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ABSTRACT

In many applications, retrieval-augmented generation (RAG) drives tool use and
function calling by embedding the (user) queries and matching them to pre-
specified tool/function descriptions. In this paper, we address an embedding mis-
alignment issue that often arises in practical applications due to imperfect em-
bedding models or noisy descriptions; such misalignment may lead to incorrect
retrieval and task failure. We introduce Online-Optimized RAG, a deployment-
time framework that continually adapts retrieval embeddings from live interac-
tions using minimal feedback (e.g., task success). Online-Optimized RAG applies
lightweight online gradient updates with negligible per-query latency and requires
no changes to the underlying LLM. The method is plug-and-play: it supports both
single- and multi-hop tool use, dynamic tool inventories, and K-retrieval with
re-ranking. We provide a problem-dependent theoretical analysis that quantifies
how the method’s performance depends on the initialization quality of the embed-
dings and other related quantities. Across diverse tool-use and document-retrieval
scenarios, our Online-Optimized RAG consistently improves tool selection ac-
curacy and end-task success, thus providing a simple, practical path to robust,
self-improving RAG systems.

1 INTRODUCTION

Modern large language models (LLMs) increasingly rely on retrieval-augmented generation (RAG)
(Lewis et al., 2020) to ground responses in external data. In tool-use settings, an agent encodes
the user task, retrieves a tool or function (e.g., an API), and executes it: a query is embedded into
a vector space and matched against a catalog of tool descriptions that are likewise embedded; the
retriever proposes candidates by similarity (often top-k), and an executor (a function-calling API or
tool wrapper) carries out the selected call (Patil et al., 2024; Qin et al., 2023; Lumer et al., 2024).

However, when the system cannot incorporate domain feedback, RAG can still yield incorrect calls
and answers. Retrieval quality degrades whenever the (trained) embedding geometry drifts from the
operational environment. For example, such misalignments can arise from (i) noisy or incomplete
tool documentation, (ii) outdated or suboptimal embedding models, (iii) shifts in user intent or
phrasing relative to training or others. In such cases, semantically related tools may be mapped far
apart (or vice versa), causing the retriever to surface the wrong candidate; the downstream LLM is
then bottlenecked by what it is given, leading to unnecessary backtracking or failed tasks. Figure
1 shows two examples of the degradation of retrieval performance caused by bad documentation
and a poor embedding model. Existing deployments typically freeze embeddings and indices after
offline training (Zeighami et al., 2024; Qin et al., 2023; Patil et al., 2024; Li et al., 2023), leaving no
principled, low-cost way to repair performance at deployment. While recent work adapts controllers
at inference time to decide when or how much to retrieve (Asai et al., 2024; Jeong et al., 2024) or
tunes top-k and retrieval strategies (e.g., no retrieval / one-shot / multi-step) via multi-armed-bandit
or reinforcement-learning approaches (Fu et al., 2024; Tang et al., 2024; Sun et al., 2025), these
methods only adjust global hyperparameters but do not update the underlying embedding space. We
defer further discussion of related literature to Appendix A.

We introduce Online-Optimized RAG, a deployment-time framework that continuously updates re-
trieval embeddings from online interactions for tool use and function calling. The core idea is
simple: treat the tool retriever as an object to be optimized at test time using minimal observable
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Good Documentation
"This model predicts the punctuation
of English, Italian, French and
German texts. It was developed to
restore transcribed..."

Bad Documentation

"punctuation prediction"

0.4294

0.2664

0.4201

Recall@10

Recall@10 (raw)

Recall@10 (optimized)

(a) Good documentation vs. bad documentation (b) Larger model vs. smaller model

Figure 1: We compare the performance between applying Online-Optimized RAG (optimized) and without
optimization (raw). (a) Poor documentation weakens semantic alignment and lowers retrieval quality, while
Online-Optimized RAG mitigates this mismatch. (b) t-SNE visualization of the same samples for two em-
bedding models before and after optimization. Initially, text-embeded-3-large generally outperforms
text-embeded-v4 and their embeddings are distributed quite differently. However, the embeddings after
optimization from both models move toward similar regions and achieve comparable performance, demonstrat-
ing our approach’s effectiveness. The experimental setup for these two subfigures is provided in Appendix C.

feedback (e.g., whether the task is solved). After each interaction, we apply lightweight online gra-
dient updates to the item (tool) embeddings to improve future retrieval accuracy without modifying
the underlying LLM, planner, or executors. The procedure is plug-and-play, adds negligible latency,
requires no privileged access to model internals, and also applies beyond tools to general document
retrieval.

Our contributions are summarized as follows:

Problem formulation for online retrieval. We cast the problem of RAG tool and function selection
under an online learning framework with bandit-style execution feedback (success/failure signals
only for the chosen tool), updating the retrieval geometry on the fly after collecting each feedback.

A simple, scalable update rule. We propose an online gradient descent variant that adjusts embed-
dings per interaction using an importance-weighted estimator. The update of the embeddings keeps
computation overhead minimal for large catalogs and high-throughput systems; it is both intuitive
and theoretically supported.

Versatility across real retrieval settings. The same update mechanism applies to tool and docu-
ment retrieval, single- and multi-hop pipelines, dynamic tool inventories, and multiple retrievals with
reranking. This enables a straightforward integration with common function-calling frameworks and
LLM agents without altering the LLM.

Principled adaptation guarantees. We derive a problem-dependent performance analysis clar-
ifying how performance depends on the quality of the initial embeddings: strong initializations
accelerate convergence toward the optimum, while weaker ones still improve steadily under online
updates.

Empirical evidence on comprehensive tasks. Across diverse scenarios, our Online-Optimized
RAG consistently improves tool selection and downstream task success, and the performance also
transfers to general document retrieval. This demonstrates our method as a simple and robust path
to self-improving RAG.

2 PROBLEM SETUP

2.1 RAG FOR TOOL USE AND FUNCTION CALLING

In this section, we describe the problem of RAG and present its mathematical setup. The setup can
be viewed as a simplified version of the most general RAG systems. The aim here is to generate
intuitions and to give us a rigorous language to describe our algorithm, and we will discuss several
extensions that cover a broad range of different RAG application contexts.
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Figure 2: Online-Optimized RAG updates tool embeddings at deployment time for each incoming query qt.
When the selected tool it succeeds, its embedding moves toward the query to increase similarity. When it fails,
the embedding of it moves away to reduce similarity. Embeddings of all unselected tools are also pushed away
from the query. See Algorithm 1 and its discussion for details.

Specifically, for a RAG system, an embedding model such as OpenAI or Gemini embeddings API,
maps an input query (e.g., a prompted question or task for the users) to a query embedding q ∈
Rd. On the other hand, a database or a tool pool contains I candidate items (e.g., documents for
answering the question, functions in MCP, or tools for solving the task). The goal of RAG is to
retrieve a proper tool from the I items that best fits the query q. For the basic setup, we consider
the case that for each query q, there exists an (unobserved) optimal item i∗ ∈ {1, . . . , I} that best
answers the query or solves the task. The case is motivated by that in most tool-use and function-
calling applications, the optimal tool or function is usually unique. However, our online-optimized
framework and the algorithm also apply to more general setups of K-retrievals (with rerankers),
time-varying database, and multi-hop retrievals which we defer to Section 3.1.

Next, given q, the RAG system produces a distribution p = (p1, . . . , pI), where pi is the probability
of selecting item i. The cosine similarity-based RAG (most commonly used) represents each item i
with an embedding vector θi ∈ Rd,

Θ = [θ1, . . . ,θI ]
⊤ ∈ RI×d.

Then each item i is scored by the softmax of the inner product

pi(q,Θ) =
exp(q⊤θi)∑I

i′=1 exp(q
⊤θi′)

. (1)

In this light, the retrieval problem can also be viewed as a multiclass classification with input q and
label i∗ under a softmax classifier parameterized by Θ. The loss function is

l(Θ; (q, i∗)) = − log pi∗(q,Θ).

2.2 ONLINE-OPTIMIZED FRAMEWORK FOR RAG

We now present an online-learning setting for the RAG problem where at each time t = 1, . . . , T ,
a query arrives represented by the embedding qt. Importantly, we allow changing embeddings
Θt ∈ RI×d indexed by time t. The benefit is that this admits an imperfect initial embedding Θ1

and allows embeddings to be better learned and improved over time.

In hindsight of seeing all the data {(qt, i∗t )}Tt=1, the optimal embedding should be

Θ∗ = argmin
Θ

T∑
t=1

l(Θ; (qt, i
∗
t )) . (2)

In the online setting as how these RAG systems are usually deployed in practice, at each time t, we
can choose the embeddings Θt based on the past observation historyHt = {qs, is,1{is = i∗s}}

t−1
s=1.

Here qs is the query embedding at time s, is is the chosen tool, and the indicator variable tells
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whether the chosen tool is the correct/optimal one or not. And thus the RAG performance is mea-
sured by

T∑
t=1

l(Θt; (qt, i
∗
t )) .

We make several important remarks about the setup. First, the online setup is mainly motivated by
the sequentially arriving nature of the user queries in RAG systems, and the nature makes it possible
to continually refine the embeddings Θt. The setup also allows a distribution shift of qt over time,
and ideally, Θt should be online optimized to adapt to the shift over time. Second, the feedback
structure 1{it = i∗t } is mild as it doesn’t require knowing the optimal i∗t but only whether the
chosen one it equals i∗t or not. Such a bandit-style or partial-observation feedback system removes
the need for additional data annotations on the optimal i∗t at each time (which users of the RAG
may not even know), but 1{it = i∗t } can be simply obtained by users’ interactions (thumb-up or
-down) or rule-based judges of task success. Third, we choose to optimize the database/toolbase
embeddings Θt instead of the query embedding model that gives qt for two reasons: (a) the query
embedding models are sometimes blackbox APIs and don’t provide a fine-tuning option, and (b)
they are often used simultaneously for other RAG tasks, and fine-tuning against one RAG task may
deteriorate its performances on others. Lastly, we note our idea of online-optimizing Θt can be
viewed as a lightweight implementation of the tool description rewriting idea in building MCP-
based agents (Anthropic, 2025); we optimize in the embedding space, whereas Anthropic (2025)
optimizes in the language space, both for the tool use and function callings.

3 ONLINE-OPTIMIZED RAG: ALGORITHMS AND VARIANTS OF RAG

In this section, we present our algorithm of online-optimized RAG and show how it can be applied
to several extensions beyond the main setup.

Algorithm 1 implements the standard RAG pipeline when handling a stream of user queries, except
for Step 5 and Step 6, where it updates the embeddings Θt. Essentially, the update performs a
stochastic gradient descent with respect to the loss function equation 2. We note that in calculating
the update equation 4, it only requires the knowledge of 1{i = i∗t }, i.e., we only need to know
whether the chosen item it is the correct one or not, but no need to know i∗t . As mentioned earlier,
this creates much convenience in annotation – no need for hiring annotators to label i∗t . The most
important structural property of the update is described by the following lemma.

Lemma 3.1. For i = 1, ..., I ,

E[gt,i] =
∂l(Θ; (qt, i

∗
t ))

∂θi

∣∣∣∣∣
Θ=Θt

where the expectation is over the tool selection it ∼ pt as defined in Algorithm 1.

The lemma states that the update term at time t can be viewed as a stochastic gradient of the t-th
term in the loss function equation 2. This enables a clean theoretical analysis of the algorithm, which
we defer to Section 5. The key to achieving this property in Lemma 3.1 is the coefficient before qt.
Such a design often appears for bias correction in adversarial online learning (Auer et al., 2002;
Kakade et al., 2008).

Intuitively, for the chosen item i = it, if the choice is incorrect (it ̸= i∗t ), then gt,it = pt,it · qt
and the update θt+1,it = θt,it − η pt,it · qt moves θt,it away from qt, decreasing their similarity. If

the choice is correct (it = i∗t ), then gt,it =
(
pt,it − 1

pt,it

)
qt, so pt,it − 1

pt,it
≤ 0 and the update

moves θt,it toward qt, increasing similarity. The magnitude of this correction is proportional to∣∣pt,it − 1
pt,it

∣∣, which is larger when the model’s current confidence pt,it is smaller, i.e., we correct
more aggressively when we were unsure yet happened to be right. For all other items i ̸= it,
the update θt+1,i = θt,i − η pt,i · qt moves θt,i away from qt, decreasing their similarity. This
nonzero adjustment for unchosen items is because the loss couples all items through the softmax
normalization, and hence increasing probability on the (unknown) correct item necessarily requires
decreasing probability on the others. The dynamics are also visualized in Figure 2.
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Algorithm 1 Online-Optimized RAG (ORAG)

Input: Initial embeddings Θ1 = [θ1,1,θ1,2, . . . ,θ1,I ]
⊤ ∈ RI×d; learning rate η > 0

1: for t = 1, 2, . . . do
2: Observe query embedding qt ∈ Rd.
3: Compute sampling probabilities from the current Θt by equation 1:

pt,i = pi(qt,Θt), i = 1, . . . , I. (3)

4: Sample an item (tool/document) it ∼ pt = (pt,1, . . . , pt,I) and get feedback 1{it = i∗t }.
5: Compute the (stochastic) gradient estimate gt,i for each item i:

gt,i =

(
pt,i −

1{i = it}1{it = i∗t }
pt,it

)
qt. (4)

6: Update embeddings for Θt+1 = [θt+1,1, . . . ,θt+1,I ]
⊤ by

θt+1,i = θt,i − η · gt,i.

▷ Optional: project θt+1,i into some desired subspace (such as unit ball {θ ∈ Rd : ∥θ∥2 ≤ 1})
7: end for

We make the following remarks about the algorithm:

Learning rate. The parameter η controls the learning rate of embedding updates. As shown later, a
proper choice of η yields convergence of the loss toward the optimum. In practice, a small constant
(e.g., η = 10−5) prevents overly large changes. One can also use a time–varying schedule, e.g.,
ηt = c/

√
t with c > 0, to taper updates as more (online) data arrive.

Session scope. The algorithm imposes no requirements on how (qt, i
∗
t ) are generated. In practice,

the embedding updates may aggregate interactions from a broad user population (to adapt univer-
sally) or from a single user (to personalize the system). The prototypical version of Algorithm 1
performs updates upon every sample, but one may easily convert it into a batched version by batch-
ing samples from multiple timestamps or even an offline version.

Computation. As noted earlier, the algorithm is lightweight, and it performs one gradient update
at each time step. There is an even more efficient version which only performs an update to the
embedding of the chosen item it. We defer more details to Appendix B.2.

Exploration. Unlike Banditron (Kakade et al., 2008) for online multiclass prediction, which en-
forces uniform exploration with a fixed probability, our procedure utilizes the inherent randomness
of the vector pt. The advantage of this exploration-free design is that it doesn’t sacrifice the current
user experience for future improvement of the system.

3.1 VARIANTS OF THE RAG SETUP

Now we show how Algorithm 1 can be applied to more general RAG settings than the setup in the
last section. We report its numerical performance in the next section, and defer more implementation
details to Appendix B.3.

K retrievals with reranker. Algorithm 1 retrieves one single tool/function per round. A practical
extension is to retrieve K ≥ 2 candidates and pass them to a reranker (e.g., a cross-encoder or an
LLM judge) that selects the best among them (Qin et al., 2023; Xu et al., 2024). In Algorithm 2,
we deal with the RAG system with a reranker; instead of sampling one item, it samples multiple
items and lets the reranker decide the best one. The algorithm thus modifies the sampling step of
Algorithm 1 (line 4) by inserting a reranking block.

Time-varying database. Algorithm 1 is also compatible with a dynamic toolbox {1, . . . , I} that
changes over time. In its variant Algorithm 3, at the start of round t, it first updates the available set of
items and adjusts the embedding matrix Θt accordingly (adds rows for new items and removes rows
for obsolete ones). Then compute pt and proceed as usual, i.e., ensure Θt contains exactly the items
available at time t. This operates smoothly because (i) the sampling distribution is softmax-based
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(it automatically re-normalizes over the current items), and (ii) the updates are item-wise (lines 5-6
of Algorithm 1). This setting captures the case where the optimal tool for certain queries may not
exist in early phases (small t) and only becomes available at a later stage. For example, the optimal
tool i′ for a query q′ is unavailable for t < 10, and qt = q′ for all t ≤ 10. Even without seeing i′,
Algorithm 3 will repeatedly push the existing item embeddings away from q′ whenever the sampled
item is incorrect. This decreases their logits q′⊤θt,i and thus their softmax probabilities relative to
the (eventual) optimal item. When i′ is introduced at t = 10, even with an untouched, reasonable
initialization aligned to q′, its selection probability will be comparatively higher, improving retrieval
without any special warm start.

Multi-hop retrieval. Some RAG tasks require multi-hop retrieval to select multiple items that
jointly solve the task (Tang & Yang, 2024). A common strategy is to use a planner (e.g., an LLM) to
decompose the input into sub-tasks (Shen et al., 2023; Qin et al., 2023; Lumer et al., 2024). In such
a setting, we can apply Algorithm 1 at each hop by reducing the multi-hop query/task to a sequence
of single-hop sub-tasks. Concretely, in the variant Algorithm 4, at hop h (the h-th sub-task), we run
Algorithm 1 to select an item and obtain feedback from a judge (e.g., an LLM or rule-based judge
when a human is unavailable) indicating whether the selection advances or answers the query. These
per-hop updates align the embeddings across the entire multi-hop pipeline.

Algorithms 2, 3 and 4 are all formally described in Appendix B.3.

4 EXPERIMENTS

For Algorithm 1 and its variants, we evaluate them on both tool calling and information retrieval
tasks and conduct experiments on several open source benchmarks. We summarize the experiment
setup here and defer the implementation details to Appendix C. Unless otherwise noted, all results
of our methods are computed as the average of five independent runs.

Datasets. For tool use, we adopt UltraTool (Huang et al., 2024) and three sub-tasks from Tool-
Ret (Shi et al., 2025): ToolRet-Web, ToolRet-Code, and ToolRet-Customized. For information re-
trieval, we use FiQA benchmark (Thakur et al., 2021). For multi-hop reasoning, we use MultiHo-
pRAG (Tang & Yang, 2024). These datasets provide real-world scenarios for retrieval tasks.

Baselines. We compare our method against a strong suite of retrieval models following the method-
ology in Shi et al. (2025). The baselines include a sparse retriever based on BM25 (Huang et al.,
2024), competitive dense retrievers accessed via API: OpenAI’s text-embedding-3-large
and Qwen’s text-embedding-v4, and also two state-of-the-art cross-encoder models of dif-
ferent sizes based on previous research and benchmark reports (Muennighoff et al., 2022; Tang &
Yang, 2024; Shi et al., 2025): Qwen3-Reranker-0.6B and bge-reranker-v2-gemma.

Metrics. For all retrieval tasks, we report performance using standard information retrieval metrics:
Recall@k (R@k) and NDCG@k (N@k). Following common practice, we choose k = 10. For
tool-use simulation experiments, we also report the function-call accuracy.

4.1 RETRIEVAL PERFORMANCE

We begin by assessing Algorithm 1 through a comparison with strong baselines in the retrieval
literature. We report metrics after applying the method with an average of 3000 updates to the
embeddings (exact numbers vary based on the selected batch size and dataset size), and we in-
clude the initial models without online updates. Table 1 presents the results, where Ours de-
notes the results of Algorithm 1. The results give several key insights. First, our proposed
method demonstrates a significant and consistent improvement over its base dense retrieval models.
For example, on the ToolRet-Code benchmark, both the text-embedding-large-3 and the
text-embedding-v4 baselines gain significant performance improvements, and the initially un-
derperformed text-embedding-v4 even outperforms the text-embedding-large-3 af-
ter the optimization via our method. This shows our approach is not only effective but also versatile,
enhancing strong existing models without requiring architectural changes. Second, traditional sparse
retrieval methods like BM25, which rely on lexical matching, consistently underperform across all
benchmarks. This highlights the necessity of semantic understanding for the nuanced task of tool
retrieval, where the user’s intent may not share keywords with the tool’s description. Finally, while
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powerful reranker models can achieve high performance on specific tasks, their practical utility is
often limited by high computational costs, making them unsuitable for real-time applications. As
visualized in Figure 3, our method provides a much more balanced and practical solution, achieving
state-of-the-art performance while maintaining low inference latency.

Table 1: Retrieval performance at k=10. The best result in each column is highlighted. Percentage improve-
ments of our methods over their baselines are shown below each score. Dataset names are abbreviated: U-Tool
(UltraTool), T-Web (ToolRet-Web), T-Code (ToolRet-Code), and T-Custom (ToolRet-Customized).

Method U-Tool FiQA T-Web T-Code T-Custom

R@10 N@10 R@10 N@10 R@10 N@10 R@10 N@10 R@10 N@10

BM25 0.3208 0.2003 0.2955 0.2326 0.1778 0.1428 0.3446 0.2421 0.4922 0.3816
bge-reranker-v2-gemma 0.8448 0.5852 0.7500 0.4655 0.4849 0.3486 0.6081 0.5322 0.6455 0.5221
Qwen3-Reranker-0.6B 0.7200 0.4590 0.5500 0.4361 0.3622 0.1897 0.5802 0.4781 0.6274 0.4923

text-embedding-v4 0.7451 0.5064 0.5335 0.4604 0.2701 0.1453 0.5291 0.3770 0.5066 0.4097
text-embedding-3-large 0.8356 0.6067 0.6258 0.5462 0.3243 0.1675 0.5347 0.3582 0.6378 0.5204

Ours (text-emb.-v4) 0.8256
(+8.05%)

0.5982
(+8.28%)

0.5464
(+1.29%)

0.4698
(+0.94%)

0.3657
(+9.56%)

0.1968
(+5.15%)

0.5960
(+6.69%)

0.4280
(+5.10%)

0.5739
(+6.73%)

0.4398
(+3.01%)

Ours (text-emb.-3-L.) 0.8682
(+3.26%)

0.6522
(+4.55%)

0.6421
(+1.63%)

0.5680
(+2.18%)

0.3780
(+5.37%)

0.2065
(+3.90%)

0.5849
(+5.02%)

0.4070
(+4.88%)

0.6937
(+5.59%)

0.5735
(+5.31%)

Figure 3: Performance vs. time cost of different retrieval methods. The performance is the arithmetic average
of R@10 results in Table 1, and the time cost is evaluated and recorded on the same GPU server. The embedding
model time cost uses the Qwen3-Embedding-4B as the proxy.

4.2 ALGORITHM 1’S VARIANTS EVALUATION

We now evaluate the adaptability of our method across several practical scenarios, including integra-
tion with rerankers, time-varying databases, and multi-hop retrieval tasks (see the variants discussed
in Section 3.1). We use the UltraTool benchmark for experiments on dynamic databases and integra-
tion with rerankers, and the MultiHopRAG benchmark for the multi-hop retrieval task. The detailed
experiment setup is provided in Appendix C.

Integration with Rerankers. We consider a pipeline where an LLM reranks the top candidates
retrieved by our model before a final tool is selected. For each query, a reranker model reranks
the sampled 10 tool documentations, and the success of the final tool call provides the gradients
for our algorithm as shown in Algorithm 2. For reproducibility, we employ RankGPT (Sun et al.,
2023) with gpt-4.1-nano-2025-04-14 as the reranker. We compare this LLM-as-reranker
approach against our standard method that samples directly from the learned policy and also the
baseline, where we make no updates to embeddings. The results are presented in Figure 4. We ob-
serve that during the early stage, it is indifferent whether to use a reranker or not. Later, the reranker
accelerates improvement in retrieval performance. The reason is that a stronger reranker increases
the probability of selecting the correct item. Intuitively, a successful retrieval yields a precise signal
that the chosen item is correct, while a failed retrieval only indicates that the chosen item is incorrect
without revealing which item is correct. By increasing the rate of successful retrievals, the reranker
provides more informative feedback for subsequent learning.

Time-varying database. We study a setting where the toolbase changes over time. At the start,
only a random subset of tools is available, and the remaining tools are introduced after half of the
queries have been processed. Under this setup, part of the embeddings cannot be updated during
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Figure 4: Performance on UltraTool with and without an LLM-based reranker. Integrating an LLM reranker
provides a stronger signal, accelerating learning and further boosting retrieval performance.

the first phase, and for some queries, the ground truth optimal tool may be temporarily unavailable.
Even so, our method can improve the performance as discussed in Section 3.1. We compare this
dynamic setting, labeled as Dynamic DB (Algorithm 3), with a static baseline where all tools are
available from the beginning, labeled as Default (Algorithm 1). As in Figure 5, though removing
embeddings at the beginning can reduce recall, our method adapts to the changing set of tools and
achieves consistent gains.

Figure 5: Performance on UltraTool for static vs. dynamic database. Our method demonstrates robust adapta-
tion, maintaining consistent improvements even when the toolset changes midway through the experiment.

Multi-hop retrieval. We evaluate our method in a multi-hop setting, where solving an input task
requires a sequence of successful tool retrievals. The plug-and-play nature of our algorithm en-
ables straightforward integration into the existing multi-hop frameworks. We implement a query
decomposition pipeline in which a planner first decomposes the input task into several subtasks, and
Algorithm 1 is applied to each subtask, as discussed in Section 3.1. Here, for each subtask query,
we retrieve only 5 documents. We evaluate on the MultiHopRAG benchmark, and the performance
changes are shown in Figure 6. This integration yields a substantial improvement in end-to-end
question answering accuracy, from 0.55 to 0.68.

Figure 6: Performance changes on the MultiHopRAG benchmark. The baseline is computed using the same
retrieval and question-answering workflow (see Appendix C) with raw text-embedding-3-large em-
beddings. Integrating our method into a task decomposition pipeline demonstrates stable learning, leading to
improved multi-hop QA performance.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of Algorithm 1. The aim is not so much for a
theoretical peace of mind but to derive more insights for implementing the algorithm in practice.
Generally, the performance of an online algorithm/policy π is measured by its regret

Regπ
(
{(qt, i∗t )}Tt=1

)
=

T∑
t=1

l(Θt; (qt, i
∗
t ))−

T∑
t=1

l(Θ∗; (qt, i
∗
t )) ,

where Θt is the embedding at time t specified by the policy π, Algorithm 1 in our context, and Θ∗

is the optimal embedding defined by equation 2 upon optimizing over all the queries in a hindsight
manner. As noted earlier, we make no assumption on the generation of qt and i∗t .

Theorem 5.1. For any sequence {(qt, i∗t )}Tt=1, Algorithm 1 (ORAG) with initialization Θ1 and
learning rate η > 0 satisfies

E
[
RegORAG({(qt, i∗t )}Tt=1

)]
≤ ∥Θ1 −Θ∗∥2F

2η
+

η

2

T∑
t=1

(
1

pt,i∗t
− 2pt,i∗t + 1

)
∥qt∥22,

where ∥ · ∥F denotes the Frobenius norm and the expectation is w.r.t. the randomness of it’s.

Theorem 5.1 gives a problem-dependent regret bound for Algorithm 1. The first term depends on
the initialization Θ1, whereas the second depends on the probabilities pt,i∗t of selecting the opti-
mal items. For the initialization quality, the term ∥Θ1 − Θ∗∥2F quantifies how close the initial
embeddings are to the optimum. If the initialization is good (i.e., close to Θ∗), only minor updat-
ing is needed. For the second term, we can interpret it as the confidence in the optimal item. The
summation grows when the model assigns low probabilities to the optimal item. Intuitively, lower
confidence (smaller pt,i∗t ) incurs larger regret. In particular, if pt,i∗t = 1 then the contribution at
time t is zero and the corresponding gradient gt,i vanishes for all i and there is no need to adjust the
embeddings. Further, in an unrealistically ideal case, if pt,i∗t ≡ 1 for all t, then RegORAG = 0 and
Algorithm 1 leaves Θt ≡ Θ1 unchanged. In the light of Lemma 3.1, the proof follows the standard
analysis of online gradient descent (Hazan et al., 2016) and is deferred to Appendix D.

With an appropriate choice of η to trade off these two aspects, Algorithm 1 achieves sublinear regret
in T ; equivalently, the average regret tends to zero and the loss approaches the optimum of Θ∗:
Corollary 5.2. Assume there exist constants Θ̄ > 0, p ∈ (0, 1), and q̄ > 0 such that ∥Θ1−Θ∗∥2F ≤

Θ̄, pt,i∗t ≥ p, and ∥qt∥22 ≤ q̄ for all t. Then, with η =

√
p Θ̄

q̄ (1−p)(1+2p)T , we have

E
[
RegORAG({(qt, i∗t )}Tt=1

)]
≤

√
Θ̄ q̄ (1− p)(1 + 2p)T

p
= O(

√
T ).

Corollary 5.2 shows that Algorithm 1 attains O(
√
T ) regret relative to the optimal embeddings

(knowing all incoming queries in hindsight). While the choice of η above depends on several pa-
rameters, in practice (and in our experiments), a small constant with a time-varying schedule, e.g.,
ηt = c/

√
t with c = 10−5 (as used in standard online convex optimizations (Hazan et al., 2016))

can work well across different contexts. Figure 8 in Appendix C empirically verifies a sublinear
cumulative regret for Algorithm 1. We also draw a connection between the cross-entropy loss (used
in the above regret analysis) and the accuracy metric, and we refer to Appendix B.

6 CONCLUSION

We introduce Online-Optimized RAG, a deployment-time framework for tool use and function call-
ing that continually improves retrieval by updating embeddings from live interactions with minimal
feedback. Our method casts retrieval as online classification and employs lightweight gradient-style
updates that preserve latency and throughput, scale to large catalogs, and integrate seamlessly with
existing LLM pipelines without retraining the generator. We provide theoretical guarantees and an
analysis linking initial embedding quality to downstream performance, supported by empirical eval-
uation on real retrieval workloads. We hope this work catalyzes future deployment of self-improving
RAG systems.
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REPRODUCIBILITY STATEMENT

To ensure full reproducibility, our source code is provided in the supplementary material. Please note
that reproducing experiments involving external LLM APIs will require a valid API key. The original
datasets are publicly available on the Hugging Face Hub, with detailed processing steps described
in Appendix C.1. We will release the processed datasets upon publication. For our theoretical
contributions, detailed proofs and extended discussions are available in Appendix D and Appendix
B, respectively.
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A RELATED WORK

A.1 RETRIEVAL AUGMENTED GENERATION

Retrieval-augmented generation (RAG) (Lewis et al., 2020) augments LLMs with a retriever that
supplies passages from an external knowledge base and instructs the model to answer using those
passages. By exposing sources, RAG reduces the risk of hallucinations and improves factuality. We
refer to the survey paper Oche et al. (2025) for a comprehensive review of RAG.

The first line of work adapts when and how much to retrieve at inference time rather than changing
the retriever itself. SELF-RAG (Asai et al., 2024) lets the model decide when to retrieve and critique
its own outputs, reducing hallucinations over standard RAG, while Adaptive-RAG (Jeong et al.,
2024) learns a lightweight router that sends easy questions to zero/single-shot retrieval and harder
ones to multi-step pipelines, trading accuracy for latency. Building on online signals, AutoRAG-HP
(Fu et al., 2024) frames top-k (and related knobs) as a hierarchical bandit tuned from live feedback;
MBA-RAG (Tang et al., 2024) treats whole retrieval policies (none/one-shot/multi-step) as arms;
and DynamicRAG (Sun et al., 2025) optimizes a reranker via reinforcement learning to reorder
passages and choose k per query. These methods primarily tune controller hyperparameters rather
than updating the embedding space as we do.

Another line of work swaps or augments the retrieval substrate itself. Parametric RAG (Su et al.,
2025) pre-parameterizes documents as small LoRA adapters so the model retrieves by merging
adapters instead of consuming long contexts, while HippoRAG and its follow-up (Jimenez Gutierrez
et al., 2024; Gutiérrez et al., 2025) build an open knowledge graph and use graph walks to achieve
multi-hop, context-aware retrieval.

Closer to our aim of aligning the retriever with usage signals, several papers adjust representations at
inference or through fine-tuning. RAFT (Zhang et al., 2024) fine-tunes generators to quote the right
spans, improving faithfulness under noisy top-k. For continual retriever training, Goswami et al.
(2025) estimates query-embedding drift for new tasks and compensates it at retrieval time to preserve
compatibility with an existing index. ReFIT (Reddy et al., 2023) distills a cross-encoder reranker
into the query embedding on the fly and re-retrieves with the updated query vector; FLAIR (Zhang
et al., 2025) leverages user/synthetic indicator feedback to re-rank via a two-track scoring scheme;
and NUDGE (Zeighami et al., 2024) fine-tunes document embeddings through offline training and
validation datasets with positive feedback. However, these approaches are controller-tuning, offline,
or/and require labeled offline datasets. In contrast, our method performs lightweight online gradient
updates to the retrieval embeddings from minimal deployment feedback (e.g., solved/unsolved).

A.2 TOOL USE AND FUNCTION CALLING

Tool use and function calling are now core capabilities of modern LLMs: models can invoke external
resources to complete tasks by calling APIs (Qin et al., 2023; Patil et al., 2024; Li et al., 2023),
executing a Python interpreter (Gao et al., 2023), or orchestrating other AI models (Shen et al.,
2023). In particular, RAG is commonly employed in the function-call setting for tool-augmented
LLMs: given a user query, the system retrieves tool/function specifications and examples from a
catalog so the model can select and parameterize the correct call (e.g., Shen et al. (2023); Liu et al.
(2025); Lumer et al. (2024); Alazraki & Rei (2024); Xu et al. (2024)).

To strengthen tool use, methods generally combine two phases: offline training and online inference.
Offline approaches fine-tune LLMs on curated tool-use corpora (Qin et al., 2023; Patil et al., 2024;
Li et al., 2023; Hao et al., 2023; Wang et al., 2024; Schick et al., 2023). Online techniques improve
calling performance at inference time by supplying clearer tool descriptions, leveraging the model’s
reasoning, and incorporating feedback loops (Yuan et al., 2024; Alazraki & Rei, 2024; Lumer et al.,
2024; Xu et al., 2024; Shen et al., 2023). Within the feedback-driven line, PEToolLLaMA (Xu et al.,
2025) personalizes tool learning through supervised fine-tuning and direct preference optimization,
while Xu et al. (2024) iteratively refines queries using tool feedback to improve retrieval accuracy
at the cost of additional latency. Both frameworks require offline model updates and/or multi-step
inference. By contrast, our approach targets the retrieval layer that underpins function selection: we
perform lightweight online gradient updates to the retrieval embeddings using minimal deployment
feedback, aligning tool retrieval without fine-tuning the LLM or adding complex controllers. This
yields a plug-and-play mechanism for robust, self-improving tool use during deployment.
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B MORE DISCUSSIONS

B.1 DISCUSSION FOR CROSS-ENTROPY LOSS

We choose the cross-entropy loss since its convexity in Θ and also its surrogate property for the 0–1
loss (Tewari & Bartlett, 2007; Bartlett et al., 2006): optimizing Θ by minimizing cross-entropy is
statistically aligned with maximizing top-1 retrieval accuracy.

The retrieval task can be cast as a multiclass prediction with input q and label i∗. The Bayesian 0–1
risk of a decision rule g(q) ∈ {1, . . . , I} is

R0–1(g) = Pr
(
g(Q) ̸= I∗

)
= E[1{g(Q) ̸= I∗}] ,

whose Bayes-optimal rule is g⋆(q) = argmaxi ηi(q), where ηi(q) := Pr(I∗ = i | Q = q) and
the above probability is with respect to the randomness of (Q, I∗). Directly minimizing the 0–1
risk is intractable; a standard approach is to minimize the (population) cross-entropy (CE) risk of a
probabilistic predictor p(q,Θ) with parameter Θ,

RCE(Θ) = E[− log pI∗(Q,Θ)] .

The CE loss is a calibrated surrogate for the 0–1 loss: its conditional minimizer predicts the true
posteriors η(q), and any sequence of models whose CE risk approaches its minimum induces deci-
sion rules whose 0–1 risk approaches the Bayes risk. Thus, training Θ by minimizing cross-entropy
(with pi given by the softmax in equation 1) is statistically aligned with maximizing top-1 retrieval
accuracy as shown in Proposition B.1, which follows the standard analysis of surrogate properties
(Tewari & Bartlett, 2007; Bartlett et al., 2006).

Proposition B.1. Let (Q, I∗) be distributed according to some unknown law. For any measurable
p(q,Θ) ∈ ∆I−1 and the induced classifier gΘ(q) := argmaxi pi(q,Θ), define

ηi(q) := Pr(I∗ = i | Q = q), ∆(q) := η(1)(q)− η(2)(q),

where η(1) ≥ η(2) ≥ · · · are the sorted coordinates of η(q). Then:

(i) (Conditional optimality) For each fixed q, the conditional CE risk

L(p; η(q)) := E[− log pI∗ | Q = q] = −
I∑

i=1

ηi(q) log pi

is uniquely minimized over p ∈ ∆I−1 at p = η(q).

(ii) (Excess-risk decomposition)

RCE(Θ)− inf
p
RCE = E

[
KL
(
η(Q) ∥p(Q,Θ)

)]
,

where infpRCE = E
[
H(η(Q))

]
, with H the Shannon entropy.

(iii) (Bayes consistency / classification calibration) Suppose Pr
(
∆(Q) = 0

)
= 0 (no ties almost

surely). If a sequence Θn satisfiesRCE(Θn)→ infpRCE, then

R0–1
(
gΘn

)
−→ inf

g
R0–1 = R0–1(g

⋆).

Proof. (i) For fixed η, L(p; η) = −
∑

i ηi log pi is minimized at p = η by Gibbs’ inequality, since

−
∑
i

ηi log pi = H(η) + KL(η∥p) ≥ H(η),

with equality iff p = η.

(ii) Taking expectation over Q in the identity above yields

RCE(Θ) = E[H(η(Q))] + E
[
KL
(
η(Q) ∥p(Q,Θ)

)]
,

and the infimum over all p is attained by p = η pointwise.
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(iii) By (ii), RCE(Θn) ↓ infRCE implies E
[
KL
(
η(Q) ∥p(Q,Θn)

)]
→ 0. Pinsker’s inequality

gives, for each n,

∥η(Q)− p(Q,Θn)∥TV ≤
√

1
2 KL

(
η(Q) ∥p(Q,Θn)

)
,

hence the total variation distance converges to 0 in L1 and along a subsequence almost surely.
Wherever ∆(Q) > 0, this forces argmaxi pi(Q,Θn) = argmaxi ηi(Q) for all large n. Therefore
gΘn(Q)→ g⋆(Q) almost surely, and by bounded convergence,R0–1(gΘn)→ R0–1(g

⋆).

Remark. In our formulation, pi(q,Θ) is the softmax in equation 1, which maps any score vector
to a valid probability vector. Minimizing the sample average of − log pi∗(q,Θ) is therefore an
empirical proxy for minimizing RCE(Θ), and by the proposition it targets the Bayes-optimal top-
1 retrieval rule under the 0–1 criterion. We also note that the retrieval probabilities pi(q,Θ) are
induced directly by the embedding scores and could potentially be improved via calibration (Chen
& Mueller, 2023; Liu et al., 2024a;b; Nikitin et al., 2024), which is an interesting direction for future
work.

B.2 MORE EFFICIENT GRADIENT UPDATE

Relative to using fixed embeddings (e.g., Θ1), Algorithm 1 adds only two per-round operations:
gradient computation and embeddings update. For very large tool catalogs, an even more efficient
variant updates only the chosen item θt,it each round: compute the (stochastic) gradient estimate
for the sampled item it,

gt,it =

(
1− 1{it = i∗t }

pt,it

)
qt,

and update

θt+1,i =

{
θt,i − η gt,it , if i = it,

θt,i, otherwise.

With a similar analysis of Lemma 3.1, we can show g′
t,i = 1{i = it}

(
1− 1{it=i∗t }

pt,it

)
qt (which

matches the above variant update by noting the indicator 1{i = it} nulls the unchosen items) is
also an unbiased estimator for gradients for all i. Because only the sampled item is modified at each
iteration, this variant is attractive when the number of items is large.

B.3 VARIANTS OF ALGORITHM 1

Algorithm 2 ORAG with K retrievals

Input: Initial embeddings Θ1 ∈ RI×d; learning rate η > 0; beam size K ∈ {1, . . . , I}; reranker
RERANK(q, I)→ i ∈ I

1: for t = 1, 2, . . . do
2: Observe query embedding qt ∈ Rd.
3: Compute sampling probabilities from current Θt via equation 1:

pt,i = pi(qt,Θt), i = 1, . . . , I.

4: Sample a set It of size K without replacement from pt = (pt,1, . . . , pt,I).
5: Obtain final choice it ← RERANK(qt, It) and observe feedback 1{it = i∗t }.
6: Compute the (stochastic) gradient estimate gt,i for each item i:

gt,i =

(
pt,i −

1{i = it}1{it = i∗t }
pt,it

)
qt. (5)

7: Update embeddings for Θt+1 = [θt+1,1, . . . ,θt+1,I ]
⊤:

θt+1,i = θt,i − η · gt,i.

8: end for
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Algorithm 3 ORAG with Dynamic Database

Input: Initial item set I1 and embeddings Θ1 ∈ R|I1|×d; learning rate η > 0; initializer
INITEMBED(i) ∈ Rd for new items

1: for t = 1, 2, . . . do
2: Observe current available item set It (additions/removals relative to It−1).
3: Maintain embeddings for Θt:

• For each i ∈ It \ It−1 (new item), add a row θt,i ← INITEMBED(i) to Θt.
• For each i ∈ It−1 \ It (removed item), delete row θt−1,i from Θt−1.

4: Observe query embedding qt ∈ Rd.
5: Compute probabilities over available items via equation 1:

pt,i = pi(qt,Θt), i ∈ It.

6: Sample it ∼ pt and observe 1{it = i∗t }.
7: Compute the (stochastic) gradient estimate gt,i for each item i:

gt,i =

(
pt,i −

1{i = it}1{it = i∗t }
pt,it

)
qt. (6)

8: Update embeddings for Θt+1 = [θt+1,1, . . . ,θt+1,I ]
⊤:

θt+1,i = θt,i − η · gt,i.

9: end for

Algorithm 4 ORAG with Multi-Hop

Input: Initial embeddings Θ1 = [θ1,1, . . . ,θ1,I ]
⊤ ∈ RI×d; learning rate η > 0

1: for t = 1, 2, . . . do
2: Observe a sequence of sub-task embeddings Qt = {q(h)

t }
Ht

h=1.
3: Initialize Θ

(1)
t ← Θt.

4: for h = 1, 2, . . . ,Ht do ▷ sub-tasks within round t
5: Compute sampling probabilities via equation 1:

pt,h,i = pi

(
q
(h)
t ,Θ

(h)
t

)
, i = 1, . . . , I. (7)

6: Sample an item it,h ∼ pt,h = (pt,h,1, . . . , pt,h,I) and obtain judge feedback yt,h ∈
{0, 1}.

7: Compute the (stochastic) gradient estimate gt,h,i for each item i:

gt,h,i =

(
pt,h,i −

1{i = it,h} yt,h
pt,h,it,h

)
q
(h)
t . (8)

8: Update embeddings:
θ
(h+1)
t,i ← θ

(h)
t,i − η · gt,h,i.

9: end for
10: Set Θt+1 ← Θ

(Ht+1)
t .

11: end for

C EXPERIMENT DETAILS

C.1 DATASET AND PROMPT DETAILS

This part provides details on the construction of queries and document/tool representations for each
benchmark. To ensure reproducibility, we outline the exact data fields and templates used to generate
the text for embedding.
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C.1.1 ULTRATOOL

Following prior work (Braunschweiler et al., 2025), we decompose each annotated plan step into
a standalone retrieval query. For each sample, we construct the query from the top-level question
(question column) and the specific plan step (step column) using the following template:

Given the following task:"{question}", select the best tool provided
in the context to solve the following substep:"{step}".

The resulting text is used as the input for the query embedding model.

For each tool, we create a single text representation (stored as text representation column)
by concatenating the following fields in order. Fields that are empty are omitted.

• Name: name
• Description: description
• Arguments: arguments (parsed as a JSON string)
• Results: results (parsed as a JSON string)

This concatenated string is used to embed the tool documentation.

C.1.2 TOOLRET

We use all 35 sub-tasks from the ToolRet benchmark (Shi et al., 2025). Following the original paper,
we use an instruction-based format for queries, concatenating the provided instruction and the
user query:

{instruction}\n{query}

For tool documentation, we perform a schema-aware extraction from the raw JSON object. We
extract and join the following fields with newlines:

• ToolRet-Code: name, description, func description, functionality
• ToolRet-Web/Customized: name, description

If a field is not present or the documentation is not a valid JSON object, we fall back to using the
raw documentation string for embedding.

C.1.3 FIQA

For the FiQA benchmark (Thakur et al., 2021), we follow the standard setup from the MTEB
toolkit (Muennighoff et al., 2022). For both corpus and queries, we embed the content of the text
field.

C.1.4 MULTIHOPRAG

For each original query, we generate a sequence of sub-queries (decomposed questions)
using an LLM-based query decomposition strategy. We use the following prompt for this task:

You are an expert research analyst specializing in breaking down complex questions into a logical
sequence of simple, answerable sub-questions.
Your task is to decompose a given ’Original Question’ into a series of smaller, ordered sub-questions.
This decomposition will be used to query a retrieval system containing various factual reports.
Your Goal: Create a step-by-step reasoning path. The answer to a later sub-question should ideally
depend on or build upon the answer to a previous one, creating a logical chain.
Key Constraints:

1. Logical Flow: The sub-questions must follow a logical order. The sequence should represent
the steps a human researcher would take to find the final answer.
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2. Self-Contained: Each sub-question must be understandable and answerable on its own.

3. Fact-Focused: All sub-questions must be aimed at retrieving factual information from the re-
ports. Do not ask about the publication source or publisher unless it is essential for resolving
ambiguity.

4. Completeness: The combined answers to your sub-questions should contain all the informa-
tion necessary to answer the Original Question.

5. No Direct Answers: Do not try to answer the Original Question yourself. Only generate the
sub-questions.

We then form a compact retrieval string (formatted query) for each sub-question using the
template:

Context: {original query} | Focus: {sub question}

For the document corpus, we create a standardized text representation by sorting all key-value pairs
of a document’s JSON object and joining them into a single string with the format {key}:{value}
on each line. This approach ensures a consistent representation that includes all available informa-
tion (e.g., category, title, body).

C.1.5 COMMON PREPROCESSING AND EMBEDDING DETAILS

Before embedding, we apply light text normalization to all inputs, including stripping whitespace
and replacing newlines for API stability. If an input exceeds the model’s length limit, we progres-
sively truncate it (e.g., to 8192 characters and then shorter) and skip any samples that remain too
long. The output dimension for all embedding models is set to 1536.

C.2 TRAINER

Our algorithm is implemented using PyTorch. We employ the AdamW optimizer with default pa-
rameters and a learning rate schedule that decays proportionally to 1/

√
t, where t is the training/up-

date step. Key hyperparameters, including the initial learning rate and batch size, were tuned via a
Bayesian-optimization-based grid search on the validation data (10% of the total dataset size). The
search space for each hyperparameter is detailed below:

• Initial Learning Rate (η0): {1e-8, 2e-8, 5e-8, 1e-7, 2e-7, 5e-7, 1e-6, 2e-6, 5e-6, 1e-5}
• Batch Size: {5, 10, 20, 30, 40, 50}

C.3 DATA ENHANCEMENT

The main results presented in Section 4.1 utilize a data augmentation strategy where each query is
processed multiple times to accelerate convergence. We refer to this as the multiple exposure setting.

For a more realistic online deployment scenario, we also evaluate a single exposure setting where
each query is seen only once. Table 2 presents the results for this setting. For this experiment,
we used the same hyperparameters tuned for the multiple exposure setting. We note that perfor-
mance could likely be further improved by re-tuning the hyperparameters specifically for the single
exposure scenario.

C.4 MORE DETAILS ON THE EXPERIMENTS

We offer more details of the experiments included in our main paper here.

Illustration experiments. The experiment illustrated in Figure 1a is conducted on a subset of the
ToolRet-Code dataset. We only use the tool items whose documentation column contains a
functionality key, where the corresponding value is a highly compact and ambiguous descrip-
tion of the tool item. We refer to the full documentation as a “good documentation”, and the only
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Table 2: Retrieval performance in the single exposure setting (no data augmentation). Our method
still consistently improves over the base dense retrieval models, albeit with smaller margins than in
the multiple exposure setting reported in the main paper.

Method U-Tool FiQA T-Web T-Code T-Custom

R@10 N@10 R@10 N@10 R@10 N@10 R@10 N@10 R@10 N@10

text-embedding-v4 0.7451 0.5064 0.5335 0.4604 0.2701 0.1453 0.5291 0.3770 0.5066 0.4097
text-embedding-3-large 0.8356 0.6067 0.6258 0.5462 0.3243 0.1675 0.5347 0.3582 0.6378 0.5204

Ours (text-emb.-v4) 0.7614
(+1.63%)

0.5209
(+1.45%)

0.5382
(+0.47%)

0.4646
(+0.42%)

0.2900
(+1.99%)

0.1579
(+1.26%)

0.5484
(+1.93%)

0.3891
(+1.21%)

0.5202
(+1.36%)

0.4237
(+1.40%)

Ours (text-emb.-3-L.) 0.8540
(+1.86%)

0.6180
(+1.13%)

0.6284
(+0.26%)

0.5483
(+0.21%)

0.3458
(+2.15%)

0.1804
(+1.29%)

0.5430
(+0.83%)

0.3671
(+0.89%)

0.6561
(+1.83%)

0.5324
(+1.20%)

functionality description as a “bad documentation”. The visualization in Figure 1b is ex-
tracted from an experiment run on UltraTool dataset in Table 1. We randomly sample 100 tool items
and inspect their embeddings and performance metrics across different settings.

Variant experiments. All the variant experiments are conducted without the data enhancement
techniques mentioned in Section C.3 to evaluate the practical performance under an online setting.
Also, considering the high costs of LLM-involved experiments, we did not fully tune the parameters
during experiments integrated with the LLM reranker, and only ran 1 round of them.

Varying database experiment. For the varying database experiment shown in Figure 5, we provide
half of the tools in the beginning, and only add the other half as available tools when half of the
queries are processed. The queries are not manipulated.

Multi-Hop retrieval experiment. Figure 7 provides a visual depiction of the combined online-
optimizing and inference workflow for the multi-hop retrieval experiments shown in Figure 6. The
multi-hop pipeline uses an LLM agent (backed by gpt-4o-mini-2024-07-18) for two key
steps: (1) reranking retrieved documents for each sub-task query, and (2) synthesizing a final answer
from the collected evidence, with the support of OpenAI’s JSON mode. The prompts for these steps
are provided below.

You are an impartial and meticulous AI judge. Your task is to determine which of the provided docu-
ments contains useful information to answer the given question, especially the “Focus” one.
Carefully review each document and respond with a JSON object containing the 0-based index of the
relevant document. A smaller index is more relevant.
Question:
{question}
Retrieved Documents:
{formatted docs}
Based on the question, which document is the most relevant?

You are a concise QA assistant. Given a main question and evidence documents, provide the final short
answer only. If uncertain, provide your best effort.
Main Question:
{question}
Evidence Documents:
{formatted joined docs}
Provide the final answer only with no explanation.

Regret analysis experiment. Figure 8 empirically verifies a sublinear cumulative regret for Algo-
rithm 1. We perform our regret analysis on the ToolRet-Code dataset, where the result is displayed
in Figure 8. To evaluate performance across different time horizons (T ), we truncate the query set
to various lengths while keeping all other hyperparameters identical to those used for the results in
Table 1. Regret is calculated as the difference between the cumulative loss of our online Algorithm 1
and an oracle baseline trained with full-information gradients (see Section 3), with the cross-entropy
loss being the loss function.
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Get batch of sub-
task embeddings

Compute sam-
pling probabilities

Sample 5 candi-
date items per query

Fetch candidate documen-
tations and concatenate

JudgeLLM selects
best related item

Obtain feedback
by LLM selection

Compute gradient

Update embeddings

Update Loop

Item documentation col-
lected for each sub-task

Aggregate the documenta-
tions by the original query

Feed the query and reference
documentations to the LLM

agent for final prediction

Figure 7: Workflow for the multi-hop experiment. The left panel shows the update loop for our Algo-
rithm 4, which leverages the decomposed sub-task query embeddings and optimizes the document
embedding. The right panel illustrates the inference process where, for each sub-query, retrieved
documents are collected and then synthesized by an LLM agent to produce the final answer.

Figure 8: Cumulative regret for Algorithm 1.

D APPENDIX FOR PROOFS

D.1 PROOF FOR LEMMA 3.1

Proof. The (full-information with i∗t observable) gradient of l(Θ; (qt, i
∗
t )) with respect to θi is

∂l(Θ; (qt, i
∗
t ))

∂θi

∣∣∣∣∣
Θ=Θt

=
(
pt,i − 1{i = i∗t }

)
qt,

where pt,i is defined in equation 3.
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By the definitions, for any i we have

Eit [gt,i] =

I∑
it=1

pt,it ·
(
pt,i − 1{i = it}

1{it = i∗t }
pt,it

)
qt

= pt,i ·
(
1− 1{i = i∗t }

pt,i

)
qt

= (pt,i − 1{i = i∗t }) qt

D.2 PROOF OF THEOREM 5.1

Proof. The proof follows a standard regret analysis for online convex optimization. Let ⟨·, ·⟩F
denote the Frobenius inner product and ∥ · ∥F the Frobenius norm. Define the gradient (estimator)
matrices Gt = [gt,1, . . . , gt,I ]

⊤ and G̃t = [g̃t,1, . . . , g̃t,I ]
⊤, where gt,i is as in Section 3 and

g̃t,i =
∂l(Θ; (qt, i

∗
t ))

∂θi

∣∣∣∣∣
Θ=Θt

is the (full-information with i∗t observable) gradient of l(Θ; (qt, i
∗
t )) with respect to θi.

By the update in Algorithm 1, for each t,
∥Θt+1 −Θ∗∥2F = ∥Θt − ηGt −Θ∗∥2F

= ∥Θt −Θ∗∥2F − 2η ⟨Gt,Θt −Θ∗⟩F + η2∥Gt∥2F .
Summing and rearranging yields

T∑
t=1

⟨Gt,Θt −Θ∗⟩F =

T∑
t=1

∥Θt −Θ∗∥2F − ∥Θt+1 −Θ∗∥2F
2η

+
η

2

T∑
t=1

∥Gt∥2F

=
∥Θ1 −Θ∗∥2F − ∥ΘT+1 −Θ∗∥2F

2η
+

η

2

T∑
t=1

∥Gt∥2F

≤ ∥Θ1 −Θ∗∥2F
2η

+
η

2

T∑
t=1

∥Gt∥2F .

Because l(Θ; (qt, i
∗
t )) is convex in Θ, for any t (conditioning on qt, i

∗
t ,Θt),

l(Θt; (qt, i
∗
t ))− l(Θ∗; (qt, i

∗
t )) ≤ ⟨G̃t,Θt −Θ∗⟩F =

〈
E[Gt], Θt −Θ∗〉

F
,

where the equality uses the unbiasedness E[Gt] = G̃t from Lemma 3.1 (the expectation is over
it ∼ pt given the history). Summing over t and applying the previous bound gives

T∑
t=1

E
[
l(Θt; (qt, i

∗
t ))− l(Θ∗; (qt, i

∗
t ))
]
≤ ∥Θ1 −Θ∗∥2F

2η
+

η

2

T∑
t=1

E
[
∥Gt∥2F

]
.

It remains to bound E
[
∥Gt∥2F

]
. By definition, ∥Gt∥2F =

∑I
i=1 ∥gt,i∥22, and

E
[
∥Gt∥2F

]
=

I∑
i=1

E
[
∥gt,i∥22

]
= ∥qt∥22

I∑
i=1

Eit

[(
pt,i −

1{i = it}1{it = i∗t }
pt,it

)2
]

= ∥qt∥22
I∑

i=1

pt,i

(
p2t,i − 21{i = i∗t }+

1{i = i∗t }
p2t,i

)

≤
( 1

pt,i∗t
− 2pt,i∗t + 1

)
∥qt∥22.

Plugging this into the previous inequality establishes the claimed bound.
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D.3 PROOF OF COROLLARY 5.2

Proof. Under the assumptions given with

η =

√
p Θ̄

q̄ (1− p)(1 + 2p)T
,

the corollary is a direct result of Theorem 5.1.

E THE USE OF LARGE LANGUAGE MODELS

We disclose our use of the Large Language Model (LLM) assistant in the preparation of this work.
Its application was limited to the following support roles:

• Manuscript Preparation: The LLM was used for copy-editing tasks, including correcting
grammatical errors and improving sentence clarity. The authors wrote all scientific claims,
analyses, and the core narrative.

• Software Development: The LLM was used as a coding assistant to (a) refactor and im-
prove the efficiency of human-authored code, and (b) adapt existing code from a completed
experiment to function with different datasets.

All LLM-generated suggestions for both text and code were critically reviewed, edited, and approved
by the authors to ensure their correctness and alignment with the paper’s contributions.
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