.

A.4 REAL-WORLD APPLICATIONS

Once the target coordinates are predicted by ERNav, different strategies can be employed to guide
the agent to the destination. We outline several complementary approaches below: (1) Classical
path planning. Since exploration provides an occupancy map, the agent can directly plan a path
from the start position to the target using standard shortest-path algorithms such as A* or Dijkstra.
This approach leverages the geometric structure of the explored environment and produces efficient
paths when the map is sufficiently complete. (2) Graph-based navigation. To maintain consistency
with the discrete VLN setting, we can build a navigation graph over all navigable locations observed
during exploration. The agent then traverses between viewpoints along graph edges, using the off-
the-shelf point-goal navigation controller DD-PPO (Wijmans et al., 2019) to execute local motions
between consecutive nodes. (3) Trajectory replay. Exploration inherently yields a complete walk-
ing trajectory around the building, staying within 1 meter of the navigation boundary. Therefore, a
simple but effective strategy is to first move the agent to the closest point on this trajectory, and then
follow it until reaching the location closest to the predicted target. This avoids redundant planning
and guarantees connectivity to most navigable regions. (4) Cross-level and failure recovery. For
vertical transitions (e.g., stairs, elevators), the agent reuses the paths observed during exploration,
ensuring reliable cross-level navigation. In cases where the agent becomes stuck near obstacles, we
employ a lightweight heuristic: the agent rotates in place and attempts to move forward, after which
control is handed back to DD-PPO for local correction. Together, these strategies provide a flexible
toolkit for integrating ERNav with both classical and learned navigation pipelines, enabling robust
execution across different environment configurations.
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LFE

ANS

Human

PONIFBE

ANS + DSS (Ours)

Figure 3: Visualization of exploration trajectories generated by different methods.

A.5 EXPLORATION TRAJECTORY VISUALIZATIONS

We further visualize the exploration trajectories generated by different methods in Fig. 3. With the
integration of our DSS, the agent captures both close-up views of objects for detailed information
and distant views for relational context, thereby achieving the highest map coverage as well as the
highest ObjCov.

A.6 PROMPT TEMPLATE FOR 3D-LANGNAV

In this section, we provide the prompt templates used in our 3D-LangNav, with the system prompt
shown in Fig. 4 and the user prompt in Fig. 5.

A.7 LLM USAGE STATEMENT

LLMs were used in this work only as a writing-assist tool. Their role was limited to checking
grammar, polishing language, and verifying formatting consistency. They were not used for research
ideation, content generation, data analysis, or development of results. All ideas, methodologies, and
conclusions presented in this paper were conceived and written by the authors. The authors take full
responsibility for the contents of the manuscript.

A.8 DISCUSSION

Limitations. Although 3D-LangNav achieves competitive performance, several limitations re-
main. First, the current framework cannot handle dynamic environments, where objects or layouts
may change after exploration, which can cause failures in target localization. Second, the repre-
sentation construction process is not real-time, limiting applicability to time-sensitive robotic tasks.
Moreover, deploying a 72B model on real robots is impractical under current hardware constraints.
Finally, because the method relies on candidate selection for prediction, it may still miss valid targets
in cluttered or ambiguous scenes, resulting in performance degradation.

Future Work. In future work, we aim to address these limitations in several directions. We plan
to leverage more advanced LLMs with full finetuning to further enhance instruction grounding and
coordinate prediction. We will also expand the set of baselines for ERNav by incorporating NeRF-
and 3DGS-based scene representations as well as video-based navigation methods, providing a more
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You are an advanced 3D environment understanding assistant. Your main objective is to interpret a language-based instruction describing 

an indoor environment and identify which candidate landmark best matches the specified target.

The inputs are presented in the following formats:

1. Instruction: A natural language description involving spatial relationships (e.g., relative positions, distances) among landmarks.

2. Candidates: A list of candidates for all landmarks mentioned in the instruction. Each landmark belongs to one of the following types:

• Floor: No explicit candidate data is provided. The positions belonging to this floor must be inferred from the connectivity map. 

(Note: floor index starts from 1.)

• Room: The candidates are a list of nodes in the connectivity map.

• Object: Includes the object’s unique identifier and the 3D coordinates of its center.

3. Target: The specific landmark name within the instruction that must be located among the given candidates.

4. Navigable Nodes: A representation of the environment layout, including a list of key positions.

5. Start Position: The agent’s initial 3D location, which may be referenced in the instruction.

Coordinate System
All 3D positions (x, y, z) follow the convention:

• x-axis: Left to right, increasing to the right.

• y-axis: Floor to ceiling, increasing upward.

• z-axis: Front to back, increasing forward.

Your Task
Analyze the provided information to decide which candidate is the correct match for the target. Consider all clues from the natural 

language description, especially spatial relationships, and compare them with the bounding boxes and 3D positions of the candidates.

Output Format
You must identify a single candidate as the correct match in the following format:

 “The correct candidate is <Candidate_ID>.”

System Prompt for 3D-LangNav

Figure 4: System Prompt for spatial reasoning in 3D-LangNav.

1. Instruction: {instruction}

2. Candidates:

• Landmark 0: {landmark_name} ({landmark_type})

• Candidate 0: {pos: {candidate_position},  bounding box: {candidate_bounding_box}}

• Candidate 1: {pos: {candidate_position},  bounding box: {candidate_bounding_box}}

…

• Landmark 1: {landmark_name} ({landmark_type})

…

3. Target:{target_name}

4. Navigable Nodes: 

• Node 0: {node position}

• Node 1: {node position}

…

5. Start Position: {start_pos}

User Prompt for 3D-LangNav

Figure 5: User prompt template for spatial reasoning in 3D-LangNav.

comprehensive evaluation. Moreover, we intend to fine-tune a multimodal LLM under our current
candidate-filtering framework, improving its ability to identify and retain true target objects more
reliably.
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