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Abstract

Since the introduction of self-attention in 2016,
Transformer based pre-training model have
achieved remarkable success, driving break-
throughs across various NLP tasks. Inspired by
graph attention node aggregations from neigh-
bor nodes, we revisit the self-attention mech-
anism to explore its potential for capturing
higher-order relationships in sequence model-
ing. Specifically, we propose a novel High-
Order Self-Attention mechanism, which en-
hances the expressive power of traditional self-
attention through multiple self-attention aggre-
gations and positional embeddings. By integrat-
ing this mechanism into self-attention based
models during the pre-training process with
limited data and model capacity, we achieve
up to a 35% improvement in accuracy for
RoBERTa on masked token prediction tasks
and up to a 75% increase in ROUGE-2 scores
for GPT-2 on pre-training task, under identical
experimental conditions demonstrating the ro-
bustness and efficiency of the proposed method.
This mechanism further enables a novel pa-
rameter stacking approach, allowing models
to achieve more efficient and scalable train-
ing. These findings demonstrate the potential
of High-Order Self-Attention for advancing se-
quence modeling and pre-training workflows.

1 Introduction

The self-attention mechanism has revolutionized se-
quence modeling by providing a dynamic approach
to capturing global dependencies across data. By
allowing each element in a sequence to evaluate its
relationships with all other elements, self-attention
enables the extraction of context-aware representa-
tions through dot-product similarity. This ability to
capture both short-range and long-range dependen-
cies makes self-attention a cornerstone of modern
natural language processing (NLP).

This transformative capability is exemplified by
Transformer-based architectures such as BERT (?)
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Figure 1: High-Order Self-Attention Mechanism: a stan-
dard self-attention computation is broadcast-multiplied
with High-Order Position Embeddings (HOPE) to gen-
erate multiple diverse attention units, each capturing
different dependency patterns. Guided by HOPE, the
standard self-attention outputs are aggregated through
a feed-forward network (FFN) to produce a new at-
tention representation. This aggregated representation
forms high-order relationships with the original atten-
tion, thereby enhancing the model’s ability to distin-
guish relevant information.

and GPT-2 (Radford et al., 2019), which have
demonstrated exceptional performance across a
wide range of NLP tasks, including machine trans-
lation, question answering, and text generation.
These models excel at processing long and com-
plex texts, firmly establishing self-attention as the
foundation of large language models (LLMs).

However, traditional self-attention mechanisms
exhibit significant limitations when dealing with
the intricacies of natural language. Natural lan-
guage is inherently hierarchical, comprising lay-
ers of meaning that span from local dependencies
(e.g., between words) to global semantics (e.g.,
paragraph-level relationships). Existing methods
primarily rely on simple dot-product calculations,
which, while effective for capturing immediate de-
pendencies, struggle to represent multi-level, hier-
archical relationships within sequences.

To address these challenges, the concept of high-
order dependencies offers a promising direction.
High-order dependencies extend beyond direct re-
lationships by capturing more nuanced and multi-



level interactions within sequences. Previous works
have explored high-order attention in specific tasks
such as person re-identification (Chen et al., 2019),
remote sensing (Zhang et al., 2020), and graph
representation learning (Velickovi€ et al., 2018),
where attention is applied over relational structures.
However, these designs are either task-dependent
or limited to non-sequential data, and fundamen-
tally differ from our approach. Introducing mech-
anisms capable of modeling such dependencies is
critical for improving both the expressiveness and
performance of attention-based architectures.

Inspired by these challenges, and partially moti-
vated by insights from Graph Attention Networks
(GAT) (Velickovi¢ et al., 2018), we propose a
novel High-Order Self-Attention Network (HOSA)
to overcome the limitations of traditional self-
attention, shown in Figure 1. HOSA enhances
the self-attention framework by incorporating high-
order dependency modeling through multi-level
attention aggregation. This is achieved by intro-
ducing multiple replicated attention heads, each
modulated by unique positional embeddings, and
linearly aggregating their contributions.

The main contributions of this work can be sum-
marized as follows:

We introduce a novel self-attention mechanism
that explicitly incorporates high-order dependency
modeling, significantly enhancing the ability to
capture multi-level relationships in sequences. By
integrating HOSA into pre-trained architectures
like GPT-2 and RoBERTa, we achieve significant
gains in masked and next-token prediction tasks.
Extensive experiments on benchmarks show HOSA
consistently surpasses traditional self-attention.

2 Related Work

Various attention variants have been proposed to
improve the efficiency or inductive bias of self-
attention, such as linear attention (Katharopoulos
et al., 2020), light attention (Vaswani et al., 2021),
and adaptive sparse attention (Beltagy et al., 2020).
While our work is inspired by the need to overcome
the limitations of standard dot-product attention,
our proposed mechanism is structurally indepen-
dent from these designs and focuses instead on
modeling multi-level token dependencies through
a high-order formulation.

2.1 Self-Attention Mechanism

The self-attention mechanism was significantly ad-
vanced and popularized through the Transformer ar-
chitecture by Vaswani et al. (Vaswani et al., 2017),
revolutionizing sequence modeling by enabling
models to dynamically compute dependencies be-
tween all elements in a sequence. This global at-
tention mechanism allows the model to effectively
capture contextual information, making it the cor-
nerstone of state-of-the-art architectures like BERT
and GPT. The mathematical formulation of single-
layer, single-head self-attention is as follows:
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where Q, K, and V represent the query, key, and
value matrices obtained by applying linear transfor-
mations to the input sequence. The scaling factor
\/d}, ensures numerical stability for larger dimen-
sions dj. By assigning importance weights « to
elements in the sequence, this mechanism enables
the model to capture global dependencies effec-
tively. Despite its success, standard self-attention
mechanisms often struggle to capture higher-order
relationships or hierarchical dependencies, which
are crucial for tasks requiring a deeper understand-
ing of data structures.

2.2 Self-Attention in BERT and the Role of
Positional Embeddings

BERT builds on the Transformer architecture by
introducing bidirectional self-attention, allowing
the model to utilize both preceding and succeeding
context for tasks such as masked token prediction.
However, in masked token prediction, the bidirec-
tional nature of self-attention introduces a funda-
mental limitation: when masked tokens share iden-
tical contextual embeddings, the attention mecha-
nism cannot inherently distinguish them. Without
additional information, attention weights are iden-
tical, rendering the model unable to disambiguate
these tokens.

To address this, BERT incorporates positional
embeddings as an essential component of the
model. These embeddings encode the position of
each token in the sequence, enabling the attention
mechanism to differentiate tokens based on their
positions. While effective, standard positional em-
beddings are fixed and static, limiting their ability



to capture hierarchical or high-order positional re-
lationships, which are crucial for tasks involving
complex token interactions.

Building on this concept, our work introduces
High-Order Positional Embedding (HOPE) as
a critical component of the HOSA framework.
HOPE extends the role of positional embeddings
by directly integrating positional information into
the attention mechanism, allowing for more nu-
anced token differentiation and the modeling of
hierarchical relationships.

2.3 Applications of Self-Attention in GPT

GPT adopts a unidirectional self-attention mecha-
nism, where each token attends only to its preced-
ing tokens in the sequence. This design aligns well
with autoregressive tasks such as text generation,
enabling GPT to predict the next token based on the
preceding context. While GPT does not encounter
issues related to bidirectional attention, it still re-
lies on positional embeddings to encode sequence
order.

In this study, we evaluate HOSA and its po-
sitional embedding component (HOPE) within
GPT’s architecture to assess their effectiveness in
autoregressive tasks. These experiments demon-
strate the versatility of HOSA across different se-
quence modeling paradigms and validate HOPE’s
potential for enhancing positional information han-
dling in various contexts.

3 Methodology

In this section, we present the High-Order Self-
Attention Network (HOSA), a novel architecture
designed to enhance the representational capacity
of self-attention mechanisms through the integra-
tion of multiple parallel self-attention units within
each HOSA module. HOSA leverages BERT’s
token position embeddings and incorporates High-
Order Position Embedding (HOPE) to differentiate
between multiple self-attentions, enabling effective
token representation learning. The final hidden
states computed by HOSA capture complex rela-
tionships within the sequence.

Key notations used in this section: batch_size:
the batch size during training. max_len: the max-
imum length of input sentences. hidden_dim:
the dimensionality of hidden feature representa-
tions. num_hosa: the number of attention units in
HOSA.
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Figure 2: HOSA utilizes High-Order Position Em-
bedding (HOPE) for its inputs. For example, with
an input sentence of length 64 and number of atten-
tion units 64, HOPE produces a 64 x 64 positional
embedding matrix that encodes pairwise token posi-
tions. In BERT, E, denotes the position embedding
of token x, whereas in HOSA, E; ; spans the entire
num_hosa X max_len space, capturing relationships
across multiple self-attention computations.

3.1 High-Order Position Embedding (HOPE)

BERT uses token position embeddings to distin-
guish masked tokens during pre-training. Building
on this concept, HOSA introduces the High-Order
Position Embedding (HOPE), denoted as Ej,pe,
to serve as a unique identifier for multiple stan-
dard self-attention layers within the network. As
illustrated in Figure 2, HOPE generalizes position
embeddings to provide distinct representations for
different self-attention mechanisms, ensuring they
are uniquely distinguished during computation.

HOPE is represented as a tensor of shape
RnumfhosaxmaxflenXhiddenfdim’ where each element
serves as a unique identifier for different attention
computations. In HOSA, HOPE is first applied
to the key matrix K via element-wise multiplica-
tion using tensor broadcasting, resulting in the ex-
tended key matrix Kj,,.. The matrix Kj,,pe is
then used in the attention mechanism, where it is
multiplied with the query matrix Q. Unlike the
traditional positional embeddings in BERT, which
are added to token embeddings, HOPE directly in-
teracts with the attention mechanism, enhancing
its ability to differentiate between attention compu-
tations. Mathematically, the extension of the key
matrix can be expressed as:

Khope =Ko Ehope (4)

where Q represents the query matrix, K is the key
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Figure 3: Model architecture of the High-Order Self-Attention Mechanism. The blue-shaded section represents
the High-Order computation, whereas the yellow-shaded section illustrates the sequence computation in standard
Self-Attention. The symbol ® represents the inner product computation with broadcasting, while ® denotes
element-wise multiplication. The equation numbers correspond to the equation in the Methodology section. The

multi-layer modules clearly illustrate how dimensions are
steps.

matrix, Ej.,. is the High-Order Position Embed-
ding, and © denotes element-wise multiplication.

3.2 High-Order Self-Attention Mechanism

The High-Order Self-Attention Mechanism
(HOSA) is designed to enhance the traditional
self-attention mechanism by incorporating high-
order dependencies and positional information,
illustrated in Figure 3. By leveraging High-Order
Position Embeddings (HOPE), HOSA emphasizes
the model’s ability to learn specific patterns,
effectively reducing attention to irrelevant tokens
while enhancing attention to relevant ones. This
enhancement primarily reflects the model’s
capacity to fit underlying dependency patterns in
the data, rather than directly capturing semantic
relationships. Specifically, HOPE is designed as
a mathematical mechanism to model structural
information in the sequence, enabling the model
to more efficiently capture rich contextual de-
pendencies when significant patterns exist in the
data.

High-Dimensional Attention Score Calculation
HOSA first computes a high-dimensional attention
SCOTe €}05, to capture high-order relationships:

Khope : QT
Vdy
Here, Kj,ope is the extended key matrix derived

from HOPE, and Q is the query matrix. The divi-
sion by +/d}; ensures numerical stability and scales
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selected and multiplied across different computational

the attention scores appropriately. This step en-
codes high-order dependencies by incorporating
rich positional information from Kjgpe.

Dimensionality Reduction via Projection To
reduce the additional dimension introduced by

K,0pe, HOSA applies a learnable projection matrix
W € Rnum_hosaxmax_lenXI:

W ©6)

€ = €hosa °

This operation collapses the redundant dimension
while preserving the most salient patterns, enabling
the model to focus on important token dependen-
cies.

Attention Weight Normalization The reduced
attention scores e are then normalized using the
Softmax function:

(N

a = softmax(e)

The Softmax operation ensures that attention
weights are distributed over the tokens, amplify-
ing relevant tokens while suppressing irrelevant
ones.

Final Representation Update The normalized
attention weights « are used to compute the final
representation:

h' = J(aV) (8)
Here, V represents the value matrix, and o is an
optional activation function that introduces non-
linearity. This step produces the updated token



representation, enriched with contextual and hier-
archical information.

The computational complexity of our model is
determined to be O(n?), where n is the maximum
sentence length.

4 Experiment

4.1 Experiment Design

To evaluate the impact of the High-Order Self-
Attention Mechanism (HOSA) in self-attention-
based models, we selected two compact yet clas-
sic pre-trained models, GPT-2 and RoBERTa, for
comparison. These models serve as representa-
tive benchmarks for assessing the effectiveness of
HOSA in enhancing self-attention mechanisms.
GPT-2 is chosen as it serves as the foundation for
modern large language models (LLMs), leveraging
unidirectional self-attention. In contrast, ROBERTa
represents a bidirectional self-attention architec-
ture. Both models have achieved state-of-the-art
performance on various natural language process-
ing tasks, making them ideal reference points for
this study. The dataset used for the experiments is
the BookCorpus dataset, which is widely used for
pre-training language models, including BERT.
Two experimental tasks were designed:

* Next Token Prediction: Evaluates the
model’s ability to predict the next token in
a sequence, simulating a generative setting.

* Masked Token Prediction: Assesses the
model’s capability to predict randomly
masked tokens, reflecting a masked language
model task.

Key experimental parameters include embedding
dimensions, sentence lengths, the number of lay-
ers, and the number of attention heads, ensuring a
controlled and comprehensive evaluation.

4.2 Dataset and Training Strategy

To evaluate HOSA in Experiments 1 and 2, a scaled
dataset of 100,000 samples was selected from the
BookCorpus benchmark (Zhu et al., 2015). This
choice balances computational efficiency and scal-
ability while maintaining sufficient data diversity
for reliable evaluation.

The BookCorpus dataset has an average sentence
length of 15.7 tokens, with 99.87% of sentences
below 64 tokens, making it a suitable benchmark
for testing HOSA’s performance. Training was

conducted over 60 epochs using a linear descent
learning strategy, with a consistent batch size of 50
across all experiments to ensure comparability.

4.3 Experiment 1: Validation of HOSA in
Next Token Prediction

The primary objective of Experiment 1 is to evalu-
ate the effectiveness of HOSA in next token predic-
tion tasks, a generative pre-training scenario com-
monly associated with GPT-2. By replacing the
scaled dot-product self-attention module in GPT-2
with HOSA, we assessed its performance under
various configurations to explore its robustness and
generalizability.

The experimental setup covered a range of key
configurations, including embedding dimensions,
number of layers, sentence lengths, and attention
heads. Specifically, the embedding dimensions
ranged from 128 to 3200, with the number of layers
varying from 1 to 16. Sentence lengths were tested
at 64, 128, 256, and 512 tokens with the number of
attention units equal to the sentence length, while
attention heads ranged from 1 to 8. Except for the
input length experiments, the number of attention
units (num_hosa) was fixed at 64. Additionally,
two learning rates, 3e-4 and 3e-5, were explored
to evaluate their impact on model convergence and
performance.

4.3.1 Evaluation Metrics

To assess the model’s performance in the next to-
ken prediction task, two key metrics were used.
Accuracy measures the overall correctness of to-
ken predictions, while ROUGE-1, ROUGE-2, and
ROUGE-L evaluate n-gram overlap between the
predicted and target sequences (Lin, 2004).

Among these metrics, ROUGE-2 was selected
as the primary evaluation criterion due to its sensi-
tivity to sequence-level dependencies and its ability
to robustly assess contextual relationships.

4.3.2 Experiment 1 Results and Analysis

The experimental results, summarized in Table 1,
show that GPT-2-HOSA consistently outperformed
the baseline GPT-2 model across all configurations.
Key findings include:

GPT-2-HOSA with a learning rate of 3e-4
achieved optimal performance in smaller embed-
ding dimensions (128 to 768). For instance, in the
single-layer configuration, the ROUGE-2 score im-
proved from 43.89 (baseline) to 77.09 (a 75.6%
improvement). Conversely, a learning rate of 3e-



5 proved more effective for larger configurations
(1600 to 3200), likely due to its ability to stabilize
gradients and enhance convergence. Notably, GPT-
2-HOSA-Ir5 exhibited strong scalability, maintain-
ing high performance even at 3200 dimensions.

GPT-2-HOSA reached peak performance be-
tween 8 and 16 layers, with scores plateauing be-
yond 16 layers, suggesting diminishing returns
from deeper architectures. Interestingly, GPT-2-
HOSA-Ir5 also achieved its maximum performance
at 8 layers, reinforcing the efficiency of high-order
attention in moderately deep models.

Since the average sentence length in the train-
ing dataset is only 15.7 tokens, increasing the
maximum sentence length beyond this average
yielded limited benefits. However, as the number
of self-attention heads scales with sentence length
in the model design, experiments with longer se-
quences were conducted. Results showed that GPT-
2-HOSA-Ir5 continued to improve with longer sen-
tence lengths, demonstrating the scalability and
effectiveness of high-order attention under a 3e-5
learning rate.

The experimental findings validate the superior
performance of HOSA, particularly in enhancing
the model’s ability to capture contextual relation-
ships and scale effectively. Compared to traditional
self-attention, HOS A not only excels in small pa-
rameter settings but also maintains robust improve-
ments in high-dimensional configurations. The sub-
stantial improvements in ROUGE-2 scores further
confirm HOSA’s ability to model sequence-level de-
pendencies, establishing it as a powerful enhance-
ment over standard self-attention mechanisms.

4.4 Experiment 2: Validation of HOSA in
masked token prediction

The second experiment aims to evaluate the ef-
fectiveness of HOSA in the masked token predic-
tion pre-training task. By integrating HOSA into
the scaled dot product self-attention mechanism
of RoBERTa with 15% masking rate, we assessed
its performance across various configurations, in-
cluding dimensions [128, 256, 768], layer numbers
[1,2, 4], maximum sentence lengths [64, 128, 256,
and the number of attention heads [1,2,4]. The
number of HOSA units (num_hosa) was still fixed
at 64.

In the masked token prediction task, due to gra-
dient vanishing issues observed with a learning
rate of 3e-4, we adjusted the learning rate to 3e-5
to examine the impact of learning rate on model

convergence and performance.

The performance of the models was evaluated
using accuracy scores, which reflect the model’s
ability to predict masked tokens effectively.

4.4.1 Experiment 2 Results and Analysis

The experimental results, summarized in Table 2,
demonstrate the advantages of ROBERTa-HOSA
across various configurations. Notably, RoOBERTa-
HOSA shows significant improvements in small-
scale models, with the performance gap narrowing
as the number of layers increases.

In single-layer settings, RoBERTa-HOSA
achieves substantial accuracy gains, with improve-
ments of 24.2 and 29 points compared to the base-
line—a relative improvement of 35%. These re-
sults highlight the effectiveness of HOSA in sce-
narios where model capacity is limited. Similarly,
in multi-head configurations, although the improve-
ments are less pronounced, ROBERTa-HOSA still
outperforms the baseline (29.1 vs. 27.4). Un-
der low-dimensional settings, the model achieves
notable gains (18.5 vs. 14.8), likely due to the
increased number of high-order attention heads,
which enables the capture of diverse and complex
attention patterns.

Consistent with the findings in Experiment 1,
longer sentence lengths lead to enhanced perfor-
mance. While the baseline ROBERTa experiences
a performance drop at a sentence length of 256,
RoBERTa-HOSA continues to improve. This can
be attributed to the larger number of high-order
attentions in longer sequences, which enable the
model to better capture complex dependencies and
patterns.

Overall, ROBERTa-HOSA demonstrates excep-
tional performance in small-scale models, confirm-
ing its efficiency in representation learning. While
improvements in larger models are less pronounced
compared to Experiment 1, the significant perfor-
mance gains validate the effectiveness of the HOSA
mechanism, not only in GPT pre-training tasks but
also in RoBERTa-based pre-training settings.

5 Ablation Study

To better understand the effects of different model
structures, we separately removed the decoder and
edge position embedding in masked token predic-
tion training to observe the effectiveness of the
model.



Model Layerl Layer2 Layer4 Layer8 Layer16
GPT-2-Ir4 43.89 50.69 32.66 28.75 26.72
GPT-2-Ir5 34.75 43.73 60.41 72.71 74.26
GPT-2-HOSA-Ir4 77.09 84.93 93.71 94.56 94.55
GPT-2-HOSA-Ir5 42.12 58.73 90.99 94.54 94.55
Model 128 Dim 256 Dim 768 Dim 1600 Dim 3200 Dim
GPT-2-Ir4 26.91 33.12 43.89 23.33 23.47
GPT-2-1r5 24.04 25.74 34.75 59.96 23.17
GPT-2-HOSA-1Ir4 3241 46.41 77.09 22.69 23.18
GPT-2-HOSA-Ir5 29.23 32.32 42.12 78.84 83.35
Model 64 Length 128 Length 256 Length 512 Length -
GPT-2-Ir4 43.89 27.44 25.34 23.35 -
GPT-2-Ir5 34.75 34.7 34.73 40.07 -
GPT-2-HOSA-Ir4 77.09 52.27 44.99 23.9 -
GPT-2-HOSA-Ir5 42.12 43.58 54.96 64.61 -
Model 1 Head 2 Heads 4 Heads 8 Heads -
GPT-2-Ir4 43.89 52.13 56.17 61.72 -
GPT-2-1r5 34.75 35.08 36.27 38.03 -
GPT-2-HOSA-Ir4 77.09 77.02 78.59 85.01 -
GPT-2-HOSA-Ir5 42.12 47.7 49.36 58.24 -

Table 1: Result of the Next Token Prediction Task in Experiment 1 with ROUGE-2 scores. In experiments with
varying input lengths, the number of attention units computations scales proportionally with the sentence length.
Except for the input length experiments, the number of attention units is fixed at 64. The ratio between performance

scores and model parameters is provided in Appendix A.

model layerl layer2 layerd4
RoBERTa 24.21 27.85 34.17
RoBERTa-HOSA 28.98 32.64 33.98
model 128 Dim 256 Dim 768 Dim
RoBERTa 14.75 17.02 24.21
RoBERTa-HOSA 18.54 18.05 28.98
model 64 Len 128 Len 256 Len
RoBERTa 24.21 27.85 23.76
RoBERTa-HOSA 28.98 28.76 32.13
model 1 Head 2 Heads 4 Heads
RoBERTa 24.21 26.74 27.37
RoBERTa-HOSA 28.98 28.11 29.11

Table 2: Result of Masked Token Prediction Task in
experiment 2 with accuracy score. This experiment is
using learning rate with 3e-5 and number of attention
units with 64.

Model 37t 3e7?
GPT-2 43.89 34.75
GPT-2-HOSA 77.09 42.12
GPT-2-HOSA-NS2 5873 36.24
GPT-2-HOSA-NS4 59.11 36.37
GPT-2-HOSA-NoToken 78.11 42

Table 3: Ablation study result for Next Token Prediction
task with ROUGE-2 score. NS 2 and NS 4 represent at-
tention number ability in ablation 1, NoToken represent
HOPE without token ability in ablation 2.

5.1 Ablation 1: HOPE with Restricted Ability
of Self-Attention Units

To determine if accuracy improvements stem from
the variation introduced by multiple self-attentions,
we reduced the number of self-attentions units to 2
and 4 and observed their impact. The experiments
were conducted using GPT-2-HOSA. The results
are shown in Table 3.

The results confirm that training ROUGE-2
score increases as the number of self-attentions
units grows, validating the importance of the High-
Order effect in driving performance improvements.

5.2 Ablation 2: HOPE Without Token
Distinction Ability

We explored whether unique embeddings for
each token are necessary, or if shared embed-
dings per self-attention layer suffice. In GPT-2-
HOSA, we tested shared embeddings replicated
across tokens, adjusting HOPE dimensions to
[batch_size, num_hosa, 1, hidden_dim] and repli-
cating max_len times along the third dimension.
Results are also summarized in Table 3.

The findings suggest that shared embeddings im-
prove differentiation across self-attention layers,



potentially because large models already encode
token positional information effectively. Unique
embeddings may add unnecessary complexity and
computational cost without clear benefits. Further
studies are needed to assess whether token distinc-
tion is beneficial in higher-parameter models.

6 Discussion

6.1 Why Does HOSA Significantly Enhance
Performance?

We consider HOSA to greatly improve the model’s
performance primarily due to its ability to gener-
ate multiple self-attention mechanisms and utilize
HOPE to differentiate individual attentions, tokens
within those attentions, and tensors within those
tokens. This approach enables the simultaneous
training of multiple self-attentions while assigning
distinct weights to each self-attention. The optimal
attention representation is achieved by summariz-
ing these features through a fully connected layer.
Additionally, the increased data differentiation al-
lows the model to generate larger losses during
the initial training phase, which helps to adjust the
weight parameters more effectively and enhances
the model’s learning efficiency.

6.2 Is HOSA Essentially the Same as
Multi-Head?

We posit that while HOSA and the multi-head
mechanism share some conceptual similarities,
their implementations and computational implica-
tions are fundamentally different. While the multi-
head mechanism prevents attention collapse (exces-
sive concentration of a token’s attention on itself
at the expense of other relevant tokens), HOSA
achieves diversified attention by replicating and as-
signing different weights to (k, ¢). The differences
are evident in the computational parameters and
performance. For example, experimental results
show that the differences between GPT-2-1r4 and
GPT-2-HOSA-Ir4 with 2 and 4 heads are 7.74%
(52.13 vs. 56.17) and 2.04% (78.59 vs. 77.02),
respectively. Meanwhile, the difference between
GPT-2-HOSA-NS2 and GPT-2-HOSA-NS4 is only
0.65% (58.73 vs. 59.11). These findings confirm
that the mechanisms are fundamentally distinct.

6.3 Why Does the Learning Rate Significantly
Affect Results?

We believe the core reason lies in the interaction
between learning rate, hidden dimension size, and

gradient stability. At high learning rates, GPT-2
models with lower hidden dimensions tend not to
suffer from gradient explosion, maintaining stable
training performance. However, as the hidden di-
mension increases, the risk of gradient explosion
also increases, leading to degraded results. In con-
trast, HOSA demonstrates greater robustness to
gradient instability at higher dimensions, which al-
lows it to benefit more from larger learning rates.
As a result, HOSA achieves better performance un-
der higher learning rates compared to the standard
GPT-2.

7 Conclusion and Future Work

HOSA is an innovative attention mechanism that
integrates multiple self-attention layers into a uni-
fied structure, enabling efficient aggregation and
summarization of information. This design signif-
icantly improves the accuracy and learning capa-
bilities of self-attention-based language models, in-
cluding GPT-2 and RoBERTa. Our ablation studies
validate that each component of HOSA contributes
effectively to the model’s performance. However,
the interaction between HOPE and token position
embeddings may introduce conflicts under certain
conditions, which warrants further exploration. Ad-
ditionally, HOSA introduces a new training param-
eter, adding a novel dimension of depth to the train-
ing of self-attention-based models.

For future work, we plan to explore the appli-
cation of HOSA in more advanced architectures,
to further validate its scalability and generaliza-
tion. Additionally, we will employ heatmap-based
visualization to observe and track the evolution
of attention weights and gradient flows throughout
training, enabling a deeper understanding of param-
eter dynamics and facilitating more targeted opti-
mization. Notably, HOPE has demonstrated better-
than-expected performance even when combined
with single-token embeddings, a phenomenon that
merits further investigation. Moreover, we are in-
terested in exploring the feasibility of extending
HOSA to a four-dimensional structure, which could
unlock new opportunities for enhancing both its
modeling capacity and flexibility.

8 Limitation

Training Efficiency Benchmark

Another limitation is that this study focuses on
evaluating the proposed attention mechanism in the
pre-training phase using a limited-scale dataset and



Model Batch Size  Throughput
GPT-2 (Baseline) 400 35,200
GPT-HOSA-NS2 380 34,304
GPT-2-HOSA 200 22,528

Table 4: Training Efficiency Comparison on A40-48GB
GPU (100,000 samples)

Scalability: Each additional attention number unit
reduces inference speed by 896 tokens/sec to 201 tokens/sec
(2.5% to 1%) in a single GPU. The standard GPT-2-HOSA
configuration uses 64 attention number units.

without downstream fine-tuning tasks. This design
choice was made to isolate and analyze the funda-
mental behavior of the mechanism in a controlled,
resource-efficient setting. Comprehensive bench-
marking against established datasets (e.g., GLUE
or SQuAD) typically requires extensive compu-
tational resources and prolonged experimentation
cycles, which are beyond the scope of this initial
investigation. While the current setup does not as-
sess the absolute language understanding capability
of the model, the observed improvements in core
language modeling tasks demonstrate the mech-
anism’s potential. We consider this work as an
early-stage exploration, laying the foundation for
future studies involving larger-scale training and
fine-tuning.
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A Appendix A: Ratio between ROUGE-2
and model parameters.

Layer =1
Model Score Params  Score/Param
GPT-2-HOSA-Ird4  77.09 90.67M 8.50E-07
GPT-2-HOSA-Ir5 42.12  90.67M 4.65E-07
GPT-2-1r4 43.89 84.38M 5.20E-07
GPT-2-1r5 34.75 84.38M 4.12E-07
Layer =2
Model Score Params  Score/Param
GPT-2-HOSA-Ird 8493  97.76M 8.69E-07
GPT-2-HOSA-Ir5 58.73  97.76M 6.01E-07
GPT-2-Ir4 50.69 91.47M 5.54E-07
GPT-2-Ir5 4373 91.47M 4.78E-07
Layer =4
Model Score Params  Score/Param
GPT-2-HOSA-Ir4 9371 111.94M 8.37E-07
GPT-2-HOSA-Ir5 90.99 111.94M 8.13E-07
GPT-2-1r4 32.66 105.65M 3.09E-07
GPT-2-Ir5 60.41 105.65M 5.72E-07
Layer =8
Model Score Params  Score/Param
GPT-2-HOSA-Ir4 9456 140.29M 6.74E-07
GPT-2-HOSA-Ir5 94.54  140.29M 6.74E-07
GPT-2-1r4 28.75  134.00M 2.15E-07
GPT-2-1r5 7271  134.00M 5.43E-07
Layer = 16
Model Score Params  Score/Param
GPT-2-HOSA-Ird  94.55 196.99M 4.80E-07
GPT-2-HOSA-Ir5 94.55 196.99M 4.80E-07
GPT-2-1r4 26.72  190.70M 1.40E-07
GPT-2-Ir5 7426  190.70M 3.89E-07

Table 5: Model performance comparison across differ-
ent Transformer layer depths. Rows are grouped by the
number of layers for clearer comparison.



Heads =1

Model Score Params Score/Param
GPT-2-HOSA-Ird  77.09 90.67M 8.50E-07
GPT-2-HOSA-Ir5 42.12  90.67M 4.65E-07
GPT-2-1r4 43.89  84.38M 5.20E-07
GPT-2-Ir5 3475 84.38M 4.12E-07
Heads =2
Model Score Params Score/Param
GPT-2-HOSA-Ir4  77.02  90.67M 8.49E-07
GPT-2-HOSA-Ir5 47.70  90.67M 5.26E-07
GPT-2-Ir4 52.13 84.38M 6.18E-07
GPT-2-1r5 35.08 84.38M 4.16E-07
Heads = 4
Model Score Params Score/Param
GPT-2-HOSA-Ird  78.59  90.67M 8.67E-07
GPT-2-HOSA-Ir5 4936  90.67M 5.44E-07
GPT-2-1r4 56.17 84.38M 6.66E-07
GPT-2-Ir5 36.27 84.38M 4.30E-07
Heads = 8
Model Score Params Score/Param
GPT-2-HOSA-Ir4  85.01 90.67M 9.38E-07
GPT-2-HOSA-Ir5 5824 90.67M 6.42E-07
GPT-2-1r4 61.72 84.38M 7.31E-07
GPT-2-Ir5 38.03 84.38M 4.51E-07

Table 6: Model score, parameter count, and score-to-
parameter ratio under different numbers of attention
heads. Rows are grouped by head count.
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B Appendix B: Complete score result.

C Appendix C: Graphic score result.
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Dimension = 128

Model Score Params  Score/Param
GPT-2-HOSA-Ir4 3241 13.15M 2.47E-06
GPT-2-HOSA-Ir5 29.23 13.15M 2.22E-06
GPT-2-1r4 2691 13.08M 2.06E-06
GPT-2-1Ir5 24.04 13.08M 1.84E-06
Dimension = 256
Model Score Params  Score/Param
GPT-2-HOSA-Ird 4641 26.55M 1.75E-06
GPT-2-HOSA-Ir5 3232  26.55M 1.22E-06
GPT-2-Ir4 33.12  26.55M 1.25E-06
GPT-2-1r5 2574  26.55M 9.69E-07
Dimension = 768
Model Score Params  Score/Param
GPT-2-HOSA-Ird4  77.09  90.67M 8.50E-07
GPT-2-HOSA-Ir5 42.12  90.67M 4.65E-07
GPT-2-1r4 43.89  84.38M 5.20E-07
GPT-2-1r5 34.75 84.38M 4.12E-07
Dimension = 1600
Model Score Params  Score/Param
GPT-2-HOSA-Ird  22.69 192.59M 1.18E-07
GPT-2-HOSA-Ir5 78.84 192.59M 4.09E-07
GPT-2-1r4 23.33  191.77TM 1.22E-07
GPT-2-Ir5 59.96 191.77M 3.13E-07
Dimension = 3200
Model Score Params  Score/Param
GPT-2-HOSA-Ir4  23.18  446.62M 5.19E-08
GPT-2-HOSA-Ir5 83.35 446.62M 1.87E-07
GPT-2-1r4 2347 444.98M 5.27E-08
GPT-2-1r5 23.17 444.98M 5.21E-08

Table 7: Model performance comparison under different
hidden dimensions. Rows are grouped by dimension.

Learning Rate = 3e-4

Model Score Params Score/Param
GPT-2-HOSA 77.09  90.67TM 8.50E-07
GPT-2-HOSA-NS2 5873 84.58M 6.94E-07
GPT-2-HOSA-NS4 59.11 84.78M 6.97E-07
GPT-2-HOSA-Dim1 65.61 - -
GPT-2-HOSA-NoToken  78.11  84.43M 9.25E-07
GPT-2 43.89 84.38M 5.20E-07
Learning Rate = 3e-5

Model Score Params Score/Param
GPT-2-HOSA 42.12  90.67TM 4.65E-07
GPT-2-HOSA-NS2 36.24 84.58M 4.28E-07
GPT-2-HOSA-NS4 36.37 84.78M 4.29E-07
GPT-2-HOSA-Diml1 40.00 - -
GPT-2-HOSA-NoToken  42.00 84.43M 4.97E-07
GPT-2 3475 84.38M 4.12E-07

Table 8: Model performance comparison under differ-
ent learning rates. Rows are grouped by learning rate

setting.

11



Table 9: Layer-wise Evaluation Results (GPT-2-HOS A-1r4/1r5 vs GPT-2-1r4/1r5)

Layer =1
Model Acc  ROUGE-1 ROUGE-2 ROUGE-L
GPT-2-HOSA-Ir4  77.09 84.58 77.09 84.46
GPT-2-HOSA-Ir5 42.12 62.81 42.12 61.57
GPT-2-1r4 43.89 65.31 43.89 63.54
GPT-2-1r5 34.75 57.61 34.75 55.80
Layer =2
GPT-2-HOSA-Ir4  84.93 88.39 84.93 88.37
GPT-2-HOSA-Ir5 58.73 73.91 58.73 73.31
GPT-2-1r4 50.69 69.71 50.69 68.49
GPT-2-1Ir5 43.73 64.18 43.73 64.14
Layer =4
GPT-2-HOSA-Ir4  93.71 93.83 93.71 93.83
GPT-2-HOSA-Ir5 90.99 92.45 90.99 92.45
GPT-2-1r4 32.66 57.57 32.66 54.90
GPT-2-1Ir5 60.41 73.86 60.41 73.56
Layer =8
GPT-2-HOSA-Ir4  94.56 94.51 94.56 94.51
GPT-2-HOSA-Ir5 94.54 94.49 94.54 94.49
GPT-2-1r4 28.75 54.01 28.75 51.07
GPT-2-1r5 72.71 80.67 72.71 80.57
Layer = 16
GPT-2-HOSA-Ird  94.55 94.50 94.55 94.50
GPT-2-HOSA-Ir5 94.55 94.50 94.55 94.50
GPT-2-1r4 26.72 51.84 26.72 48.89
GPT-2-1Ir5 74.26 81.54 74.26 81.45

Table 10: Dimension-wise Evaluation Results (GPT-2-HOSA-1r4/1r5 vs GPT-2-1r4/1r5)

Dim = 128
Model Acc  ROUGE-1 ROUGE-2 ROUGE-L
GPT-2-HOSA-Ir4 32.41 53.39 32.41 51.41
GPT-2-HOSA-Ir5 29.23 51.35 29.23 48.96
GPT-2-1r4 2691 51.19 2691 48.30
GPT-2-Ir5 24.04 47.68 24.04 44.62
Dim = 256
GPT-2-HOSA-Ir4  46.41 65.09 46.41 64.12
GPT-2-HOSA-Ir5  32.32 53.37 32.32 51.39
GPT-2-1r4 33.12 56.81 33.12 54.42
GPT-2-Ir5 25.74 49.75 25.74 46.84
Dim = 1600
GPT-2-HOSA-Ir4  22.69 48.58 22.69 45.84
GPT-2-HOSA-Ir5 78.84 84.93 78.84 84.88
GPT-2-1r4 23.33 48.99 23.33 46.55
GPT-2-Ir5 59.96 73.49 59.96 73.07
Dim = 3200
GPT-2-HOSA-Ir4  23.18 49.04 23.18 46.67
GPT-2-HOSA-Ir5 83.35 87.38 83.35 87.35
GPT-2-1r4 23.47 49.15 23.47 46.88
GPT-2-Ir5 23.17 48.70 23.17 46.18
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Table 11: Length-wise Evaluation Results (GPT-2-HOSA-1r4/Ir5 vs GPT-2-1r4/1r5). The number of attention units is
proportional to the sentence length.

Length = 128
Model Acc  ROUGE-1 ROUGE-2 ROUGE-L
GPT-2-HOSA-Ir4  95.47 71.77 52.27 70.43
GPT-2-HOSA-Ir5 94.25 63.07 43.58 62.15
GPT-2-1r4 91.65 52.39 27.44 49.52
GPT-2-Ir5 91.37 51 26.83 48.46
Length = 256
GPT-2-HOSA-Ir4 88.26 64.13 44.99 63.04
GPT-2-HOSA-Ir5 97.88 70.52 54.96 70.19
GPT-2-1r4 97.45 67.62 47.39 66.07
GPT-2-Ir5 96.51 57.61 34.73 55.81
Length = 512
GPT-2-HOSA-Ir4 97.68 48.30 23.90 45.72
GPT-2-HOSA-Ir5  99.20 76.57 64.61 76.36
GPT-2-1r4 97.71 48.77 23.35 46.27
GPT-2-Ir5 98.47 61.56 40.07 60.10

Table 12: Head-wise Evaluation Results (GPT-2-HOSA-1r4/1r5 vs GPT-2-1r4/Ir5)

Heads =2
Model Acc ROUGE-1 ROUGE-2 ROUGE-L
GPT-2-HOSA-Ir4  77.02 84.43 77.02 84.65
GPT-2-HOSA-Ir5 47.70 66.61 47.70 65.37
GPT-2-1r4 52.13 70.08 52.13 68.92
GPT-2-1r5 35.08 57.80 35.08 56.05
Heads =4
GPT-2-HOSA-Ir4  78.59 85.85 78.59 85.68
GPT-2-HOSA-Ir5 49.36 67.63 49.36 66.80
GPT-2-1r4 56.17 72.18 56.17 71.29
GPT-2-1Ir5 36.27 58.83 36.27 57.19
Heads = 8
GPT-2-HOSA-Ir4  85.01 88.99 85.01 88.94
GPT-2-HOSA-Ir5 58.24 74.42 58.24 73.95
GPT-2-1r4 61.72 57.19 61.72 74.57
GPT-2-Ir5 38.03 59.98 38.03 58.52
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