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Abstract

Transformer architectures have been often ma-
ligned for the quadratic complexity of global self-
attention, but global self-attention has proven crit-
ical for performance in many applications. Re-
cently, reasoning models have pushed the limits
of token generation, with models generating tens
of thousands of tokens in their chain-of-thought
for a single query. Now more than ever, efficient
attention alternatives are critical. Native sparse at-
tention is a promising recent alternative to global
self-attention, but has not been validated at the
scale of frontier pretrained model releases. In
this work, we present Foreign Sparse Attention:
an effective and efficient distillation method for
transferring global self-attention into native sparse
attention. We validate that our distilled Qwen
model performs competitively with the teacher, in
some instances improving in accuracy on data we
did not distill on while generating fewer tokens in
its responses.

1. Related Work
Knowledge distillation. Knowledge distillation (Hinton
et al., 2015) equips a student model with the behaviour of
a larger teacher by training the student on the teacher’s
outputs. These techniques have proved effective for reduc-
ing parameter counts and latency, but almost all prior work
keeps teacher and student within the same architectural fam-
ily—most often a quadratic Transformer—so the O(L2)
self-attention cost remains untouched. When the architec-
ture is shared, matching internal tensors is straightforward;
once the token-mixing operator changes, additional design
choices are required to decide what should be aligned and
where supervision should be applied.
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Cross-architecture attention distillation. Recent efforts
move beyond compression and attempt to transplant global
attention patterns into faster, sub-quadratic operators. The
related methods attempt to map global attention components
to sub-quadratic attention operator components and then
train the sub-quadratic model on various teacher-forcing
and end-to-end schemes. An overview of many current
methods is detailed in Appendix C.

These studies expose three open challenges. First, alterna-
tive token-mixing mechanisms must retain the teacher’s abil-
ity to capture long-range dependencies. Second, effective
supervision should balance local (within-layer) and global
(sequence-level) alignment rather than relying on only one.
Third, the optimisation should remain token-efficient; up-
dating all parameters concurrently enlarges the search space
and increases data requirements.

2. Preliminaries
To motivate sparse attention mechanisms and our Foreign
Sparse Attention distillation scheme, we describe Trans-
formers and global attention. We then review existing sub-
quadratic token mixing operations and Native Sparse Atten-
tion.

For the rest of this paper, a block refers to repeating compo-
nents, chained together end-to-end, that compose a model.
A layer refers to sequential components that compose each
block. For example, a global attention component and a
feed-forward component are two layers within a decoder
block.

2.1. Subquadratic Token Mixing

State of the art decoder-only Transformers rely on multi-
head global attention, which computes attention scores be-
tween every pair of tokens in a sequence of length L, incur-
ring O(L2) time and memory complexity as L grows. To
mitigate this bottleneck, several sub-quadratic token mixing
methods approximate attention while retaining expressivity.
For example, Linear attention (Katharopoulos et al., 2020)
uses kernel feature maps to approximate attention linearly,
while State Space Models (Gu et al., 2022) model sequences
as continuous-time linear dynamical systems.
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2.2. Native Sparse Attention

Native Sparse Attention (NSA) (Yuan et al., 2025), re-
leased by DeepSeek, employs a trainable, hardware-aligned
sparse mechanism that dynamically constructs a reduced
set of key–value pairs per query by combining three com-
plementary streams. First, the keys and values are com-
pressed into blocks. Attention is performed in compressed
space. Then, the top-n most important blocks as measured
by attention scores are chosen, and fine-grained attention is
performed amongst all tokens within chosen blocks. Finally,
a sliding window component is added to capture local pat-
terns. Attention streams are combined via a learned gating
function.

NSA matches or exceeds full global attention on long-
context benchmarks while operating in sub-quadratic time
and significantly reducing memory footprint. In practice, its
hardware-aligned sparse patterns translate into substantial
inference speedups and lower resource consumption.

3. Methods

Figure 1: Foreign Sparse Attention framework. We distill
a teacher transformer model using global attention into a
student model using Native Sparse Attention by transferring
all analogous parameters and freezing all but relevant atten-
tion parameters (Parameter Transfer), training the student
model to match attention components of the teacher (NSA
Output and Attention Head Alignment), and finally rectify-
ing reasoning issues using GRPO (Reasoning RL).

In this section, we detail the Foreign Sparse Attention (FSA)
distillation pipeline, comprising four stages (one initializa-
tion stage and three training stages): parameter transfer,
attention head alignment, attention block alignment, and
reasoning trace correction. These stages facilitate the effec-
tive transfer of capabilities from a global attention teacher
model to a student model employing Native Sparse Atten-
tion (NSA). The resultant student model retains all teacher
parameters except for the global attention layers, which are
replaced by NSA layers.

3.1. Stage 0: Component Transfer

FSA starts with initializing the student model by direct pa-
rameter copying from the pre-trained teacher. This transfers
learned knowledge, providing a robust initialization for at-
tention distillation.

The process is:

1. Non-Attention Parameters: Non-attention param-
eters (e.g., token embeddings, layer normalizations,
MLP weights) are copied from teacher to student and
subsequently frozen throughout all distillation stages
(1-3). This preserves the teacher’s learned representa-
tions, focusing adaptation primarily on the attention
mechanism.

2. Attention Parameters: Query (WQ), key (WK),
value (WV ), and output (WO) projection matrices
are copied from the teacher’s global attention layers
to the corresponding student’s NSA layers. NSA pos-
sesses no additional analogous parameters for direct
transfer.

3. Parameter Freezing within Attention: The student’s
WO matrices are also frozen for the entirety of our
distillation scheme. This constrains the student to learn
output representations consistent with the teacher’s,
despite differing token mixing strategies. Trainable
parameters are thus restricted to internal NSA compo-
nents (e.g. WQ, WK , WV , and the MLP φ).

This transfer and freeze narrows the parameter search space
and adapts the teacher’s knowledge. Further training now
need only concentrate on adapting NSA to emulate teacher
attention patterns.

3.2. Stage 1: Attention Head Alignment

This initial active distillation stage aligns internal attention
representations at the head output level (pre-WO) via a
block-wise training scheme.

Training Procedure:

1. Layer Grouping: Layers are partitioned into groups
based on impact analysis; for instance, the final k layers
might each form a distinct group, while earlier layers
are consolidated into larger m-sized blocks. In practice,
we find the earlier layers easier to distill and group
them in large chunks, while we train deeper layers in
isolation.

2. Attention Bypass and Isolated Training: Student
layer groups are trained independently. Inputs are
sourced via an ”attention bypass,” in which the first
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layer in a layer group receives its input from the out-
put of the corresponding previous layer in the teacher
model. All other layers in the layer group receive their
signal from the output of the previous layer in the layer
group. This provides a fixed input distribution for each
student group and mitigates error accumulation from
preceding student layers.

3. Loss Function: The loss is the Mean Squared Error
(MSE) between each student attention head’s output
(pre-WO) and the corresponding teacher head’s output,
averaged across all heads and layers within the group.
For a given group g:

LStage1 =
1

NLNH

∑
l∈Lg

∑
h∈Hl

MSE(yhead
student l,h,y

head
teacher l,h)

where Lg denotes layers in group g, Hl heads in layer
l, and yhead individual head outputs.

4. Parallelization: Block-wise training with attention
bypass facilitates parallelization, as teacher activations
can be pre-computed and cached. Then, each layer
group is trained together in parallel over the same to-
kens.

3.3. Stage 2: Attention Block Alignment

Stage 2 refines the distillation through end-to-end training of
the student model. This allows for interaction between dif-
ferent NSA blocks and focuses on aligning the final output
of each attention block (post-WO).

Training Procedure:

1. End-to-End Architecture: The student model is
trained in its complete configuration, with inputs prop-
agating through all its layers. Teacher model attention
block outputs serve as targets.

2. Loss Function: The loss is the MSE between the
student’s attention block output (post-frozen WO) and
the teacher’s corresponding block output, averaged
across all attention blocks:

LStage2 =
1

NB

∑
b∈B

MSE(Ostudent,b,Oteacher,b)

where B is the set of attention blocks and O is the
block’s final output.

This end-to-end alignment is crucial for learning complex
reasoning patterns across multiple model layers. We also
hypothesize that this stage enables the student to better
leverage the null space of the WO matrix in concordance
with the teacher model.

3.4. Stage 3: Reasoning Trace Correction

The student model is generally performant after Stages 1
and 2, and the post-Stage 2 model performs well. However,
the model may still exhibit minor logical fallacies or format-
ting inconsistencies (e.g., not adhering to the \boxed{}
convention in mathematical reasoning) which makes it some-
what inconvenient to evaluate. In Stage 3, we use Reinforce-
ment Learning from Verifiable Rewards (RLVR) to directly
target formatting.

Generalized Reward Policy Optimization (GRPO): We
utilize GRPO (Shao et al., 2024), a policy gradient method,
to optimize model parameters by maximizing a task-specific
reward signal. GRPO does not use a value network and
instead computes the advantage as the z-score over a batch
of rollouts per example. GRPO is a standard RLVR method,
and because we are focusing our distillation efforts on rea-
soning, we choose GRPO for our final reasoning RLVR
stage.

Training Procedure:

1. Targeted Dataset: Fine-tuning is performed on a
small, specialized dataset, such as ∼100 samples from
the GSM8K benchmark for mathematical reasoning
tasks.

2. Reward Function: The reward function heavily pe-
nalizes incorrect final answers and incentivizes adher-
ence to specific reasoning and output formats. Correct
numerical answers with a complete reasoning trace
producing an answer within the \boxed{} format
receive the maximum reward. A small length penalty
is applied to encourage the model to be succinct in its
reasoning.

3. Parameter Updates: During RL, non-attention pa-
rameters and WO matrices remain frozen; only inter-
nal NSA parameters are updated. Experimentally, un-
freezing all parameters improved performance on the
fine-tuning benchmark (GSM8K) but led to significant
degradation on more challenging, out-of-distribution
benchmarks (e.g., AIME). This suggests that broader
unfreezing can induce catastrophic forgetting of the
well-curated knowledge in MLP layers. This observa-
tion reinforces our selective freezing strategy.

This RL phase corrects minor reasoning and formatting
issues within only a handful of gradient steps.

4. Empirical Validation
In this section, we present the empirical validation of our
Foreign Sparse Attention (FSA) distillation method. We
apply FSA to distill a native reasoner employing global
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attention into a native reasoner employing Native Sparse
Attention using 100M tokens, far fewer than the billions or
trillions of tokens required to pre-train reasoning models.

Table 1: Three-stage FSA training pipeline.

Stage Layers / groups L Notes

Stage 1

Group 1: Layers 0– 11 1150 easiest layers
Group 2: Layers 12 – 24 1150 easy layers
Group 3: Layer 25 3500 heavy layer
Group 4: Layer 26 3500 heavier layer
Group 5: Layer 27 3500 heaviest layer

Stage 2 End-to-end 1024 stitch layers

Stage 3 End-to-end 1024 reward correct

4.1. Experimental Setup

Teacher and Student models. We start from the publicly
available DeepSeek-R1-Distill-Qwen-1.5B, a distillation
of DeepSeek R1 (DeepSeek-AI et al., 2025), DeepSeek’s
flagship 671B parameter reasoning model into the much
smaller Qwen2.5-Math-1.5B (Yang et al., 2024). This model
serves as the teacher model, providing the ground truth for
our distillation. We then surgically replace each global
attention in the teacher model with Native Sparse Attention
following (Yuan et al., 2025). This NSA enabled model
serves as the student model. We then progressively apply
each stage of FSA to distill the teacher model’s attention
patterns into the student model: 20k gradient steps for Stage
1 and Stage 2, and 100 gradient steps for Stage 3. See Table
1 for per-stage sequence length. We appropriately call the
final distilled model DeepSeek-R1-Distill-QweNSA-1.5B.
We refer to this distilled model as the student NSA model
or simply QweNSA.

Dataset. All teacher-student distillation relies on the
DeepMath-103K (He et al., 2025) corpus (∼100M tokens
of which we use), a carefully curated collection of for-
mal mathematics that includes theorem statements, proof
sketches, and informal commentary. The dataset provides
the rich, long-range dependencies needed to exercise global
attention and therefore serves as an ideal playground for
distilling complex reasoning patterns into our student model.
Stage 3 uses an additional 100 samples from GSM8k (Cobbe
et al., 2021) to provide a reward signal that explicitly targets
step-by-step numerical reasoning.

4.2. Final Results

We examine the performance of our distilled NSA model
on downstream math, reasoning, and natural language tasks
relative to the teacher model. We show that our distilled

Table 2: Final comparison between the original teacher (full
global attention) and the distilled student (Native Sparse
Attention). Higher is better on all, and all are zero shot
scores.

Model MMLU ↑ MMLU-
Pro ↑

AIME ↑

Teacher (global) 0.220 0.100 0.2530.032
Student (ours) 0.270 0.200 0.2400.034

model outperforms the teacher model on a variety of reason-
ing tasks as shown in Table 2. Our model generates fewer
tokens faster while being more accurate as seen in Figure 2.
Interestingly, despite being distilled on a reasoning-intense
math dataset, our NSA model is able to handle natural lan-
guage tasks well. Notably, the student achieves a score
of 27% on MMLU and 20% on MMLU-Pro, significantly
outperforming the teacher’s scores of 22% and 10%, respec-
tively, despite being distilled using math-focused data.

(a) MMLU (b) MMLU-Pro

Figure 2: Quantitative comparison of student and teacher
models on MMLU and MMLU-Pro. Our NSA model gen-
erates fewer tokens than the global attention teacher model.
The NSA student scores 27% on MMLU vs. the teacher’s
22%, and 20% on MMLU-Pro vs. 10%.

5. Discussion
We propose FSA, a distillation method for efficiently turning
a model trained with global attention into a model that
utilizes NSA. We use FSA to distill a Qwen-1.5B into using
NSA, and show that our model performs competitively with
the teacher. Our QweNSA model uses fewer tokens to
answer questions while either maintaining or improving
accuracy, and it generates these tokens significantly faster
than the teacher model. We believe that if our findings hold
across model families and sizes, distillation to NSA may
become a standard component of post-training pipelines.

Limitations. We report results with one model, distilled
from one other model, and evaluated three datasets. We do
not have access to a truly efficient CUDA kernel for NSA
to benchmark its performance, so our understanding of our
model speedups may be inaccurate. We urge the reader to
check the supplementary material for further analyses.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Transformers and Attention
State-of-the-art decoder-only Transformer models utilize
stacked layers, each comprising a multi-head self-attention
module followed by feed-forward layers. For a single at-
tention head operating on an input sequence X ∈ RL×d

(where L is the sequence length and d is the model di-
mension), learned linear transformations are applied to
obtain query, key, and value matrices: Q = XWQ,
K = XWK , and V = XWV . The projection matri-
ces are WQ, WK , WV ∈ Rd×d, and the block output is
processed by WO ∈ Rd×d.

The level of ”attention” or relevance between the n-th query
vector qn and the i-th key vector ki is determined by their
scaled dot product. These scores are then normalized across
all possible keys for a given query using softmax to produce
attention weights an,i:

an,i =
exp

(
q⊤
n ki/

√
d
)∑L

j=1 exp
(
q⊤
n kj/

√
d
) .

The resulting output vector for position n, yn, is computed
as a weighted sum of the value vectors vi, with weights
given by the attention scores:

yn =

L∑
i=1

an,i vi.

Multi-head attention involves performing this scaled dot-
product attention computation in parallel for h different sets
of learned query, key, and value projections. The resulting
output vectors from each head are then concatenated and
linearly projected to produce the final output of the multi-
head attention layer.

B. Native Sparse Attention (NSA)
B.1. NSA Streams

1. Compressed Coarse-Grained Attention:
Aggregate tokens into blocks of length l via a learnable
MLP φ, producing compressed keys k̃comp

i ∈ Rd and
values ṽcomp

i .

acomp
n,i =

exp
(
q⊤
n k̃

comp
i /

√
d
)∑

j exp
(
q⊤
n k̃

comp
j /

√
d
)

ycomp
n =

∑
i

acomp
n,i ṽcomp

i

2. Selectively Retained Fine-Grained Attention:
Select the top-n blocks via compressed scores and
attend to all original tokens within those blocks. Let
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Figure 3: NSA Speedup. We plot the time in milliseconds
to decode the Nth token in a sequence.

Sn be the selected indices.

aselectn,i =
exp

(
q⊤
n ki/

√
d
)∑

j∈Sn
exp

(
q⊤
n kj/

√
d
)

yselect
n =

∑
i∈Sn

aselectn,i vi

3. Sliding Window Attention:
Attend within a local window of size w around each
query.

awindow
n,i =

exp
(
q⊤
n ki/

√
d
)∑n−1

j=n−w exp
(
q⊤
n kj/

√
d
)

ywindow
n =

n−1∑
i=n−w

awindow
n,i vi

Let C = {comp, select,window}. The streams are then
combined via a learnable gating function as

yn = WO

∑
c∈C

gcn y
c
n.

B.2. NSA Speedup

Yuan et al. (2025) claim order of magnitude speedups (a
11.6× speedup on decode, a 9× speedup on forward pass
and a 6× speedup on backward pass over global attention)
for long sequence lengths. However, they do not release
their implementation. In Figure 3 we benchmark the speeds
of NSA and FlashAttention with open-source kernels1. Al-
though the speedups are only significant for very long se-
quence lengths, we emphasize that our model, which is
small, can already generate sequences this long on AIME.

1GitHub url: https://github.com/fla-org/native-sparse-attention
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Figure 4: Related Attention Distillation Schemes. Ex-
isting methods distill global attention into sub-quadratic
token–mixing operators using a variety of component-
alignment and end-to-end objectives (Goldstein et al., 2025).
Foreign Sparse Attention combines block-wise and global
supervision to transfer global attention into Native Sparse
Attention layers while preserving reasoning ability.

C. Cross-architecture Distillation Schemes
Various current cross-architecture distillation schemes, with
their discrete distillation steps, are described in Figure 4.

D. Segmented Training
D.1. Block-wise Training

Block-wise training is motivated by the observation that
later layers in LLMs are critical for complex reasoning and
exhibit more intricate attention patterns. Accumulated error
from previous student layers in full-layer training causes
these deeper layers to receive noisier input signals. Com-
bined with the ”heavy-lifting” nature of these layers, we
find it difficult to effectively distill them. However, iso-
lating these ”heavy-lifting” layers for focused training al-
lows us to provide these layers with a perfect input signal
from the teacher and thereby enables distillation. In addi-
tion, grouping earlier, ”easier” layers, optimizes distillation
token-efficiency and reduces discrepancies caused by iso-
lated layer training.

D.2. End-to-End Training

While block-wise training ensures local fidelity, training
all attention layers in tandem promotes global consistency
by ”stitching together” these independently initialized com-
ponents to recover any global patterns block-wise training
would miss. In this sense, Stage 1 serves to accelerate con-
vergence in this phase by providing a strong initial param-
eterization, and Stage 2 completes the teacher-distillation
process by ensuring global consistency.

Figure 5: Teacher vs Student Reasoning Traces. Qualita-
tive reasoning trace comparison between student and teacher
on an MMLU task. The NSA student model reasons more
succinctly and correctly. The teacher model’s response con-
tains filler and flawed heuristics, leading to an incorrect
answer.

E. Training Recipe Hyperparameters
We set the parameters for NSA as follows: NSA compres-
sion block size ℓ = 32, sliding stride d = 16, selected block
size ℓ′ = 64, selected block count n = 16, and sliding
window size w = 1024. These parameters follow (Yuan
et al., 2025).

Our FSA recipe comprises one static initialisation stage
(Stage 0) followed by three training stages (Stages 1,
2, 3). Throughout training we employ the standard
ADAM (Kingma & Ba, 2017) optimizer (β1 = 0.9, β2 =
0.999, ε = 10−8) coupled with a warm-up → stable →
decay (WSD) schedule (Hu et al., 2024). All other hyper-
parameters are stage-specific:

• Stages 1 – 2 (head & block MSE alignment). We
train for 20,000 optimizer steps with 50 warm-up and
50 decay steps, a learning rate of 1× 10−4, and a batch
size of 1.

• Stage 3 (GRPO tuning). We train for 100 optimizer
steps with 10 warm-up and 10 decay steps, a learning
rate of 2 × 10−5, four roll-outs per prompt, and a KL-
penalty coefficient βKL = 0.04.

The sequence length L varies only within Stage 1. Early
layers are trained with L = 1150, whereas the three
heaviest layers—responsible for the bulk of the reasoning
workload—use L = 3500. All other training stages use
L = 1024. A concise overview is given in Table 1.
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F. Sample Traces
Qualitatively, our NSA model generates traces that are
shorter, more information dense, and correct when com-
pared to the teacher model as seen in Figure 5. We observe
this conciseness in the student model even when both mod-
els correctly answer the question.

G. Implementation and Open-source
The efficiency of our method enables us to conduct all ex-
periments by spending just a few hundred dollars on cloud
credits for H100s. We open-source our model, which is
available anonymously at doubleblind/DeepSeek-R1-Distill-
QweNSA-1.5B
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