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Abstract001

Since the introduction of self-attention in 2016,002
Transformer based pre-training model have003
achieved remarkable success, driving break-004
throughs across various NLP tasks. Inspired by005
graph attention node aggregations from neigh-006
bor nodes, we revisit the self-attention mech-007
anism to explore its potential for capturing008
higher-order relationships in sequence model-009
ing. Specifically, we propose a novel High-010
Order Self-Attention mechanism, which en-011
hances the expressive power of traditional self-012
attention through multiple self-attention aggre-013
gations and positional embeddings. By integrat-014
ing this mechanism into self-attention based015
models during the pre-training process with016
limited data and model capacity, we achieve017
up to a 35% improvement in accuracy for018
RoBERTa on masked token prediction tasks019
and up to a 75% increase in ROUGE-2 scores020
for GPT-2 on pre-training task, under identical021
experimental conditions demonstrating the ro-022
bustness and efficiency of the proposed method.023
This mechanism further enables a novel pa-024
rameter stacking approach, allowing models025
to achieve more efficient and scalable train-026
ing. These findings demonstrate the potential027
of High-Order Self-Attention for advancing se-028
quence modeling and pre-training workflows.029

1 Introduction030

The self-attention mechanism has revolutionized se-031

quence modeling by providing a dynamic approach032

to capturing global dependencies across data. By033

allowing each element in a sequence to evaluate its034

relationships with all other elements, self-attention035

enables the extraction of context-aware representa-036

tions through dot-product similarity. This ability to037

capture both short-range and long-range dependen-038

cies makes self-attention a cornerstone of modern039

natural language processing (NLP).040

This transformative capability is exemplified by041

Transformer-based architectures such as BERT (?)042

0.8 0.2 -0.5 0.3 -0.2 -0.01

1 1 1 1 1 1

0.08

1

1 1 1 1 1 1 1

0.5 0.35 -0.2 -0.6 0.95 0.2 -0.1

Self-Attention

Self-Attention 
Copy

Embedding 1

Embedding 2

0.65 0.275 -0.35 -0.15 0.375 0.095 -0.01

New Self-Attention

Figure 1: High-Order Self-Attention Mechanism: a stan-
dard self-attention computation is broadcast-multiplied
with High-Order Position Embeddings (HOPE) to gen-
erate multiple diverse attention units, each capturing
different dependency patterns. Guided by HOPE, the
standard self-attention outputs are aggregated through
a feed-forward network (FFN) to produce a new at-
tention representation. This aggregated representation
forms high-order relationships with the original atten-
tion, thereby enhancing the model’s ability to distin-
guish relevant information.

and GPT-2 (Radford et al., 2019), which have 043

demonstrated exceptional performance across a 044

wide range of NLP tasks, including machine trans- 045

lation, question answering, and text generation. 046

These models excel at processing long and com- 047

plex texts, firmly establishing self-attention as the 048

foundation of large language models (LLMs). 049

However, traditional self-attention mechanisms 050

exhibit significant limitations when dealing with 051

the intricacies of natural language. Natural lan- 052

guage is inherently hierarchical, comprising lay- 053

ers of meaning that span from local dependencies 054

(e.g., between words) to global semantics (e.g., 055

paragraph-level relationships). Existing methods 056

primarily rely on simple dot-product calculations, 057

which, while effective for capturing immediate de- 058

pendencies, struggle to represent multi-level, hier- 059

archical relationships within sequences. 060

To address these challenges, the concept of high- 061

order dependencies offers a promising direction. 062

High-order dependencies extend beyond direct re- 063

lationships by capturing more nuanced and multi- 064
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level interactions within sequences. Previous works065

have explored high-order attention in specific tasks066

such as person re-identification (Chen et al., 2019),067

remote sensing (Zhang et al., 2020), and graph068

representation learning (Veličković et al., 2018),069

where attention is applied over relational structures.070

However, these designs are either task-dependent071

or limited to non-sequential data, and fundamen-072

tally differ from our approach. Introducing mech-073

anisms capable of modeling such dependencies is074

critical for improving both the expressiveness and075

performance of attention-based architectures.076

Inspired by these challenges, and partially moti-077

vated by insights from Graph Attention Networks078

(GAT) (Veličković et al., 2018), we propose a079

novel High-Order Self-Attention Network (HOSA)080

to overcome the limitations of traditional self-081

attention, shown in Figure 1. HOSA enhances082

the self-attention framework by incorporating high-083

order dependency modeling through multi-level084

attention aggregation. This is achieved by intro-085

ducing multiple replicated attention heads, each086

modulated by unique positional embeddings, and087

linearly aggregating their contributions.088

The main contributions of this work can be sum-089

marized as follows:090

We introduce a novel self-attention mechanism091

that explicitly incorporates high-order dependency092

modeling, significantly enhancing the ability to093

capture multi-level relationships in sequences. By094

integrating HOSA into pre-trained architectures095

like GPT-2 and RoBERTa, we achieve significant096

gains in masked and next-token prediction tasks.097

Extensive experiments on benchmarks show HOSA098

consistently surpasses traditional self-attention.099

2 Related Work100

Various attention variants have been proposed to101

improve the efficiency or inductive bias of self-102

attention, such as linear attention (Katharopoulos103

et al., 2020), light attention (Vaswani et al., 2021),104

and adaptive sparse attention (Beltagy et al., 2020).105

While our work is inspired by the need to overcome106

the limitations of standard dot-product attention,107

our proposed mechanism is structurally indepen-108

dent from these designs and focuses instead on109

modeling multi-level token dependencies through110

a high-order formulation.111

2.1 Self-Attention Mechanism 112

The self-attention mechanism was significantly ad- 113

vanced and popularized through the Transformer ar- 114

chitecture by Vaswani et al. (Vaswani et al., 2017), 115

revolutionizing sequence modeling by enabling 116

models to dynamically compute dependencies be- 117

tween all elements in a sequence. This global at- 118

tention mechanism allows the model to effectively 119

capture contextual information, making it the cor- 120

nerstone of state-of-the-art architectures like BERT 121

and GPT. The mathematical formulation of single- 122

layer, single-head self-attention is as follows: 123

e =
KQT

√
dk

(1) 124

125
α = softmax(e) (2) 126

127
h⃗′ = σ(αV) (3) 128

where Q, K, and V represent the query, key, and 129

value matrices obtained by applying linear transfor- 130

mations to the input sequence. The scaling factor 131√
dk ensures numerical stability for larger dimen- 132

sions dk. By assigning importance weights α to 133

elements in the sequence, this mechanism enables 134

the model to capture global dependencies effec- 135

tively. Despite its success, standard self-attention 136

mechanisms often struggle to capture higher-order 137

relationships or hierarchical dependencies, which 138

are crucial for tasks requiring a deeper understand- 139

ing of data structures. 140

2.2 Self-Attention in BERT and the Role of 141

Positional Embeddings 142

BERT builds on the Transformer architecture by 143

introducing bidirectional self-attention, allowing 144

the model to utilize both preceding and succeeding 145

context for tasks such as masked token prediction. 146

However, in masked token prediction, the bidirec- 147

tional nature of self-attention introduces a funda- 148

mental limitation: when masked tokens share iden- 149

tical contextual embeddings, the attention mecha- 150

nism cannot inherently distinguish them. Without 151

additional information, attention weights are iden- 152

tical, rendering the model unable to disambiguate 153

these tokens. 154

To address this, BERT incorporates positional 155

embeddings as an essential component of the 156

model. These embeddings encode the position of 157

each token in the sequence, enabling the attention 158

mechanism to differentiate tokens based on their 159

positions. While effective, standard positional em- 160

beddings are fixed and static, limiting their ability 161
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to capture hierarchical or high-order positional re-162

lationships, which are crucial for tasks involving163

complex token interactions.164

Building on this concept, our work introduces165

High-Order Positional Embedding (HOPE) as166

a critical component of the HOSA framework.167

HOPE extends the role of positional embeddings168

by directly integrating positional information into169

the attention mechanism, allowing for more nu-170

anced token differentiation and the modeling of171

hierarchical relationships.172

2.3 Applications of Self-Attention in GPT173

GPT adopts a unidirectional self-attention mecha-174

nism, where each token attends only to its preced-175

ing tokens in the sequence. This design aligns well176

with autoregressive tasks such as text generation,177

enabling GPT to predict the next token based on the178

preceding context. While GPT does not encounter179

issues related to bidirectional attention, it still re-180

lies on positional embeddings to encode sequence181

order.182

In this study, we evaluate HOSA and its po-183

sitional embedding component (HOPE) within184

GPT’s architecture to assess their effectiveness in185

autoregressive tasks. These experiments demon-186

strate the versatility of HOSA across different se-187

quence modeling paradigms and validate HOPE’s188

potential for enhancing positional information han-189

dling in various contexts.190

3 Methodology191

In this section, we present the High-Order Self-192

Attention Network (HOSA), a novel architecture193

designed to enhance the representational capacity194

of self-attention mechanisms through the integra-195

tion of multiple parallel self-attention units within196

each HOSA module. HOSA leverages BERT’s197

token position embeddings and incorporates High-198

Order Position Embedding (HOPE) to differentiate199

between multiple self-attentions, enabling effective200

token representation learning. The final hidden201

states computed by HOSA capture complex rela-202

tionships within the sequence.203

Key notations used in this section: batch_size:204

the batch size during training. max_len: the max-205

imum length of input sentences. hidden_dim:206

the dimensionality of hidden feature representa-207

tions. num_hosa: the number of attention units in208

HOSA.209
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[SEP]
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Figure 2: HOSA utilizes High-Order Position Em-
bedding (HOPE) for its inputs. For example, with
an input sentence of length 64 and number of atten-
tion units 64, HOPE produces a 64 × 64 positional
embedding matrix that encodes pairwise token posi-
tions. In BERT, Ex denotes the position embedding
of token x, whereas in HOSA, Ei,j spans the entire
num_hosa×max_len space, capturing relationships
across multiple self-attention computations.

3.1 High-Order Position Embedding (HOPE) 210

BERT uses token position embeddings to distin- 211

guish masked tokens during pre-training. Building 212

on this concept, HOSA introduces the High-Order 213

Position Embedding (HOPE), denoted as Ehope, 214

to serve as a unique identifier for multiple stan- 215

dard self-attention layers within the network. As 216

illustrated in Figure 2, HOPE generalizes position 217

embeddings to provide distinct representations for 218

different self-attention mechanisms, ensuring they 219

are uniquely distinguished during computation. 220

HOPE is represented as a tensor of shape 221

Rnum_hosa×max_len×hidden_dim, where each element 222

serves as a unique identifier for different attention 223

computations. In HOSA, HOPE is first applied 224

to the key matrix K via element-wise multiplica- 225

tion using tensor broadcasting, resulting in the ex- 226

tended key matrix Khope. The matrix Khope is 227

then used in the attention mechanism, where it is 228

multiplied with the query matrix Q. Unlike the 229

traditional positional embeddings in BERT, which 230

are added to token embeddings, HOPE directly in- 231

teracts with the attention mechanism, enhancing 232

its ability to differentiate between attention compu- 233

tations. Mathematically, the extension of the key 234

matrix can be expressed as: 235

Khope = K⊙Ehope (4) 236

where Q represents the query matrix, K is the key 237
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Figure 3: Model architecture of the High-Order Self-Attention Mechanism. The blue-shaded section represents
the High-Order computation, whereas the yellow-shaded section illustrates the sequence computation in standard
Self-Attention. The symbol ⊗ represents the inner product computation with broadcasting, while ⊙ denotes
element-wise multiplication. The equation numbers correspond to the equation in the Methodology section. The
multi-layer modules clearly illustrate how dimensions are selected and multiplied across different computational
steps.

matrix, Ehope is the High-Order Position Embed-238

ding, and ⊙ denotes element-wise multiplication.239

3.2 High-Order Self-Attention Mechanism240

The High-Order Self-Attention Mechanism241

(HOSA) is designed to enhance the traditional242

self-attention mechanism by incorporating high-243

order dependencies and positional information,244

illustrated in Figure 3. By leveraging High-Order245

Position Embeddings (HOPE), HOSA emphasizes246

the model’s ability to learn specific patterns,247

effectively reducing attention to irrelevant tokens248

while enhancing attention to relevant ones. This249

enhancement primarily reflects the model’s250

capacity to fit underlying dependency patterns in251

the data, rather than directly capturing semantic252

relationships. Specifically, HOPE is designed as253

a mathematical mechanism to model structural254

information in the sequence, enabling the model255

to more efficiently capture rich contextual de-256

pendencies when significant patterns exist in the257

data.258

High-Dimensional Attention Score Calculation259

HOSA first computes a high-dimensional attention260

score ehosa to capture high-order relationships:261

ehosa =
Khope ·QT

√
dk

(5)262

Here, Khope is the extended key matrix derived263

from HOPE, and Q is the query matrix. The divi-264

sion by
√
dk ensures numerical stability and scales265

the attention scores appropriately. This step en- 266

codes high-order dependencies by incorporating 267

rich positional information from Khope. 268

Dimensionality Reduction via Projection To 269

reduce the additional dimension introduced by 270

Khope, HOSA applies a learnable projection matrix 271

W ∈ Rnum_hosa×max_len×1: 272

e = ehosa ·W (6) 273

This operation collapses the redundant dimension 274

while preserving the most salient patterns, enabling 275

the model to focus on important token dependen- 276

cies. 277

Attention Weight Normalization The reduced 278

attention scores e are then normalized using the 279

Softmax function: 280

α = softmax(e) (7) 281

The Softmax operation ensures that attention 282

weights are distributed over the tokens, amplify- 283

ing relevant tokens while suppressing irrelevant 284

ones. 285

Final Representation Update The normalized 286

attention weights α are used to compute the final 287

representation: 288

h′ = σ
(
αV

)
(8) 289

Here, V represents the value matrix, and σ is an 290

optional activation function that introduces non- 291

linearity. This step produces the updated token 292
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representation, enriched with contextual and hier-293

archical information.294

The computational complexity of our model is295

determined to be O(n2), where n is the maximum296

sentence length.297

4 Experiment298

4.1 Experiment Design299

To evaluate the impact of the High-Order Self-300

Attention Mechanism (HOSA) in self-attention-301

based models, we selected two compact yet clas-302

sic pre-trained models, GPT-2 and RoBERTa, for303

comparison. These models serve as representa-304

tive benchmarks for assessing the effectiveness of305

HOSA in enhancing self-attention mechanisms.306

GPT-2 is chosen as it serves as the foundation for307

modern large language models (LLMs), leveraging308

unidirectional self-attention. In contrast, RoBERTa309

represents a bidirectional self-attention architec-310

ture. Both models have achieved state-of-the-art311

performance on various natural language process-312

ing tasks, making them ideal reference points for313

this study. The dataset used for the experiments is314

the BookCorpus dataset, which is widely used for315

pre-training language models, including BERT.316

Two experimental tasks were designed:317

• Next Token Prediction: Evaluates the318

model’s ability to predict the next token in319

a sequence, simulating a generative setting.320

• Masked Token Prediction: Assesses the321

model’s capability to predict randomly322

masked tokens, reflecting a masked language323

model task.324

Key experimental parameters include embedding325

dimensions, sentence lengths, the number of lay-326

ers, and the number of attention heads, ensuring a327

controlled and comprehensive evaluation.328

4.2 Dataset and Training Strategy329

To evaluate HOSA in Experiments 1 and 2, a scaled330

dataset of 100,000 samples was selected from the331

BookCorpus benchmark (Zhu et al., 2015). This332

choice balances computational efficiency and scal-333

ability while maintaining sufficient data diversity334

for reliable evaluation.335

The BookCorpus dataset has an average sentence336

length of 15.7 tokens, with 99.87% of sentences337

below 64 tokens, making it a suitable benchmark338

for testing HOSA’s performance. Training was339

conducted over 60 epochs using a linear descent 340

learning strategy, with a consistent batch size of 50 341

across all experiments to ensure comparability. 342

4.3 Experiment 1: Validation of HOSA in 343

Next Token Prediction 344

The primary objective of Experiment 1 is to evalu- 345

ate the effectiveness of HOSA in next token predic- 346

tion tasks, a generative pre-training scenario com- 347

monly associated with GPT-2. By replacing the 348

scaled dot-product self-attention module in GPT-2 349

with HOSA, we assessed its performance under 350

various configurations to explore its robustness and 351

generalizability. 352

The experimental setup covered a range of key 353

configurations, including embedding dimensions, 354

number of layers, sentence lengths, and attention 355

heads. Specifically, the embedding dimensions 356

ranged from 128 to 3200, with the number of layers 357

varying from 1 to 16. Sentence lengths were tested 358

at 64, 128, 256, and 512 tokens with the number of 359

attention units equal to the sentence length, while 360

attention heads ranged from 1 to 8. Except for the 361

input length experiments, the number of attention 362

units (num_hosa) was fixed at 64. Additionally, 363

two learning rates, 3e-4 and 3e-5, were explored 364

to evaluate their impact on model convergence and 365

performance. 366

4.3.1 Evaluation Metrics 367

To assess the model’s performance in the next to- 368

ken prediction task, two key metrics were used. 369

Accuracy measures the overall correctness of to- 370

ken predictions, while ROUGE-1, ROUGE-2, and 371

ROUGE-L evaluate n-gram overlap between the 372

predicted and target sequences (Lin, 2004). 373

Among these metrics, ROUGE-2 was selected 374

as the primary evaluation criterion due to its sensi- 375

tivity to sequence-level dependencies and its ability 376

to robustly assess contextual relationships. 377

4.3.2 Experiment 1 Results and Analysis 378

The experimental results, summarized in Table 1, 379

show that GPT-2-HOSA consistently outperformed 380

the baseline GPT-2 model across all configurations. 381

Key findings include: 382

GPT-2-HOSA with a learning rate of 3e-4 383

achieved optimal performance in smaller embed- 384

ding dimensions (128 to 768). For instance, in the 385

single-layer configuration, the ROUGE-2 score im- 386

proved from 43.89 (baseline) to 77.09 (a 75.6% 387

improvement). Conversely, a learning rate of 3e- 388
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5 proved more effective for larger configurations389

(1600 to 3200), likely due to its ability to stabilize390

gradients and enhance convergence. Notably, GPT-391

2-HOSA-lr5 exhibited strong scalability, maintain-392

ing high performance even at 3200 dimensions.393

GPT-2-HOSA reached peak performance be-394

tween 8 and 16 layers, with scores plateauing be-395

yond 16 layers, suggesting diminishing returns396

from deeper architectures. Interestingly, GPT-2-397

HOSA-lr5 also achieved its maximum performance398

at 8 layers, reinforcing the efficiency of high-order399

attention in moderately deep models.400

Since the average sentence length in the train-401

ing dataset is only 15.7 tokens, increasing the402

maximum sentence length beyond this average403

yielded limited benefits. However, as the number404

of self-attention heads scales with sentence length405

in the model design, experiments with longer se-406

quences were conducted. Results showed that GPT-407

2-HOSA-lr5 continued to improve with longer sen-408

tence lengths, demonstrating the scalability and409

effectiveness of high-order attention under a 3e-5410

learning rate.411

The experimental findings validate the superior412

performance of HOSA, particularly in enhancing413

the model’s ability to capture contextual relation-414

ships and scale effectively. Compared to traditional415

self-attention, HOSA not only excels in small pa-416

rameter settings but also maintains robust improve-417

ments in high-dimensional configurations. The sub-418

stantial improvements in ROUGE-2 scores further419

confirm HOSA’s ability to model sequence-level de-420

pendencies, establishing it as a powerful enhance-421

ment over standard self-attention mechanisms.422

4.4 Experiment 2: Validation of HOSA in423

masked token prediction424

The second experiment aims to evaluate the ef-425

fectiveness of HOSA in the masked token predic-426

tion pre-training task. By integrating HOSA into427

the scaled dot product self-attention mechanism428

of RoBERTa with 15% masking rate, we assessed429

its performance across various configurations, in-430

cluding dimensions [128, 256, 768], layer numbers431

[1, 2, 4], maximum sentence lengths [64, 128, 256],432

and the number of attention heads [1, 2, 4]. The433

number of HOSA units (num_hosa) was still fixed434

at 64.435

In the masked token prediction task, due to gra-436

dient vanishing issues observed with a learning437

rate of 3e-4, we adjusted the learning rate to 3e-5438

to examine the impact of learning rate on model439

convergence and performance. 440

The performance of the models was evaluated 441

using accuracy scores, which reflect the model’s 442

ability to predict masked tokens effectively. 443

4.4.1 Experiment 2 Results and Analysis 444

The experimental results, summarized in Table 2, 445

demonstrate the advantages of RoBERTa-HOSA 446

across various configurations. Notably, RoBERTa- 447

HOSA shows significant improvements in small- 448

scale models, with the performance gap narrowing 449

as the number of layers increases. 450

In single-layer settings, RoBERTa-HOSA 451

achieves substantial accuracy gains, with improve- 452

ments of 24.2 and 29 points compared to the base- 453

line—a relative improvement of 35%. These re- 454

sults highlight the effectiveness of HOSA in sce- 455

narios where model capacity is limited. Similarly, 456

in multi-head configurations, although the improve- 457

ments are less pronounced, RoBERTa-HOSA still 458

outperforms the baseline (29.1 vs. 27.4). Un- 459

der low-dimensional settings, the model achieves 460

notable gains (18.5 vs. 14.8), likely due to the 461

increased number of high-order attention heads, 462

which enables the capture of diverse and complex 463

attention patterns. 464

Consistent with the findings in Experiment 1, 465

longer sentence lengths lead to enhanced perfor- 466

mance. While the baseline RoBERTa experiences 467

a performance drop at a sentence length of 256, 468

RoBERTa-HOSA continues to improve. This can 469

be attributed to the larger number of high-order 470

attentions in longer sequences, which enable the 471

model to better capture complex dependencies and 472

patterns. 473

Overall, RoBERTa-HOSA demonstrates excep- 474

tional performance in small-scale models, confirm- 475

ing its efficiency in representation learning. While 476

improvements in larger models are less pronounced 477

compared to Experiment 1, the significant perfor- 478

mance gains validate the effectiveness of the HOSA 479

mechanism, not only in GPT pre-training tasks but 480

also in RoBERTa-based pre-training settings. 481

5 Ablation Study 482

To better understand the effects of different model 483

structures, we separately removed the decoder and 484

edge position embedding in masked token predic- 485

tion training to observe the effectiveness of the 486

model. 487
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Model Layer1 Layer2 Layer4 Layer8 Layer16
GPT-2-lr4 43.89 50.69 32.66 28.75 26.72
GPT-2-lr5 34.75 43.73 60.41 72.71 74.26
GPT-2-HOSA-lr4 77.09 84.93 93.71 94.56 94.55
GPT-2-HOSA-lr5 42.12 58.73 90.99 94.54 94.55
Model 128 Dim 256 Dim 768 Dim 1600 Dim 3200 Dim
GPT-2-lr4 26.91 33.12 43.89 23.33 23.47
GPT-2-lr5 24.04 25.74 34.75 59.96 23.17
GPT-2-HOSA-lr4 32.41 46.41 77.09 22.69 23.18
GPT-2-HOSA-lr5 29.23 32.32 42.12 78.84 83.35
Model 64 Length 128 Length 256 Length 512 Length -
GPT-2-lr4 43.89 27.44 25.34 23.35 -
GPT-2-lr5 34.75 34.7 34.73 40.07 -
GPT-2-HOSA-lr4 77.09 52.27 44.99 23.9 -
GPT-2-HOSA-lr5 42.12 43.58 54.96 64.61 -
Model 1 Head 2 Heads 4 Heads 8 Heads -
GPT-2-lr4 43.89 52.13 56.17 61.72 -
GPT-2-lr5 34.75 35.08 36.27 38.03 -
GPT-2-HOSA-lr4 77.09 77.02 78.59 85.01 -
GPT-2-HOSA-lr5 42.12 47.7 49.36 58.24 -

Table 1: Result of the Next Token Prediction Task in Experiment 1 with ROUGE-2 scores. In experiments with
varying input lengths, the number of attention units computations scales proportionally with the sentence length.
Except for the input length experiments, the number of attention units is fixed at 64. The ratio between performance
scores and model parameters is provided in Appendix A.

model layer1 layer2 layer4
RoBERTa 24.21 27.85 34.17
RoBERTa-HOSA 28.98 32.64 33.98
model 128 Dim 256 Dim 768 Dim
RoBERTa 14.75 17.02 24.21
RoBERTa-HOSA 18.54 18.05 28.98
model 64 Len 128 Len 256 Len
RoBERTa 24.21 27.85 23.76
RoBERTa-HOSA 28.98 28.76 32.13
model 1 Head 2 Heads 4 Heads
RoBERTa 24.21 26.74 27.37
RoBERTa-HOSA 28.98 28.11 29.11

Table 2: Result of Masked Token Prediction Task in
experiment 2 with accuracy score. This experiment is
using learning rate with 3e-5 and number of attention
units with 64.

Model 3e−4 3e−5

GPT-2 43.89 34.75
GPT-2-HOSA 77.09 42.12
GPT-2-HOSA-NS2 58.73 36.24
GPT-2-HOSA-NS4 59.11 36.37
GPT-2-HOSA-NoToken 78.11 42

Table 3: Ablation study result for Next Token Prediction
task with ROUGE-2 score. NS 2 and NS 4 represent at-
tention number ability in ablation 1, NoToken represent
HOPE without token ability in ablation 2.

5.1 Ablation 1: HOPE with Restricted Ability 488

of Self-Attention Units 489

To determine if accuracy improvements stem from 490

the variation introduced by multiple self-attentions, 491

we reduced the number of self-attentions units to 2 492

and 4 and observed their impact. The experiments 493

were conducted using GPT-2-HOSA. The results 494

are shown in Table 3. 495

The results confirm that training ROUGE-2 496

score increases as the number of self-attentions 497

units grows, validating the importance of the High- 498

Order effect in driving performance improvements. 499

5.2 Ablation 2: HOPE Without Token 500

Distinction Ability 501

We explored whether unique embeddings for 502

each token are necessary, or if shared embed- 503

dings per self-attention layer suffice. In GPT-2- 504

HOSA, we tested shared embeddings replicated 505

across tokens, adjusting HOPE dimensions to 506

[batch_size, num_hosa, 1, hidden_dim] and repli- 507

cating max_len times along the third dimension. 508

Results are also summarized in Table 3. 509

The findings suggest that shared embeddings im- 510

prove differentiation across self-attention layers, 511
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potentially because large models already encode512

token positional information effectively. Unique513

embeddings may add unnecessary complexity and514

computational cost without clear benefits. Further515

studies are needed to assess whether token distinc-516

tion is beneficial in higher-parameter models.517

6 Discussion518

6.1 Why Does HOSA Significantly Enhance519

Performance?520

We consider HOSA to greatly improve the model’s521

performance primarily due to its ability to gener-522

ate multiple self-attention mechanisms and utilize523

HOPE to differentiate individual attentions, tokens524

within those attentions, and tensors within those525

tokens. This approach enables the simultaneous526

training of multiple self-attentions while assigning527

distinct weights to each self-attention. The optimal528

attention representation is achieved by summariz-529

ing these features through a fully connected layer.530

Additionally, the increased data differentiation al-531

lows the model to generate larger losses during532

the initial training phase, which helps to adjust the533

weight parameters more effectively and enhances534

the model’s learning efficiency.535

6.2 Is HOSA Essentially the Same as536

Multi-Head?537

We posit that while HOSA and the multi-head538

mechanism share some conceptual similarities,539

their implementations and computational implica-540

tions are fundamentally different. While the multi-541

head mechanism prevents attention collapse (exces-542

sive concentration of a token’s attention on itself543

at the expense of other relevant tokens), HOSA544

achieves diversified attention by replicating and as-545

signing different weights to (k, q). The differences546

are evident in the computational parameters and547

performance. For example, experimental results548

show that the differences between GPT-2-lr4 and549

GPT-2-HOSA-lr4 with 2 and 4 heads are 7.74%550

(52.13 vs. 56.17) and 2.04% (78.59 vs. 77.02),551

respectively. Meanwhile, the difference between552

GPT-2-HOSA-NS2 and GPT-2-HOSA-NS4 is only553

0.65% (58.73 vs. 59.11). These findings confirm554

that the mechanisms are fundamentally distinct.555

6.3 Why Does the Learning Rate Significantly556

Affect Results?557

We believe the core reason lies in the interaction558

between learning rate, hidden dimension size, and559

gradient stability. At high learning rates, GPT-2 560

models with lower hidden dimensions tend not to 561

suffer from gradient explosion, maintaining stable 562

training performance. However, as the hidden di- 563

mension increases, the risk of gradient explosion 564

also increases, leading to degraded results. In con- 565

trast, HOSA demonstrates greater robustness to 566

gradient instability at higher dimensions, which al- 567

lows it to benefit more from larger learning rates. 568

As a result, HOSA achieves better performance un- 569

der higher learning rates compared to the standard 570

GPT-2. 571

7 Conclusion and Future Work 572

HOSA is an innovative attention mechanism that 573

integrates multiple self-attention layers into a uni- 574

fied structure, enabling efficient aggregation and 575

summarization of information. This design signif- 576

icantly improves the accuracy and learning capa- 577

bilities of self-attention-based language models, in- 578

cluding GPT-2 and RoBERTa. Our ablation studies 579

validate that each component of HOSA contributes 580

effectively to the model’s performance. However, 581

the interaction between HOPE and token position 582

embeddings may introduce conflicts under certain 583

conditions, which warrants further exploration. Ad- 584

ditionally, HOSA introduces a new training param- 585

eter, adding a novel dimension of depth to the train- 586

ing of self-attention-based models. 587

For future work, we plan to explore the appli- 588

cation of HOSA in more advanced architectures, 589

to further validate its scalability and generaliza- 590

tion. Additionally, we will employ heatmap-based 591

visualization to observe and track the evolution 592

of attention weights and gradient flows throughout 593

training, enabling a deeper understanding of param- 594

eter dynamics and facilitating more targeted opti- 595

mization. Notably, HOPE has demonstrated better- 596

than-expected performance even when combined 597

with single-token embeddings, a phenomenon that 598

merits further investigation. Moreover, we are in- 599

terested in exploring the feasibility of extending 600

HOSA to a four-dimensional structure, which could 601

unlock new opportunities for enhancing both its 602

modeling capacity and flexibility. 603

8 Limitation 604

Training Efficiency Benchmark 605

Another limitation is that this study focuses on 606

evaluating the proposed attention mechanism in the 607

pre-training phase using a limited-scale dataset and 608
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Model Batch Size Throughput
GPT-2 (Baseline) 400 35,200
GPT-HOSA-NS2 380 34,304
GPT-2-HOSA 200 22,528

Table 4: Training Efficiency Comparison on A40-48GB
GPU (100,000 samples)

Scalability: Each additional attention number unit
reduces inference speed by 896 tokens/sec to 201 tokens/sec
(2.5% to 1%) in a single GPU. The standard GPT-2-HOSA

configuration uses 64 attention number units.

without downstream fine-tuning tasks. This design609

choice was made to isolate and analyze the funda-610

mental behavior of the mechanism in a controlled,611

resource-efficient setting. Comprehensive bench-612

marking against established datasets (e.g., GLUE613

or SQuAD) typically requires extensive compu-614

tational resources and prolonged experimentation615

cycles, which are beyond the scope of this initial616

investigation. While the current setup does not as-617

sess the absolute language understanding capability618

of the model, the observed improvements in core619

language modeling tasks demonstrate the mech-620

anism’s potential. We consider this work as an621

early-stage exploration, laying the foundation for622

future studies involving larger-scale training and623

fine-tuning.624
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A Appendix A: Ratio between ROUGE-2 669

and model parameters. 670

Layer = 1
Model Score Params Score/Param
GPT-2-HOSA-lr4 77.09 90.67M 8.50E-07
GPT-2-HOSA-lr5 42.12 90.67M 4.65E-07
GPT-2-lr4 43.89 84.38M 5.20E-07
GPT-2-lr5 34.75 84.38M 4.12E-07

Layer = 2
Model Score Params Score/Param
GPT-2-HOSA-lr4 84.93 97.76M 8.69E-07
GPT-2-HOSA-lr5 58.73 97.76M 6.01E-07
GPT-2-lr4 50.69 91.47M 5.54E-07
GPT-2-lr5 43.73 91.47M 4.78E-07

Layer = 4
Model Score Params Score/Param
GPT-2-HOSA-lr4 93.71 111.94M 8.37E-07
GPT-2-HOSA-lr5 90.99 111.94M 8.13E-07
GPT-2-lr4 32.66 105.65M 3.09E-07
GPT-2-lr5 60.41 105.65M 5.72E-07

Layer = 8
Model Score Params Score/Param
GPT-2-HOSA-lr4 94.56 140.29M 6.74E-07
GPT-2-HOSA-lr5 94.54 140.29M 6.74E-07
GPT-2-lr4 28.75 134.00M 2.15E-07
GPT-2-lr5 72.71 134.00M 5.43E-07

Layer = 16
Model Score Params Score/Param
GPT-2-HOSA-lr4 94.55 196.99M 4.80E-07
GPT-2-HOSA-lr5 94.55 196.99M 4.80E-07
GPT-2-lr4 26.72 190.70M 1.40E-07
GPT-2-lr5 74.26 190.70M 3.89E-07

Table 5: Model performance comparison across differ-
ent Transformer layer depths. Rows are grouped by the
number of layers for clearer comparison.
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Heads = 1
Model Score Params Score/Param
GPT-2-HOSA-lr4 77.09 90.67M 8.50E-07
GPT-2-HOSA-lr5 42.12 90.67M 4.65E-07
GPT-2-lr4 43.89 84.38M 5.20E-07
GPT-2-lr5 34.75 84.38M 4.12E-07

Heads = 2
Model Score Params Score/Param
GPT-2-HOSA-lr4 77.02 90.67M 8.49E-07
GPT-2-HOSA-lr5 47.70 90.67M 5.26E-07
GPT-2-lr4 52.13 84.38M 6.18E-07
GPT-2-lr5 35.08 84.38M 4.16E-07

Heads = 4
Model Score Params Score/Param
GPT-2-HOSA-lr4 78.59 90.67M 8.67E-07
GPT-2-HOSA-lr5 49.36 90.67M 5.44E-07
GPT-2-lr4 56.17 84.38M 6.66E-07
GPT-2-lr5 36.27 84.38M 4.30E-07

Heads = 8
Model Score Params Score/Param
GPT-2-HOSA-lr4 85.01 90.67M 9.38E-07
GPT-2-HOSA-lr5 58.24 90.67M 6.42E-07
GPT-2-lr4 61.72 84.38M 7.31E-07
GPT-2-lr5 38.03 84.38M 4.51E-07

Table 6: Model score, parameter count, and score-to-
parameter ratio under different numbers of attention
heads. Rows are grouped by head count.

Figure 4: GPT-2 Model ROUGE-2 Scores Across Dif-
ferent Layers

B Appendix B: Complete score result.671

C Appendix C: Graphic score result.672

Figure 5: GPT-2 Model ROUGE-2 Across Embedding
Dimensions

Figure 6: GPT-2 Model ROUGE-2 Across Input
Lengths

Figure 7: GPT-2 Model ROUGE-2 Across Number Of
Attention Heads
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Dimension = 128
Model Score Params Score/Param
GPT-2-HOSA-lr4 32.41 13.15M 2.47E-06
GPT-2-HOSA-lr5 29.23 13.15M 2.22E-06
GPT-2-lr4 26.91 13.08M 2.06E-06
GPT-2-lr5 24.04 13.08M 1.84E-06

Dimension = 256
Model Score Params Score/Param
GPT-2-HOSA-lr4 46.41 26.55M 1.75E-06
GPT-2-HOSA-lr5 32.32 26.55M 1.22E-06
GPT-2-lr4 33.12 26.55M 1.25E-06
GPT-2-lr5 25.74 26.55M 9.69E-07

Dimension = 768
Model Score Params Score/Param
GPT-2-HOSA-lr4 77.09 90.67M 8.50E-07
GPT-2-HOSA-lr5 42.12 90.67M 4.65E-07
GPT-2-lr4 43.89 84.38M 5.20E-07
GPT-2-lr5 34.75 84.38M 4.12E-07

Dimension = 1600
Model Score Params Score/Param
GPT-2-HOSA-lr4 22.69 192.59M 1.18E-07
GPT-2-HOSA-lr5 78.84 192.59M 4.09E-07
GPT-2-lr4 23.33 191.77M 1.22E-07
GPT-2-lr5 59.96 191.77M 3.13E-07

Dimension = 3200
Model Score Params Score/Param
GPT-2-HOSA-lr4 23.18 446.62M 5.19E-08
GPT-2-HOSA-lr5 83.35 446.62M 1.87E-07
GPT-2-lr4 23.47 444.98M 5.27E-08
GPT-2-lr5 23.17 444.98M 5.21E-08

Table 7: Model performance comparison under different
hidden dimensions. Rows are grouped by dimension.

Learning Rate = 3e-4
Model Score Params Score/Param
GPT-2-HOSA 77.09 90.67M 8.50E-07
GPT-2-HOSA-NS2 58.73 84.58M 6.94E-07
GPT-2-HOSA-NS4 59.11 84.78M 6.97E-07
GPT-2-HOSA-Dim1 65.61 – –
GPT-2-HOSA-NoToken 78.11 84.43M 9.25E-07
GPT-2 43.89 84.38M 5.20E-07

Learning Rate = 3e-5
Model Score Params Score/Param
GPT-2-HOSA 42.12 90.67M 4.65E-07
GPT-2-HOSA-NS2 36.24 84.58M 4.28E-07
GPT-2-HOSA-NS4 36.37 84.78M 4.29E-07
GPT-2-HOSA-Dim1 40.00 – –
GPT-2-HOSA-NoToken 42.00 84.43M 4.97E-07
GPT-2 34.75 84.38M 4.12E-07

Table 8: Model performance comparison under differ-
ent learning rates. Rows are grouped by learning rate
setting.
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Table 9: Layer-wise Evaluation Results (GPT-2-HOSA-lr4/lr5 vs GPT-2-lr4/lr5)

Layer = 1
Model Acc ROUGE-1 ROUGE-2 ROUGE-L
GPT-2-HOSA-lr4 77.09 84.58 77.09 84.46
GPT-2-HOSA-lr5 42.12 62.81 42.12 61.57
GPT-2-lr4 43.89 65.31 43.89 63.54
GPT-2-lr5 34.75 57.61 34.75 55.80

Layer = 2
GPT-2-HOSA-lr4 84.93 88.39 84.93 88.37
GPT-2-HOSA-lr5 58.73 73.91 58.73 73.31
GPT-2-lr4 50.69 69.71 50.69 68.49
GPT-2-lr5 43.73 64.18 43.73 64.14

Layer = 4
GPT-2-HOSA-lr4 93.71 93.83 93.71 93.83
GPT-2-HOSA-lr5 90.99 92.45 90.99 92.45
GPT-2-lr4 32.66 57.57 32.66 54.90
GPT-2-lr5 60.41 73.86 60.41 73.56

Layer = 8
GPT-2-HOSA-lr4 94.56 94.51 94.56 94.51
GPT-2-HOSA-lr5 94.54 94.49 94.54 94.49
GPT-2-lr4 28.75 54.01 28.75 51.07
GPT-2-lr5 72.71 80.67 72.71 80.57

Layer = 16
GPT-2-HOSA-lr4 94.55 94.50 94.55 94.50
GPT-2-HOSA-lr5 94.55 94.50 94.55 94.50
GPT-2-lr4 26.72 51.84 26.72 48.89
GPT-2-lr5 74.26 81.54 74.26 81.45

Table 10: Dimension-wise Evaluation Results (GPT-2-HOSA-lr4/lr5 vs GPT-2-lr4/lr5)

Dim = 128
Model Acc ROUGE-1 ROUGE-2 ROUGE-L
GPT-2-HOSA-lr4 32.41 53.39 32.41 51.41
GPT-2-HOSA-lr5 29.23 51.35 29.23 48.96
GPT-2-lr4 26.91 51.19 26.91 48.30
GPT-2-lr5 24.04 47.68 24.04 44.62

Dim = 256
GPT-2-HOSA-lr4 46.41 65.09 46.41 64.12
GPT-2-HOSA-lr5 32.32 53.37 32.32 51.39
GPT-2-lr4 33.12 56.81 33.12 54.42
GPT-2-lr5 25.74 49.75 25.74 46.84

Dim = 1600
GPT-2-HOSA-lr4 22.69 48.58 22.69 45.84
GPT-2-HOSA-lr5 78.84 84.93 78.84 84.88
GPT-2-lr4 23.33 48.99 23.33 46.55
GPT-2-lr5 59.96 73.49 59.96 73.07

Dim = 3200
GPT-2-HOSA-lr4 23.18 49.04 23.18 46.67
GPT-2-HOSA-lr5 83.35 87.38 83.35 87.35
GPT-2-lr4 23.47 49.15 23.47 46.88
GPT-2-lr5 23.17 48.70 23.17 46.18
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Table 11: Length-wise Evaluation Results (GPT-2-HOSA-lr4/lr5 vs GPT-2-lr4/lr5). The number of attention units is
proportional to the sentence length.

Length = 128
Model Acc ROUGE-1 ROUGE-2 ROUGE-L
GPT-2-HOSA-lr4 95.47 71.77 52.27 70.43
GPT-2-HOSA-lr5 94.25 63.07 43.58 62.15
GPT-2-lr4 91.65 52.39 27.44 49.52
GPT-2-lr5 91.37 51 26.83 48.46

Length = 256
GPT-2-HOSA-lr4 88.26 64.13 44.99 63.04
GPT-2-HOSA-lr5 97.88 70.52 54.96 70.19
GPT-2-lr4 97.45 67.62 47.39 66.07
GPT-2-lr5 96.51 57.61 34.73 55.81

Length = 512
GPT-2-HOSA-lr4 97.68 48.30 23.90 45.72
GPT-2-HOSA-lr5 99.20 76.57 64.61 76.36
GPT-2-lr4 97.71 48.77 23.35 46.27
GPT-2-lr5 98.47 61.56 40.07 60.10

Table 12: Head-wise Evaluation Results (GPT-2-HOSA-lr4/lr5 vs GPT-2-lr4/lr5)

Heads = 2
Model Acc ROUGE-1 ROUGE-2 ROUGE-L
GPT-2-HOSA-lr4 77.02 84.43 77.02 84.65
GPT-2-HOSA-lr5 47.70 66.61 47.70 65.37
GPT-2-lr4 52.13 70.08 52.13 68.92
GPT-2-lr5 35.08 57.80 35.08 56.05

Heads = 4
GPT-2-HOSA-lr4 78.59 85.85 78.59 85.68
GPT-2-HOSA-lr5 49.36 67.63 49.36 66.80
GPT-2-lr4 56.17 72.18 56.17 71.29
GPT-2-lr5 36.27 58.83 36.27 57.19

Heads = 8
GPT-2-HOSA-lr4 85.01 88.99 85.01 88.94
GPT-2-HOSA-lr5 58.24 74.42 58.24 73.95
GPT-2-lr4 61.72 57.19 61.72 74.57
GPT-2-lr5 38.03 59.98 38.03 58.52
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