ONLINE-OPTIMIZED RAG FOR TOOL USE AND FUNCTION CALLING

Anonymous authors
Paper under double-blind review

000

001

002003004

010 011

012

013

014

016

017

018

019

021

025

026027028

029

031

032

033

034

035

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

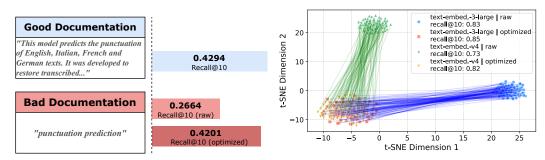
In many applications, retrieval-augmented generation (RAG) drives tool use and function calling by embedding the (user) queries and matching them to prespecified tool/function descriptions. In this paper, we address an embedding misalignment issue that often arises in practical applications due to imperfect embedding models or noisy descriptions; such misalignment may lead to incorrect retrieval and task failure. We introduce Online-Optimized RAG, a deploymenttime framework that continually adapts retrieval embeddings from live interactions using minimal feedback (e.g., task success). Online-Optimized RAG applies lightweight online gradient updates with negligible per-query latency and requires no changes to the underlying LLM. The method is plug-and-play: it supports both single- and multi-hop tool use, dynamic tool inventories, and K-retrieval with re-ranking. We provide a problem-dependent theoretical analysis that quantifies how the method's performance depends on the initialization quality of the embeddings and other related quantities. Across diverse tool-use and document-retrieval scenarios, our Online-Optimized RAG consistently improves tool selection accuracy and end-task success, thus providing a simple, practical path to robust, self-improving RAG systems.

1 Introduction

Modern large language models (LLMs) increasingly rely on retrieval-augmented generation (RAG) (Lewis et al., 2020) to ground responses in external data. In tool-use settings, an agent encodes the user task, retrieves a tool or function (e.g., an API), and executes it: a query is embedded into a vector space and matched against a catalog of tool descriptions that are likewise embedded; the retriever proposes candidates by similarity (often top-k), and an executor (a function-calling API or tool wrapper) carries out the selected call (Patil et al., 2024; Qin et al., 2023; Lumer et al., 2024).

However, when the system cannot incorporate domain feedback, RAG can still yield incorrect calls and answers. Retrieval quality degrades whenever the (trained) embedding geometry drifts from the operational environment. For example, such misalignments can arise from (i) noisy or incomplete tool documentation, (ii) outdated or suboptimal embedding models, (iii) shifts in user intent or phrasing relative to training or others. In such cases, semantically related tools may be mapped far apart (or vice versa), causing the retriever to surface the wrong candidate; the downstream LLM is then bottlenecked by what it is given, leading to unnecessary backtracking or failed tasks. Figure 1 shows two examples of the degradation of retrieval performance caused by bad documentation and a poor embedding model. Existing deployments typically freeze embeddings and indices after offline training (Zeighami et al., 2024; Qin et al., 2023; Patil et al., 2024; Li et al., 2023), leaving no principled, low-cost way to repair performance at deployment. While recent work adapts controllers at inference time to decide when or how much to retrieve (Asai et al., 2024; Jeong et al., 2024) or tunes top-k and retrieval strategies (e.g., no retrieval / one-shot / multi-step) via multi-armed-bandit or reinforcement-learning approaches (Fu et al., 2024; Tang et al., 2024; Sun et al., 2025), these methods only adjust global hyperparameters but do not update the underlying embedding space. We defer further discussion of related literature to Appendix A.

We introduce *Online-Optimized RAG*, a deployment-time framework that continuously updates retrieval embeddings from online interactions for tool use and function calling. The core idea is simple: treat the tool retriever as an object to be optimized at test time using minimal observable



- (a) Good documentation vs. bad documentation
- (b) Larger model vs. smaller model

Figure 1: We compare the performance between applying Online-Optimized RAG (*optimized*) and without optimization (*raw*). (a) Poor documentation weakens semantic alignment and lowers retrieval quality, while Online-Optimized RAG mitigates this mismatch. (b) t-SNE visualization of the same samples for two embedding models before and after optimization. Initially, text-embeded-3-large generally outperforms text-embeded-v4 and their embeddings are distributed quite differently. However, the embeddings after optimization from both models move toward similar regions and achieve comparable performance, demonstrating our approach's effectiveness. The experimental setup for these two subfigures is provided in Appendix C.

feedback (e.g., whether the task is solved). After each interaction, we apply lightweight online gradient updates to the item (tool) embeddings to improve future retrieval accuracy without modifying the underlying LLM, planner, or executors. The procedure is plug-and-play, adds negligible latency, requires no privileged access to model internals, and also applies beyond tools to general document retrieval.

Our contributions are summarized as follows:

Problem formulation for online retrieval. We cast the problem of RAG tool and function selection under an online learning framework with bandit-style execution feedback (success/failure signals only for the chosen tool), updating the retrieval geometry on the fly after collecting each feedback.

A simple, scalable update rule. We propose an online gradient descent variant that adjusts embeddings per interaction using an importance-weighted estimator. The update of the embeddings keeps computation overhead minimal for large catalogs and high-throughput systems; it is both intuitive and theoretically supported.

Versatility across real retrieval settings. The same update mechanism applies to tool *and* document retrieval, single- and multi-hop pipelines, dynamic tool inventories, and multiple retrievals with reranking. This enables a straightforward integration with common function-calling frameworks and LLM agents without altering the LLM.

Principled adaptation guarantees. We derive a problem-dependent performance analysis clarifying how performance depends on the quality of the initial embeddings: strong initializations accelerate convergence toward the optimum, while weaker ones still improve steadily under online updates.

Empirical evidence on comprehensive tasks. Across diverse scenarios, our Online-Optimized RAG consistently improves tool selection and downstream task success, and the performance also transfers to general document retrieval. This demonstrates our method as a simple and robust path to self-improving RAG.

2 PROBLEM SETUP

2.1 RAG FOR TOOL USE AND FUNCTION CALLING

In this section, we describe the problem of RAG and present its mathematical setup. The setup can be viewed as a simplified version of the most general RAG systems. The aim here is to generate intuitions and to give us a rigorous language to describe our algorithm, and we will discuss several extensions that cover a broad range of different RAG application contexts.

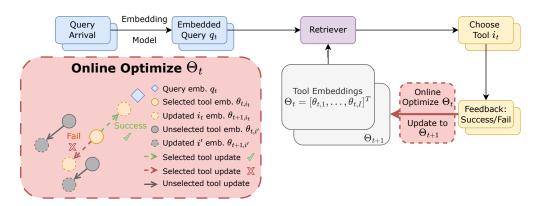


Figure 2: Online-Optimized RAG updates tool embeddings at deployment time for each incoming query q_t . When the selected tool i_t succeeds, its embedding moves toward the query to increase similarity. When it fails, the embedding of i_t moves away to reduce similarity. Embeddings of all unselected tools are also pushed away from the query. See Algorithm 1 and its discussion for details.

Specifically, for a RAG system, an embedding model such as OpenAI or Gemini embeddings API, maps an input query (e.g., a prompted question or task for the users) to a query embedding $q \in \mathbb{R}^d$. On the other hand, a database or a tool pool contains I candidate items (e.g., documents for answering the question, functions in MCP, or tools for solving the task). The goal of RAG is to retrieve a proper tool from the I items that best fits the query q. For the basic setup, we consider the case that for each query q, there exists an (unobserved) optimal item $i^* \in \{1, \ldots, I\}$ that best answers the query or solves the task. The case is motivated by that in most tool-use and function-calling applications, the optimal tool or function is usually unique. However, our online-optimized framework and the algorithm also apply to more general setups of K-retrievals (with rerankers), time-varying database, and multi-hop retrievals which we defer to Section 3.1.

Next, given q, the RAG system produces a distribution $p = (p_1, \dots, p_I)$, where p_i is the probability of selecting item i. The cosine similarity-based RAG (most commonly used) represents each item i with an embedding vector $\theta_i \in \mathbb{R}^d$,

$$\mathbf{\Theta} = [\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_I]^{\top} \in \mathbb{R}^{I \times d}.$$

Then each item i is scored by the softmax of the inner product

$$p_i(\boldsymbol{q}, \boldsymbol{\Theta}) = \frac{\exp(\boldsymbol{q}^{\top} \boldsymbol{\theta}_i)}{\sum_{i'=1}^{I} \exp(\boldsymbol{q}^{\top} \boldsymbol{\theta}_{i'})}.$$
 (1)

In this light, the retrieval problem can also be viewed as a multiclass classification with input q and label i^* under a softmax classifier parameterized by Θ . The loss function is

$$l(\boldsymbol{\Theta}; (\boldsymbol{q}, i^*)) = -\log p_{i^*}(\boldsymbol{q}, \boldsymbol{\Theta}).$$

2.2 Online-optimized framework for RAG

We now present an online-learning setting for the RAG problem where at each time $t=1,\ldots,T$, a query arrives represented by the embedding q_t . Importantly, we allow changing embeddings $\Theta_t \in \mathbb{R}^{I \times d}$ indexed by time t. The benefit is that this admits an imperfect initial embedding Θ_1 and allows embeddings to be better learned and improved over time.

In hindsight of seeing all the data $\{(q_t, i_t^*)\}_{t=1}^T$, the optimal embedding should be

$$\mathbf{\Theta}^* = \arg\min_{\mathbf{\Theta}} \sum_{t=1}^{T} l(\mathbf{\Theta}; (\mathbf{q}_t, i_t^*)).$$
 (2)

In the online setting as how these RAG systems are usually deployed in practice, at each time t, we can choose the embeddings Θ_t based on the past observation history $\mathcal{H}_t = \{q_s, i_s, \mathbb{1}\{i_s = i_s^*\}\}_{s=1}^{t-1}$. Here q_s is the query embedding at time s, i_s is the chosen tool, and the indicator variable tells

whether the chosen tool is the correct/optimal one or not. And thus the RAG performance is measured by

$$\sum_{t=1}^T l(\boldsymbol{\Theta}_t; (\boldsymbol{q}_t, i_t^*)).$$

We make several important remarks about the setup. First, the online setup is mainly motivated by the sequentially arriving nature of the user queries in RAG systems, and the nature makes it possible to continually refine the embeddings Θ_t . The setup also allows a distribution shift of q_t over time, and ideally, Θ_t should be online optimized to adapt to the shift over time. Second, the feedback structure $\mathbb{1}\{i_t=i_t^*\}$ is mild as it doesn't require knowing the optimal i_t^* but only whether the chosen one i_t equals i_t^* or not. Such a bandit-style or partial-observation feedback system removes the need for additional data annotations on the optimal i_t^* at each time (which users of the RAG may not even know), but $\mathbb{1}\{i_t=i_t^*\}$ can be simply obtained by users' interactions (thumb-up or -down) or rule-based judges of task success. Third, we choose to optimize the database/toolbase embeddings Θ_t instead of the query embedding model that gives q_t for two reasons: (a) the query embedding models are sometimes blackbox APIs and don't provide a fine-tuning option, and (b) they are often used simultaneously for other RAG tasks, and fine-tuning against one RAG task may deteriorate its performances on others. Lastly, we note our idea of online-optimizing Θ_t can be viewed as a lightweight implementation of the tool description rewriting idea in building MCPbased agents (Anthropic, 2025); we optimize in the embedding space, whereas Anthropic (2025) optimizes in the language space, both for the tool use and function callings.

3 ONLINE-OPTIMIZED RAG: ALGORITHMS AND VARIANTS OF RAG

In this section, we present our algorithm of online-optimized RAG and show how it can be applied to several extensions beyond the main setup.

Algorithm 1 implements the standard RAG pipeline when handling a stream of user queries, except for Step 5 and Step 6, where it updates the embeddings Θ_t . Essentially, the update performs a stochastic gradient descent with respect to the loss function equation 2. We note that in calculating the update equation 4, it only requires the knowledge of $\mathbb{1}\{i=i_t^*\}$, i.e., we only need to know whether the chosen item i_t is the correct one or not, but no need to know i_t^* . As mentioned earlier, this creates much convenience in annotation – no need for hiring annotators to label i_t^* . The most important structural property of the update is described by the following lemma.

Lemma 3.1. For i = 1, ..., I,

$$\mathbb{E}[\boldsymbol{g}_{t,i}] = \frac{\partial l(\boldsymbol{\Theta}; (\boldsymbol{q}_t, i_t^*))}{\partial \boldsymbol{\theta}_i} \Bigg|_{\boldsymbol{\Theta} = \boldsymbol{\Theta}_t}$$

where the expectation is over the tool selection $i_t \sim p_t$ as defined in Algorithm 1.

The lemma states that the update term at time t can be viewed as a stochastic gradient of the t-th term in the loss function equation 2. This enables a clean theoretical analysis of the algorithm, which we defer to Section 5. The key to achieving this property in Lemma 3.1 is the coefficient before q_t . Such a design often appears for bias correction in adversarial online learning (Auer et al., 2002; Kakade et al., 2008).

Intuitively, for the chosen item $i=i_t$, if the choice is incorrect $(i_t\neq i_t^*)$, then $\mathbf{g}_{t,i_t}=p_{t,i_t}\cdot \mathbf{q}_t$ and the update $\theta_{t+1,i_t}=\theta_{t,i_t}-\eta\,p_{t,i_t}\cdot \mathbf{q}_t$ moves θ_{t,i_t} away from \mathbf{q}_t , decreasing their similarity. If the choice is correct $(i_t=i_t^*)$, then $\mathbf{g}_{t,i_t}=\left(p_{t,i_t}-\frac{1}{p_{t,i_t}}\right)\mathbf{q}_t$, so $p_{t,i_t}-\frac{1}{p_{t,i_t}}\leq 0$ and the update moves θ_{t,i_t} toward \mathbf{q}_t , increasing similarity. The magnitude of this correction is proportional to $\left|p_{t,i_t}-\frac{1}{p_{t,i_t}}\right|$, which is larger when the model's current confidence p_{t,i_t} is smaller, i.e., we correct more aggressively when we were unsure yet happened to be right. For all other items $i\neq i_t$, the update $\theta_{t+1,i}=\theta_{t,i}-\eta\,p_{t,i}\cdot\mathbf{q}_t$ moves $\theta_{t,i}$ away from \mathbf{q}_t , decreasing their similarity. This nonzero adjustment for unchosen items is because the loss couples all items through the softmax normalization, and hence increasing probability on the (unknown) correct item necessarily requires decreasing probability on the others. The dynamics are also visualized in Figure 2.

Algorithm 1 Online-Optimized RAG (ORAG)

Input: Initial embeddings $\Theta_1 = [\theta_{1,1}, \theta_{1,2}, \dots, \theta_{1,I}]^{\top} \in \mathbb{R}^{I \times d}$; learning rate $\eta > 0$

1: **for** $t = 1, 2, \dots$ **do**

- 2: Observe query embedding $q_t \in \mathbb{R}^d$.
 - 3: Compute sampling probabilities from the current Θ_t by equation 1:

$$p_{t,i} = p_i(\boldsymbol{q}_t, \boldsymbol{\Theta}_t), \quad i = 1, \dots, I.$$
 (3)

- 4: Sample an item (tool/document) $i_t \sim p_t = (p_{t,1}, \dots, p_{t,I})$ and get feedback $\mathbb{1}\{i_t = i_t^*\}$.
- 5: Compute the (stochastic) gradient estimate $g_{t,i}$ for each item i:

$$\mathbf{g}_{t,i} = \left(p_{t,i} - \frac{\mathbb{1}\{i = i_t\} \mathbb{1}\{i_t = i_t^*\}}{p_{t,i_t}}\right) \mathbf{q}_t. \tag{4}$$

6: Update embeddings for $\Theta_{t+1} = [\theta_{t+1,1}, \dots, \theta_{t+1,I}]^{\top}$ by

$$\boldsymbol{\theta}_{t+1,i} = \boldsymbol{\theta}_{t,i} - \eta \cdot \boldsymbol{g}_{t,i}.$$

 \triangleright Optional: project $\theta_{t+1,i}$ into some desired subspace (such as unit ball $\{\theta \in \mathbb{R}^d : \|\theta\|_2 \le 1\}$) 7: end for

We make the following remarks about the algorithm:

Learning rate. The parameter η controls the learning rate of embedding updates. As shown later, a proper choice of η yields convergence of the loss toward the optimum. In practice, a small constant (e.g., $\eta=10^{-5}$) prevents overly large changes. One can also use a time-varying schedule, e.g., $\eta_t=c/\sqrt{t}$ with c>0, to taper updates as more (online) data arrive.

Session scope. The algorithm imposes no requirements on how (q_t, i_t^*) are generated. In practice, the embedding updates may aggregate interactions from a broad user population (to adapt universally) or from a single user (to personalize the system). The prototypical version of Algorithm 1 performs updates upon every sample, but one may easily convert it into a batched version by batching samples from multiple timestamps or even an offline version.

Computation. As noted earlier, the algorithm is lightweight, and it performs one gradient update at each time step. There is an even more efficient version which only performs an update to the embedding of the chosen item i_t . We defer more details to Appendix B.2.

Exploration. Unlike Banditron (Kakade et al., 2008) for online multiclass prediction, which enforces uniform exploration with a fixed probability, our procedure utilizes the inherent randomness of the vector p_t . The advantage of this exploration-free design is that it doesn't sacrifice the current user experience for future improvement of the system.

3.1 Variants of the RAG setup

Now we show how Algorithm 1 can be applied to more general RAG settings than the setup in the last section. We report its numerical performance in the next section, and defer more implementation details to Appendix B.3.

K retrievals with reranker. Algorithm 1 retrieves one single tool/function per round. A practical extension is to retrieve $K \geq 2$ candidates and pass them to a reranker (e.g., a cross-encoder or an LLM judge) that selects the best among them (Qin et al., 2023; Xu et al., 2024). In Algorithm 2, we deal with the RAG system with a reranker; instead of sampling one item, it samples multiple items and lets the reranker decide the best one. The algorithm thus modifies the sampling step of Algorithm 1 (line 4) by inserting a reranking block.

Time-varying database. Algorithm 1 is also compatible with a dynamic toolbox $\{1, \ldots, I\}$ that changes over time. In its variant Algorithm 3, at the start of round t, it first updates the available set of items and adjusts the embedding matrix Θ_t accordingly (adds rows for new items and removes rows for obsolete ones). Then compute p_t and proceed as usual, i.e., ensure Θ_t contains exactly the items available at time t. This operates smoothly because (i) the sampling distribution is softmax-based

(it automatically re-normalizes over the current items), and (ii) the updates are item-wise (lines 5-6 of Algorithm 1). This setting captures the case where the optimal tool for certain queries may not exist in early phases (small t) and only becomes available at a later stage. For example, the optimal tool i' for a query q' is unavailable for t < 10, and $q_t = q'$ for all $t \le 10$. Even without seeing i', Algorithm 3 will repeatedly push the existing item embeddings away from q' whenever the sampled item is incorrect. This decreases their logits $q'^{\top}\theta_{t,i}$ and thus their softmax probabilities relative to the (eventual) optimal item. When i' is introduced at t = 10, even with an untouched, reasonable initialization aligned to q', its selection probability will be comparatively higher, improving retrieval without any special warm start.

Multi-hop retrieval. Some RAG tasks require *multi-hop* retrieval to select multiple items that jointly solve the task (Tang & Yang, 2024). A common strategy is to use a planner (e.g., an LLM) to decompose the input into sub-tasks (Shen et al., 2023; Qin et al., 2023; Lumer et al., 2024). In such a setting, we can apply Algorithm 1 at each hop by reducing the multi-hop query/task to a sequence of single-hop sub-tasks. Concretely, in the variant Algorithm 4, at hop h (the h-th sub-task), we run Algorithm 1 to select an item and obtain feedback from a judge (e.g., an LLM or rule-based judge when a human is unavailable) indicating whether the selection advances or answers the query. These per-hop updates align the embeddings across the entire multi-hop pipeline.

Algorithms 2, 3 and 4 are all formally described in Appendix B.3.

4 EXPERIMENTS

For Algorithm 1 and its variants, we evaluate them on both tool calling and information retrieval tasks and conduct experiments on several open source benchmarks. We summarize the experiment setup here and defer the implementation details to Appendix C. Unless otherwise noted, all results of our methods are computed as the average of five independent runs.

Datasets. For tool use, we adopt *UltraTool* (Huang et al., 2024) and three sub-tasks from *ToolRet* (Shi et al., 2025): *ToolRet-Web*, *ToolRet-Code*, and *ToolRet-Customized*. For information retrieval, we use *FiQA* benchmark (Thakur et al., 2021). For multi-hop reasoning, we use *MultiHopRAG* (Tang & Yang, 2024). These datasets provide real-world scenarios for retrieval tasks.

Baselines. We compare our method against a strong suite of retrieval models following the methodology in Shi et al. (2025). The baselines include a sparse retriever based on BM25 (Huang et al., 2024), competitive dense retrievers accessed via API: OpenAI's text-embedding-3-large and Qwen's text-embedding-v4, and also two state-of-the-art cross-encoder models of different sizes based on previous research and benchmark reports (Muennighoff et al., 2022; Tang & Yang, 2024; Shi et al., 2025): Qwen3-Reranker-0.6B and bge-reranker-v2-gemma.

Metrics. For all retrieval tasks, we report performance using standard information retrieval metrics: Recall@k (R@k) and NDCG@k (N@k). Following common practice, we choose k=10. For tool-use simulation experiments, we also report the function-call accuracy.

4.1 RETRIEVAL PERFORMANCE

We begin by assessing Algorithm 1 through a comparison with strong baselines in the retrieval literature. We report metrics after applying the method with an average of 3000 updates to the embeddings (exact numbers vary based on the selected batch size and dataset size), and we include the initial models without online updates. Table 1 presents the results, where **Ours** denotes the results of Algorithm 1. The results give several key insights. First, our proposed method demonstrates a significant and consistent improvement over its base dense retrieval models. For example, on the ToolRet-Code benchmark, both the text-embedding-large-3 and the text-embedding-v4 baselines gain significant performance improvements, and the initially underperformed text-embedding-v4 even outperforms the text-embedding-large-3 after the optimization via our method. This shows our approach is not only effective but also versatile, enhancing strong existing models without requiring architectural changes. Second, traditional sparse retrieval methods like BM25, which rely on lexical matching, consistently underperform across all benchmarks. This highlights the necessity of semantic understanding for the nuanced task of tool retrieval, where the user's intent may not share keywords with the tool's description. Finally, while

powerful reranker models can achieve high performance on specific tasks, their practical utility is often limited by high computational costs, making them unsuitable for real-time applications. As visualized in Figure 3, our method provides a much more balanced and practical solution, achieving state-of-the-art performance while maintaining low inference latency.

Table 1: Retrieval performance at k=10. The best result in each column is highlighted. Percentage improvements of our methods over their baselines are shown below each score. Dataset names are abbreviated: **U-Tool** (UltraTool), **T-Web** (ToolRet-Web), **T-Code** (ToolRet-Code), and **T-Custom** (ToolRet-Customized).

Method	U-Tool		FiQA		T-Web		T-Code		T-Custom	
	R@10	N@10	R@10	N@10	R@10	N@10	R@10	N@10	R@10	N@10
BM25	0.3208							0.2421		
bge-reranker-v2-gemma Qwen3-Reranker-0.6B		0.5852 0.4590						0.5322 0.4781		
text-embedding-v4 text-embedding-3-large	0.7451 0.8356							0.3770 0.3582		
Ours (text-embv4)	0.8256 (+8.05%)	0.5982	0.5464 (+1.29%)	0.4698	0.3657	0.1968 (+5.15%)	0.5960 (+6.69%)	0.4280 (+5.10%)	0.5739	0.4398 (+3.01%)
Ours (text-emb3-L.)	0.8682 (+3.26%)	0.6522 (+4.55%)	0.6421 (+1.63%)	0.5680 (+2.18%)		0.2065 (+3.90%)	0.5849 (+5.02%)	0.4070 (+4.88%)	0.6937 (+5.59%)	0.5735 (+5.31%)

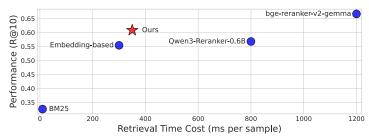


Figure 3: Performance vs. time cost of different retrieval methods. The performance is the arithmetic average of R@10 results in Table 1, and the time cost is evaluated and recorded on the same GPU server. The embedding model time cost uses the <code>Qwen3-Embedding-4B</code> as the proxy.

4.2 ALGORITHM 1'S VARIANTS EVALUATION

We now evaluate the adaptability of our method across several practical scenarios, including integration with rerankers, time-varying databases, and multi-hop retrieval tasks (see the variants discussed in Section 3.1). We use the *UltraTool* benchmark for experiments on dynamic databases and integration with rerankers, and the *MultiHopRAG* benchmark for the multi-hop retrieval task. The detailed experiment setup is provided in Appendix C.

Integration with Rerankers. We consider a pipeline where an LLM reranks the top candidates retrieved by our model before a final tool is selected. For each query, a reranker model reranks the sampled 10 tool documentations, and the success of the final tool call provides the gradients for our algorithm as shown in Algorithm 2. For reproducibility, we employ RankGPT (Sun et al., 2023) with gpt-4.1-nano-2025-04-14 as the reranker. We compare this LLM-as-reranker approach against our standard method that samples directly from the learned policy and also the baseline, where we make no updates to embeddings. The results are presented in Figure 4. We observe that during the early stage, it is indifferent whether to use a reranker or not. Later, the reranker accelerates improvement in retrieval performance. The reason is that a stronger reranker increases the probability of selecting the correct item. Intuitively, a successful retrieval yields a precise signal that the chosen item is correct, while a failed retrieval only indicates that the chosen item is incorrect without revealing which item is correct. By increasing the rate of successful retrievals, the reranker provides more informative feedback for subsequent learning.

Time-varying database. We study a setting where the toolbase changes over time. At the start, only a random subset of tools is available, and the remaining tools are introduced after half of the queries have been processed. Under this setup, part of the embeddings cannot be updated during

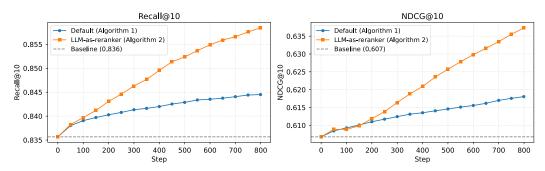


Figure 4: Performance on *UltraTool* with and without an LLM-based reranker. Integrating an LLM reranker provides a stronger signal, accelerating learning and further boosting retrieval performance.

the first phase, and for some queries, the ground truth optimal tool may be temporarily unavailable. Even so, our method can improve the performance as discussed in Section 3.1. We compare this dynamic setting, labeled as *Dynamic DB* (*Algorithm 3*), with a static baseline where all tools are available from the beginning, labeled as *Default* (*Algorithm 1*). As in Figure 5, though removing embeddings at the beginning can reduce recall, our method adapts to the changing set of tools and achieves consistent gains.

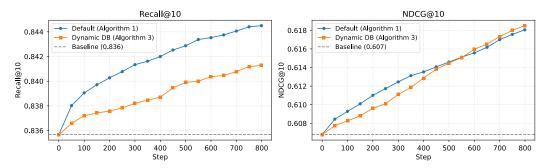


Figure 5: Performance on *UltraTool* for static vs. dynamic database. Our method demonstrates robust adaptation, maintaining consistent improvements even when the toolset changes midway through the experiment.

Multi-hop retrieval. We evaluate our method in a multi-hop setting, where solving an input task requires a sequence of successful tool retrievals. The plug-and-play nature of our algorithm enables straightforward integration into the existing multi-hop frameworks. We implement a query decomposition pipeline in which a planner first decomposes the input task into several subtasks, and Algorithm 1 is applied to each subtask, as discussed in Section 3.1. Here, for each subtask query, we retrieve only 5 documents. We evaluate on the *MultiHopRAG* benchmark, and the performance changes are shown in Figure 6. This integration yields a substantial improvement in end-to-end question answering accuracy, from **0.55** to **0.68**.

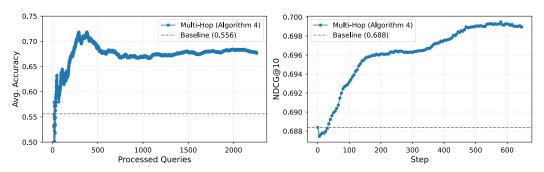


Figure 6: Performance changes on the *MultiHopRAG* benchmark. The baseline is computed using the same retrieval and question-answering workflow (see Appendix C) with raw text-embedding-3-large embeddings. Integrating our method into a task decomposition pipeline demonstrates stable learning, leading to improved multi-hop QA performance.

5 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of Algorithm 1. The aim is not so much for a theoretical peace of mind but to derive more insights for implementing the algorithm in practice. Generally, the performance of an online algorithm/policy π is measured by its *regret*

$$\operatorname{Reg}^{\pi}(\{(\boldsymbol{q}_{t}, i_{t}^{*})\}_{t=1}^{T}) = \sum_{t=1}^{T} l(\boldsymbol{\Theta}_{t}; (\boldsymbol{q}_{t}, i_{t}^{*})) - \sum_{t=1}^{T} l(\boldsymbol{\Theta}^{*}; (\boldsymbol{q}_{t}, i_{t}^{*})),$$

where Θ_t is the embedding at time t specified by the policy π , Algorithm 1 in our context, and Θ^* is the optimal embedding defined by equation 2 upon optimizing over all the queries in a hindsight manner. As noted earlier, we make no assumption on the generation of q_t and i_t^* .

Theorem 5.1. For any sequence $\{(q_t, i_t^*)\}_{t=1}^T$, Algorithm 1 (ORAG) with initialization Θ_1 and learning rate $\eta > 0$ satisfies

$$\mathbb{E}\left[\operatorname{Reg}^{ORAG}\left(\{(\boldsymbol{q}_{t}, i_{t}^{*})\}_{t=1}^{T}\right)\right] \leq \frac{\|\boldsymbol{\Theta}_{1} - \boldsymbol{\Theta}^{*}\|_{F}^{2}}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \left(\frac{1}{p_{t, i_{t}^{*}}} - 2p_{t, i_{t}^{*}} + 1\right) \|\boldsymbol{q}_{t}\|_{2}^{2},$$

where $\|\cdot\|_F$ denotes the Frobenius norm and the expectation is w.r.t. the randomness of i_t 's.

Theorem 5.1 gives a problem-dependent regret bound for Algorithm 1. The first term depends on the initialization Θ_1 , whereas the second depends on the probabilities p_{t,i_t^*} of selecting the optimal items. For the initialization quality, the term $\|\Theta_1 - \Theta^*\|_F^2$ quantifies how close the initial embeddings are to the optimum. If the initialization is good (i.e., close to Θ^*), only minor updating is needed. For the second term, we can interpret it as the confidence in the optimal item. The summation grows when the model assigns low probabilities to the optimal item. Intuitively, lower confidence (smaller p_{t,i_t^*}) incurs larger regret. In particular, if $p_{t,i_t^*} = 1$ then the contribution at time t is zero and the corresponding gradient $g_{t,i}$ vanishes for all i and there is no need to adjust the embeddings. Further, in an unrealistically ideal case, if $p_{t,i_t^*} \equiv 1$ for all t, then $\operatorname{Reg}^{ORAG} = 0$ and Algorithm 1 leaves $\Theta_t \equiv \Theta_1$ unchanged. In the light of Lemma 3.1, the proof follows the standard analysis of online gradient descent (Hazan et al., 2016) and is deferred to Appendix D.

With an appropriate choice of η to trade off these two aspects, Algorithm 1 achieves sublinear regret in T; equivalently, the average regret tends to zero and the loss approaches the optimum of Θ^* :

Corollary 5.2. Assume there exist constants $\bar{\Theta} > 0$, $\underline{p} \in (0,1)$, and $\bar{q} > 0$ such that $\|\mathbf{\Theta}_1 - \mathbf{\Theta}^*\|_F^2 \leq 0$

$$\bar{\Theta}$$
, $p_{t,i_t^*} \geq \underline{p}$, and $\|q_t\|_2^2 \leq \bar{q}$ for all t . Then, with $\eta = \sqrt{\frac{\underline{p}\,\bar{\Theta}}{\bar{q}\,(1-\underline{p})(1+2\underline{p})\,T}}$, we have

$$\mathbb{E}\left[\operatorname{Reg}^{ORAG}\left(\{(\boldsymbol{q}_t, i_t^*)\}_{t=1}^T\right)\right] \leq \sqrt{\frac{\bar{\Theta}\,\bar{q}\,(1-\underline{p})(1+2\underline{p})\,T}{\underline{p}}} = O(\sqrt{T}).$$

Corollary 5.2 shows that Algorithm 1 attains $O(\sqrt{T})$ regret relative to the optimal embeddings (knowing all incoming queries in hindsight). While the choice of η above depends on several parameters, in practice (and in our experiments), a small constant with a time-varying schedule, e.g., $\eta_t = c/\sqrt{t}$ with $c = 10^{-5}$ (as used in standard online convex optimizations (Hazan et al., 2016)) can work well across different contexts. Figure 8 in Appendix C empirically verifies a sublinear cumulative regret for Algorithm 1. We also draw a connection between the cross-entropy loss (used in the above regret analysis) and the accuracy metric, and we refer to Appendix B.

6 CONCLUSION

We introduce *Online-Optimized RAG*, a deployment-time framework for tool use and function calling that continually improves retrieval by updating embeddings from live interactions with minimal feedback. Our method casts retrieval as online classification and employs lightweight gradient-style updates that preserve latency and throughput, scale to large catalogs, and integrate seamlessly with existing LLM pipelines without retraining the generator. We provide theoretical guarantees and an analysis linking initial embedding quality to downstream performance, supported by empirical evaluation on real retrieval workloads. We hope this work catalyzes future deployment of self-improving RAG systems.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility, our source code is provided in the supplementary material. Please note that reproducing experiments involving external LLM APIs will require a valid API key. The original datasets are publicly available on the Hugging Face Hub, with detailed processing steps described in Appendix C.1. We will release the processed datasets upon publication. For our theoretical contributions, detailed proofs and extended discussions are available in Appendix D and Appendix B, respectively.

REFERENCES

- Lisa Alazraki and Marek Rei. Meta-reasoning improves tool use in large language models. *arXiv* preprint arXiv:2411.04535, 2024.
- Anthropic. How we built our multi-agent research system. https://www.anthropic.com/engineering/multi-agent-research-system, 2025.
- Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to retrieve, generate, and critique through self-reflection. 2024.
- Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multi-armed bandit problem. *SIAM journal on computing*, 32(1):48–77, 2002.
- Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Convexity, classification, and risk bounds. *Journal of the American Statistical Association*, 101(473):138–156, 2006.
- Norbert Braunschweiler, Rama Doddipatla, and Tudor-Catalin Zorila. Toolreagt: Tool retrieval for llm-based complex task solution via retrieval augmented generation. In *Proceedings of the 3rd Workshop on Towards Knowledgeable Foundation Models (KnowFM)*, pp. 75–83, 2025.
- Jiuhai Chen and Jonas Mueller. Quantifying uncertainty in answers from any language model and enhancing their trustworthiness. *arXiv preprint arXiv:2308.16175*, 2023.
- Jia Fu, Xiaoting Qin, Fangkai Yang, Lu Wang, Jue Zhang, Qingwei Lin, Yubo Chen, Dongmei Zhang, Saravan Rajmohan, and Qi Zhang. Autorag-hp: Automatic online hyper-parameter tuning for retrieval-augmented generation. *arXiv preprint arXiv:2406.19251*, 2024.
- Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and Graham Neubig. Pal: Program-aided language models. In *International Conference on Machine Learning*, pp. 10764–10799. PMLR, 2023.
- Dipam Goswami, Liying Wang, BartĹ Twardowski, Joost van de Weijer, et al. Query drift compensation: Enabling compatibility in continual learning of retrieval embedding models. *arXiv* preprint arXiv:2506.00037, 2025.
- Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From rag to memory: Non-parametric continual learning for large language models. *arXiv preprint arXiv:2502.14802*, 2025.
- Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. Toolkengpt: Augmenting frozen language models with massive tools via tool embeddings. *Advances in neural information processing systems*, 36:45870–45894, 2023.
- Elad Hazan et al. Introduction to online convex optimization. *Foundations and Trends® in Optimization*, 2(3-4):157–325, 2016.
- Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng, Yasheng Wang, Lifeng Shang, Xin Jiang, Ruifeng Xu, and Qun Liu. Planning, creation, usage: Benchmarking llms for comprehensive tool utilization in real-world complex scenarios. 2024.

543

544

546 547

548

549 550

551

552

553

554

555

556

558

559

560

561

562 563

564

565

566 567

568

569

570

571

572

573 574

575

576

577

578

579

580

581

582

583 584

585

586

588

589

590

592

- 540 Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju Hwang, and Jong C Park. Adaptive-rag: Learning to adapt retrieval-augmented large language models through question complexity. arXiv 542 preprint arXiv:2403.14403, 2024.
 - Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neurobiologically inspired long-term memory for large language models. Advances in Neural Information Processing Systems, 37:59532-59569, 2024.
 - Sham M Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. Efficient bandit algorithms for online multiclass prediction. In Proceedings of the 25th international conference on Machine learning, pp. 440-447, 2008.
 - Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33: 9459–9474, 2020.
 - Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms. arXiv preprint arXiv:2304.08244, 2023.
 - Linyu Liu, Yu Pan, Xiaocheng Li, and Guanting Chen. Uncertainty estimation and quantification for Ilms: A simple supervised approach. arXiv preprint arXiv:2404.15993, 2024a.
 - Shengjie Liu, Alex Lu, Li Dong, Jason Zhu, Manish Gawali, and Alice Zhou. Toposem: In-context planning with semantically-informed tooling graph similarity. 2025.
 - Shudong Liu, Zhaocong Li, Xuebo Liu, Runzhe Zhan, Derek Wong, Lidia Chao, and Min Zhang. Can Ilms learn uncertainty on their own? expressing uncertainty effectively in a self-training manner. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language *Processing*, pp. 21635–21645, 2024b.
 - Elias Lumer, Vamse Kumar Subbiah, James A Burke, Pradeep Honaganahalli Basavaraju, and Austin Huber. Toolshed: Scale tool-equipped agents with advanced rag-tool fusion and tool knowledge bases. arXiv preprint arXiv:2410.14594, 2024.
 - Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text embedding benchmark. arXiv preprint arXiv:2210.07316, 2022. doi: 10.48550/ARXIV.2210.07316. URL https://arxiv.org/abs/2210.07316.
 - Alexander Nikitin, Jannik Kossen, Yarin Gal, and Pekka Marttinen. Kernel language entropy: Finegrained uncertainty quantification for llms from semantic similarities. Advances in Neural Information Processing Systems, 37:8901–8929, 2024.
 - Agada Joseph Oche, Ademola Glory Folashade, Tirthankar Ghosal, and Arpan Biswas. A systematic review of key retrieval-augmented generation (rag) systems: Progress, gaps, and future directions. arXiv preprint arXiv:2507.18910, 2025.
 - Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model connected with massive apis. Advances in Neural Information Processing Systems, 37:126544— 126565, 2024.
 - Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world apis. arXiv preprint arXiv:2307.16789, 2023.
 - Revanth Gangi Reddy, Pradeep Dasigi, Md Arafat Sultan, Arman Cohan, Avirup Sil, Heng Ji, and Hannaneh Hajishirzi. Refit: Relevance feedback from a reranker during inference. arXiv preprint arXiv:2305.11744, 2023.
 - Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539-68551, 2023.

- Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-gpt: Solving ai tasks with chatgpt and its friends in hugging face. *Advances in Neural Information Processing Systems*, 36:38154–38180, 2023.
 - Zhengliang Shi, Yuhan Wang, Lingyong Yan, Pengjie Ren, Shuaiqiang Wang, Dawei Yin, and Zhaochun Ren. Retrieval models aren't tool-savvy: Benchmarking tool retrieval for large language models. *arXiv preprint arXiv:2503.01763*, 2025.
 - Weihang Su, Yichen Tang, Qingyao Ai, Junxi Yan, Changyue Wang, Hongning Wang, Ziyi Ye, Yujia Zhou, and Yiqun Liu. Parametric retrieval augmented generation. In *Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 1240–1250, 2025.
 - Jiashuo Sun, Xianrui Zhong, Sizhe Zhou, and Jiawei Han. Dynamicrag: Leveraging outputs of large language model as feedback for dynamic reranking in retrieval-augmented generation. *arXiv* preprint arXiv:2505.07233, 2025.
 - Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and Zhaochun Ren. Is chatgpt good at search? investigating large language models as re-ranking agents. *arXiv* preprint arXiv:2304.09542, 2023.
 - Xiaqiang Tang, Qiang Gao, Jian Li, Nan Du, Qi Li, and Sihong Xie. Mba-rag: a bandit approach for adaptive retrieval-augmented generation through question complexity. *arXiv* preprint *arXiv*:2412.01572, 2024.
 - Yixuan Tang and Yi Yang. Multihop-rag: Benchmarking retrieval-augmented generation for multihop queries. *arXiv preprint arXiv:2401.15391*, 2024.
 - Ambuj Tewari and Peter L Bartlett. On the consistency of multiclass classification methods. *Journal of Machine Learning Research*, 8(5), 2007.
 - Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. BEIR: A heterogeneous benchmark for zero-shot evaluation of information retrieval models. In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021. URL https://openreview.net/forum?id=wCu6T5xFjeJ.
 - Renxi Wang, Xudong Han, Lei Ji, Shu Wang, Timothy Baldwin, and Haonan Li. Toolgen: Unified tool retrieval and calling via generation. *arXiv preprint arXiv:2410.03439*, 2024.
 - Qiancheng Xu, Yongqi Li, Heming Xia, and Wenjie Li. Enhancing tool retrieval with iterative feedback from large language models. *arXiv preprint arXiv:2406.17465*, 2024.
 - Qiancheng Xu, Yongqi Li, Heming Xia, Fan Liu, Min Yang, and Wenjie Li. Petoolllm: Towards personalized tool learning in large language models. *arXiv preprint arXiv:2502.18980*, 2025.
 - Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Ren Kan, Dongsheng Li, and Deqing Yang. Easytool: Enhancing llm-based agents with concise tool instruction. *arXiv* preprint *arXiv*:2401.06201, 2024.
 - Sepanta Zeighami, Zac Wellmer, and Aditya Parameswaran. Nudge: Lightweight non-parametric fine-tuning of embeddings for retrieval. *arXiv preprint arXiv:2409.02343*, 2024.
- Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng Shen, Matei Zaharia, Ion Stoica, and Joseph E Gonzalez. Raft: Adapting language model to domain specific rag. *arXiv preprint arXiv:2403.10131*, 2024.
 - William Zhang, Yiwen Zhu, Yunlei Lu, Mathieu Demarne, Wenjing Wang, Kai Deng, Nutan Sahoo, Katherine Lin, Miso Cilimdzic, and Subru Krishnan. Flair: Feedback learning for adaptive information retrieval. *arXiv* preprint arXiv:2508.13390, 2025.

A RELATED WORK

A.1 RETRIEVAL AUGMENTED GENERATION

Retrieval-augmented generation (RAG) (Lewis et al., 2020) augments LLMs with a retriever that supplies passages from an external knowledge base and instructs the model to answer using those passages. By exposing sources, RAG reduces the risk of hallucinations and improves factuality. We refer to the survey paper Oche et al. (2025) for a comprehensive review of RAG.

The first line of work adapts when and how much to retrieve at inference time rather than changing the retriever itself. SELF-RAG (Asai et al., 2024) lets the model decide when to retrieve and critique its own outputs, reducing hallucinations over standard RAG, while Adaptive-RAG (Jeong et al., 2024) learns a lightweight router that sends easy questions to zero/single-shot retrieval and harder ones to multi-step pipelines, trading accuracy for latency. Building on online signals, AutoRAG-HP (Fu et al., 2024) frames top-k (and related knobs) as a hierarchical bandit tuned from live feedback; MBA-RAG (Tang et al., 2024) treats whole retrieval policies (none/one-shot/multi-step) as arms; and DynamicRAG (Sun et al., 2025) optimizes a reranker via reinforcement learning to reorder passages and choose k per query. These methods primarily tune controller hyperparameters rather than updating the embedding space as we do.

Another line of work swaps or augments the retrieval substrate itself. Parametric RAG (Su et al., 2025) pre-parameterizes documents as small LoRA adapters so the model retrieves by merging adapters instead of consuming long contexts, while HippoRAG and its follow-up (Jimenez Gutierrez et al., 2024; Gutiérrez et al., 2025) build an open knowledge graph and use graph walks to achieve multi-hop, context-aware retrieval.

Closer to our aim of aligning the retriever with usage signals, several papers adjust representations at inference or through fine-tuning. RAFT (Zhang et al., 2024) fine-tunes generators to quote the right spans, improving faithfulness under noisy top-k. For continual retriever training, Goswami et al. (2025) estimates query-embedding drift for new tasks and compensates it at retrieval time to preserve compatibility with an existing index. ReFIT (Reddy et al., 2023) distills a cross-encoder reranker into the query embedding on the fly and re-retrieves with the updated query vector; FLAIR (Zhang et al., 2025) leverages user/synthetic indicator feedback to re-rank via a two-track scoring scheme; and NUDGE (Zeighami et al., 2024) fine-tunes document embeddings through offline training and validation datasets with positive feedback. However, these approaches are controller-tuning, offline, or/and require labeled offline datasets. In contrast, our method performs lightweight online gradient updates to the retrieval embeddings from minimal deployment feedback (e.g., solved/unsolved).

A.2 TOOL USE AND FUNCTION CALLING

Tool use and function calling are now core capabilities of modern LLMs: models can invoke external resources to complete tasks by calling APIs (Qin et al., 2023; Patil et al., 2024; Li et al., 2023), executing a Python interpreter (Gao et al., 2023), or orchestrating other AI models (Shen et al., 2023). In particular, RAG is commonly employed in the function-call setting for tool-augmented LLMs: given a user query, the system retrieves tool/function specifications and examples from a catalog so the model can select and parameterize the correct call (e.g., Shen et al. (2023); Liu et al. (2025); Lumer et al. (2024); Alazraki & Rei (2024); Xu et al. (2024)).

To strengthen tool use, methods generally combine two phases: offline training and online inference. Offline approaches fine-tune LLMs on curated tool-use corpora (Qin et al., 2023; Patil et al., 2024; Li et al., 2023; Hao et al., 2023; Wang et al., 2024; Schick et al., 2023). Online techniques improve calling performance at inference time by supplying clearer tool descriptions, leveraging the model's reasoning, and incorporating feedback loops (Yuan et al., 2024; Alazraki & Rei, 2024; Lumer et al., 2024; Xu et al., 2024; Shen et al., 2023). Within the feedback-driven line, PEToolLLaMA (Xu et al., 2025) personalizes tool learning through supervised fine-tuning and direct preference optimization, while Xu et al. (2024) iteratively refines queries using tool feedback to improve retrieval accuracy at the cost of additional latency. Both frameworks require offline model updates and/or multi-step inference. By contrast, our approach targets the retrieval layer that underpins function selection: we perform lightweight online gradient updates to the retrieval embeddings using minimal deployment feedback, aligning tool retrieval without fine-tuning the LLM or adding complex controllers. This yields a plug-and-play mechanism for robust, self-improving tool use during deployment.

B MORE DISCUSSIONS

B.1 DISCUSSION FOR CROSS-ENTROPY LOSS

We choose the cross-entropy loss since its convexity in Θ and also its surrogate property for the 0–1 loss (Tewari & Bartlett, 2007; Bartlett et al., 2006): optimizing Θ by minimizing cross-entropy is statistically aligned with maximizing top-1 retrieval accuracy.

The retrieval task can be cast as a multiclass prediction with input q and label i^* . The Bayesian 0–1 risk of a decision rule $g(q) \in \{1, \dots, I\}$ is

$$\mathcal{R}_{0-1}(g) = \Pr(g(\mathbf{Q}) \neq I^*) = \mathbb{E}[\mathbb{1}\{g(\mathbf{Q}) \neq I^*\}],$$

whose Bayes-optimal rule is $g^*(q) = \arg \max_i \eta_i(q)$, where $\eta_i(q) \coloneqq \Pr(I^* = i \mid Q = q)$ and the above probability is with respect to the randomness of (Q, I^*) . Directly minimizing the 0–1 risk is intractable; a standard approach is to minimize the (population) cross-entropy (CE) risk of a probabilistic predictor $p(q, \Theta)$ with parameter Θ ,

$$\mathcal{R}_{\mathrm{CE}}(\boldsymbol{\Theta}) = \mathbb{E}[-\log p_{I^*}(\boldsymbol{Q}, \boldsymbol{\Theta})].$$

The CE loss is a *calibrated surrogate* for the 0-1 loss: its conditional minimizer predicts the true posteriors $\eta(q)$, and any sequence of models whose CE risk approaches its minimum induces decision rules whose 0-1 risk approaches the Bayes risk. Thus, training Θ by minimizing cross-entropy (with p_i given by the softmax in equation 1) is statistically aligned with maximizing top-1 retrieval accuracy as shown in Proposition B.1, which follows the standard analysis of surrogate properties (Tewari & Bartlett, 2007; Bartlett et al., 2006).

Proposition B.1. Let (Q, I^*) be distributed according to some unknown law. For any measurable $p(q, \Theta) \in \Delta^{I-1}$ and the induced classifier $g_{\Theta}(q) \coloneqq \arg \max_i p_i(q, \Theta)$, define

$$\eta_i(\boldsymbol{q}) \coloneqq \Pr(I^* = i \mid \boldsymbol{Q} = \boldsymbol{q}), \qquad \Delta(\boldsymbol{q}) \coloneqq \eta_{(1)}(\boldsymbol{q}) - \eta_{(2)}(\boldsymbol{q}),$$

where $\eta_{(1)} \geq \eta_{(2)} \geq \cdots$ are the sorted coordinates of $\eta(\mathbf{q})$. Then:

(i) (Conditional optimality) For each fixed q, the conditional CE risk

$$\mathcal{L}(\boldsymbol{p}; \eta(\boldsymbol{q})) \coloneqq \mathbb{E}[-\log p_{I^*} \mid \boldsymbol{Q} = \boldsymbol{q}] = -\sum_{i=1}^{I} \eta_i(\boldsymbol{q}) \log p_i$$

is uniquely minimized over $p \in \Delta^{I-1}$ at $p = \eta(q)$.

(ii) (Excess-risk decomposition)

$$\mathcal{R}_{\mathrm{CE}}(\mathbf{\Theta}) - \inf_{\mathbf{p}} \mathcal{R}_{\mathrm{CE}} = \mathbb{E} \big[\mathrm{KL} \big(\eta(\mathbf{Q}) \, \| \, \mathbf{p}(\mathbf{Q}, \mathbf{\Theta}) \big) \big] \, ,$$

where $\inf_{\mathbf{p}} \mathcal{R}_{CE} = \mathbb{E}[H(\eta(\mathbf{Q}))]$, with H the Shannon entropy.

(iii) (Bayes consistency / classification calibration) Suppose $\Pr(\Delta(Q) = 0) = 0$ (no ties almost surely). If a sequence Θ_n satisfies $\mathcal{R}_{CE}(\Theta_n) \to \inf_{\mathbf{p}} \mathcal{R}_{CE}$, then

$$\mathcal{R}_{0-1}(g_{\Theta_n}) \longrightarrow \inf_g \mathcal{R}_{0-1} = \mathcal{R}_{0-1}(g^*).$$

Proof. (i) For fixed η , $\mathcal{L}(\mathbf{p}; \eta) = -\sum_i \eta_i \log p_i$ is minimized at $\mathbf{p} = \eta$ by Gibbs' inequality, since

$$-\sum_{i} \eta_{i} \log p_{i} = H(\eta) + \mathrm{KL}(\eta || \boldsymbol{p}) \geq H(\eta),$$

with equality iff $p = \eta$.

(ii) Taking expectation over Q in the identity above yields

$$\mathcal{R}_{CE}(\boldsymbol{\Theta}) = \mathbb{E}[H(\eta(\boldsymbol{Q}))] + \mathbb{E}[KL(\eta(\boldsymbol{Q}) \parallel \boldsymbol{p}(\boldsymbol{Q}, \boldsymbol{\Theta}))],$$

and the infimum over all p is attained by $p = \eta$ pointwise.

(iii) By (ii), $\mathcal{R}_{CE}(\Theta_n) \downarrow \inf \mathcal{R}_{CE}$ implies $\mathbb{E}\big[\mathrm{KL}\big(\eta(\boldsymbol{Q}) \parallel p(\boldsymbol{Q}, \Theta_n)\big)\big] \to 0$. Pinsker's inequality gives, for each n,

$$\|\eta(\boldsymbol{Q}) - p(\boldsymbol{Q}, \boldsymbol{\Theta}_n)\|_{\mathrm{TV}} \leq \sqrt{\frac{1}{2} \operatorname{KL}(\eta(\boldsymbol{Q}) \| p(\boldsymbol{Q}, \boldsymbol{\Theta}_n))},$$

hence the total variation distance converges to 0 in L^1 and along a subsequence almost surely. Wherever $\Delta(\boldsymbol{Q}) > 0$, this forces $\arg \max_i p_i(\boldsymbol{Q}, \boldsymbol{\Theta}_n) = \arg \max_i \eta_i(\boldsymbol{Q})$ for all large n. Therefore $g_{\boldsymbol{\Theta}_n}(\boldsymbol{Q}) \to g^{\star}(\boldsymbol{Q})$ almost surely, and by bounded convergence, $\mathcal{R}_{0-1}(g_{\boldsymbol{\Theta}_n}) \to \mathcal{R}_{0-1}(g^{\star})$.

Remark. In our formulation, $p_i(q, \Theta)$ is the softmax in equation 1, which maps any score vector to a valid probability vector. Minimizing the sample average of $-\log p_{i^*}(q, \Theta)$ is therefore an empirical proxy for minimizing $\mathcal{R}_{\text{CE}}(\Theta)$, and by the proposition it targets the Bayes-optimal top-1 retrieval rule under the 0–1 criterion. We also note that the retrieval probabilities $p_i(q, \Theta)$ are induced directly by the embedding scores and could potentially be improved via calibration (Chen & Mueller, 2023; Liu et al., 2024a;b; Nikitin et al., 2024), which is an interesting direction for future work.

B.2 MORE EFFICIENT GRADIENT UPDATE

Relative to using fixed embeddings (e.g., Θ_1), Algorithm 1 adds only two per-round operations: gradient computation and embeddings update. For very large tool catalogs, an even more efficient variant updates only the chosen item θ_{t,i_t} each round: compute the (stochastic) gradient estimate for the sampled item i_t ,

$$\boldsymbol{g}_{t,i_t} = \left(1 - \frac{\mathbb{1}\{i_t = i_t^*\}}{p_{t,i_t}}\right) \boldsymbol{q}_t,$$

and update

$$m{ heta}_{t+1,i} = egin{cases} m{ heta}_{t,i} - \eta \, m{g}_{t,i_t}, & ext{if } i = i_t, \ m{ heta}_{t,i}, & ext{otherwise}. \end{cases}$$

With a similar analysis of Lemma 3.1, we can show $g'_{t,i} = \mathbb{1}\{i=i_t\}\left(1-\frac{\mathbb{1}\{i_t=i_t^*\}}{p_{t,i_t}}\right)q_t$ (which matches the above variant update by noting the indicator $\mathbb{1}\{i=i_t\}$ nulls the unchosen items) is also an unbiased estimator for gradients for all i. Because only the sampled item is modified at each iteration, this variant is attractive when the number of items is large.

B.3 VARIANTS OF ALGORITHM 1

Algorithm 2 ORAG with K retrievals

Input: Initial embeddings $\Theta_1 \in \mathbb{R}^{I \times d}$; learning rate $\eta > 0$; beam size $K \in \{1, \dots, I\}$; reranker RERANK $(q, \mathcal{I}) \rightarrow i \in \mathcal{I}$

- 1: **for** $t = 1, 2, \dots$ **do**
- 2: Observe query embedding $q_t \in \mathbb{R}^d$.
- 3: Compute sampling probabilities from current Θ_t via equation 1:

$$p_{t,i} = p_i(\boldsymbol{q}_t, \boldsymbol{\Theta}_t), \quad i = 1, \dots, I.$$

- 4: Sample a set \mathcal{I}_t of size K without replacement from $\boldsymbol{p}_t = (p_{t,1}, \dots, p_{t,I})$.
- 5: Obtain final choice $i_t \leftarrow \text{RERANK}(q_t, \mathcal{I}_t)$ and observe feedback $\mathbb{1}\{i_t = i_t^*\}$.
- 6: Compute the (stochastic) gradient estimate $g_{t,i}$ for each item i:

$$\mathbf{g}_{t,i} = \left(p_{t,i} - \frac{\mathbb{1}\{i = i_t\} \mathbb{1}\{i_t = i_t^*\}}{p_{t,i_t}}\right) \mathbf{q}_t.$$
 (5)

7: Update embeddings for $\Theta_{t+1} = [\theta_{t+1,1}, \dots, \theta_{t+1,I}]^{\top}$:

$$\boldsymbol{\theta}_{t+1,i} = \boldsymbol{\theta}_{t,i} - \eta \cdot \boldsymbol{g}_{t,i}.$$

8: end for

Algorithm 3 ORAG with Dynamic Database

Input: Initial item set \mathcal{I}_1 and embeddings $\Theta_1 \in \mathbb{R}^{|\mathcal{I}_1| \times d}$; learning rate $\eta > 0$; initializer INITEMBED $(i) \in \mathbb{R}^d$ for new items

1: **for** $t = 1, 2, \dots$ **do**

810

811

812

813

814

817

818

819

820 821

823

824 825

827

829

830 831

832 833

834

835 836

837

838

839

840

841

843

844

845

846 847

848 849

850

851 852

853

854

855 856

858 859

861

862

863

- Observe current available item set \mathcal{I}_t (additions/removals relative to \mathcal{I}_{t-1}). 2:
- 815 3: Maintain embeddings for Θ_t : 816
 - For each $i \in \mathcal{I}_t \setminus \mathcal{I}_{t-1}$ (new item), add a row $\theta_{t,i} \leftarrow \text{INITEMBED}(i)$ to Θ_t .
 - For each $i \in \mathcal{I}_{t-1} \setminus \mathcal{I}_t$ (removed item), delete row $\theta_{t-1,i}$ from Θ_{t-1} .
 - Observe query embedding $q_t \in \mathbb{R}^d$. 4:
 - Compute probabilities over available items via equation 1: 5:

$$p_{t,i} = p_i(\boldsymbol{q}_t, \boldsymbol{\Theta}_t), \quad i \in \mathcal{I}_t.$$

- Sample $i_t \sim p_t$ and observe $\mathbb{1}\{i_t = i_t^*\}$. 6:
- 7: Compute the (stochastic) gradient estimate $g_{t,i}$ for each item i:

$$\mathbf{g}_{t,i} = \left(p_{t,i} - \frac{\mathbb{1}\{i = i_t\}\mathbb{1}\{i_t = i_t^*\}}{p_{t,i_t}}\right)\mathbf{q}_t.$$
(6)

Update embeddings for $\Theta_{t+1} = [\boldsymbol{\theta}_{t+1,1}, \dots, \boldsymbol{\theta}_{t+1,I}]^{\top}$: 8:

$$\boldsymbol{\theta}_{t+1,i} = \boldsymbol{\theta}_{t,i} - \eta \cdot \boldsymbol{g}_{t,i}.$$

9: end for

Algorithm 4 ORAG with Multi-Hop

Input: Initial embeddings $\Theta_1 = [\theta_{1,1}, \dots, \theta_{1,I}]^{\top} \in \mathbb{R}^{I \times d}$; learning rate $\eta > 0$

- 1: **for** $t = 1, 2, \dots$ **do**
- Observe a sequence of sub-task embeddings $\mathcal{Q}_t = \{q_t^{(h)}\}_{h=1}^{H_t}$
- Initialize $\Theta_t^{(1)} \leftarrow \Theta_t$. for $h = 1, 2, \dots, H_t$ do 3:
- 4: \triangleright sub-tasks within round t
- 5: Compute sampling probabilities via equation 1:

$$p_{t,h,i} = p_i\left(\mathbf{q}_t^{(h)}, \mathbf{\Theta}_t^{(h)}\right), \quad i = 1, \dots, I.$$
 (7)

- Sample an item $i_{t,h} \sim p_{t,h} = (p_{t,h,1}, \dots, p_{t,h,I})$ and obtain judge feedback $y_{t,h} \in$ 6: $\{0,1\}.$
- Compute the (stochastic) gradient estimate $g_{t,h,i}$ for each item i:

$$\mathbf{g}_{t,h,i} = \left(p_{t,h,i} - \frac{\mathbb{1}\{i = i_{t,h}\} y_{t,h}}{p_{t,h,i_{t,h}}}\right) \mathbf{q}_t^{(h)}.$$
 (8)

8: Update embeddings:

$$oldsymbol{ heta}_{t,i}^{(h+1)} \leftarrow oldsymbol{ heta}_{t,i}^{(h)} - \eta \cdot oldsymbol{g}_{t,h,i}.$$

- g. end for
- Set $\Theta_{t+1} \leftarrow \Theta_t^{(H_t+1)}$. 10:
- 11: **end for**

EXPERIMENT DETAILS

C.1 Dataset and prompt details

This part provides details on the construction of queries and document/tool representations for each benchmark. To ensure reproducibility, we outline the exact data fields and templates used to generate the text for embedding.

C.1.1 ULTRATOOL

 Following prior work (Braunschweiler et al., 2025), we decompose each annotated plan step into a standalone retrieval query. For each sample, we construct the query from the top-level question (question column) and the specific plan step (step column) using the following template:

Given the following task: " ${question}$ ", select the best tool provided in the context to solve the following substep: " ${step}$ ".

The resulting text is used as the input for the query embedding model.

For each tool, we create a single text representation (stored as text_representation column) by concatenating the following fields in order. Fields that are empty are omitted.

Name: name

• Description: description

• Arguments: arguments (parsed as a JSON string)

• Results: results (parsed as a JSON string)

This concatenated string is used to embed the tool documentation.

C.1.2 TOOLRET

We use all 35 sub-tasks from the ToolRet benchmark (Shi et al., 2025). Following the original paper, we use an instruction-based format for queries, concatenating the provided instruction and the user query:

```
\{ instruction \} \setminus n \{ query \}
```

For tool documentation, we perform a schema-aware extraction from the raw JSON object. We extract and join the following fields with newlines:

- ToolRet-Code: name, description, func_description, functionality
- ToolRet-Web/Customized: name, description

If a field is not present or the documentation is not a valid JSON object, we fall back to using the raw documentation string for embedding.

C.1.3 FIQA

For the FiQA benchmark (Thakur et al., 2021), we follow the standard setup from the MTEB toolkit (Muennighoff et al., 2022). For both corpus and queries, we embed the content of the text field.

C.1.4 MULTIHOPRAG

For each original query, we generate a sequence of sub-queries (decomposed_questions) using an LLM-based query decomposition strategy. We use the following prompt for this task:

You are an expert research analyst specializing in breaking down complex questions into a logical sequence of simple, answerable sub-questions.

Your task is to decompose a given 'Original Question' into a series of smaller, ordered sub-questions. This decomposition will be used to query a retrieval system containing various factual reports.

Your Goal: Create a step-by-step reasoning path. The answer to a later sub-question should ideally depend on or build upon the answer to a previous one, creating a logical chain.

Key Constraints:

Logical Flow: The sub-questions must follow a logical order. The sequence should represent
the steps a human researcher would take to find the final answer.

- 2. Self-Contained: Each sub-question must be understandable and answerable on its own.
- 3. Fact-Focused: All sub-questions must be aimed at retrieving factual information from the reports. Do not ask about the publication source or publisher unless it is essential for resolving ambiguity.
 - Completeness: The combined answers to your sub-questions should contain all the information necessary to answer the Original Question.
 - No Direct Answers: Do not try to answer the Original Question yourself. Only generate the sub-questions.

We then form a compact retrieval string (formatted_query) for each sub-question using the template:

```
Context: {original_query} | Focus: {sub_question}
```

For the document corpus, we create a standardized text representation by sorting all key-value pairs of a document's JSON object and joining them into a single string with the format $\{key\}: \{value\}$ on each line. This approach ensures a consistent representation that includes all available information (e.g., category, title, body).

C.1.5 COMMON PREPROCESSING AND EMBEDDING DETAILS

Before embedding, we apply light text normalization to all inputs, including stripping whitespace and replacing newlines for API stability. If an input exceeds the model's length limit, we progressively truncate it (e.g., to 8192 characters and then shorter) and skip any samples that remain too long. The output dimension for all embedding models is set to 1536.

C.2 TRAINER

Our algorithm is implemented using PyTorch. We employ the AdamW optimizer with default parameters and a learning rate schedule that decays proportionally to $1/\sqrt{t}$, where t is the training/update step. Key hyperparameters, including the initial learning rate and batch size, were tuned via a Bayesian-optimization-based grid search on the validation data (10% of the total dataset size). The search space for each hyperparameter is detailed below:

- Initial Learning Rate (η_0): {1e-8, 2e-8, 5e-8, 1e-7, 2e-7, 5e-7, 1e-6, 2e-6, 5e-6, 1e-5}
- Batch Size: {5, 10, 20, 30, 40, 50}

C.3 DATA ENHANCEMENT

The main results presented in Section 4.1 utilize a data augmentation strategy where each query is processed multiple times to accelerate convergence. We refer to this as the multiple exposure setting.

For a more realistic online deployment scenario, we also evaluate a single exposure setting where each query is seen only once. Table 2 presents the results for this setting. For this experiment, we used the same hyperparameters tuned for the multiple exposure setting. We note that performance could likely be further improved by re-tuning the hyperparameters specifically for the single exposure scenario.

C.4 More details on the experiments

We offer more details of the experiments included in our main paper here.

Illustration experiments. The experiment illustrated in Figure 1a is conducted on a subset of the *ToolRet-Code* dataset. We only use the tool items whose documentation column contains a functionality key, where the corresponding value is a highly compact and ambiguous description of the tool item. We refer to the full documentation as a "good documentation", and the only

Table 2: Retrieval performance in the single exposure setting (no data augmentation). Our method still consistently improves over the base dense retrieval models, albeit with smaller margins than in the multiple exposure setting reported in the main paper.

Method	U-Tool		FiQA		T-Web		T-Code		T-Custom	
	R@10	N@10	R@10	N@10	R@10	N@10	R@10	N@10	R@10	N@10
text-embedding-v4 text-embedding-3-large						0.1453 0.1675				
Ours (text-embv4)	0.7614 (+1.63%)	0.5209 (+1.45%)	0.5382	0.4646 (+0.42%)	0.2900 (+1.99%)	0.1579 (+1.26%)	0.5484 (+1.93%)	0.3891 (+1.21%)		0.4237
Ours (text-emb3-L.)	0.8540 (+1.86%)	0.6180 (+1.13%)	0.6284 (+0.26%)	0.5483 (+0.21%)	0.3458 (+2.15%)	0.1804 (+1.29%)	0.5430 (+0.83%)	0.3671 (+0.89%)	0.6561 (+1.83%)	0.5324 (+1.20%)

functionality description as a "bad documentation". The visualization in Figure 1b is extracted from an experiment run on *UltraTool* dataset in Table 1. We randomly sample 100 tool items and inspect their embeddings and performance metrics across different settings.

Variant experiments. All the variant experiments are conducted without the data enhancement techniques mentioned in Section C.3 to evaluate the practical performance under an online setting. Also, considering the high costs of LLM-involved experiments, we did not fully tune the parameters during experiments integrated with the LLM reranker, and only ran 1 round of them.

Varying database experiment. For the varying database experiment shown in Figure 5, we provide half of the tools in the beginning, and only add the other half as available tools when half of the queries are processed. The queries are not manipulated.

Multi-Hop retrieval experiment. Figure 7 provides a visual depiction of the combined online-optimizing and inference workflow for the multi-hop retrieval experiments shown in Figure 6. The multi-hop pipeline uses an LLM agent (backed by gpt-40-mini-2024-07-18) for two key steps: (1) reranking retrieved documents for each sub-task query, and (2) synthesizing a final answer from the collected evidence, with the support of OpenAI's JSON mode. The prompts for these steps are provided below.

You are an impartial and meticulous AI judge. Your task is to determine which of the provided documents contains useful information to answer the given question, especially the "Focus" one. Carefully review each document and respond with a JSON object containing the 0-based index of the relevant document. A smaller index is more relevant.

Question:

{question}

Retrieved Documents:

{formatted_docs}

Based on the question, which document is the most relevant?

You are a concise QA assistant. Given a main question and evidence documents, provide the final short answer only. If uncertain, provide your best effort.

Main Question:

{question}

Evidence Documents:

{formatted_joined_docs}

Provide the final answer only with no explanation.

Regret analysis experiment. Figure 8 empirically verifies a sublinear cumulative regret for Algorithm 1. We perform our regret analysis on the ToolRet-Code dataset, where the result is displayed in Figure 8. To evaluate performance across different time horizons (T), we truncate the query set to various lengths while keeping all other hyperparameters identical to those used for the results in Table 1. Regret is calculated as the difference between the cumulative loss of our online Algorithm 1 and an oracle baseline trained with full-information gradients (see Section 3), with the cross-entropy loss being the loss function.

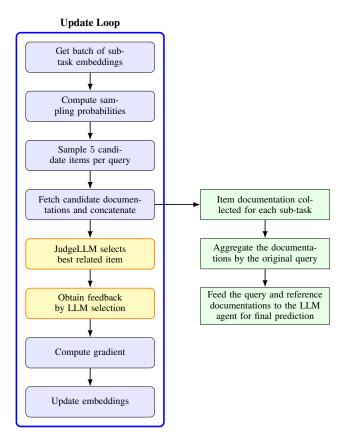


Figure 7: Workflow for the multi-hop experiment. The left panel shows the update loop for our Algorithm 4, which leverages the decomposed sub-task query embeddings and optimizes the document embedding. The right panel illustrates the inference process where, for each sub-query, retrieved documents are collected and then synthesized by an LLM agent to produce the final answer.

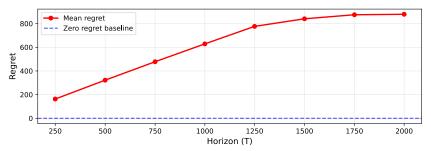


Figure 8: Cumulative regret for Algorithm 1.

D APPENDIX FOR PROOFS

D.1 PROOF FOR LEMMA 3.1

Proof. The (full-information with i_t^* observable) gradient of $l(\Theta; (q_t, i_t^*))$ with respect to θ_i is

$$\left. \frac{\partial l(\boldsymbol{\Theta}; (\boldsymbol{q}_t, i_t^*))}{\partial \boldsymbol{\theta}_i} \right|_{\boldsymbol{\Theta} = \boldsymbol{\Theta}_t} = (p_{t,i} - \mathbb{1}\{i = i_t^*\}) \boldsymbol{q}_t,$$

where $p_{t,i}$ is defined in equation 3.

By the definitions, for any i we have

$$\mathbb{E}_{i_t} \left[\mathbf{g}_{t,i} \right] = \sum_{i_t=1}^{I} p_{t,i_t} \cdot \left(p_{t,i} - \mathbb{1} \{ i = i_t \} \frac{\mathbb{1} \{ i_t = i_t^* \}}{p_{t,i_t}} \right) \mathbf{q}_t$$

$$= p_{t,i} \cdot \left(1 - \frac{\mathbb{1} \{ i = i_t^* \}}{p_{t,i}} \right) \mathbf{q}_t$$

$$= (p_{t,i} - \mathbb{1} \{ i = i_t^* \}) \mathbf{q}_t$$

D.2 Proof of Theorem 5.1

Proof. The proof follows a standard regret analysis for online convex optimization. Let $\langle \cdot, \cdot \rangle_F$ denote the Frobenius inner product and $\| \cdot \|_F$ the Frobenius norm. Define the gradient (estimator) matrices $G_t = [g_{t,1}, \dots, g_{t,I}]^\top$ and $\tilde{G}_t = [\tilde{g}_{t,1}, \dots, \tilde{g}_{t,I}]^\top$, where $g_{t,i}$ is as in Section 3 and

$$\left. ilde{oldsymbol{g}}_{t,i} = rac{\partial l(oldsymbol{\Theta}; (oldsymbol{q}_t, i_t^*))}{\partial oldsymbol{ heta}_i}
ight|_{oldsymbol{\Theta} = oldsymbol{\Theta}_t}$$

is the (full-information with i_t^* observable) gradient of $l(\Theta; (q_t, i_t^*))$ with respect to θ_i .

By the update in Algorithm 1, for each t,

$$\|\boldsymbol{\Theta}_{t+1} - \boldsymbol{\Theta}^*\|_F^2 = \|\boldsymbol{\Theta}_t - \eta \boldsymbol{G}_t - \boldsymbol{\Theta}^*\|_F^2$$
$$= \|\boldsymbol{\Theta}_t - \boldsymbol{\Theta}^*\|_F^2 - 2\eta \langle \boldsymbol{G}_t, \boldsymbol{\Theta}_t - \boldsymbol{\Theta}^* \rangle_F + \eta^2 \|\boldsymbol{G}_t\|_F^2.$$

Summing and rearranging yields

$$\begin{split} \sum_{t=1}^{T} \langle \boldsymbol{G}_{t}, \boldsymbol{\Theta}_{t} - \boldsymbol{\Theta}^{*} \rangle_{F} &= \sum_{t=1}^{T} \frac{\|\boldsymbol{\Theta}_{t} - \boldsymbol{\Theta}^{*}\|_{F}^{2} - \|\boldsymbol{\Theta}_{t+1} - \boldsymbol{\Theta}^{*}\|_{F}^{2}}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|\boldsymbol{G}_{t}\|_{F}^{2} \\ &= \frac{\|\boldsymbol{\Theta}_{1} - \boldsymbol{\Theta}^{*}\|_{F}^{2} - \|\boldsymbol{\Theta}_{T+1} - \boldsymbol{\Theta}^{*}\|_{F}^{2}}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|\boldsymbol{G}_{t}\|_{F}^{2} \\ &\leq \frac{\|\boldsymbol{\Theta}_{1} - \boldsymbol{\Theta}^{*}\|_{F}^{2}}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|\boldsymbol{G}_{t}\|_{F}^{2}. \end{split}$$

Because $l(\Theta; (q_t, i_t^*))$ is convex in Θ , for any t (conditioning on q_t, i_t^*, Θ_t),

$$l(\boldsymbol{\Theta}_t; (\boldsymbol{q}_t, i_t^*)) - l(\boldsymbol{\Theta}^*; (\boldsymbol{q}_t, i_t^*)) \leq \langle \tilde{\boldsymbol{G}}_t, \boldsymbol{\Theta}_t - \boldsymbol{\Theta}^* \rangle_F = \langle \mathbb{E}[\boldsymbol{G}_t], \boldsymbol{\Theta}_t - \boldsymbol{\Theta}^* \rangle_F,$$

where the equality uses the unbiasedness $\mathbb{E}[G_t] = \tilde{G}_t$ from Lemma 3.1 (the expectation is over $i_t \sim p_t$ given the history). Summing over t and applying the previous bound gives

$$\sum_{t=1}^{T} \mathbb{E}\Big[l(\boldsymbol{\Theta}_t; (\boldsymbol{q}_t, i_t^*)) - l(\boldsymbol{\Theta}^*; (\boldsymbol{q}_t, i_t^*))\Big] \leq \frac{\|\boldsymbol{\Theta}_1 - \boldsymbol{\Theta}^*\|_F^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \mathbb{E}\big[\|\boldsymbol{G}_t\|_F^2\big].$$

It remains to bound $\mathbb{E}\big[\|m{G}_t\|_F^2\big]$. By definition, $\|m{G}_t\|_F^2 = \sum_{i=1}^I \|m{g}_{t,i}\|_2^2$, and

$$\begin{split} \mathbb{E} \big[\| \boldsymbol{G}_{t} \|_{F}^{2} \big] &= \sum_{i=1}^{I} \mathbb{E} \big[\| \boldsymbol{g}_{t,i} \|_{2}^{2} \big] \\ &= \| \boldsymbol{q}_{t} \|_{2}^{2} \sum_{i=1}^{I} \mathbb{E}_{i_{t}} \left[\left(p_{t,i} - \frac{\mathbb{1} \{ i = i_{t} \} \mathbb{1} \{ i_{t} = i_{t}^{*} \}}{p_{t,i_{t}}} \right)^{2} \right] \\ &= \| \boldsymbol{q}_{t} \|_{2}^{2} \sum_{i=1}^{I} p_{t,i} \left(p_{t,i}^{2} - 2 \mathbb{1} \{ i = i_{t}^{*} \} + \frac{\mathbb{1} \{ i = i_{t}^{*} \}}{p_{t,i}^{2}} \right) \\ &\leq \left(\frac{1}{p_{t,i_{t}^{*}}} - 2 p_{t,i_{t}^{*}} + 1 \right) \| \boldsymbol{q}_{t} \|_{2}^{2}. \end{split}$$

Plugging this into the previous inequality establishes the claimed bound.

1134 D.3 PROOF OF COROLLARY 5.2 1135 Proof. Under the assumptions given with

$$\eta = \sqrt{\frac{\underline{p}\,\bar{\Theta}}{\bar{q}\,(1-\underline{p})(1+2\underline{p})\,T}},$$

the corollary is a direct result of Theorem 5.1.

E THE USE OF LARGE LANGUAGE MODELS

We disclose our use of the Large Language Model (LLM) assistant in the preparation of this work. Its application was limited to the following support roles:

- **Manuscript Preparation:** The LLM was used for copy-editing tasks, including correcting grammatical errors and improving sentence clarity. The authors wrote all scientific claims, analyses, and the core narrative.
- **Software Development:** The LLM was used as a coding assistant to (a) refactor and improve the efficiency of human-authored code, and (b) adapt existing code from a completed experiment to function with different datasets.

All LLM-generated suggestions for both text and code were critically reviewed, edited, and approved by the authors to ensure their correctness and alignment with the paper's contributions.