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Abstract—Manifold alignment aims to find a shared repre-
sentation, learning inter-domain relationships across multiple
domains while retaining intra-domain structure within each do-
main. Traditional manifold alignment methods lack mechanisms
for out-of-sample extension, which requires re-computation of
the full embedding alignment when new data are introduced.
This limitation reduces their scalability and generalizability to
unseen data, posing challenges for real-world applications. To
address these issues, we propose an out-of-sample extension
that is generalizable to most semi-supervised manifold align-
ment methods. Our approach leverages a twin autoencoder
architecture for multimodal learning, where each autoencoder is
trained on a single modality and regularized using a pre-aligned
joint embedding. This architecture enables direct out-of-sample
extension of points from either modality while preserving a joint
geometric structure that can facilitate cross-domain mappings.
We validate our approach on bimodal datasets, demonstrating
meaningful alignment preservation.

Index Terms—Manifold Alignment, Guided Representation
Learning, Out-of-Sample Extension, Regularized Autoencoders

I. INTRODUCTION

In many cases, high-dimensional data can be well rep-
resented in far fewer dimensions [1]. For example, labels
from high-quality images can be inferred in smaller resolution
copies [2], and information from high-dimensional biological
systems [3] can be meaningfully extracted. Manifold learning
encompasses a set of methodologies to learn or extract a mean-
ingful, low-dimensional representation of high-dimensional
data such that relevant attributes of the data are preserved,
such as spatial distances (”close” points remain “close”) or
features relevant to some supervised task [4]. Additional
challenges arise when data is sourced from multiple domains
or modalities. In such contexts, manifold alignment can be
applied to learn a single, shared manifold or representation of
the data from different domains.

The majority of traditional manifold learning methods (and,
by extension, manifold alignment methods) map to a set of
fixed points but do not have a mechanism to embed points
outside of the original training set. That is, explicit out-of-
sample extension is not possible. When new data is introduced,

the entire learning algorithm must be repeated, and a new
joint manifold, influenced by the new data, is formed. This
is problematic due to computational costs and impracticality
for real-world applications requiring dynamic updates. Without
an out-of-sample extension mechanism, the alignment model
cannot generalize to unseen data, reducing the utility of the
learned manifold for predictive or inferential tasks.

Kernel methods serve as one approach to address this
limitation, such as the Nyström extension [5], or its vari-
ants [6]. These methods estimate embeddings for new data
points by expressing them as linear combinations of the
eigenvectors of a kernel matrix derived from the training data.
Although adapted for certain manifold learning methods such
as LLE or Isomap [5], these techniques are mainly tailored to
eigenvector-based methods and are not suitable for diffusion-
based methods or, in particular, manifold alignment methods
designed to bridge modalities. Despite their computational
advantages, these kernel methods have limited capacity to map
nonlinear relationships [7].

An alternative is to train a neural network to regress onto
precomputed embeddings derived from a high-dimensional
dataset. For example, parametric extensions, such as paramet-
ric t-SNE [8] and parametric UMAP [9], have demonstrated
the feasibility of incorporating manifold learning into a neural
network framework. However, training solely to predict these
embeddings often results in solutions that fit the data but fail
to capture meaningful patterns or generalize effectively [10].
To address this, multi-task learning [11], [12], such as that
done by autoencoders (AEs), has proven effective in improving
generalization by simultaneously learning related tasks.

Approaches such as supervised AEs [11], and geometry-
regularized AEs [13] have demonstrated the benefits of train-
ing networks in simultaneously predicting both targets (embed-
dings) and inputs (reconstruction), serving as useful methods
to improve generalization to unseen data points, preserving
geometric structure, and allowing out-of-sample extension in
manifold learning tasks [13]. Thus, we leverage regularized
AEs to build an extension for the manifold alignment task,
learning a function that both preserves the geometric structure



of the extended embedding (the encoder) and also provides a
mapping between modalities (the decoder).

We propose a twin AE architecture designed to address the
challenge of integrating new data from either or both domains
while maintaining alignment in the shared embedding space.
The architecture consists of two separate AEs, each trained
within a single modality that is regularized using a pre-trained,
aligned, joint embedding.

Although some methods are capable of handling more
than two domains, the majority of experiments and their
associated metrics in the literature are currently limited to
only two domains. Our problem formulation thus focuses on
bimodal problems, that is, manifold alignment restricted to
two domains. Where our results focus on only two domains,
our approach is capable of handling N domains by training a
separate AE for each domain.

II. MANIFOLD ALIGNMENT BACKGROUND

Manifold alignment comprises methodologies intended to
uncover a shared, underlying joint manifold representation
consisting of disparate data sources. This shared representa-
tion, or embedding, can serve as a representation for exploring
inter-domain relationships and enhancing subsequent machine
learning tasks.

Primary challenges in learning shared representations lie
in the heterogeneous nature of the datasets and the avail-
ability of known correspondence between points in different
domains. For instance, consider a dataset of images paired with
corresponding text collected from the Web. Each domain—
whether images or text—has a distinct notion of similarity
or distance, and some images may lack any associated text
altogether. However, shared patterns may still be identifiable
across these domains, despite the absence of complete one-to-
one correspondence [14].

A fundamental assumption underlying manifold alignment
is that the intrinsic structures of the different modalities share
a similar manifold structure [15]. Consequently, the latent
space is expected to preserve geodesic distance to maintain
the integrity of the relationships along the shared manifold. In
this space, locally similar instances within a dataset, as well as
corresponding instances across datasets, are mapped to similar
neighborhoods [16].

Manifold alignment methodologies can be broadly catego-
rized according to the availability of correspondences between
observations in different domains. Unsupervised manifold
alignment is done without known correspondences [17], [18].
Supervised manifold alignment relies on explicit one-to-one
correspondences [19] or complete label information, such as
class annotations [20]–[22]. Semi-supervised alignment occu-
pies an intermediate position, where partial correspondence
information is available. This may involve multiple views of
the same entities, such as various translations of a single source
document [23], [24], or shared features across domains [14].

III. RELATED WORKS

In Section III-A, we discuss advances in manifold alignment
generally. Outside of neural-network-based approaches, the

described methods lack built-in means to extend to new points.
In Section III-B, we discuss approaches for out-of-sample
extension in manifold learning, which motivates our approach
to extend embedding points in the alignment problem.

A. Semi-Supervised Manifold Alignment Methods

Early work by [23] introduced two methods for semi-
supervised manifold alignment: one using predefined embed-
ding coordinates and another modifying Laplacian Eigen-
maps to preserve known correspondences in a shared low-
dimensional space. We call that latter SSMA and include it in
our comparisons.

A similar approach, Joint Laplacian Manifold Alignment
(JLMA) [25], builds a joint graph Laplacian using domain-
specific and inter-domain similarity matrices. By applying
Laplacian Eigenmaps to this joint Laplacian, JLMA produces
unified embeddings that respect both intra- and inter-domain
relationships.

Manifold Alignment via Procrustes Analysis (MAPA) [24]
aligns embeddings by minimizing the distance between known
correspondences using Procrustes analysis. MAPA has been
shown to outperform SSMA in terms of mapping accuracy.

While many methods rely on Laplacian Eigenmaps, [16]
used Diffusion Maps [26] for manifold alignment. This method
normalizes similarity graphs and applies Iterative Closest
Point [27] and geometric hashing [28] to align embeddings
across domains, providing an alternative to eigenmap-based
approaches.

[14] introduced the Manifold Alignment Generative Adver-
sarial Network (MAGAN), which employs a correspondence
loss to guide alignment between known corresponding points,
thus adapted to a semi-supervised alignment setting.

Diffusion Transport Alignment (DTA) [29] combines dif-
fusion processes with optimal transport to align manifolds.
By constructing domain-specific similarity matrices and cross-
domain transition matrices from known correspondences, DTA
provides an alignment that outperforms MAGAN, MAPA, and
SSMA in mapping known correspondences.

The recent work in [30] introduced two methods, MASH
(Manifold Alignment via Stochastic Hopping) and SPUD
(Shortest Paths on the Union of Domains), which integrate
inter-domain correspondences into an aligned graph structure.
SPUD estimates geodesic distances by learning shortest paths
in a combined graph, while MASH uses diffusion-based
alignment, offering greater robustness to noise and sparsity
in the graph.

B. Manifold Learning Extensions

Manifold learning algorithms, such as Diffusion Maps [26],
Multidimensional Scaling [31] (MDS), t-SNE [32], and
UMAP [33], are designed to uncover low-dimensional rep-
resentations of high-dimensional data by leveraging eigende-
composition or optimizing latent coordinates based on pair-
wise similarities. These methods, however, are limited by their
inability to generalize to new data points. This arises because
they do not parametrize a universal embedding function,



relying instead on the relationships within the training data. As
a result, projecting new data points onto the learned manifold
is not straightforward.

To address this limitation, methods such as the Nyström
extension have been proposed, providing an extension by
approximating embeddings for new points using the eigen-
vectors of a kernel matrix computed on the training set [5].
However, this approach requires recalculating kernel rows for
each new data point, leading to computational challenges,
particularly for large datasets. Additionally, the quality of
the approximations is sensitive to kernel parameters, often
necessitating extensive tuning, and must be adapted for specific
manifold learning techniques [5]. Other techniques, such as
PHATE [3] and landmark MDS [34], approximate embeddings
for new points using linear combinations of nearby training
data. UMAP also addresses this challenge by initializing
new embeddings based on affinities with training points and
refining them through gradient descent. While these methods
alleviate some computational burdens, they depend on storing
either the entire training dataset or a representative subset (e.g.,
landmarks), which can be memory-intensive.

Neural-network-based approaches such as parametric t-
SNE [35] and parametric UMAP [9] employ neural networks
to directly optimize an embedding function, enabling the
mapping to extend to new inputs. However, they do not
offer a straightforward mechanism to approximate the inverse
mapping, complicating efforts to assess the fidelity of the
embedding.

In contrast, our twin AE-based model inherently supports
both forward embedding extensions and inverse mappings.
By learning a parametric function, these models eliminate
the need to store training data, requiring only the storage
of network parameters, making them memory-efficient. This
architecture not only scales effectively to large datasets but
also facilitates direct evaluation of the embedding’s ability to
preserve information, addressing limitations of non-parametric
manifold learning techniques.

The general problem of out-of-sample extension in manifold
learning naturally extends to manifold alignment. Indeed,
many manifold alignment methods are simple extensions of
their corresponding manifold learning counterparts [15], [23],
[36]. Methods based on neural networks, such as MAGAN,
can directly map new points into an embedded space. How-
ever, most manifold learning methods face the same out-of-
sample problems.

IV. TWIN AUTOENCODER FOR MA EXTENSION

An AE is designed to solve two related problems. First,
the model encoder defines a mapping function, fZ , from the
original data space, Z , to a compressed, lower-dimensional
embedding space, E ⊂ RD. That is, it learns a function
mapping each input to a corresponding representation in a
latent space: fZ(zi) = ei. The decoder, often a mirroring
but inverted architecture of the encoder, then maps from the
embedded space in an attempt to reconstruct points in the
original space: gZ(ei) = ẑi.

gZ is learned by minimizing L(zi, ẑi), where L is typically
the mean squared error function. By iteratively learning both
functions, the encoder function, f , is guided to retain suffi-
cient information for the decoder to faithfully reconstruct the
original data, improving the generalization of the encoder [11].
However, vanilla AEs typically embed into a space that fails
to capture the intrinsic data structure, e.g., the embedding is
not semantically meaningful [37]. In contrast, regularized AEs
(RAEs) can be tailored to guide the encoder to more struc-
turally relevant representations in the embedding space [38],
[39].

Here, we introduce a regularized, twin AE architecture to
learn a cross-domain embedding function for semi-supervised
manifold alignment problems. The two AE models are trained
independently of each other but regularized using the same
shared embedding space. The combined architecture requires
two datasets, X ⊂ X and Y ⊂ Y , and a previously generated
aligned embedding generated using an alignment method of
choice, E. The sets of points mapped from X or Y to the
aligned embedding, E , respectively, are designated as EX

and EY . These points serve to guide the regularization of
the encoder function. The bottleneck layer of each encoder
is guided to map points in each respective domain to the
aligned embedding space. To this end, we modify the typical
loss function to account for the multi-domain embedding
alignment, defining:

L = Lrecon + λLalign, where

Lrecon =
1

nz

nz∑
i=1

∥zi − gZ(fZ(zi))∥2, and

Lalign =
1

nz

nz∑
k=1

∥fZ(zk)− ek∥2

Here, λ determines the strength of the influence of the pre-
computed aligned embedding. Each autoencoder is trained sep-
arately while being regularized using domain-specific points
from the aligned embedding. This work primarily focuses
on embedding extension, leveraging the decoder to guide
representation learning. Future work will refine the decoder’s
role in enhancing cross-domain generalization.

V. EXPERIMENTAL SETUP AND RESULTS

A. Data Simulation

To evaluate the AE extension, we simulate multimodal
datasets using publicly available datasets from the UCI1 repos-
itory [40]. Five multimodal extension techniques are applied:

1) Random Split: Features are randomly assigned to domains,
with no overlap between domains.

2) Even Split: Important predictive features are evenly distributed
across domains.

3) Skewed Split: All important predictive features are concen-
trated in one domain.

4) Additive Noise: The dataset is duplicated, and Gaussian noise
is added to the duplicate.

1Diabetes, Tic-Tac-Toe, Medical Dataset, Hepatitis, Iris, Audiology, Parkin-
sons, Seeds, Segmentation, Glass, Heart Disease, Heart Failure, Flare1, Ecoli,
Ionosphere, Cancer Data, Hill Valley, and Balance Scale.



MA Method Correlation ± SD Sig. Level
DTA 0.25 ± 0.12 0.006
JLMA 0.80 ± 0.32 0.006
MAGAN 0.54 ± 0.23 0.017
MAPA 0.17 ± 0.12 0.014
MASH 0.68 ± 0.33 0.004
MASH- 0.68 ± 0.33 0.005
NAMA 0.58 ± 0.27 0.009
SPUD 0.72 ± 0.29 0.005

TABLE I
In this table, we show a summary of Mantel’s correlations between model

embedding and the twin RAE-created embeddings trained on each. The
significance level is the correlation coefficient compared to 10,000 random
permutations of the embedding distances. The twin RAE embeddings are
significantly correlated over all of the models tested, but the correlation is
weaker for the DTA and MAPA manifold alignment methods. Scores are

averaged across all test datasets and splits.

5) Random Rotation: A duplicate dataset undergoes a random
feature rotation.

B. Evaluation Methods

The evaluation of the extension is two-fold. First, we
compare the points embedded by the twin RAE network with
those embedded via the full alignment method to assess the
fidelity of the function in embedding out-of-sample points. For
the comparison, we evaluate the geodesic distance preserva-
tion of the embedded points using Mantel’s test [41]. That
is, we calculate Mantel’s correlation between the pairwise
distance matrices using the extended, embedded points and
the embedded points using the full alignment models. The
full results are found in Table I. In the table, we see that the
correlation between the twin RAE-created embeddings and the
test points of the model embeddings is significant across all
alignment models, although the correlation is weaker for DTA
and MAPA.

Second, we evaluate the integrity of the extended model by
comparing supervised tasks trained in the embedding space.
To do so, we evaluated the accuracy of random forest and
k-nearest neighbor models trained on each of the original
domains (baseline scores) and compared them to the accuracy
achieved when training on the aligned embedding. To work
this approach, an embedding is formed using training points
in the set. The twin RAE are then trained on the training
set while using the embedded training points to regularize the
AE model. The predictive models are trained on the embedded
points from the training set and subsequently evaluated on the
twin RAE-embedded test points.

This evaluation examines whether the alignment method
effectively conveys relevant information from both domains to
enhance the supervised task while maintaining the integrity of
the predictive model. Using the twin RAE ensures that out-of-
sample points are appropriately embedded and do not influence
the embedding alignment.

The results in Figure 1 show (top) the random forest out-
of-bag accuracies evaluated on the aligned embeddings. These
scores are contrasted with the baseline (original data) out-of-
bag accuracies in the bottom figure. The scores with much
larger differences (MAPA, DTA) correspond to embeddings
with much lower Mantel correlations. Most AE-mapped em-
beddings show nearly identical accuracies compared to the

Fig. 1. Here we present heatmaps representing the fidelity of the twin RAE
predicted embedding points compared to the embedding created by using the
test points in its initialization. In the first graph, random forest out-of-bag
scores are created using twin RAE for different manifold alignment methods
across five different data splits. In the second graph, the RAE predicted out-
of-bag score is compared to the full embedding’s actual out-of-bag score
created by the base model. Differences come from five random seeds, 18 test
datasets, and 10 manifold alignment methods. The average accuracy for the
twin RAE-trained embeddings was found to be 5.46% higher than the model
embeddings. The accuracy achieved by the autoencoder is closely comparable
to that of the base model.

baselines, suggesting the AE model produces embeddings
without losing information related to the supervised task.

VI. CONCLUSION

In this work, we introduced a twin autoencoder architecture
to enable out-of-sample extension for semi-supervised man-
ifold alignment. Our approach allows new data points from
either domain to be embedded into a pre-aligned joint space
without requiring a full recomputation of the alignment model,
addressing a key limitation of traditional manifold alignment
techniques.

We evaluated our method across multiple bimodal datasets,
demonstrating that the twin autoencoder effectively preserves
alignment fidelity while maintaining the geometric structure
of the shared representation. Experimental results showed
significant correlations between the embeddings generated by
our approach and those produced by full alignment models,
validating the effectiveness of our extension. Furthermore, su-
pervised learning tasks performed on the extended embeddings
exhibited comparable predictive accuracy to those trained on
the original aligned space, further confirming the utility of our
method.
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