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Abstract
While protein language models (pLMs) have
transformed biological research, the scaling laws
governing their improvement remain underex-
plored. By adapting methodologies from NLP
scaling laws, we investigated the optimal ratio
between model parameters and training tokens
within a fixed compute budget. Our study reveals
that pLM sizes scale sublinearly with compute
budget, showing diminishing returns in perfor-
mance as model size increases, and we identify
a performance plateau in training loss compa-
rable to the one found in relevant works in the
field. Our findings suggest that widely-used pLMs
might not be compute-optimal, indicating that
larger models could achieve convergence more
efficiently. Training a 35M model on a reduced
token set, we attained perplexity results compara-
ble to larger models like ESM-2 (15B) and xT-
rimoPGLM (100B) with a single dataset pass.
This work paves the way towards more compute-
efficient pLMs, democratizing their training and
practical application in computational biology.

1. Introduction
Protein language models (pLMs) leverage natural language
processing (NLP) techniques to model protein sequences,
significantly transforming several scientific fields by en-
abling a deeper understanding of protein function and inter-
actions, facilitating breakthroughs in drug discovery, protein
design, and other biotechnological applications.

Decoder-only pLMs excel in generative modeling, while
encoder-only pLMs build robust representations that can be
utilized for downstream applications. This dual capability
enhances our ability to predict protein behavior and engineer
novel proteins, driving innovation in computational biology.
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Introduced in 2018, ESM-1 (Rives et al., 2021) signals the
start of a transformative change in AI-driven biology, thanks
to the transformer architectures (Vaswani et al., 2017), that
allowed scientists to solve complex biological challenges at
unprecedented scales. These models, which varied in depth
and parameters, facilitated the exploration of diverse protein
sequence spaces such as UniRef100 (Suzek et al., 2015).

Building on those results, the subsequent ESM-2 models
(Lin et al., 2023) incorporated subtle architectural changes
and an increase in scale that led to improved performance,
measured in several downstream tasks.

A plethora of models followed after these seminal works,
that sought in scaling and different training strategies, the
solution for increased performance. Prominent examples are
the Ankh (Elnaggar et al., 2023) and xTrimoPGLM (Chen
et al., 2024) models, which showed the benefits of increased
compute and model size.

Parallel to these advancements, the relationship between
model parameters, dataset size, and compute allocation be-
came an increasing subject of study, as highlighted in Hest-
ness et al. (2017). With the rise of large language models in
NLP and their increasing parameter count, reference studies
such as Kaplan et al. (2020) and Hoffmann et al. (2022)
specifically addressed these scaling dynamics.

To the best of our knowledge, there has been no compre-
hensive effort focused in studying the relationship between
parameter and token counts in the field of pLMs1. The
closest to such work is Hesslow et al. (2022), and while
they studied the effect of scaling in generative decoder-only
models, they did not focus in what we consider has been
the major success of pLMs, learning a representation of the
underlying sequence space of proteins.

Therefore, we will focus on encoder-only models in this
work, and we pose the following questions: In the context
of pLMs, what is the optimal ratio between the number of
tokens and model parameters given a fixed compute budget?
Are the widely used pLMs compute-optimal? What is the
optimal model size for a fixed compute budget?

1During the review process of this work Cheng et al. (2024)
was published.
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2. Empirically obtaining compute-optimal
protein language models.

In this section, we will detail the adaptations done from
Hoffmann et al. (2022) 2 and Kaplan et al. (2020) leading to
building empirical frameworks to assess the optimal ratio
between training tokens and model parameters 3 given a
fixed compute budget.

Fix model sizes and vary the number of training tokens.
Mimicking Hoffmann et al. (2022), we train several models
ranging in size from 5M to 650M parameters (Appendix
C) each with a different number of training steps. For each
model size (N ), we train for s number of steps representing
4 different token sizes (D), ensuring that all tokens in the
training set have been seen only once. Utilizing subsets of
UniRef50 protein sequence database, we adopted a simple
sampling strategy to vary the number of training tokens.
The strategy employed random sampling to generate several
subsets with identical different token counts, ranging from
6.5B to 20.8B tokens.

For each model configuration and each run, we smoothed
and interpolated the training loss curves. This smoothing
process involved fitting a spline to the data points of FLOPs4

and corresponding training losses. This allowed us to accu-
rately interpolate the training loss for any given number of
FLOPs.

Using the interpolated loss curves, we created a mapping
from any FLOP count to the corresponding optimal model
size and the number of training tokens. We evaluated the
training loss at 1500 logarithmically spaced FLOP values for
each run and identified the model size and token count that
minimized the loss at each FLOP value. We then identified
the most efficient models by selecting the model configura-
tion that achieved the lowest loss at each FLOP value.

To derive the relationships Nopt ∝ Ca and Dopt ∝ Cb,
we fit power laws to the data of the most efficient models.
Specifically, we used least squares to fit the model size and
token count data as functions of FLOPs.The exponents a
and b were determined from the fitted parameters.

Fitting a parametric loss function. We analyzed the re-
lationship between model size (parameters N ) and dataset
size (tokens D). The function used to fit the data was out-
lined in Kaplan et al. (2020), which is further explain in
Appendix G. They obtained the combined scaling law:

2In this work we omit Approach 2 from Hoffmann et al. (2022)
due to computational constraints.

3Parameter counts for our models are defined at Appendix F.
4FLOPs computation is equivalent to the one defined in Hoff-

mann et al. (2022) and can be found at Appendix E.

Figure 1. FLOPs vs loss with token-based learning rate decay.

L(N,D) =

[(
Nc

N

)αN
αD

+

(
Dc

D

)]αD

(1)

where, N is the model size (number of model parameters).
D is the dataset size (number of tokens). Nc and Dc are
critical values for model size and dataset size, respectively,
and αN and αD are scaling exponents.

3. Experiments and Discussion
In this section we aim to solve the questions posed at the
beginning of the manuscript through the proposed methods.

3.1. What is the optimal ratio between the number of
tokens and model parameters given a fixed compute
budget?

We sought to derive power laws that describe the relation-
ship between the computational budget, measured in FLOPs,
and the optimal model size and training tokens for a range of
model configurations. With this purpose, we systematically
vary the number of training steps across different model pa-
rameter sizes for a later fitting of power laws to the resulting
training loss curves and a final fitting of the parametric loss
with the data obtained.

Finding a power-law relationship between the param-
eter count, the number of tokens and computing bud-
gets. By fitting power laws to the data of the most efficient
models, we derived the relationships Nopt ∝ C0.27 and
Dopt ∝ C0.71. These relationships suggest that the optimal
model size scales sublinearly with compute budget, while
the optimal number of training tokens scales superlinearly,
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Table 1. Parameter fits to L(N,D)

Parameter αN αD Nc Dc

Value 0.0063 0.0074 4.85× 1079 −1.33× 1069

indicating that encoder-only, protein language models ex-
hibit diminishing returns in training loss improvements with
increasing model size.

Intrigued by this findings we switched approaches to fit a
parametric loss in order to obtain a more in depth explana-
tion of the scaling parameters.

Figure 2. FLOPs vs loss without learning rate decay.

pLMs are lower-bounded in loss regardless of model size
on a single dataset pass. Using the described parametric
loss in Equation 1, we used final losses after smoothing and
interpolation. The small values of αN and αD, reported in
Table 6, indicate that the training loss for pLMs is relatively
insensitive to changes in both model size N and dataset size
D. The extraordinarily large Nc suggests that current model
sizes are far from the critical point where size significantly
impacts training loss. The unreasonable value of Dc implies
that dataset size does not affect the minimum achievable
loss. These results demonstrate that increasing model size
and dataset size offers minimal impact on reducing training
loss within the explored range.

Building upon the results adapted from Hoffmann et al.
(2022) and Kaplan et al. (2020) we could conclude that
none of the loss fittings performed was informative in terms
of the impact that model size or training tokens can have in
attaining a lower loss. It can be easily observed in both sets
of training, i.e. with and without learning rate decay (see

section 3.2 and Figures 1 and 2), that the learning dynamics
of all models for all token sets are lower bounded by the
same loss value (around 2.45).

3.2. Finding the optimal tradeoff between parameters
and model size to efficiently reach the observed
plateau.

In order to avoid any forced dynamics in the convergence
of the losses upon training, we re-fitted a subset of the
models with the different token splits used in the previous
section 6. We speculated that the learning rate decay upon
tokens seen in training could interfere with standard training
processes in pLMs. We trained and evaluated models with
the following configurations: 5M, 15M, 35M, 50M, 100M,
and 150M parameters, covering a broad spectrum of model
complexities. With this configurations, we observed that
all of the fitted models reach the same plateau at the same
loss value, regardless of the learning rate decay strategy.
The realization that all training configurations reached a
common plateau led us to question whether there was an
alternative approach to optimize training for pre-trained
language models (pLMs). Given a fixed number of FLOPs
and tokens, we explored if this alternative could ensure
optimal training when pLMs are trained on a single dataset
pass, in relation to the observed plateau.

For each model size (N ), we trained the models for a number
of steps representing different token sizes (D). We focused
on the loss and perplexity at the point where the models
reached the plateau. We analyzed the relationship between
model size, token count, and compute budget, by identifying
the points where the models achieved different levels relative
to the plateau. Specifically, we looked at 90%, 95%, and
100% of the plateau value. For each level, we fit both linear
and polynomial models to the data.

The results from the linear regressions indicate a negative
relationship between model size and the FLOPs required to
reach various plateaus of the loss function. As compiled in
Figure 3, the negative slopes (−2.22× 106 , −2.17× 106

, −2.19 × 106) suggest that as the model size increases,
the FLOPs required to reach the plateau decrease. This
might initially seem counter-intuitive because larger models
typically require more compute. However, if larger models
are more sample-efficient, they might reach the plateau
loss more quickly despite their size. The large positive
intercepts (e.g. 3.04 × 1014, 2.61 × 1014, 2.38 × 1014)
indicate the baseline FLOPs required to reach the plateau for
smaller model sizes, reflecting the initial compute overhead.

5A similar plateau was detected in Hesslow et al. (2022), and
similar loss values were found in Chen et al. (2024) and Brandes
et al. (2022).

6Due to computational constraints not all models used for the
approach explained before were trained.
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Larger models might have better inductive biases and higher
capacity, allowing them to learn more efficiently from the
same amount of data, thus reaching the plateau with fewer
FLOPs.

Figure 3. Fitting of lowest loss point per model size.

3.3. Are widely used pLMs trained following a compute
optimal approach?

The inability to achieve a significantly lower loss, regardless
of training tokens and model size, suggests that scaling laws
in the current form may not be fully applicable for pLMs.
While loss reporting is sparse and perplexity comparisons
across different pLMs are often not straightforward, we ob-
served that this plateau is reached in several other works
such as RITA, ProteinBERT, and xTrimoPGLM (Hesslow
et al., 2022; Brandes et al., 2022; Chen et al., 2024). It is
evident that model size has little effect on this plateau, as
demonstrated by the 1.2B parameter RITA model and the
100B parameter xTrimoPGLM model. Acknowledging that
our model is trained in a single pass, we examined multiple-
pass models such as ESM-2. In ESM-2, it is reported that
between 270K and 500K training steps, there are diminish-
ing returns, indicating that multiple passes over the same
data have a minimal effect on improving performance.

To establish a fair comparison of performance, we trained
a 35M parameter model on a 20M sequence subset of
UniRef50 in a single pass until the model reached the loss
plateau. We then tested this model on an 8K sequence set
with a maximum of 0.5 identity with the training set. Our
model achieved a perplexity of 11.43, compared to 10.81
reported for xTrimoPGLM and 10.98 for ESM2-15B 7, a
comparable value after taking into account the substantial
reduction in compute, as we required far fewer FLOPs for
training. For reference, in Frey et al. (2024), the authors
focused on efficient pLM pretraining, managing to create
a foundational model with a reported perplexity of 13.72

7ESM-15B performance was extracted from Chen et al. (2024)

in 24hrs while our model was trained for 1 hour in a single
NVIDIA H100 GPU, achieving a marked improvement at a
11.43 of perplexity.

3.4. Optimal model size to reach the observed plateau

We used polynomial fitting to determine the optimal model
size for a given compute budget, focusing on the relationship
between model size and the FLOPs needed to reach various
loss plateaus. This analysis predicts the model size that
achieves the lowest loss efficiently within a fixed compute
budget for a single dataset pass.

For a compute budget of 1017 FLOPs, the optimal model
size is approximately 50.6 billion parameters. For 1018

FLOPs, it increases to 157 billion parameters. Extended
results are compiled in Table 2.

These results show that as the compute budget increases,
the optimal model size also increases. Larger models can
utilize higher compute budgets more effectively to reach
convergence plateaus.

Table 2. Optimal model sizes for different compute FLOPs budgets
in a single dataset pass.

FLOPs Optimal Model Size

1017 5.06× 1010

1018 1.57× 1011

1019 1.06× 1012

1020 7.35× 1012

4. Conclusions and future work
Our study suggests that NLP scaling laws are not transfer-
able to pLMs. Regardless of model and dataset size, training
reaches a plateau where no further improvements are ob-
served. This points that the goal in training pLMs might
be to reach this plateau as quickly as possible. Empirically,
we observed that a single-pass training approach, stopped at
the point of no improvement, achieves competitive results
on held-out sets compared to larger models, trained with
significantly more computational resources.

While this work does not delve into the effects of multiple
passes over the data during training, our comparisons with
ESM-2 suggest that such approaches may lead to reduced
perplexity when testing in samples close to the training
distribution but with marginal gains in out-of-distribution
samples.

In future work, we plan to extend this study with increased
model and dataset sizes while evaluating downstream tasks.
We also foresee further evaluation on the impact of different
learning rates and multiple dataset passes.
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A. Datasets
We used UniRef50 (Suzek et al., 2015), retrieved in April 2024, which contains approximately 64 million non-redundant
protein sequences grouped into clusters with at least 50% sequence identity . Using the MMseqs2 algorithm (Steinegger &
Söding, 2017), we generated additional datasets: UniRef40, UniRef30, and UniRef20, where sequences share at least 40%,
30%, and 20% sequence identity, respectively. Each cluster shows 80% overlap with the seed sequence.

After obtaining these representative datasets, we created three additional datasets of the same sizes—Sampled30, Sampled23,
and Sampled20—by randomly sampling from the original dataset. Table 3 provides an overview of these datasets. For this
study, we used only the second set of datasets due to computational limitations, reserving the first set for future experiments
to assess dataset quality.

Additionally, we created a holdout set for the Sampled20 dataset, comprising 8K sequences with a maximum sequence
identity of 0.5. These sequences were extracted from UniRef50, excluding those already included in the Sampled20 dataset.

Table 3. Overview of the datasets. Token amount is estimated from the number of sequences using the mean quantity of 325 aminoacids
for sequence.

Dataset Sequences Min seq id Tokens

UniRef50 64M 50% 20.8B
UniRef40 30M 40% 9.75B
UniRef30 23M 30% 7.475B
UniRef20 20M 20% 6.5B
Sampled30 30M 50% 9.75B
Sampled23 23M 50% 7.475B
Sampled20 20M 50% 6.5B

B. Sequence embeddings
We encoded protein sequences using 29 unique integer tokens: 20 for standard amino acids, 4 for IUPAC codes (B, U, O, Z),
an unspecified amino acid (X), a padding token (PAD), a mask token (MASK), and 2 special tokens (START and END). The
START and END tokens were added at the beginning and end of each sequence to assist in processing sequences longer
than 1024 amino acids. For sequences exceeding this length, we randomly selected a subsequence. Shorter sequences were
padded with the PAD token, and the MASK token was used for masked language modeling.

Rather than fixing the number of sequences per batch, we fixed the number of tokens. Sequences were sorted by length and
added to batches until the token limit was reached, with each batch padded to the length of its longest sequence.

C. Architecture
We employed the ESM-2 (Lin et al., 2023) encoder-only protein language model, adjusting the model’s layers, embedding
size, and feed-forward hidden size for scalability. Table 4 outlines eight models, varying from 5M to 650M parameters.
Across all configurations, the number of attention heads remains constant at 20, and the feed-forward network’s hidden
dimension is consistently four times the embedding dimension, aligning with the original architecture.

D. Training strategy
The models were trained with a masked language modeling objective, using the BERT (Devlin et al., 2018) masking pattern
where 15% of residues in input sequences are corrupted and predicted. Of these, 80% are replaced with MASK tokens, 10%
with random amino acids, and 10% remain unchanged. Cross-entropy loss was calculated only for the masked positions.

For optimization, we used Adam with β1 = 0.9, β2 = 0.98, ϵ = 108, and an L2 weight decay of 0.01. All models were
trained for a single epoch on NVIDIA A100 GPUs. The number of devices used varied from 1 to 8, depending on the model
size and availability. The last 35M model was trained on a single H100 GPU. Due to memory constraints, we did not fix the
number of tokens per batch for all models, using a minimum of 5K and a maximum of 50K tokens per batch to optimize
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Table 4. Parameters of the ESM-2 models.

Parameters num layers d model ffw size num heads key size

5M 4 320 1280 20 16
15M 8 400 1600 20 20
35M 12 480 1920 20 24
50M 15 520 2080 20 26

100M 23 600 2400 20 30
150M 30 640 2560 20 32
300M 32 880 3520 20 44
650M 33 1280 5120 20 64

GPU memory usage.

Regarding the learning rate schedule, we explored two strategies: with and without learning rate decay. Inspired by
Hoffmann et al. (2022), we designed a token-based exponential decay that adjusts the learning rate based on the number of
tokens processed during training, defined as:

lr = lrinitial × 0.999(tokens/1,000,000) (2)

This gradual reduction in the learning rate helps models converge at equivalent speeds. To contrast this, we also trained the
models without applying learning rate decay. In both cases, we set the initial learning rate to 1× 10−5.

Training utilized DeepSpeed (Rasley et al., 2020) for parallel computing and efficiency, with 32-bit precision and ZeRO
stage 2 (Rajbhandari et al., 2020) to reduce memory usage. We optimized data processing with efficient loader worker
processes and automatic memory pinning.

E. FLOPS forward pass computation
We follow the protocol of Hoffmann et al. (2022) with a modification for taking into account the FLOPS assigned to
the RoBERTa head used as a final layer. Embedding matrices are counted in both FLOPS and parameter counts, while
non-linearities, biases and layer normalizations are omitted.

Table 5. Forward pass FLOPS computation. The backwards pass is assumed to have twice the amount of FLOPS as the forward pass.

Operation FLOPs

Embeddings 2 x seq len x vocab size x d model

Attention Layer
KQV projections 2 x 3 x seq len x d model x (key size x num heads)

Key @ Query 2 x seq len x seq len x (key size x num heads)
Softmax 3 x num heads x seq len x seq len

Softmax @ Query reductions 2 x seq len x seq len x (key size x num heads)
Output projection 2 x seq len x d model x (key size x num heads)

FFN Layer 2 x seq len x (d model x ffw size + d model x ffw size)

RoBERTa Head 2 x seq len x (d model x d model + d model x vocab size)

Total FLOPS Embeddings + num layers x (Attention Layer + FFN Layer) + RoBERTa Head
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F. Parameter count
We follow the parameter count schema of Kaplan et al. (2020), removing sub-leading terms such layer normalizations and
biases.

Table 6. Parameter computation

Operation Parameters

Embeddings vocab size x d model

Attention Layer
KQV projections 3 x d model x (key size x num heads)
Output projection d model x (key size x num heads))

FFN Layer 2 x (d model x ffw size)

RoBERTa Head (d model x d model) + (d model x vocab size)

Total Parameters Embeddings + num layers x (Attention Layer + FFN Layer) + RoBERTa Head
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G. Scaling law from Kaplan et al. (2020)
This approach is based on the following scaling laws. For models with a limited number of parameters, trained to convergence
on sufficiently large datasets:

L(N) =

(
Nc

N

)αN

(3)

For large models trained with a limited dataset with early stopping:

L(D) =

(
Dc

D

)αD

(4)

When training with a limited amount of compute, a sufficiently large dataset, an optimally-sized model, and a sufficiently
small batch size:

L(Cmin) =

(
Cc

Cmin

)αCmin

(5)

With this laws, the combined scaling law is obtained as:

L(N,D) =

[(
Nc

N

)αN
αD

+

(
Dc

D

)]αD

(6)

where, N is the model size (number of model parameters). D is the dataset size (number of tokens). Nc and Dc are critical
values for model size and dataset size, respectively, and αN and αD are scaling exponents. This functional form is fitted
using least squares.
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