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ABSTRACT

Despite the progress in the development of generative models, their usefulness in
creating synthetic data that improve prediction performance of classifiers has been
put into question. Besides heuristic principles such as “synthetic data should be
close to the real data distribution”, it is actually not clear which specific properties
affect the generalization error. Our paper addresses this question through the lens
of high-dimensional regression. Theoretically, we show that, for linear models,
the covariance shift between the target distribution and the distribution of the
synthetic data affects the generalization error but, surprisingly, the mean shift does
not. Furthermore we prove that, in some settings, matching the covariance of the
target distribution is optimal. Remarkably, the theoretical insights from linear
models carry over to deep neural networks and generative models. We empirically
demonstrate that the covariance matching procedure (matching the covariance of
the synthetic data with that of the data coming from the target distribution) performs
well against several recent approaches for synthetic data selection, across training
paradigms, architectures, datasets and generative models used for augmentation.

1 INTRODUCTION

The controllable generation of arbitrary amounts of synthetic data for training machine learning
models has long been considered as one of the key implications unlocked by more capable generative
models (Kingma & Welling, 2014; Goodfellow et al., 2014; Shrivastava et al., 2017; Nikolenko et al.,
2021). After all, synthetic data can not only be abundant, which would already be tremendously
impactful in data-scarce applications such as medicine (Esteban et al., 2017; van Breugel et al.,
2024), but it can also address other difficulties of observational data, such as privacy (Jordon et al.,
2018), imbalancedness (Parihar et al., 2024; Ramaswamy et al., 2021) and overall difficulty to
collect, as the domain can be specific (Dunlap et al., 2023) or the task complex (Wang et al., 2023).
At the same time, while generative models have progressed significantly, experimental results are
still mixed. Several works are promising (Trabucco et al., 2024; He et al., 2023; Azizi et al., 2023;
Dunlap et al., 2023), steering and sometimes filtering the sampling by appropriately conditioning
a generative model towards the target training distribution; others outright question whether synthetic
data has any advantage over simply selecting some more data which is anyway used to train the
generative model (Fan et al., 2024; Burg et al., 2023; Geng et al., 2024); some even warn that
training on synthetic data may not only do worse, but also lead to unwanted effects such as model
collapse (Shumailov et al., 2024) or additional bias (Wyllie et al., 2024). What emerges here is a broad
challenge which consists of understanding how extra synthetic data, for example from a generative
model, helps training predictors. Our paper tackles this challenge theoretically and empirically.

To do so, we assume access to a training dataset (Xt, yt) with i.i.d. samples, as well as to an additional
synthetic dataset (Xs, ys). The samples from the synthetic dataset are also i.i.d., but they come from
a different distribution, since they are obtained from a generative model and not from the training
dataset. We perform empirical risk minimization (ERM) using the augmentation ((Xt, Xs), (yt, ys)),
and evaluate the performance on an independent test sample (Xtest, ytest) with the same distribution
as (Xt, yt). In this context, the challenge above leads to the following concrete question:

∗Equal advising

1



Published as a conference paper at ICLR 2026

How to select the dataset (Xs, ys) in order to minimize the test error? (Q)

By studying this question, we can identify which properties of the distribution of (Xs, ys) improve
generalization, thus guiding the selection of data obtained in practice from generative models.

Formalization of the problem. Let us first describe how we model the setting in the theoretical anal-
ysis. We assume that the distributions of both the original training dataset and the additional synthetic
one are mixture models. The number of mixtures corresponds to the number of classes in the datasets,
with each mixture component corresponding to a single class. As common in practice (Burg et al.,
2023), the data augmentation via the synthetic dataset occurs class-by-class: for a problem with K
classes, the number of mixtures isK and we add synthetic data of each class using a generative model.

We then address the question (Q) when (Xt, yt) and (Xs, ys) correspond to a single class, focusing
on linear models and high-dimensional ridgeless regression. More precisely, we model yt = Xtβ+εt
and ys = Xsβ + εs, where rows of Xt are i.i.d. with mean µt and covariance Σt, rows of Xs are
i.i.d. with mean µs and covariance Σs, and entries of εt, εs are i.i.d. with zero mean and variance
σ2. Here, the difference between the distributions of (Xt, yt) and (Xs, ys) is captured by the mean
shift µt ̸= µs and the covariance shift Σt ̸= Σs. We also consider model shift (different β between
synthetic and real samples), deferring the details to Appendix B. Our formalization deals with a single
class in isolation, fitting a regression model to the class label and neglecting interactions between
classes. While this is a strong assumption chosen for mathematical tractability, we highlight that the
resulting data selection procedure is extensively tested in practical settings where it performs well
against existing baselines.

Main contributions. The surprising finding from our theoretical analysis is that, while the covari-
ance shift affects the test error, the mean shift does not. This is the case as long as the training dataset
(Xt, yt) is not too small compared to the synthetic dataset (Xs, ys), and it is especially surprising
since the mean shift does affect the test error when using only synthetic data. From this insight, we
show that the problem of selecting (Xs, ys) can be reduced to an optimization problem over the co-
variance Σs and, in some settings, matching the covariances (Σs ∝ Σt) leads to optimal performance.
Most importantly, these theoretical insights are valid in practice: matching the covariance, without
worrying about the mean shift, performs on par—or even outperforms—several recent approaches for
synthetic data selection. We summarize our contributions below:

• We give a precise characterization of the test error of the min-norm least squares regression estimator,
when the dimensions of β, yt, ys are all large and scale proportionally. Our results hold in under-
parameterized (Theorem 4.1) and over-parameterized regimes (Theorem 4.4), showing that the test
error approaches a deterministic quantity that depends only on the covariances Σt,Σs and not on
the means µt, µs. As a comparison, we also analyze training only over synthetic data, showing that
in this case the test error depends on both covariances Σt,Σs and means µt, µs, see Proposition 4.2.

• Our characterization implies that we can select synthetic data minimizing the test error based on their
covariance. We then show that, under some conditions, taking Σs ∝ Σt, i.e., covariance matching,
is optimal (Theorems 4.3 and 4.5 for under-parameterized and over-parameterized regimes).

• We validate the effectiveness of covariance matching as a way to select synthetic data obtained from
generative models in several practical scenarios. We show that this simple approach performs on
par—and, actually, it often outperforms—a variety of baselines proposed in the recent literature (He
et al., 2023; Lin et al., 2023; Hulkund et al., 2025). This conclusion consistently holds across training
paradigms (training from scratch, distilling a bigger model, fine-tuning a model trained from a larger
dataset), across architectures (ResNets, transformers), across datasets (CIFAR-10, ImageNet-100,
RxRx1), and across generative models used to obtain synthetic data (StyleGAN2-Ada, SANA1.5,
PixArt-α, StableDiffusion1.4, MorphGen).

2 RELATED WORK

On the theoretical side, we focus on the high-dimensional regime in which both the number of
features (i.e., dimension of β) and the number of samples (i.e., dimensions of ys, yt) are large and
scale proportionally. This setup was considered by a line of research using random matrix theory to
characterize test error and various associated phenomena (e.g., benign overfitting (Bartlett et al., 2020)
and double descent (Belkin et al., 2019)). More precisely, the test error of ridge(less) regression was
studied by Hastie et al. (2022); Wu & Xu (2020); Richards et al. (2021); Cheng & Montanari (2024),
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the distribution of the ERM solution by Montanari et al. (2019); Chang et al. (2021); Han & Xu
(2023), and the impact of spurious correlations by Bombari & Mondelli (2025). This motivates us to
look for practical insights into synthetic data selection by performing a high-dimensional regression
analysis. Closer to our work are specific analyses involving more than one distribution, which in our
case are the training/test distribution and the synthetic one used for augmentation. More precisely,
the test error under distribution shift was analyzed by Patil et al. (2024); Mallinar et al. (2024), but
this assumes training on one distribution and testing on the other, as opposed to training on both
and testing on one. Training on surrogate data was considered by Ildiz et al. (2025); Kolossov et al.
(2024); Jain et al. (2024): Ildiz et al. (2025) assume that the surrogate data comes from a teacher
model and study the phenomenon of weak-to-strong generalization; Kolossov et al. (2024) consider
data selection given unlabeled samples plus access to a surrogate model that predicts the labels better
than random guessing; Jain et al. (2024) integrate surrogate and real data, but the analysis is limited
to isotropic covariance. Most closely related to our theoretical setting is when training occurs on
multiple data distributions and testing occurs on a single one of them, which was analyzed both in
under-parameterized (Yang et al., 2025) and over-parameterized (Song et al., 2024) regimes. However,
Yang et al. (2025); Song et al. (2024) assume that the data distributions have zero mean, which is
unrealistic in our context. In fact, centering the data would require access to the mean of the test
sample, which is equivalent to having access to its unknown label. Related work by El Firdoussi et al.
(2025) analyzes high-dimensional binary classification with isotropic covariance, with a different
objective from ours. Namely, its goal is to understand the factors influencing performance when
generating synthetic data using estimated statistics from real data, pointing to degrading performance
in case of bad covariance estimation. Additional related works by Seddik et al. (2024); Bertrand et al.
(2024) consider distribution shift of a mix of real and synthetic data through the lens of statistical
approximation error, a mechanism linked to model collapse by Shumailov et al. (2024). Both Seddik
et al. (2024) and Bertrand et al. (2024) examine the phenomenon within iterative retraining loops,
considering a setting complementary to the one of this paper.

On the practical side, several papers studied how to incorporate synthetic data into training pre-
dictors. Besides simply training better generative models, empirical work focused on upgrading
the sampling process itself, under the assumption that better conditional generation would lead to
more accurate predictors. More precisely, the CLIP model (Radford et al., 2021) underpins many
filtering and selection algorithms for generative data. He et al. (2023) propose using CLIP similarity
to labels to prune low-quality samples from augmentations. Lin et al. (2023) introduce sampling
and filtering strategies based on CLIP similarity to either labels or the mean representation of real
data, incorporating diversity via clustering. Almost concurrently, other works argued that synthetic
images underperform in scaling laws (Fan et al., 2024) and, if the generative model is pre-trained on
external data, simple retrieval baselines can be better (Geng et al., 2024; Burg et al., 2023). Our work
can be interpreted as a more fine-grained investigation of the same problem, characterizing which
properties of the generated data improve generalization. At the same time, our results do not preclude
that the extra data is real data from another dataset, as tested in Figure 2 in Appendix C. Closer to
our solution, Hulkund et al. (2025) explore the problem of data selection given a fixed test set and,
taking a purely empirical stance, compare several filtering methods, including an approach inspired
by Gadre et al. (2023) that selects clusters of image embeddings. As a heuristic, we find that this
works rather well but has shortcomings, as empirically demonstrated in Table 5 in Appendix C.

3 PRELIMINARIES

Data model. We consider data augmentation in the context of linear models. Formally, we observe
two datasets (Xt, yt) and (Xs, ys), denoting training data and augmenting synthetic data, such that

y(i) = X(i)β + ε(i), (i) ∈ {t, s}, (3.1)

where X(i) ∈ Rn(i)×p, β ∈ Rp, and ε(i) ∈ Rn(i) . Thus, we are given nt training samples and
ns synthetic samples, all of which are p dimensional. We denote the total number of samples as
n := nt + ns. Each entry of the noise vector ε(i) is sampled i.i.d. from a random variable with mean
zero and variance σ2. The row vectors of X(i), for (i) ∈ {t, s}, are independent random vectors with
p× p population covariance matrix Σ(i) and mean µ(i). This can be written as:

X(i) = Z(i)(Σ(i))
1/2 + 1n(i)

µ⊤
(i) ∈ Rni×p, (3.2)

where Z(i) ∈ Rn(i)×p, µ(i) ∈ Rp, 1ni
∈ Rni is the all-ones vector, and all entries [Z

(i)
jk ] are

independent with zero mean and unit variance. By omitting subscripts, we denote by (X, y) the two
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datasets (Xt, yt) and (Xs, ys) stacked, i.e., X :=

[
Xt

Xs

]
∈ Rn×p, y :=

[
yt
ys

]
∈ Rn. The vector β is

assumed to be the same for (Xt, yt) and (Xs, ys), which corresponds to assuming that the conditional
distribution of the labels y given the features X is the same for training and synthetic data.

Note that we also consider a data model in which model shift is present, i.e. training and synthetic
data have different hidden parameters βt and βs, respectively. For more details, see Appendix B.

Assumptions. We make some assumptions on the data distribution which are common in related
work (Yang et al., 2025; Song et al., 2024). Let τ > 0 be a small constant. We assume that, for ψ > 4,
the ψ-th moment of Z(i)

jk is upper bounded by 1/τ , i.e., E[|Z(i)
jk |ψ] ≤ τ−1, which means that the tails

do not decay too slowly. The eigenvalues of Σ(i), denoted as λ(i)1 , · · · , λ(i)p , are all bounded between
τ and τ−1, i.e., τ ≤ λ

(i)
p ≤ · · · ≤ λ

(i)
2 ≤ λ

(i)
1 ≤ τ−1, which means that the covariance matrix is well-

conditioned (i.e., the distribution is well-spread). Furthermore, the entries of ε(i) ∈ Rni have bounded
moments up to any order, i.e., for any k ∈ N, there exists a constant Ck > 0 s.t. E[|ε(i)j |

k] ≤ Ck
(noise is not heavy tailed). The sample sizes are comparable with the dimension p, i.e., γ := n/p,
γt := nt/p, and γs := ns/p, with 0 ≤ γt ≤ 1/τ and τ ≤ γ, γs ≤ 1/τ . Lastly, let

∥∥µ(i)

∥∥
2
= r(i)

√
p,

where r(i)1 is a constant, with a constant angle between them φ := |⟨µs, µt⟩| /(∥µs∥2 ∥µt∥2).2

Risk and estimator. We test estimators on data sampled from the same distribution as the training
dataset (Xt, yt) and, given an estimator β̂, its out-of-sample excess risk is defined as

RX(β̂;β) := E[(x⊤t β̂ − x⊤t β)
2 | X] = E

[
∥β̂ − β∥2Σt+µtµ⊤

t
| X
]
,

where xt has the same distribution as Zt (Σt)
1/2

+ µt and ∥x∥2M := x⊤Mx. This definition differs
from similar ones appeared in (Yang et al., 2025; Song et al., 2024; Hastie et al., 2022) as the test
distribution is not zero-mean (test data cannot be centered as knowing the mean is equivalent to
knowing the label). The test error is then equal to the excess risk plus the noise variance σ2, which
corresponds to the Bayes error. Since σ2 is a constant, minimizing excess risk and test error is the
same, and we minimize the former. The excess risk is decomposed into bias and variance as

RX(β̂;β)=∥E[β̂ | X]−β∥2Σt+µtµ⊤
t
+Tr[Cov(β̂ | X)(Σt+µtµ

⊤
t )]:=BX(β̂;β)+VX(β̂;β). (3.3)

Let β̂ be the min-norm least squares regression estimator of y on the whole dataset available X , i.e.,

β̂ := argmin
{
∥b∥2 : b minimizes ∥y −Xb∥22

}
= (X⊤X)+X⊤y, (3.4)

where (·)+ denotes the pseudo-inverse. We note that gradient descent converges to the interpolator
which is the closest in ℓ2 norm to the initialization (see Equation (33) in Bartlett et al. (2021)) and, as
such, (3.4) corresponds to the gradient descent solution starting from 0 initialization. The results in
the next section readily extend to weighted versions of objective optimized in (3.4), see Appendix A.8
for details. For this reason, we present our main findings for the unweighted objective without loss of
generality. Substituting (3.4) into the excess risk decomposition (3.3) yields closed-form expressions
for bias and variance:

BX(β̂;β) = β⊤Π(Σt + µtµ
⊤
t )Πβ and VX(β̂;β) =

σ2

n
Tr[Σ̂+(Σt + µtµ

⊤
t )], (3.5)

where Σ̂ = X⊤X/n and Π = I − Σ̂+Σ̂ (projection on the null space of X).

4 THEORETICAL RESULTS

We characterize the excess risk of the min-norm interpolator using both training and augmenting
synthetic data. We then use the explicitly derived formulas to optimize the data selection process,

1Taking
∥∥µ(i)

∥∥
2
∼ √

p ensures that the mean and variance of y(i) are of same order. In fact,
∥∥µ(i)

∥∥
2
≪ √

p

would imply ⟨µt, β⟩ ≪ 1, so the mean would have a vanishing effect on the risk. Furthermore, if
∥∥µ(i)

∥∥
2
≫ √

p,
then

〈
µ(i), β

〉
≫ 1, and the mean would dominate the risk entirely. In both cases the problem trivializes.

2This is a technical assumption to simplify the proof notation. If φ is allowed to depend on n, p, all results
(and corresponding proofs) still hold verbatim, as long as either φ < 1− δ for some constant δ > 0 or φ = 1.
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in which, surprisingly, distribution means play no role. We contrast this setting with having only
synthetic data available, where means instead impact the excess risk. Our findings hold in both
the under-parameterized and over-parameterized regimes. For clarity, we present the two regimes
separately, as the precise statements and proofs rely on different technical arguments.

4.1 UNDER-PARAMETERIZED REGIME

Let us assume that 1 + τ ≤ γ ≤ 1/τ , implying that n > p, which makes the setting under-
parametrized. Thus, Σ̂ = X⊤X/n is full rank almost surely, which implies that Π = I − Σ̂+Σ̂ =

I − Σ̂−1Σ̂ = 0. From (3.5), it follows that BX(β̂;β) = 0, so the risk is only characterized by the
variance VX(β̂;β). We additionally constrain the number of samples as 1 + τ ≤ γt, γs ≤ 1/τ and
0 < γs/γt ≤ 1/τ .

The following result provides a precise asymptotic characterization of the excess risk and, in doing so,
it extends results by Yang et al. (2025) to non-zero centered data. Its proof is deferred to Appendix
A.1 and we give a brief sketch of the argument below.

Theorem 4.1. Let M = Σ
1/2
s Σ

−1/2
t and denote the eigenvalues of M⊤M as λ1 ≥ · · · ≥ λp. Then,

under the assumptions from Section 3 and the start of this section, it holds that, with high probability,

lim
n→∞

∣∣∣∣RX(β̂;β)− σ2

n
Tr
[(
α1M

⊤M + α2 Ip
)−1
]∣∣∣∣ = 0, (4.1)

where α1 and α2 are the unique positive solutions to the following two equations

α1 + α2 = 1− p

n
, α1 +

1

n

p∑
i=1

λiα1

λiα1 + α2
=
ns
n
. (4.2)

Proof sketch. As seen from (3.5), RX(β̂;β) is related to spectral properties of the sample covariance
matrix Σ̂, dictated by its local laws. The core of our argument is to connect the spectrum of Σ̂ for
non-centered data to its zero-centered counterpart. This is done by factoring out the means µt, µs as
a rank-2 perturbation of a random matrix with i.i.d. entries, see Propositions A.1, A.2, and A.3 in
Appendix A.1. We then apply anisotropic local laws for the zero-centered case and conclude. We
finally note that this strategy gives a convergence rate of O(σ2p−1/2) for the LHS of (4.1).

Theorem 4.1 gives a deterministic equivalent of the test error obtained using training and synthetic
data in the under-parameterized regime. In fact, RX(β̂;β) is a random quantity (the data is ran-
dom), while σ2

n Tr[(α1M
⊤M + α2 Ip)

−1] is deterministic as it depends on properties of the data
distributions. Remarkably, the deterministic equivalent depends only on the covariances Σt,Σs (via
M = Σ

1/2
s Σ

−1/2
t ) and it does not depend on the means µt, µs. This is highlighted in Figure 1a,

showing that the excess risk is unchanged upon varying the cosine similarity between the means. Two
points are now in order, which are elaborated upon in the next two paragraphs.

(a) The independence of the test error on the mean shift is surprising, and it is in stark contrast with
the setting in which we only train on (Xs, ys), where the performance does depend on µs, µt.

(b) The deterministic equivalent can be optimized to find the covariance Σs minimizing the error.

(a) Training only on synthetic data. We now adjust our assumption at the beginning of this section.
Namely, we assume that γt = 0, 1 + τ ≤ γs = γ ≤ 1/τ , which means that we are training on data
from a single distribution that is different from the one we are testing on.

Proposition 4.2. In the setting described above, it holds that, with high probability,

lim
n→∞

∣∣∣∣∣∣RX(β̂;β)− σ2

n
· γ

γ − 1
·

Tr[ΣtΣ−1
s ] + ∥Σ−1/2

s µt∥22 −

(
µ⊤
t Σ

−1
s µs

∥Σ−1/2
s µs∥2

)2
∣∣∣∣∣∣ = 0. (4.3)

This result (proved in Appendix A.2) extends the zero-centered expression by Hastie et al. (2022).
We observe consistency if we disregard means (µs = µt = 0) and covariance shift (ΣtΣ−1

s = Ip).
Proposition 4.2 also extends the zero-centered anisotropic setting of Yang et al. (2025) to the case
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without samples from the training distribution, and consistency follows after setting µs = µt = 0.
The effect of the mean shift is captured by ∥Σ−1/2

s µt∥22 − (µ⊤
t Σ

−1
s µs/∥Σ−1/2

s µs∥2)2: what matters
is (i) the cosine similarity between Σ

−1/2
s µs and Σ

−1/2
s µt, and (ii) the alignment of the principal

directions of Σs with µt. In other words, the excess risk decreases as (i) the mean of synthetic training
data aligns with the mean of test data in the directions of the synthetic covariance matrix, and (ii) the
principal directions of the synthetic covariance matrix align with the test mean.

(b) Synthetic data selection. Let us denote the deterministic quantity from (4.1) as

Ru(M) :=
σ2

n
Tr
[(
α1M

⊤M + α2 Ip
)−1
]
, (4.4)

where α1 and α2 satisfy (4.2). This corresponds to the limit of the risk RX(β̂;β) due to Theorem
4.1. Note that Ru(M) depends only on the covariance matrices of the original training (Σt) and the
augmenting synthetic data (Σs) via M = Σ

1/2
s Σ

−1/2
t . Thus, in the under-parameterized setting, the

guiding question (Q) posed in the introduction can be formalized as:

Given Σt, what is the optimal Σs that minimizes Ru(M)?

The following theorem exactly treats this. Its proof is in Appendix A.3 and a brief sketch is below.

Theorem 4.3. Let M := {M ∈ Rp×p : rank(M) = p, Tr[M⊤M ] = p}. Then, for Mopt ∈ M
minimizing the limit risk of Theorem 4.1, i.e., Mopt := arginfM∈M Ru(M), it holds that

λi(M
⊤
optMopt) = 1, ∀i ∈ {1, . . . , p}. (4.5)

Proof sketch. From the first equation in (4.2), Ru(M) can be expressed in terms of a single parameter,
e.g., α1. A key insight is that Ru(M) is increasing in α1, which simplifies the optimization. Denoting
with λ1 ≥ · · · ≥ λp the eigenvalues of M in decreasing order, we show that transformations of the
form (λi, λj) → (λi− c, λj + c) for c > 0, can only lower α1. Thus, a majorization argument allows
us to conclude that the most balanced solution (namely, (4.5)) is optimal.

Theorem 4.3 proves that, having fixed Tr[M⊤M ], the limit risk Ru(M) is minimized when M has
all eigenvalues equal. Thus, given a training covariance Σt, choosing synthetic data with Σs ∝ Σt,
i.e., matching the covariances, is optimal. This is highlighted in Figure 1b, showing that the excess
risk decreases as Σs aligns with Σt. Increasing the scale of Σs also reduces the risk, i.e., for any
M ∈ Rp×p s.t. rank(M) = p and any constant η > 1, it holds that Ru(ηM) ≤ Ru(M), see
Appendix A.4 for the proof and Figure 1c for an illustration. Recalling M = Σ

1/2
s Σ

−1/2
t , this

suggests that greater diversity in synthetic data is advantageous. However, as Theorem 4.1 relies
on bounds on the spectra of Σt,Σs (see Section 3), η must be of constant order, i.e., it cannot grow
with n and p (otherwise, the error between RX(β̂;β) and Ru(ηM) may not vanish as in (4.1)). This
motivates the trace normalization (Tr[M⊤M ] = p) in Theorem 4.3. While other normalizations
exist (e.g., on the determinant in (Yang et al., 2025)), they overly restrict the search space and make
interpretation for synthetic data selection less clear.

4.2 OVER-PARAMETERIZED REGIME

As opposed to Section 4.1, let us assume that τ ≤ γ, γs, γt ≤ 1/(1 + τ), so that n < p and we are in
the over-parameterized regime. We sample β from a sphere of constant radius, independently from
X, εt, εs. We also assume that Σs and Σt are simultaneously diagonalizable. This assumption is of
technical nature and common in related work (Song et al., 2024; Mallinar et al., 2024; Ildiz et al.,
2025). Writing out this condition, we have the SVDs Σs = UΛsU⊤,Σt = UΛtU⊤. Let us denote
by λsi := Λsi,i, λ

t
i := Λti,i and introduce the spectral probability distributions used in our claims:

Ĥp(λ
s, λt) :=

1

p

p∑
i=1

1{(λs,λt)=(λs
i ,λ

t
i)}, Ĝp(λ

s, λt) :=

p∑
i=1

⟨β, ui⟩2 1{(λs,λt)=(λs
i ,λ

t
i)}. (4.6)

This section follows the same blueprint as Section 4.1 for the under-parameterized regime. Namely,
Theorem 4.4 gives a deterministic equivalent of the excess risk using training and synthetic data and,
in doing so, it extends results by Song et al. (2024) to non-zero centered data. The deterministic
equivalent depends only on regression coefficients β and covariances Σt,Σs, and it does not depend
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(c) Scaling the covariance

Figure 1: Excess risk using training data from N (µt,Σt) and synthetic data from N (µs,Σs), where
Σt,Σs are Kac–Murdock–Szegö matrices (Toeplitz matrices with geometrically decaying entries)
with parameters ρt, ρs, scaled so that Tr[M⊤M ] = p. We pick ∥µt∥2 = ∥µs∥2 = 2

√
p, ρt = 0.9,

p = 600, nt = 1200, ns = 1200, unless varying the parameters in the plot. Each value is computed
from 100 i.i.d. trials, the error band is at 1 standard deviation, and theoretical predictions are
continuous lines. Different curves correspond to different values of ρs. (a) Changing the cosine
similarity of the mean does not impact the risk (here, Σs is scaled by η := ρs). (b) Larger ρs gives
lower risk since Σs is closer to Σt. (c) Scaling Σs reduces the risk.

on means µt, µs. Then, Theorem 4.5 finds Σs that minimizes the limit risk from Theorem 4.4 when
Σt = Ip, thus showing the optimality of covariance matching (Σs ∝ Σt) with isotropic training data.
The proofs of these results follow a similar argument chain as in Section 4.1, although they tend to be
more technically involved. We briefly discuss differences, deferring the full arguments of Theorems
4.4 and 4.5 to Appendices A.6 and A.7, respectively.
Theorem 4.4. Under the assumptions from Section 3 and the start of this section, it holds that, with
high probability,

lim
n→∞

∣∣∣RX(β̂;β)− V(Σs,Σt)− B(Σs,Σt, β)
∣∣∣ = 0, (4.7)

where

V(Σs,Σt):=
σ2

γ

∫
−λt(a3λs+a4λt)
(a1λs+a2λt+1)2

dĤp(λ
s,λt), B(Σs,Σt, β):=

∫
b3λ

s+(b4+1)λt

(b1λs+b2λt+1)2
dĜp(λ

s,λt),

and ai, bi (i ∈ {1, 2, 3, 4}) are the unique solutions to the equations reported in Appendix A.5.

We highlight two additional difficulties in the proof of Theorem 4.4 arising from the over-
parameterized regime: (1) the inverse does not replace the pseudo-inverse in (3.5), and (2) the
bias term does not vanish. We address the former by introducing the λ-regularized ridge estimator β̂λ,
which approximates β̂ for small λ and admits inverse-based formulas similar to (3.5). Addressing the
latter requires a delicate control of the inverse, obtained via Woodbury formula.

Theorem 4.5. Let S := {Σ ∈ Rp×p≻0 : Tr (Σ) = p}, where Rp×p≻0 denotes the set of p × p positive
definite matrices. Recall the definitions of V(Σs,Σt), B(Σs,Σt, β) from Theorem 4.4, and define
Ro(Σs,Σt, β) := V(Σs,Σt) + B(Σs,Σt, β). Then, for any Σs ∈ S, with high probability over the
sampling of β over a sphere of constant radius, it holds that

Ro(Ip, Ip, β) ≤ Ro(Σs, Ip, β) + o(1),

where o(1) denotes a quantity that vanishes as n, p→ ∞.

Due to the complexity of the expressions for V(Σs,Σt) and B(Σs,Σt, β), the optimality of covariance
matching (Σs ∝ Σt) in the over-parameterized regime is shown for isotropic training data (Σt = Ip).
At the technical level, we note that the bias generally depends on the eigenspace decomposition of
the covariance matrices via Ĝp, as defined in (4.6). However, when Σt = Ip, cancellations in the
equations for bi (i ∈ {1, 2, 3, 4}) give that the bias B(Σs, Ip, β) is close to p−n

p ∥β∥2 for any Σs.
Having obtained that, the variance is then optimized following the approach of Theorem 4.3.

5 EXPERIMENTAL RESULTS

Theorems 4.3 and 4.5 show the optimality of covariance matching (Σs ∝ Σt) in both under-
parameterized and over-parameterized regimes. We now extensively test the applicability of this

7



Published as a conference paper at ICLR 2026

Table 1: Covariance matching outperforms all baselines across three training paradigms on CIFAR-10,
when the synthetic data is generated via five truncated StyleGAN2-Ada models.

Method Scratch Distillation Pretrained

No synthetic 44.36± 1.51 47.33± 0.57 63.40± 1.33

Center matching (He et al., 2023) 50.04± 2.84 53.83± 0.59 67.01± 0.89
Center sampling (Lin et al., 2023) 50.48± 2.03 54.91± 1.07 67.71± 0.90
DS3 (Hulkund et al., 2025) 52.83± 2.19 58.32± 0.43 68.21± 0.66
K-means (Lin et al., 2023) 50.74± 1.77 56.06± 0.68 66.50± 1.11
Random 49.38± 2.43 54.89± 0.91 67.65± 0.77
Text matching (Lin et al., 2023) 50.94± 1.40 55.17± 0.57 67.81± 0.76
Text sampling (Lin et al., 2023) 50.28± 1.18 54.82± 0.72 67.45± 1.02
Covariance matching (ours) 54.00± 1.89 59.77± 0.61 69.20± 0.56

Real upper bound 61.08± 2.54 65.38± 0.51 74.35± 0.56

synthetic data selection criterion in a range of practical settings. We consider classification problems,
assume access to a large pool of synthetic samples obtained from generative models, and perform the
augmentation per class. We implement covariance matching via a greedy algorithm: we initialize
S = ∅ and, until |S| = ns, we add the x from the generated pool that minimizes ∥Σ̂(S∪{x})−Σ̂t∥F ,
where Σ̂(·) and Σ̂t denote the sample covariance of CLIP features of the synthetic samples and real
samples respectively and ∥ · ∥F is the Frobenius norm. To accelerate the selection, we compute
covariances in a 32-dimensional PCA space fit on the nt real reference features. After the selection,
we train a classifier on the union of real and selected synthetic samples.

Experimental setup. When using CIFAR-10, we evaluate three training paradigms. (1) Scratch: train
a ResNet-18 (He et al., 2016) from scratch on the available data. (2) Distillation: train a ResNet-18
using soft targets (logits) from a ResNet-50 trained on full CIFAR-10, following Hinton et al. (2015).
(3) Pretrained: fine-tune an ImageNet-pretrained ResNet-18 with a new classification head. We also
repeat the Scratch and Distillation experiments replacing the ResNet with two transformer models
(ViT and Swin-T). Unless stated otherwise, we use nt = 200 real images and augment with ns = 800
synthetic images per class. The features for the selection algorithms are extracted with CLIP ViT-B,
yielding a p = 512-dimensional feature space, which places us in an under-parameterized regime.
We report in Table 9 in Appendix C an additional experiment for ns + nt = 400, which places us
in an over-parameterized regime. We additionally consider ImageNet-100 as a more diverse dataset,
and RxRx1 (Sypetkowski et al., 2023) as a specialized one. For RxRx1, we use a small subset of
nt = 30 images from four common perturbations (1108, 1124, 1137, 1138) on HUVEC cells. We
consider the task of perturbation classification and augment with ns = 60 samples chosen from 500
images generated by MorphGen (Demirel et al., 2025). Further details are in Appendix C.

Baselines. We compare Covariance matching with the following baselines. (1) Center matching (He
et al., 2023): select the ns images nearest to the centroid of the nt real training features. (2) Center
sampling (Lin et al., 2023): sample with probability proportional to the cosine similarity to the nt
real training features. (3) DS3 (Hulkund et al., 2025): cluster the generated pool into 200 clusters;
for each of the nt real images, retain its nearest cluster; then, sample ns images uniformly from the
retained set. (4) K-means (Lin et al., 2023): cluster the generated pool into ns clusters and choose
one random representative per cluster. (5) Random: uniformly sample ns images from the generated
pool. The methods “No-filtering” (Hulkund et al., 2025), “Match-dist” (Hulkund et al., 2025), and
“Match-label” (Hulkund et al., 2025) are all equivalent to Random in our setting due to having the same
number of data for each class. (6) Text matching (Lin et al., 2023): select the ns images nearest to the
class text embedding. (7) Text sampling (Lin et al., 2023): sample with probability proportional to the
cosine similarity to the class text embedding. We also report a baseline, No synthetic, corresponding
to using only nt samples from the training distribution (synthetic data discarded), as well as a baseline,
Real upper bound, corresponding to using nt + ns samples from the training distribution (synthetic
data replaced by in-distribution data). All experiments are repeated over 10 random seeds (except
Table 3a which is on 5 seeds), and we report the mean ± 1 standard deviation.

Main findings. First, we test diversity/quality trade-offs. To do so, for each class we generate images
with StyleGAN2-Ada (Karras et al., 2020) under different truncations (Karras et al., 2019): 6K
images from a 0.2-truncated model with three randomized truncation centers and 4K images from a
0.6-truncated model with two randomized centers. This produces synthetic data with varying diversity
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Table 2: Covariance matching performs on par with the best baseline across three training paradigms
on CIFAR-10, when the synthetic data is generated via various T2I generative models.

Method Scratch Distillation Pretrained

No synthetic 44.36± 1.51 47.33± 0.57 63.40± 1.33

Center matching (He et al., 2023) 53.46± 1.95 57.67± 0.58 66.52± 0.81
Center sampling (Lin et al., 2023) 50.15± 1.79 56.05± 0.65 65.38± 0.98
DS3 (Hulkund et al., 2025) 54.15± 2.17 59.43± 0.73 66.00± 0.94
K-means (Lin et al., 2023) 51.63± 1.29 56.77± 0.89 65.23± 0.61
Random 51.26± 1.96 55.27± 0.74 65.24± 1.01
Text matching (Lin et al., 2023) 51.20± 1.82 56.08± 0.57 65.93± 0.59
Text sampling (Lin et al., 2023) 50.31± 1.70 55.79± 0.68 64.93± 1.12
Covariance matching (ours) 54.45± 2.11 59.17± 0.64 66.69± 0.70

Real upper bound 61.08± 2.54 65.38± 0.51 74.35± 0.56

Table 3: Covariance matching performs on par with the best baselines for two additional datasets.
In (a), we train a ResNet-18 from scratch on ImageNet-100 with synthetic images from StyleGAN-
XL and T2I models. In (b), we train a linear model on top of an ImageNet-pretrained ResNet for
perturbation classification on a small subset of RxRx1 (Sypetkowski et al., 2023) augmented with
synthetic images from MorphGen (Demirel et al., 2025).

Method Truncated models T2I models

No synthetic 40.78± 1.29

Center matching (He et al., 2023) 53.39± 0.37 53.96± 1.06
DS3 (Hulkund et al., 2025) 57.47± 0.87 53.51± 0.31
Random 54.14± 0.82 49.84± 1.32
Text matching (Lin et al., 2023) 53.39± 0.99 53.37± 0.72
Covariance matching (ours) 57.52± 0.36 53.07± 0.89

Real upper bound 62.67± 0.65

(a) ImageNet-100 dataset

Method MorphGen

No synthetic 86.83± 2.44

Center matching (He et al., 2023) 88.17± 2.35
Random 87.33± 2.03
K-means (Lin et al., 2023) 89.00± 1.70
DS3 (Hulkund et al., 2025) 89.67± 1.45
Center sampling (Lin et al., 2023) 88.75± 2.27
Covariance matching (ours) 90.00± 1.86

(b) RxRx1 dataset

and fidelity, and we note that the diversity we refer to concerns the synthetic dataset obtained from
the generative model. The results of Table 1 demonstrate that covariance matching outperforms all
baselines for all training paradigms. Table 10 in Appendix C suggests that this superiority is partly
due to selecting more diverse samples, evident from the improved Recall (Kynkäänniemi et al., 2019),
FID (Heusel et al., 2017), and KID (Bińkowski et al., 2018) scores guaranteed by covariance matching.
We further notice that covariance matching selects 268, 245, 333 samples from the three StyleGANs
with truncation 0.2, and 3692, 3462 samples from the two StyleGANs with truncation 0.6, pointing out
the preference of covariance matching towards more diverse samples. Going beyond ResNets, we also
demonstrate the effectiveness of covariance matching for transformer models in Table 4 in Appendix
C. Second, we test text-to-image (T2I) generative models. To do so, for each class we generate 4K
SANA-1.5 (Xie et al., 2025), 4K PixArt-α (Chen et al., 2024), and 2K StableDiffusion1.4 (Rombach
et al., 2022) images. Table 2 shows that covariance matching also performs well in this mixed setup.

Finally, to demonstrate the generality of our findings, we consider a broader dataset from computer
vision (ImageNet-100) and a specialized dataset from fluorescence microscopy (RxRx1, (Sypetkowski
et al., 2023)). Once again, the results reported in Tables 3a-3b show that covariance matching performs
on par with the best baselines in all settings. Additionally, the effectiveness is also shown for text
classification on the Ironic-Tweet dataset (Van Hee et al., 2018) in Table 13 in Appendix C.

Additional controlled experiments. We report additional results in Appendix C. In Table 5, we
consider zero-diversity generators. Specifically, for each class, we combine 2K StyleGAN2-Ada
images with a total of 8K images produced by two zero-diversity generators. Each of these generators
emits a single prototype per class: one near the class center of the real samples, and one near the class
label’s CLIP embedding. This yields high precision, but low diversity relative to the real distribution.
Our results show that, again, covariance matching performs well as it avoids selecting many samples
with low diversity (collapsed clusters). In contrast, not fully taking into account the diversity of
selected samples, methods like DS3 perform rather poorly. In Figure 2, we consider inserting images
from the target distribution into the pool of synthetic images and test the ability of different methods
to select them. Specifically, we form a pool of 4K StableDiffusion1.4 images and 1K images from
the target distribution (different from the nt = 200 images forming the training distribution), letting
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each method take ns = 800. Our results show that covariance matching selects the highest fraction
of images coming from the target distribution, whereas other selectors largely fail to do so.

Additional ablations. In Tables 6-7, we repeat the experiments of Tables 1-2 with DINO instead
of CLIP features, demonstrating that the gains of covariance matching are not tied to a particular
feature extractor. In Table 8, we compare covariance matching with the direct optimization of the
objective given by Theorem 4.1. As the outcomes of these two procedures are largely similar, this
further justifies the covariance matching objective. In Table 9, we show that our findings replicate
in an over-parameterized regime. In Table 10, we examine the distribution of selections produced
by each method, quantifying alignment with the test distribution and identifying which metrics best
predict downstream accuracy.

In Table 11, we analyze the effect of varying the number of real training samples and synthetic
augmentations. Table 12 reports the performance of different variants of Covariance Matching.

All these tables and figures are reported and discussed in Appendix C.

6 CONCLUSION

This paper advances understanding of the precise connection between training on a mix of real and
synthetic data and generalizing on real data. We start with a high-dimensional linear regression
analysis, where we find that only covariance shifts, and not mean shifts, affect the error. Even if our
theory ignores the interactions between classes that would affect neural network training, the resulting
insights transfer to realistic settings. We empirically demonstrate that matching the covariance
between samples from real image classification datasets and generative models (irrespective of
whether they are from GANs or diffusion model variants) improves the accuracy of deep networks
(ResNets and Transformers) under different training regimes (from scratch, distillation, and fine-
tuning). In fact, our principled approach even performs on-par or better than existing baselines
(Hulkund et al., 2025; He et al., 2023; Lin et al., 2023). Future work could extend the analysis to
multiple Gaussian mixtures, which corresponds to optimizing the actual risk as opposed to modeling
individual classes. We speculate that this may yield different insights when the training data have
extremely imbalanced or fine-grained classes. It would also be interesting to introduce a model shift
(different β between synthetic and real samples) under covariance shift . In fact, synthetic data often
has small differences compared to real data, which a model may overfit on, and the phenomenon could
be the cause of the collapse sometimes observed in practice (Shumailov et al., 2024). Finally, we
have only focused on generalization, but other quantities may be studied in this framework, including
uncertainty calibration (Nixon et al., 2019), differential privacy (Dwork, 2006), fairness (Barocas
et al., 2020), and validity for prediction-powered causal inference (Cadei et al., 2025).
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Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
gans. In International Conference on Learning Representations, 2018.

Simone Bombari and Marco Mondelli. Spurious correlations in high dimensional regression: The
roles of regularization, simplicity bias and over-parameterization. In International Conference on
Machine Learning, 2025.

Max F Burg, Florian Wenzel, Dominik Zietlow, Max Horn, Osama Makansi, Francesco Locatello, and
Chris Russell. Image retrieval outperforms diffusion models on data augmentation. Transactions
on Machine Learning Research, 2023.

Riccardo Cadei, Ilker Demirel, Piersilvio De Bartolomeis, Lukas Lindorfer, Sylvia Cremer, Cordelia
Schmid, and Francesco Locatello. Causal lifting of neural representations: Zero-shot generalization
for causal inferences. arXiv preprint arXiv:2502.06343, 2025.

Xiangyu Chang, Yingcong Li, Samet Oymak, and Christos Thrampoulidis. Provable benefits of
overparameterization in model compression: From double descent to pruning neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 6974–6983, 2021.

Junsong Chen, YU Jincheng, GE Chongjian, Lewei Yao, Enze Xie, Zhongdao Wang, James Kwok,
Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. In International Conference on Learning Representations,
2024.

Chen Cheng and Andrea Montanari. Dimension free ridge regression. The Annals of Statistics, 52(6):
2879 – 2912, 2024.

Berker Demirel, Marco Fumero, Theofanis Karaletsos, and Francesco Locatello. Morphgen: Control-
lable and morphologically plausible generative cell-imaging. In ICML 2025 Workshop on Scaling
Up Intervention Models, 2025.

Lisa Dunlap, Alyssa Umino, Han Zhang, Jiezhi Yang, Joseph E Gonzalez, and Trevor Darrell.
Diversify your vision datasets with automatic diffusion-based augmentation. Advances in Neural
Information Processing Systems, 36, 2023.

11



Published as a conference paper at ICLR 2026

Cynthia Dwork. Differential privacy. In International colloquium on automata, languages, and
programming, pp. 1–12. Springer, 2006.

Aymane El Firdoussi, Mohamed El Amine Seddik, Soufiane Hayou, Reda Alami, Ahmed Alzubaidi,
and Hakim Hacid. Maximizing the potential of synthetic data: Insights from random matrix theory.
In International Conference on Learning Representations, 2025.

Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued (medical) time series
generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633, 2017.

Lijie Fan, Kaifeng Chen, Dilip Krishnan, Dina Katabi, Phillip Isola, and Yonglong Tian. Scaling laws
of synthetic images for model training... for now. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7382–7392, 2024.

Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen,
Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp: In search of the
next generation of multimodal datasets. Advances in Neural Information Processing Systems, 36:
27092–27112, 2023.

Scott Geng, Cheng-Yu Hsieh, Vivek Ramanujan, Matthew Wallingford, Chun-Liang Li, Pang Wei W
Koh, and Ranjay Krishna. The unmet promise of synthetic training images: Using retrieved real
images performs better. Advances in Neural Information Processing Systems, 37:7902–7929, 2024.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural Information
Processing Systems, 27, 2014.

Qiyang Han and Xiaocong Xu. The distribution of ridgeless least squares interpolators. arXiv preprint
arXiv:2307.02044, 2023.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation. Annals of statistics, 50(2):949, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 770–778, 2016.

Ruifei He, Shuyang Sun, Xin Yu, Chuhui Xue, Wenqing Zhang, Philip Torr, Song Bai, and Xiaojuan
Qi. Is synthetic data from generative models ready for image recognition? In International
Conference on Learning Representations, 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in Neural
Information Processing Systems, 30, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Neha Hulkund, Alaa Maalouf, Levi Cai, Daniel Yang, Tsun-Hsuan Wang, Abigail O’Neil, Timm
Haucke, Sandeep Mukherjee, Vikram Ramaswamy, Judy Hansen Shen, et al. Datasˆ 3: Dataset
subset selection for specialization. arXiv preprint arXiv:2504.16277, 2025.

M. Emrullah Ildiz, Halil Alperen Gozeten, Ege Onur Taga, Marco Mondelli, and Samet Oymak.
High-dimensional analysis of knowledge distillation: Weak-to-strong generalization and scaling
laws. In International Conference on Learning Representations, 2025.

Ayush Jain, Andrea Montanari, and Eren Sasoglu. Scaling laws for learning with real and surrogate
data. Advances in Neural Information Processing Systems, 37:110246–110289, 2024.

James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. Pate-gan: Generating synthetic data with
differential privacy guarantees. In International Conference on Learning Representations, 2018.

12



Published as a conference paper at ICLR 2026

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4401–4410, 2019.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. Advances in Neural Information Processing
Systems, 33:12104–12114, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations, 2014.

Germain Kolossov, Andrea Montanari, and Pulkit Tandon. Towards a statistical theory of data
selection under weak supervision. In International Conference on Learning Representations, 2024.

Hsun-Yu Kuo, Yin-Hsiang Liao, Yu-Chieh Chao, Wei-Yun Ma, and Pu-Jen Cheng. Not all LLM-
generated data are equal: Rethinking data weighting in text classification. In The Thirteenth
International Conference on Learning Representations, 2025.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in Neural Information
Processing Systems, 32, 2019.

Zhuoyan Li, Hangxiao Zhu, Zhuoran Lu, and Ming Yin. Synthetic data generation with large language
models for text classification: Potential and limitations. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 10443–10461, 2023.

Shaobo Lin, Kun Wang, Xingyu Zeng, and Rui Zhao. Explore the power of synthetic data on few-shot
object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 638–647, 2023.

Neil Rohit Mallinar, Austin Zane, Spencer Frei, and Bin Yu. Minimum-norm interpolation under
covariate shift. In International Conference on Machine Learning, 2024.

Albert W Marshall, Ingram Olkin, and Barry C Arnold. Inequalities: theory of majorization and its
applications. Springer, 1979.

Andrea Montanari, Feng Ruan, Youngtak Sohn, and Jun Yan. The generalization error of max-margin
linear classifiers: Benign overfitting and high dimensional asymptotics in the overparametrized
regime. arXiv preprint arXiv:1911.01544, 2019.

Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
fidelity and diversity metrics for generative models. In International conference on machine
learning, pp. 7176–7185. PMLR, 2020.

Sergey I Nikolenko et al. Synthetic data for deep learning, volume 174. Springer, 2021.

Jeremy Nixon, Michael W. Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin Tran. Measuring
calibration in deep learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, June 2019.

Rishubh Parihar, Abhijnya Bhat, Abhipsa Basu, Saswat Mallick, Jogendra Nath Kundu, and
R Venkatesh Babu. Balancing act: distribution-guided debiasing in diffusion models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6668–6678,
2024.

Pratik Patil, Jin-Hong Du, and Ryan J Tibshirani. Optimal ridge regularization for out-of-distribution
prediction. In International Conference on Machine Learning, pp. 39908–39954, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

13



Published as a conference paper at ICLR 2026

Vikram V Ramaswamy, Sunnie SY Kim, and Olga Russakovsky. Fair attribute classification through
latent space de-biasing. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9301–9310, 2021.

Dominic Richards, Jaouad Mourtada, and Lorenzo Rosasco. Asymptotics of ridge (less) regression
under general source condition. In International Conference on Artificial Intelligence and Statistics,
pp. 3889–3897. PMLR, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Mohamed El Amine Seddik, Suei-Wen Chen, Soufiane Hayou, Pierre Youssef, and Merouane
Debbah. How bad is training on synthetic data? a statistical analysis of language model collapse.
In Conference on Language Modeling, 2024.

Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and Russell Webb.
Learning from simulated and unsupervised images through adversarial training. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2107–2116, 2017.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal. Ai
models collapse when trained on recursively generated data. Nature, 631(8022):755–759, 2024.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted
pre-training for language understanding. Advances in neural information processing systems, 33:
16857–16867, 2020.

Yanke Song, Sohom Bhattacharya, and Pragya Sur. Generalization error of min-norm interpolators in
transfer learning. arXiv preprint arXiv:2406.13944, 2024.

Gilbert W Stewart and Ji-guang Sun. Matrix perturbation theory. Academic Press, 1990.

Maciej Sypetkowski, Morteza Rezanejad, Saber Saberian, Oren Kraus, John Urbanik, James Taylor,
Ben Mabey, Mason Victors, Jason Yosinski, Alborz Rezazadeh Sereshkeh, et al. Rxrx1: A dataset
for evaluating experimental batch correction methods. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4285–4294, 2023.

Brandon Trabucco, Kyle Doherty, Max A Gurinas, and Ruslan Salakhutdinov. Effective data
augmentation with diffusion models. In International Conference on Learning Representations,
2024.

Boris van Breugel, Tennison Liu, Dino Oglic, and Mihaela van der Schaar. Synthetic data in
biomedicine via generative artificial intelligence. Nature Reviews Bioengineering, 2(12):991–1004,
2024.

Cynthia Van Hee, Els Lefever, and Véronique Hoste. Semeval-2018 task 3: Irony detection in english
tweets. In Proceedings of the 12th international workshop on semantic evaluation, pp. 39–50,
2018.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 13484–13508, 2023.

Denny Wu and Ji Xu. On the optimal weighted ℓ2 regularization in overparameterized linear
regression. In Advances in Neural Information Processing Systems, volume 33, pp. 10112–10123,
2020.

Sierra Wyllie, Ilia Shumailov, and Nicolas Papernot. Fairness feedback loops: training on synthetic
data amplifies bias. In Proceedings of the 2024 ACM Conference on Fairness, Accountability, and
Transparency, pp. 2113–2147, 2024.

14



Published as a conference paper at ICLR 2026

Enze Xie, Junsong Chen, Yuyang Zhao, Jincheng YU, Ligeng Zhu, Yujun Lin, Zhekai Zhang, Muyang
Li, Junyu Chen, Han Cai, et al. Sana 1.5: Efficient scaling of training-time and inference-time
compute in linear diffusion transformer. In International Conference on Machine Learning, 2025.

Fan Yang, Hongyang R Zhang, Sen Wu, Christopher Re, and Weijie J Su. Precise high-dimensional
asymptotics for quantifying heterogeneous transfers. Journal of Machine Learning Research, 26
(113):1–88, 2025.

15



Published as a conference paper at ICLR 2026

A PROOFS OF THE THEORETICAL RESULTS

Additional notation. We use the shorthand [n] := {1, . . . , n} for an integer n. Given a matrix M ,
its operator norm is denoted by ∥M∥2, its i-th largest singular value by σi(M) and the corresponding
i-th left-singular (resp. right-singular) vector of unit norm by ui(M) (resp. vi(M)). Additionally,
when applicable, we denote the i-th largest eigenvalue of M by λi(M). We use Rp×p≻0 to denote the
set of all p× p positive definite matrices, and Sp−1 to denote a (p− 1)-dimensional unit sphere. We
denote by ei the i-th element of the canonical basis of Rl, where the exact exponent l is assumed from
context. We will say that an event E happens with high probability (w.h.p.) if and only if P(E) → 1
as p, n→ ∞. Moreover, we will say that an event Ξ happens with overwhelming probability if and
only if, for any large constant D > 0, P(Ξ) ≥ 1− p−D for large enough p. Lastly, throughout this
appendix, we use c to denote a constant (independent of n, p) whose value may change from line to
line.

For convenience, we recall some notation and definitions from Section 3. Namely, we denote by
Z ∈ Rn×p a random matrix with i.i.d. entries having zero mean, unit variance and bounded ψ-th
moment (for some ψ > 4). Recall µ(i) ∈ Rp, for (i) ∈ {s, t}, such that

∥∥µ(i)

∥∥
2
= r(i)

√
p, where r(i)

is a constant, with a constant angle between them φ := |⟨µs, µt⟩| /(∥µs∥2 ∥µt∥2). Also, let Σs,Σt ∈
Rp×p be covariance matrices with bounds on their spectrum as in Section 3. Then, we consider

a data distribution X =

[
ZtΣ

1/2
t + 1nt

µ⊤
t

ZsΣ
1/2
s + 1ns

µ⊤
s

]
∈ Rn×p and introduce its zero mean counterpart

X0 :=

[
ZtΣ

1/2
t

ZsΣ
1/2
s

]
. The corresponding sample covariance matrices are defined as Σ̂ = X⊤X

n and

Σ̂0 = X0⊤
X0

n . Lastly, unless stated otherwise, we work in the regime n/p = γ, where γ ̸= 1 is a
fixed constant independent of n and p.

A.1 PROOF OF THEOREM 4.1

We first state and prove useful results, in which we analyze the behavior of singular values of a
low-rank perturbation of matrices.

Proposition A.1. Let σ1 ≥ · · · ≥ σmin(n,p) be the singular values of Z̃ =
Z+1nµ

⊤
s√

n
. Then, there

exists a constant c(γ) > 0 independent of n, such that, almost surely,

lim inf
n→∞

σmin(n,p) ≥ c(γ).

Proof. To simplify notation we will refer to σmin as the smallest singular value of a matrix. Let
us choose an orthogonal matrix Q ∈ Rn×n such that Q1n =

√
n e1. Since singular values are left

orthogonally invariant, we may replace Z̃ by

Z̃ ′ =
QZ√
n
+ e1µ

⊤
s .

Writing the rows of QZ as

QZ =

[
z⊤1
Z2

]
, z1 ∈ Rp, Z2 ∈ R(n−1)×p,

we have

Z̃ ′ =

 z⊤1√
n
+ µ⊤

s

Z2√
n

 .
For any unit vector x ∈ Rp,

∥Z̃ ′x∥2 =

√(
z⊤1 x√
n
+ µ⊤

s x
)2

+
∥∥∥Z2x√

n

∥∥∥2
2

≥
∥∥∥Z2x√

n

∥∥∥
2
.

Hence, by the variational definition of singular values, we have

σmin(Z̃) ≥ σmin

(
Z2√
n

)
=
√

n−1
n σmin

(
Z2√
n−1

)
. (A.1)
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By the Bai–Yin theorem (Bai & Silverstein, 2010, Theorem 5.11), for an (n− 1)× p random matrix
Z2 with i.i.d entries with mean zero, unit variance and bounded fourth moments it holds

σmin

(
Z2√
n−1

)
a.s.−−−−→
n→∞

∣∣ 1−√p/(n− 1)
∣∣.

Therefore, applying lim infn→∞ to (A.1), we have

lim inf
n→∞

σmin(Z̃) ≥ lim inf
n→∞

√
n−1
n σmin

(
Z2√
n

)
= lim
n→∞

√
n−1
n σmin

(
Z2√
n

)
=
∣∣∣1− γ−1/2

∣∣∣ > 0,

which gives the desired result as γ ̸= 1.

Proposition A.2. Let X̃n = X/
√
n = 1√

n

[
ZtΣ

1/2
t + 1ntµ

⊤
t

ZsΣ
1/2
s + 1ns

µ⊤
s

]
∈ Rn×p. Let σ1 ≥ · · · ≥ σn be the

singular values of X̃n and v1, . . . , vn be the corresponding right singular vectors. Then, as n→ ∞,
the following results hold:

1. For φ < 1, we have

1a. σ1 = Θ(
√
p), σ2 = Θ(

√
p), and σ3 = O(1);

1b.
∣∣∣ ⟨v1,µs⟩
∥v1∥2∥µs∥2

∣∣∣2 + ∣∣∣ ⟨v2,µs⟩
∥v2∥2∥µs∥2

∣∣∣2 = 1−O
(

1
p

)
,∣∣∣ ⟨v1,µt⟩

∥v1∥2∥µt∥2

∣∣∣2 + ∣∣∣ ⟨v2,µt⟩
∥v2∥2∥µt∥2

∣∣∣2 = 1−O
(

1
p

)
.

2. For φ = 1, we have

2a. σ1 = Θ(
√
p), σ2 = O(1);

2b.
∣∣∣ ⟨v1,µs⟩
∥v1∥2∥µs∥2

∣∣∣2 = 1−O
(

1
p

)
.

Proof. Let us first abuse notation and write 1ns
= [1, . . . , 1, 0, . . . , 0]⊤ ∈ Rn×1 (ns ones followed

by nt zeros) and 1nt
= [0, . . . , 0, 1, . . . , 1]⊤ ∈ Rn×1 (ns zeros followed by nt ones). Then if we

write

Xn :=
1√
n

[
ZtΣ

1/2
t

ZsΣ
1/2
s

]
,

it holds

X̃n = Xn + Pn, where Pn :=
1nsµ

⊤
s + 1ntµ

⊤
t√

n
. (A.2)

To obtain the wanted result, we will need to express the non-zero singular values and the corresponding
right singular vectors of the rank-2 perturbation Pn, that is σi(Pn) and vi(Pn), i ∈ [2]. Notice that

P⊤
n Pn = α2

sµsµ
⊤
s + α2

tµtµ
⊤
t ,

where αs :=
√

ns

n and αt :=
√

nt

n . Moreover, it holds

P⊤
n Pn = Q⊤

p Qp, (A.3)

where Qp =
[
αsµs
αtµt

]
∈ R2×p. Note that

QpQ
⊤
p =

[
α2
s ∥µs∥

2
2 αsαt ⟨µs, µt⟩

αsαt ⟨µs, µt⟩ α2
t ∥µt∥

2
2

]
=:

[
a b
b d

]
,

and it is enough to analyze its SVD, since

σi(Pn) =
√
σi(QpQ⊤

p ), and vi(Pn) =
1

σi(Pn)
vi(QpQ

⊤
p )

⊤ Qp.

17



Published as a conference paper at ICLR 2026

The previous equations hold due to (A.3), since σi(Qp) = σi(Pn), and

1

σi(Pn)
vi(QpQ

⊤
p )

⊤ Qp =
1

σi(Qp)
ui(Qp)

⊤ [u1(Qp) u2(Qp)]

[
σ1(Qp) 0

0 σ2(Qp)

] [
v1(Qp)
v2(Qp)

]
.

This implies that, for i ∈ [2], the singular vectors vi(Pn) are in the span{µs, µt}. Recall that the
angle between µs and µt is fixed to φ := |⟨µs,µt⟩|

∥µs∥2∥µt∥2
.

We first consider the case when φ < 1. It holds that the eigenvalues of QpQ⊤
p are

σ1,2(QpQ
⊤
p ) =

a+ d±
√

(a− d)2 + 4b2

2

=
(r2sα

2
s + r2tα

2
t )p±

√
(r2sα

2
s − r2tα

2
t )

2p2 + 4α2
sr

2
sα

2
t r

2
tφ

2p2

2
(A.4)

≥ p · (r
2
sα

2
s + r2tα

2
t )−

√
(r2sα

2
s − r2tα

2
t )

2 + 4α2
sr

2
sα

2
t r

2
tφ

2

2
= p · c1,

with c1 =
(r2sα

2
s+r

2
tα

2
t )−

√
(r2sα

2
s−rtα2

t )
2+4α2

sr
2
sα

2
tr

2
tφ

2

2 > 0, since φ < 1. This implies that

σi(Pn) ≥ c · √p,

for some constant c.

Furthermore, it almost surely holds that

σ1(Xn) =
√
σ1(X⊤

n Xn)

=

√
σ1(Σ

1/2
s Z⊤

s ZsΣ
1/2
s +Σ

1/2
t Z⊤

t ZtΣ
1/2
t )

≤
√
σ1(Σ

1/2
s Z⊤

s ZsΣ
1/2
s ) + σ1(Σ

1/2
t Z⊤

t ZtΣ
1/2
t )

≤
√
2(1 +

√
γ)2 · τ−1 = O(1),

due to the convergences of the largest eigenvalue of the sample covariance matrices Z⊤
s Zs and Z⊤

t Zt
by Bai–Yin theorem (Bai & Silverstein, 2010, Theorem 5.11) and the boundedness of the spectrum
of Σs and Σt. Then, from Weyl’s inequality for singular values (see e.g. (Horn & Johnson, 2012,
Chapter 7)), we have that

σi(Xn + Pn) ≥ σi(Pn)− σ1(Xn), for i = 1, 2,

σ3(Xn + Pn) ≤ σ3(Pn) + σ1(Xn) = σ1(Xn),

which implies that σ1,2(Xn+Pn) ≥ c · √p, whereas σi(Xn+Pn) = O(1), for i ≥ 3. For the upper
bound, note that from (A.4) it holds

σ1,2(QQ
⊤) ≤ (r2sα

2
s + r2tα

2
t )p+ (r2sα

2
s + r2tα

2
t )p

2
= p · c2,

implying σi(Pn) ≤ c · √p. Applying Weyl’s inequality for singular values once more, we get

σi(Xn + Pn) ≤ σ1(Xn) + σi(Pn) = O(
√
p),

concluding the proof of 1a.

Moving onto singular vectors, let us recall the definition of spectral distance between two k-
dimensional subspaces W ≤ Rp and W̃ ≤ Rp, as it will be used to conclude the proof. Towards this
end, we first introduce principal angles θ1 . . . θk ∈ [0, π/2] between W and W̃ , which are defined
recursively from i = 1 as

cos(θi) = max
wi∈W,w̃i∈W̃

⟨wi, w̃i⟩
∥wi∥2 ∥w̃i∥2

,
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subject to wi, w̃i being orthogonal to the previous maximizers. Then, the spectral distance between
W and W̃ is defined as

d(W, W̃) := max
i∈[k]

sin θi.

There is an alternative way to express this spectral distance between subspaces, using their orthonor-
mal basis. Namely, let W ∈ Rp×k and W̃ ∈ Rp×k be such that their columns form an orthonormal
basis of W and W̃ , respectively. Then by (Stewart & Sun, 1990, Chapter II, Corollary 5.4) it holds

d(W, W̃) :=
∥∥∥(I −WW⊤)W̃

∥∥∥
2
. (A.5)

Let us denote by Ṽ :=

[
v1(Pn)
v2(Pn)

]⊤
, V :=

[
v1(X̃n)

v2(X̃n)

]⊤
and by V , Ṽ the subspaces spanned by their

columns. Then, by Wedin’s sinΘ theorem, (Stewart & Sun, 1990, Chapter V, Theorem 4.4.) it holds
that

d(V, Ṽ) ≤ σ1(Xn)

σ2(Xn + Pn)− σ3(Xn + Pn)
=

1

c · √p+O(1)
= O

(
1
√
p

)
.

As v1(Pn), v2(Pn) ∈ span{µs, µt} and they are linearly independent, this implies that V =

span{µs, µt}. Choosing matrices Ṽs ∈ Rp×2 and Ṽt ∈ Rp×2 such that their columns are orthonormal
bases of Ṽ and their first column is µs

∥µs∥2
and µt

∥µt∥2
respectively, one gets that∥∥∥∥(I − V V ⊤)

µs
∥µs∥2

∥∥∥∥
2

=
∥∥∥(I − V V ⊤)Ṽse1

∥∥∥
2
≤
∥∥∥(I − V V ⊤)Ṽs

∥∥∥
2
= d(V, Ṽ) ≤ O

(
1
√
p

)
,∥∥∥∥(I − V V ⊤)

µt
∥µt∥2

∥∥∥∥
2

=
∥∥∥(I − V V ⊤)Ṽte1

∥∥∥
2
≤
∥∥∥(I − V V ⊤)Ṽt

∥∥∥
2
= d(V, Ṽ) ≤ O

(
1
√
p

)
.

From this, 1b directly follows. The case φ = 1 is handled analogously.

Proposition A.3. In the under-parameterized regime, i.e., when p < n, it holds that

1

n
Tr[Σ̂+(Σt + µtµ

⊤
t )] =

1

n
Tr[Σ̂+

0 Σt] +O

(
1

p

)
. (A.6)

Proof. We break down the LHS of (A.6) into two terms
1

n
Tr[Σ̂+(Σt + µtµ

⊤
t )] = T1 + T2,

where
T1 =

1

n
Tr[Σ̂+Σt], and T2 =

1

n
Tr[Σ̂+µtµ

⊤
t ].

We will deal with each of the terms individually.

Bounding the term T1. It holds that

T1 =
1

n
Tr(Σ̂+Σt)

=
1

n
Tr


(XΣ

−1/2
t√
n

)⊤
XΣ

−1/2
t√
n

−1


=
1

n
Tr
((
X̄⊤X̄

)−1
)

=
1

n

k∑
i=1

1

σ2
i

(
X̄
) ,

(A.7)

where X̄ :=
XΣ

−1/2
t√
n

∈ Rn×p, and k ≤ p is the number of non-zero singular values of X̄ . Let us
prove that σp(X̄) > c for some constant c, implying that k = p. Towards this end, we write out

X̄⊤X̄ = X̄⊤
s X̄s + X̄⊤

t X̄t,
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where X̄s :=
XsΣ

−1/2
t√
n

=
(ZsΣ

1/2
s +1nsµ

⊤
s )Σ

−1/2
t√

n
and X̄t :=

XtΣ
−1/2
t√
n

=

(
ZtΣ

1/2
t +1ntµ

⊤
t

)
Σ

−1/2
t√

n
.

From Proposition A.1, it follows that for large enough n, almost surely

σp(X̄s) ≥ c, σp(X̄t) ≥ c,

for some constant c, which is just c(γ) from the proposition adjusted by the bound on the eigenvalues
of Σ−1/2

t and Σ
−1/2
s (recall that the smallest eigenvalue of Σs,Σt is lower bounded by τ ). Plugging

this in gives

σp(X̄)2 ≥ σp(X̄s)
2 + σp(X̄t)

2 ≥ 2c2. (A.8)

Let X̄0 :=
X0Σ

−1/2
t√
n

and note that X̄ is a rank-2 perturbation of X̄0 (see (A.2)). Then, due to Weyl’s
inequality for singular values, it holds that, for i ∈ {3, . . . , p− 2},

σi+2(X̄
0) ≤ σi(X̄) ≤ σi−2(X̄

0).

Therefore, we have

1

n

p−4∑
i=1

1

σi
(
X̄0
)2 ≤ 1

n

p−2∑
i=3

1

σi
(
X̄
)2 ≤ 1

n

p∑
i=3

1

σi
(
X̄0
)2 .

An application of the Bai–Yin theorem (Bai & Silverstein, 2010, Theorem 5.11) gives that there exist
constants a and b such that

0 < a < σp(X̄
0) ≤ σ1(X̄

0) < b < +∞,

for large enough n. Therefore, it holds

1

n

p∑
i=1

1

σi
(
X̄0
)2 −O

(
1

n

)
≤ 1

n

p−2∑
i=3

1

σi
(
X̄
)2 ≤ 1

n

p∑
i=1

1

σi
(
X̄0
)2 ,

which implies that

1

n

p−2∑
i=3

1

σi
(
X̄
)2 =

1

n

p∑
i=1

1

σi
(
X̄0
)2 +Θ

(
1

n

)
.

Using the proved fact that σi(X̄) > c we have

1

n

p∑
i=1

1

σi
(
X̄
)2 =

1

n

p−2∑
i=3

1

σi
(
X̄
)2 +O

(
1

n

)
.

Combining all the pieces, it holds that

T1 =
1

n

p∑
i=1

1

σ2
i (X̄)

=
1

n

p−2∑
i=3

1

σi(X̄)2
+O

(
1

n

)

=
1

n

p∑
i=1

1

σi(X̄0)2
+O

(
1

n

)
=

1

n
Tr
((
X̄0⊤X̄0

)−1
Σt

)
+O

(
1

n

)
=

1

n
Tr
[
Σ̂+

0 Σt
]
+O

(
1

p

)
.
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Bounding the term T2. First, recall the shorthand X̃n = X/
√
n and note that

σp(X̃n) = σp(X̄Σ
1/2
t ) ≥ σp(X̄) · σp(Σ1/2

t ) ≥ c · τ, (A.9)

where the last inequality follows from (A.8) and the bounds on the spectrum of Σt. Recall that
n/p = γ, which implies O

(
1
n

)
= O

(
1
p

)
. Then, it holds that

T2 =
1

n
µ⊤
t Σ̂

+µt

=
µ⊤
t√
n
(X̃⊤

n X̃n)
+ µt√

n

=
µ⊤
t√
n

p∑
i=1

1

σi(X̃n)2
vi(X̃n)vi(X̃n)

⊤ µt√
n

(A.10)

=
1

σ1(X̃n)2

〈
v1(X̃n), µt

〉2
n

+
1

σ2(X̃n)2

〈
v2(X̃n), µt

〉2
n

+

p∑
i=3

1

σi(X̃n)2

〈
vi(X̃n), µt

〉2
n

≤ Θ

(
1

p

)(
1−O

(
1

p

))
+

1

c · τ
O

(
1

p

)
= O

(
1

p

)
,

where the penultimate inequality follows directly from (A.9) and Proposition A.2.

Finally, combining the bounds on the two terms we get

T1 + T2 =
1

n
Tr[Σ̂+

0 Σt] +O

(
1

p

)
,

proving the claim.

We conclude this appendix with the proof of Theorem 4.1.

Proof of Theorem 4.1. As proved in Section 4.1, it holds that BX(β̂;β) = 0, from which follows

RX(β̂, β) = VX(β̂;β) =
σ2

n
Tr[Σ̂+(Σt + µtµ

⊤
t )].

By directly applying Proposition A.3, it holds

σ2

n
Tr[Σ̂+(Σt + µtµ

⊤
t )] =

σ2

n
Tr[Σ̂+

0 Σt] +O

(
1

p

)
,

where Σ̂0 = X0⊤
X0

√
n

. Plugging in the expression of σ2

n Tr[Σ̂+
0 Σt] given in (Yang et al., 2025,

Theorem 3) gives the desired result.

A.2 PROOF OF PROPOSITION 4.2

Since we are in the setting where n > p, it holds that BX(β̂;β) = 0, which implies

RX(β̂, β) = VX(β̂;β) =
σ2

n
Tr[Σ̂+(Σt + µtµ

⊤
t )].

Note that γt = 0 implies that Xt = 0 and X = Xs. We also note that (A.8) still holds for Xt = 0,
implying that Σ̂ is of rank p almost surely and, therefore, invertible. Thus, it holds

Tr[Σ̂+(Σt + µtµ
⊤
t )] = Tr[Σ̂−1(Σt + µtµ

⊤
t )].

To simplify exposition, we break this down into two terms

RX(β̂, β) = V1 + V2,

with V1 := σ2

n Tr[Σ̂−1Σt], V2 := σ2

n Tr[Σ̂−1µtµ
⊤
t ], and treat each of them separately.
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Bounding the term V2. Note that γt = 0 implies n = ns, so we will use these two values
interchangeably throughout the proof. From the cyclic property of trace, we have

V2 =
σ2

n
Tr[Σ̂−1µtµ

⊤
t ] = σ2µ

⊤
t Σ̂

−1µt
n

.

Note that

µ⊤
t Σ̂

−1µ⊤
t = µ⊤

t

(
X⊤X

n

)−1

µt

= µ⊤
t

(
(ZsΣ

1/2
s + 1nsµ

⊤
s )

⊤(ZsΣ
1/2
s + 1nsµ

⊤
s )

n

)−1

µt

=
(
Σ−1/2
s µt

)⊤((Zs + 1ns

(
Σ

−1/2
s µs

)⊤)⊤(
Zs + 1ns

(
Σ

−1/2
s µs

)⊤)
n

)−1 (
Σ−1/2
s µt

)
= µ′⊤

t Σ̂′−1µ′
t,

where we use the notation µ′
t := Σ

−1/2
s µt, µ′

s := Σ
−1/2
s µs and Σ̂′ :=

(Zs+1nsµ
′⊤
s )

⊤
(Zs+1nsµ

′⊤
s )

n .
Note that due to the assumed bound on the spectrum of Σs it holds that ∥µ′

t∥2 = O(
√
p) and

∥µ′
s∥2 = O(

√
p). Next, let us break down the vector µ′

t into its orthogonal projection onto the
subspace {µ′

s} and {µ′
s}⊥ as

µ′
t = µ′

t∥s + µ′
t⊥s, where µ′

t∥s :=
⟨µ′
t, µ

′
s⟩

∥µ′
s∥

2
2

µ′
s, µ′

t⊥s := µ′
t − µ′

t∥s. (A.11)

Moreover, as a decomposition into orthogonal spaces, it holds ∥µ′
t∥s∥

2
2 + ∥µ′

t⊥s∥
2
2 = ∥µ′

t∥
2
2 = O(p).

By using this decomposition, we will shift the focus from µ′
t to µ′

t⊥s. Namely, it holds

V2 = σ2µ
′⊤
t Σ̂′−1µ′

t

n
= σ2

(µ′
t∥s + µ′

t⊥s)
⊤Σ̂′−1(µ′

t∥s + µ′
t⊥s)

n

= σ2µ
′⊤
t⊥s√
n
Σ̂′−1µ

′
t⊥s√
n

+ 2σ2µ
′⊤
t⊥s√
n
Σ̂′−1

µ′
t∥s√
n

+
µ′⊤
t∥s√
n
Σ̂′−1

µ′
t∥s√
n

= σ2µ
′⊤
t⊥s√
n
Σ̂′−1µ

′
t⊥s√
n

+O

(
1
√
p

)
, (A.12)

where the last line follows from derivations analogous to the ones around (A.10), this time applying
case 2. of Proposition A.2. To ease further exposition, we introduce µ̃t⊥s :=

µ′
t⊥s√
n

, noting that
∥µ̃t⊥s∥2 = O(1).

In order to bound V2, we relate Σ̂′−1 to its zero-mean counterpart, as it is easier to work with mean
zero data. Towards this end, we write out Σ̂′ as

Σ̂′ =

(
Zs + 1ns

µ′⊤
s

)⊤ (
Zs + 1ns

µ′⊤
s

)
n

=

(
Zs

⊤Zs
n

+
Zs

⊤1ns
µ′⊤
s

n
+
µ′
s1

⊤
ns
Zs

n
+ µ′

sµ
′⊤
s

)

=

(
Σ̂′

0 +
Zs

⊤1nsµ
′⊤
s

n
+
µ′
s1

⊤
ns
Zs

n
+ µ′

sµ
′⊤
s

)
,
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for Σ̂′
0 := Zs

⊤Zs

n . All the terms above, except the first one, have rank 1, so we use Woodbury formula
to take them out of the inverse when computing Σ̂′. We introduce the following notation

u :=
µ′
s√
n
, v :=

Zs
⊤1ns√
n

,

U := [u v] ∈ Rp×2, and C :=

[
n 1
1 0

]
∈ R2×2.

Under this notation it holds

Zs
⊤1ns

µ′⊤
s

n
+
µ′
s1

⊤
ns
Zs

n
+ µ′

sµ
′⊤
s = UCU⊤.

Then, using Woodbury formula, we have

Σ̂′−1 =
(
Σ̂′

0 + uv⊤ + vu⊤ + nuu⊤
)−1

=
(
Σ̂′

0 + UCU⊤
)−1

= Σ̂′
0
−1 − Σ̂′

0
−1 U (C−1 − U⊤Σ̂′

0
−1U)−1U⊤Σ̂′

0
−1.

We now compute the 2× 2 block

C−1 − U⊤Σ̂′
0
−1U =

[
−u⊤Σ̂′

0
−1u 1− u⊤Σ̂′

0
−1v

1− v⊤Σ̂′
0
−1u −n− v⊤Σ̂′

0
−1v

]
=

[
−a 1− b
1− b −n− d

]
,

where
a := u⊤Σ̂′

0
−1u, b := v⊤Σ̂′

0
−1u = u⊤Σ̂′

0
−1v, d := v⊤Σ̂′

0
−1v.

Hence (
C−1 − U⊤Σ̂′

0
−1U

)−1
=

1

∆

[
−n− d b− 1
b− 1 −a

]
, ∆ := a(n+ d)− (1− b)2.

Plugging back and simplifying gives the explicit formula:

Σ̂′−1 = Σ̂′
0
−1 − 1

∆
Σ̂′

0
−1
(
(−n− d)uu⊤ − (1− b)(uv⊤ + vu⊤)− a vv⊤

)
Σ̂′

0
−1,

which is valid whenever ∆ ̸= 0, i.e., whenever C−1 − U⊤Σ̂′
0
−1U is invertible.

We will now analyze the a, b, d terms. First, for some constants c1, c2 > 0 it holds almost surely that

c2 > λ1(Σ̂
′
0) ≥ λp(Σ̂

′
0) ≥ c1 > 0, (A.13)

which follows from Bai–Yin theorem (Bai & Silverstein, 2010, Theorem 5.11), as Zs has i.i.d entries
with mean zero, unit variance and bounded fourth moments. From this, it follows that

|a| =
∣∣∣u⊤Σ̂′

0
−1u

∣∣∣
=

∥∥∥∥µ′⊤
s√
n
Σ̂′

0
−1 µ′

s√
n

∥∥∥∥
2

≤
∥∥∥∥ µ′

s√
n

∥∥∥∥
2

∥Σ̂′
0
−1∥2

∥∥∥∥ µ′
s√
n

∥∥∥∥
2

≤ c,

as well as

|a| ≥ c · (λ1(Σ̂′
0))

−1 ≥ c > 0,

Similarly, we have

|b| =
∣∣∣v⊤Σ̂′

0
−1u

∣∣∣ = ∥∥∥∥µ′⊤
s√
n
Σ̂′

0
−1Z

⊤
s 1ns√
n

∥∥∥∥
2

≤
∥∥∥∥ µ′

s√
n

∥∥∥∥
2

∥Σ̂′
0
−1∥2

∥∥∥∥Z⊤
s 1ns√
n

∥∥∥∥
2

≤ c
√
p, (A.14)
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where the last inequality follows with high probability over the sampling of Zs, since Z⊤
s 1nt√
n

is a
vector with p i.i.d entries of mean zero and O(1) variance. Finally, we have

|d| =
∣∣∣v⊤Σ̂′

0
−1v

∣∣∣
=

∥∥∥∥∥1⊤ns
Zs√
n

Σ̂′
0
−1 Z

⊤
s 1ns√
n

∥∥∥∥∥
2

≤
∥∥∥∥Z⊤

s 1ns√
n

∥∥∥∥
2

∥Σ̂′
0
−1∥2

∥∥∥∥Z⊤
s 1ns√
n

∥∥∥∥
2

≤ cp,

again with high probability.

We can now prove that, with high probability, ∆ = Ω(p). Using Cauchy-Schwarz, it holds that

b2 = |⟨u, v⟩|A−1 ≤ ∥u∥A−1 ∥v∥A−1 = ad,

from which it follows that
∆ = a (n+ d)− (1− b)2 ≥ an− 1 + 2b = Ω(p), (A.15)

since a is lower bounded by a constant and |b| ≤ c
√
p.

Turning back to the value of interest, we write out

µ̃⊤
t⊥sΣ̂

′−1µ̃t⊥s = µ̃⊤
t⊥sΣ̂

′
0
−1µ̃t⊥s

− µ̃⊤
t⊥s

1

∆
Σ̂′

0
−1
(
(−n− d)uu⊤ − (1− b)(uv⊤ + vu⊤)− a vv⊤

)
Σ̂′

0
−1µ̃t⊥s

= µ̃⊤
t⊥sΣ̂

′
0
−1µ̃t⊥s + Tu,u + Tu,v + Tv,v,

where Tu,u is the summand corresponding to uu⊤, Tu,v to uv⊤ + vu⊤, and Tv,v to vv⊤. We will
prove that each of these terms, except for µ̃t⊥sΣ̂′

0
−1µ̃t⊥s, is vanishing.

First, we state a useful claim, that for arbitrary deterministic unit vectors w1 ∈ Rp and w2 ∈ Rp it
holds with overwhelming probability

w⊤
1 Σ̂

′−1
0 w2 =

γ

γ − 1
⟨w1, w2⟩+O

(
n−c1

)
, (A.16)

for some constant c1 > 0.

Proof of claim in (A.16). The result follows directly from (Yang et al., 2025, Theorem 27). For
clarity, we refer to the relevant parts of Section B.3.1 of that work. While Theorem 27 is stated in
the more general anisotropic setting, it specializes to our isotropic case by taking Λ, U and V from
(B.3) from their work to be the identity. Substituting these choices into equation (B.6) from Yang
et al. (2025) for z = 0, implies

α1(0) + α2(0) = 1− p

n
=
γ − 1

γ
.

Substituting this into (B.7) and applying Theorem 27 from the mentioned paper, yields with over-
whelming probability ∣∣∣∣w⊤

1 Σ̂
′−1
0 w2 − w⊤

1

γ

γ − 1
Ipw2

∣∣∣∣ ≤ n−c1 ,

for any c1 < −1/2 + 2/ψ. Recalling that Zs has its ψ-th moment bounded for ψ > 4, implies
c1 > 0. ♣

We can now use (A.16) to tackle the terms Tu,u and Tu,v . Namely, we have that

µ̃⊤
t⊥sΣ̂

′−1
0 u = ∥µ̃t⊥s∥2 ∥u∥2

(
γ

γ − 1
⟨µ̃t⊥s, u⟩+O(n−c1)

)
= c

(
γ

γ − 1

〈
µ̃t⊥s,

µ′
s√
n

〉
+O(n−c1)

)
= O(n−c1),
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with high probability. From this, it follows that

Tu,u =
n+ d

∆
µ̃t⊥s Σ̂

′
0
−1 uu⊤Σ̂′

0
−1µ̃t⊥s = O(n−2c1). (A.17)

Similarly,

|Tu,v| =
∣∣∣∣1− b

∆
µ̃t⊥s Σ̂

′
0
−1 (uv⊤ + vu⊤) Σ̂′

0
−1µ̃t⊥s

∣∣∣∣
=
∣∣∣2(µ̃t⊥s Σ̂′

0
−1u

)
·
(
1−b
∆ vΣ̂′

0
−1µ̃t⊥s

)∣∣∣
≤ O(n−c1) ·

∥∥∥ 1−b
∆

Z⊤
s 1ns√
n

∥∥∥
2

∥∥∥Σ̂′
0
−1
∥∥∥
2
∥µ̃t⊥s∥2

= O(n−c1), (A.18)

where the last inequality holds with high probability due to (A.13), (A.14), and (A.15).

Let us denote by 1̃ns
:=

1ns√
n

and turn to the term Tv,v . Notice that

Tv,v =
a

∆
µ̃t⊥s Σ̂

′
0
−1 vv⊤Σ̂′

0
−1µ̃t⊥s

=
na

∆

1⊤ns√
n

Zs√
n

(
Zs

⊤Zs
n

)−1

µ̃t⊥s

2

= c

1̃⊤ns

Zs√
n

(
Zs

⊤Zs
n

)−1

µ̃t⊥s

2

. (A.19)

Let us introduce a matrix Q = [q1 . . . qp] ∈ Rp×p, whose columns form an orthonormal basis,
such that q1 = µ̃t⊥s

∥µ̃t⊥s∥2
. Then, we have that

1̃⊤ns

Zs√
n

(
Zs

⊤Zs
n

)−1

µ̃t⊥s = 1̃⊤ns

Zs√
n
QQ⊤

(
Zs

⊤Zs
n

)−1

µ̃t⊥s

=

p∑
k=1

1̃⊤ns

Zs√
n
qk · q⊤k

(
Zs

⊤Zs
n

)−1

µ̃t⊥s. (A.20)

Using (A.16) and a union bound, it holds with overwhelming probability that

qk

(
Zs

⊤Zs
n

)−1

µ̃t⊥s =
γ

γ − 1
⟨qk, µ̃t⊥s⟩+O(n−c1) =

{ γ
γ−1 ∥µ̃t⊥s∥2 +O(n−c1), k = 1,

O(n−c1), k > 1.

Plugging this into (A.20) yields

1̃⊤ns

Zs√
n

(
Zs

⊤Zs
n

)−1

µ̃t⊥s = 1̃⊤ns

Zs√
n
µ̃t⊥s ·

γ

γ − 1
+O(n−c1) ·

p∑
k=1

1̃⊤ns

Zs√
n
qk. (A.21)

Let us first analyze the mean and variance of the random variable 1̃⊤ns

Zs√
n
µ̃t⊥s, namely,

E
[
1̃⊤ns

Zs√
n
µ̃t⊥s

]
= E

 1√
n

n∑
i=1

p∑
j=1

Zi,j(1̃ns
)i(µ̃t⊥s)j

 = 0,

Var

(
1̃⊤ns

Zs√
n
µ̃t⊥s

)
= Var

 1√
n

n∑
i=1

p∑
j=1

Zi,j(1̃ns
)i(µ̃t⊥s)j


=

1

n

∥∥1̃ns

∥∥2
2
∥µ̃t⊥s∥22 = O

(
1

n

)
.
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Therefore, using Chebyshev inequality, we have that∣∣∣∣1̃⊤ns

Zs√
n
µ̃t⊥s

∣∣∣∣ = O
(
n−c2

)
,

with high probability, for some constant 1/2 > c2 > 0. Similarly, we calculate the mean and variance
of the random variable

∑p
k=1 1̃

⊤
ns

Zs√
n
qk as

E

[
p∑
k=1

1̃⊤ns

Zs√
n
qk

]
= E

 1√
n

p∑
k=1

n∑
i=1

p∑
j=1

Zi,j(1̃ns)i(qk)j

 = 0,

Var

(
p∑
k=1

1̃⊤ns

Zs√
n
qk

)
= Var

 1√
n

p∑
k=1

n∑
i=1

p∑
j=1

Zi,j(1̃ns)i(qk)j


=

1

n

p∑
k=1

∥∥1̃ns

∥∥2
2
∥qk∥22 = O(1).

Again, Chebyshev inequality implies∣∣∣∣∣O(n−c1) ·
p∑
k=1

1̃⊤ns

Zs√
n
qk

∣∣∣∣∣ = O
(
n−c1/2

)
,

with high probability. Plugging the obtained results into (A.21) and using a union bound on the
probabilities, we get that∣∣∣∣∣∣1̃⊤ns

Zs√
n

(
Zs

⊤Zs
n

)−1

µ̃t⊥s

∣∣∣∣∣∣ ≤
∣∣∣∣∣O(n−c1) ·

p∑
k=1

1̃⊤ns

Zs√
n
qk

∣∣∣∣∣+
∣∣∣∣1̃⊤ns

Zs√
n
µ̃t⊥s

∣∣∣∣
= O

(
n−c1/2

)
,

with high probability. Then, we directly obtain a bound for (A.19) in the form of

Tv,v = O(n−c1), (A.22)

which holds for some constant c1 > 0 with high probability. Combining the bound in (A.16) and the
three bounds on the terms (A.17), (A.18) an (A.22), we get

µ̃t⊥sΣ̂
′−1µ̃t⊥s =

γ

γ − 1
∥µ̃t⊥s∥22 +O(n−c), (A.23)

for some c > 0. Using this in (A.12) yields

V2 = σ2 γ

γ − 1
∥µ̃t⊥s∥22 +O(n−c),

with high probability. Lastly, note that

∥µ̃t⊥s∥22 =
1

n
∥µ′

t⊥s∥
2
2 =

1

n

(
∥µ′

t∥
2
2 − ∥µ′

t∥s∥
2
2

)
=

1

n

∥Σ−1/2
s µt∥22 −

(
µ⊤
t Σ

−1
s µs

∥Σ−1/2
s µs∥2

)2
 .

Bounding the term V1. By following exactly the proof of the bound of the term T1 in Proposi-
tion A.3, one directly gets the same conclusion that

V1 =
σ2

n
Tr[Σ̂−1

0 Σt] +O

(
1

p

)
.

Notice that

Σ̂0 =
X⊤X

n
=
X⊤
s Xs

n
=

Σ
1/2
s Z⊤

s ZsΣ
1/2
s

n
.
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Thus,

σ2

n
Tr
[
Σ̂−1

0 Σt

]
=
σ2

n
Tr

[
Σ−1/2
s

(
Z⊤
s Zs
n

)−1

Σ−1/2
s Σt

]
=
σ2

n
Tr

[
Σ−1/2
s ΣtΣ

−1/2
s

(
Z⊤
s Zs
n

)−1
]
.

Let us write the SVD of Σ−1/2
s ΣtΣ

−1/2
s as

Σ−1/2
s ΣtΣ

−1/2
s =

p∑
i=1

λi(Σ
−1/2
s ΣtΣ

−1/2
s )wiw

⊤
i ,

where wi := vi(Σ
−1/2
s ΣtΣ

−1/2
s ). Then it holds with overwhelming probability

σ2

n
Tr

[
Σ−1/2
s ΣtΣ

−1/2
s

(
Z⊤
s Zs
n

)−1
]
=
σ2

n

p∑
i=1

λi(Σ
−1/2
s ΣtΣ

−1/2
s )w⊤

i

(
Z⊤
s Zs
n

)−1

wi

=
σ2

n

p∑
i=1

λi(Σ
−1/2
s ΣtΣ

−1/2
s )

γ

γ − 1

(
∥wi∥22 +O(n−c)

)
=

(
σ2

n

γ

γ − 1

p∑
i=1

λi(Σ
−1/2
s ΣtΣ

−1/2
s )

)
+O(n−c)

=
σ2

n

γ

γ − 1
Tr
(
ΣtΣ

−1
s

)
+O(n−c),

where the second line holds with overwhelming probability by using (A.16) and the union bound.
The previous bound also holds with high probability, since overwhelming probability implies it.

Finally, by combining the bounds on V1 and V2, one gets that, with high probability,∣∣∣∣∣∣RX(β̂, β)− σ2

n

γ

γ − 1
Tr
(
ΣtΣ

−1
s

)
− σ2

n

γ

γ − 1

∥Σ−1/2
s µt∥22 −

(
µ⊤
t Σ

−1
s µs

∥Σ−1/2
s µs∥2

)2
∣∣∣∣∣∣ = O(n−c),

for some constant c > 0. Taking the limit n→ ∞ on both sides yields the desired result.

A.3 PROOF OF THEOREM 4.3

We start by removing α2 from the fixed point in (4.2) and replacing it by 1− p
n − α1. We rename α1

as α for convenience. Plugging this into the definition of Ru(M), we get

Ru(M) =
σ2

n
Tr
[(
α1M

⊤M + α2 Idp×p
)−1
]
=
σ2

n

p∑
i=1

1

λiα+ 1− p
n − α

,

where as in Theorem 4.1 we refer to λ1 ≥ · · · ≥ λp as the eigenvalues of the matrix MM⊤.
Furthermore, the fixed point equation (4.2) can be rewritten as follows:

p∑
i=1

1

λiα+ 1− p
n − α

=
p+ nα− ns
1− p

n − α
= n

(
n− ns

n− p− nα
− 1

)
. (A.24)

Thus, we have

Ru(M) =
σ2

n
· n
(

n− ns
n− p− nα

− 1

)
= σ2

(
1− ns

n

1− p
n − α

− 1

)
. (A.25)

Now, due to the RHS of (A.25), it can be seen that Ru(M) is an increasing function of α. Let us
denote by λ⃗ := [λ1, . . . , λp]. Then, for fixed n, p, ns and λ⃗, we will refer to α(λ⃗) as the solution to
the fixed point equation (A.24). Note that following Yang et al. (2025)[Appendix B.3.2] we have that
this solutions is unique and 0 < α(λ⃗) < n−p

n .

Consider a function f : Rp≥0 → Rp≥0. We call a function f good, if and only if
p∑
i=1

1

f(λ⃗)iα(λ⃗) + 1− p
n − α(λ⃗)

<

p∑
i=1

1

λiα(λ⃗) + 1− p
n − α(λ⃗)

. (A.26)

We claim that if f is good, then
α(f(λ⃗)) < α(λ⃗). (A.27)
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Proof of the claim. Consider a good function f . Then, we have
p∑
i=1

1

f(λ⃗)iα(λ⃗) + 1− p
n − α(λ⃗)

<

p∑
i=1

1

λiα(λ⃗) + 1− p
n − α(λ⃗)

= n

(
n− ns

n− p− nα(λ⃗)
− 1

)
.

Furthermore, setting α = 0 we get
p∑
i=1

1

f(λ⃗)i · 0 + 1− p
n − 0

= p
n

n− p

> n
p− ns
n− p

= n

(
n− ns

n− p− n · 0
− 1

)
.

By continuity, there exists α0 ∈ (0, α(λ⃗)) for which
p∑
i=1

1

f(λ⃗)iα0 + 1− p
n − α0

= n

(
n− ns

n− p− nα0
− 1

)
,

implying α(f(λ⃗)) = α0 < α(λ⃗), which concludes the proof. ♣

Next, for i, j ∈ [p] s.t. i < j, we introduce a function f i,jc : Rp≥0 → Rp≥0 defined as

f i,jc (λ⃗)k =


λi − c k = i,

λj + c k = j,

λk k ̸= i, j,

where c > 0. We now claim that f i,jc is good for any i, j ∈ [p] and c > 0, such that λi > λj + c.

Proof of the claim. The claim is equivalent to

1

(λi − c)α(λ⃗) + 1− p
n − α(λ⃗)

+
1

(λj + c)α(λ⃗) + 1− p
n − α(λ⃗)

<
1

λiα(λ⃗) + 1− p
n − α(λ⃗)

+
1

λjα(λ⃗) + 1− p
n − α(λ⃗)

.

For simplicity, let δ := 1− p
n − α(λ⃗) and α := α(λ⃗). Then,

1

(λi − c)α+ δ
+

1

(λj + c)α+ δ
<

1

λiα+ δ
+

1

λjα+ δ

⇐⇒ α(λi + λj) + 2δ

(λiα− cα+ δ)(λjα+ cα+ δ)
<

α(λi + λj) + 2δ

(λiα+ δ)(λjα+ δ)

⇐⇒ (λiα+ δ)(λjα+ δ) < (λiα− cα+ δ)(λjα+ cα+ δ)

⇐⇒ cα(λiα+ δ)− cα(λjα+ δ)− c2α2 > 0

⇐⇒ cα2(λi − λj) > c2α2

⇐⇒ λi > λj + c,

which proves the claim. ♣

This implies that, for t ∈ (0, 1), transformations of the form

(λi, λj) → (tλi + (1− t)λj , (1− t)λi + tλj), (A.28)

are good.
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Let us denote by λ⃗′ := [1, . . . , 1], which corresponds to eigenvalues of Ip = M ′⊤M ′, that is
M ′ := Ip ∈ M. Pick any λ⃗′′ ̸= λ⃗′ that corresponds to some matrix M ′′ ∈ M, so it satisfies
λ′′1 ≥ λ′′2 ≥ · · · ≥ λ′′p , as well as

∑p
i=1 λ

′′
i = p.

We recall the definition of majorization, as it will be used to conclude the proof. Namely, we say that
x⃗ ∈ Rp is majorized by y⃗ ∈ Rp whenever for all k ∈ [p]

k∑
i=1

xi ≤
k∑
i=1

yi,

and
p∑
i=1

xi =

p∑
i=1

yi.

Firstly, we claim that λ⃗′ is majorized by λ⃗′′. Suppose otherwise, that for some k ∈ [p]
k∑
i=1

λ′′i <

k∑
i=1

1 = k,

implying also that λ′′k < 1. Then, we have

p =

p∑
i=1

λ′′i < (p− k)λ′′k + k < (p− k) + k = p,

which is a contradiction.

Next, as λ⃗′ is majorized by λ⃗′′, λ⃗′ can be derived from λ⃗′′ by a finite sequence of steps of the form in
(A.28) with t ∈ [0, 1], see (Marshall et al., 1979, Chapter 4, Proposition A.1). Since both vectors λ⃗′

and λ⃗′′ are non-increasing, the t = 0 transformation can always be omitted. Moreover, t = 1 is just
the identity transformation, so it can also be omitted and we actually have t ∈ (0, 1). In formulas, we
have that

λ⃗′ = f il,jlcl
(. . . f i1,j1c1 (λ⃗′′) . . . ).

Since each of the functions above is good, we have that α(λ⃗′) < α(λ⃗′′). As Ru(M) is increasing
with α, the smallest Ru(M) is achieved for λ⃗′ := [1, . . . , 1], that is, Mopt =M ′ = Ip.

A.4 PROOF OF Ru(ηM) ≤ Ru(M)

Consider the function gη : Rp≥0 → Rp≥0 defined as gη(λ⃗) = ηλ⃗, for some η > 1. Note that, for all i,
1

gη(λ⃗)iα+ 1− p
n − α

=
1

ηλiα+ 1− p
n − α

<
1

λiα+ 1− p
n − α

.

Thus, gη(λ⃗) = ηλ⃗ is good in the sense of (A.26). From (A.27), we obtain that α(ηλ⃗) < α(λ⃗). This
implies the desired result as Ru is monotonically increasing in α from (A.25).

A.5 COEFFICIENT DEFINING SYSTEM OF EQUATIONS OF THEOREM 4.4

The (a1, a2, a3, a4) is the unique solution, with a1, a2 positive, to the following system of equations:

0 = 1− 1

γ

∫
a1λ

s + a2λ
t

a1λs + a2λt + 1
dĤp(λ

s, λt), 0 =
γs
γ

− 1

γ

∫
a1λ

s

a1λs + a2λt + 1
dĤp(λ

s, λt),

(A.29)

a1+a2=− 1

γ

∫
a3λ

s + a4λ
t

(a1λs+a2λt+1)2
dĤp(λ

s, λt), a1=− 1

γ

∫
a3λ

s+λsλt(a3a2−a4a1)
(a1λs+a2λt+1)2

dĤp(λ
s, λt),

and (b1, b2, b3, b4) is the unique solution, with b1, b2 positive, to the following system of equations:

0 = 1− 1

γ

∫
b1λ

s + b2λ
t

b1λs + b2λt + 1
dĤp(λ

s, λt), 0 =
γs
γ

− 1

γ

∫
b1λ

s

b1λs + b2λt + 1
dĤp(λ

s, λt),

(A.30)

0=

∫
λs(b3−b1λt)+λt(b4−b2λt)

(b1λs + b2λt + 1)2
dĤp(λ

s, λt), 0=

∫
λs(b3−b1λt)+λsλt(b3b2−b4b1)

(b1λs + b2λt + 1)2
dĤp(λ

s, λt).
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A.6 PROOF OF THEOREM 4.4

Recall from (3.5) that bias and variance for non-zero centered data can be expressed as

BX(β̂;β) = β⊤Π(Σt + µtµ
⊤
t )Πβ and VX(β̂;β) =

σ2

n
Tr[Σ̂+(Σt + µtµ

⊤
t )],

where Σ̂ = X⊤X/n and Π = I − Σ̂+Σ̂ (projection on the null space of X). To obtain the wanted
result, we make a connection to zero-mean data and then use results from Song et al. (2024) to handle
the zero-mean case. Unlike in the under-parametrized case, the bias term does not necessarily vanish.
Thus, we start off by breaking it down into two terms

BX(β̂;β) = B1
X(β̂;β) +B2

X(β̂;β),

where B1
X(β̂;β) = β⊤ΠΣtΠβ and B2

X(β̂;β) = β⊤Πµtµ
⊤
t Πβ. Moreover, we split the variance

term as
VX(β̂;β) = V 1

X(β̂;β) + V 2
X(β̂;β),

with V 1
X(β̂;β) = σ2

n Tr[Σ̂+Σt] and V 2
X(β̂;β) = σ2

n Tr[Σ̂+µtµ
⊤
t ]. We will deal with each of these

terms individually.

Bounding the term B2
X(β̂, β). Recall that X̃n = X√

n
. Then, similarly to (A.10), we can write the

SVD of Σ̂ as

Σ̂ =

k∑
i=1

σ2
i (X̃n)vi(X̃n)vi(X̃n)

⊤,

where k ≤ min(n, p) = n is the number of non-zero singular values of X̃n. As in (A.8), we can
conclude that k = n. Therefore, we have

I − Σ̂+Σ̂ = I −
n∑
i=1

vi(X̃n)vi(X̃n)
⊤ =

p∑
i=n+1

vi(X̃n)vi(X̃n)
⊤.

By definition, it holds that Πµt = (I − Σ̂+Σ̂)µt, from which it follows

Πµt =

p∑
i=n+1

vi(X̃n)
〈
vi(X̃n), µt

〉
.

Due to Proposition A.2, it holds almost surely that∣∣∣∣∣ ⟨v1(X̃n), µs⟩
∥µs∥2

∣∣∣∣∣
2

+

∣∣∣∣∣ ⟨v2(X̃n), µs⟩
∥µs∥2

∣∣∣∣∣
2

≥ 1− 1

c · p
,

from which it follows

∥Πµt∥22 =

p∑
i=n+1

∣∣∣〈vi(X̃n), µt

〉∣∣∣2 ≤ 1

c · p
∥µt∥22 = c.

Since β sampled independently from a sphere of constant radius and Πµt is of bounded norm, it is
standard result that |⟨β,Πµt⟩|2 is sub-exponential and, using Bernstein inequality, we can get that

B2
X(β̂, β) =

∥∥β⊤Πµt
∥∥2
2
= |⟨β,Πµt⟩|2 = O

(
1

p

)
, (A.31)

with high probability over the sampling of β.

Bounding the term B1
X(β̂, β). We first introduce an object coming from a bias term of a ridge

regression estimator with coefficient λ:

B1
X(λ) := λ2β⊤(Σ̂ + λI)−1Σt(Σ̂ + λI)−1β, (A.32)

defined for any λ > 0. It is more convenient to work with B1
X(λ) than B1

X(β̂, β) and, in addition,
B1
X(λ) approximates well B1

X(β̂, β) for small λ. We formalize the second claim as∣∣∣B1
X(β̂, β)−B1

X(λ)
∣∣∣ = O(λ) (A.33)

proved in the same manner as (Song et al., 2024, D.82). For convenience we also carry out the proof
here.
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Proof of the claim in (A.33). Let us write the SVD Σ̂ = UDU⊤. Moreover, we denote by 1D=0

and 1D>0 the diagonal matrices such that

(1D=0)i,i =

{
0, Di,i ̸= 0

1, Di,i = 0
(1D>0)i,i =

{
1, Di,i ̸= 0

0, Di,i = 0

Then it holds that

B1
X(β̂;β) = β⊤(I − Σ̂+Σ̂)Σt(I − Σ̂+Σ̂)β

= β⊤U1D=0U
⊤ΣtU1D=0U

⊤β

= β⊤U1D=0A1D=0U
⊤β

= ∥A1/21D=0U
⊤β∥22,

where we set A := U⊤ΣtU . Furthermore, we have

B1
X(λ) = λ2β⊤(Σ̂ + λI)−1Σt(Σ̂ + λI)−1β

= λ2β⊤U(D + λI)−1A(D + λI)−1U⊤β

= ∥A1/2λ(D + λI)−1U⊤β∥22.

Therefore, we have∣∣√B1
X(β̂;β)−

√
B1
X(λ)

∣∣ ≤ ∥A1/2(1D=0 − λ(D + λI)−1)U⊤β∥2

≤ c∥A∥1/22 ∥λ(D + λI)−11D>0∥2

≤ c
λ

σn(Σ̂)
= O(λ),

where the third inequality holds as ∥A∥2 = ∥Σt∥2 = O(1) and the last inequality follows from
Proposition A.1 in the same manner as (A.9). Notice that B1

X(λ), B1
X(β̂;β) = O(1), since

∥β∥2 , ∥Σt∥2 = O(1) and σn(Σ̂) > c. This finally implies∣∣∣B1
X(β̂;β)−B1

X(λ)
∣∣∣ = O(λ),

proving the claim. ♣
The next step is to prove the claim that, for 1 > λ > p−0.49, it holds that

B1
X(λ) = λ2β⊤(Σ̂0 + λI)−1Σt(Σ̂0 + λI)−1β +O

(
λ−2

p

)
. (A.34)

Proof of the claim in (A.34). Towards this end, we have

Σ̂ =
1

n
(X⊤X)

=
1

n
(X0 + 1nt

µ⊤
t + 1ns

µ⊤
s )

⊤(X0 + 1nt
µ⊤
t + 1ns

µ⊤
s )

=

(
X0⊤X0

n
+
X0⊤1nt

µ⊤
t

n
+
X0⊤1ns

µ⊤
s

n
+
µt1

⊤
nt
X0

n
+
µs1

⊤
ns
X0

n
+
γt
γ
µtµ

⊤
t +

γs
γ
µsµ

⊤
s

)
,

where abusing notation we write 1ns = [1, . . . , 1, 0, . . . , 0]⊤ ∈ Rn×1 (ns ones followed by nt
zeros) and 1nt

= [0, . . . , 0, 1, . . . , 1]⊤ ∈ Rn×1 (ns zeros followed by nt ones).

All the terms above, except the first one, have rank 1, so we use Woodbury formula to take them
out of the inverse when computing (Σ̂ + λI)−1. We consider the case φ ̸= 1, as the case φ = 1 is
analogous (it is in fact easier as some steps can be omitted).
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We first focus on the term (Σ̂+λI)−1 and demonstrate how to handle X0⊤
1ntµ

⊤
t

n +
µt1

⊤
nt
X0

n + γt
γ µtµ

⊤
t .

For this purpose, we introduce the following notation

A := Σ̂ + λI − X0⊤1nt
µ⊤
t

n
−
µt1

⊤
nt
X0

n
− γt
γ
µtµ

⊤
t ,

u :=
µt√
n
, v :=

X0⊤1nt√
n

,

U := [u v] ∈ Rp×2, and C :=

[
nγtγ 1

1 0

]
∈ R2×2.

(A.35)

Under this notation it holds
X0⊤1ntµ

⊤
t

n
+
µt1

⊤
nt
X0

n
+
γt
γ
µtµ

⊤
t = UCU⊤.

Then, using Woodbury formula, we have

(Σ̂ + λI)−1 =

(
A+ uv⊤ + vu⊤ + n

γt
γ
uu⊤

)−1

= (A+ UCU⊤)−1

= A−1 −A−1U (C−1 − U⊤A−1U)−1U⊤A−1.

We now compute the 2× 2 block

C−1 − U⊤A−1U =

[
−u⊤A−1u 1− u⊤A−1v

1− v⊤A−1u −nγtγ − v⊤A−1v

]
=

[
−a 1− b
1− b −nγtγ − d

]
,

where
a := u⊤A−1u, b := v⊤A−1u = u⊤A−1v, d := v⊤A−1v. (A.36)

Hence

(C−1 − U⊤A−1U)−1 =
1

∆

[
−nγtγ − d b− 1

b− 1 −a

]
, ∆ := a

(
n
γt
γ

+ d

)
− (1− b)2. (A.37)

Plugging back and simplifying gives the explicit formula:

(Σ̂ + λI)−1 = A−1 − 1

∆
A−1

((
−nγt

γ
− d

)
uu⊤ − (1− b) (uv⊤ + vu⊤)− a vv⊤

)
A−1,

which is valid whenever ∆ ̸= 0, i.e., whenever C−1 − U⊤A−1U is invertible.

We will now analyze the a, b, d terms. First, recall that

A =
X0⊤X0

n
+
X0⊤1ns

µ⊤
s

n
+
µs1

⊤
ns
X0

n
+
γs
γ
µsµ

⊤
s + λI = Σ̂s + λI,

where Σ̂s :=
(X0+1nsµ

⊤
s )⊤(X0+1nsµ

⊤
s )

n . Thus, we have∥∥A−1
∥∥
2
≤ λ−1.

From this, it follows that

|a| =
∣∣u⊤A−1u

∣∣ = ∥∥∥∥ µ⊤
t√
n
A−1 µt√

n

∥∥∥∥
2

≤
∥∥∥∥ µt√

n

∥∥∥∥
2

∥∥A−1
∥∥
2

∥∥∥∥ µt√
n

∥∥∥∥
2

≤ cλ−1.

Similarly, we have

|b| =
∣∣v⊤A−1u

∣∣
=

∥∥∥∥ µ⊤
t√
n
A−1X

0⊤1nt√
n

∥∥∥∥
2

≤
∥∥∥∥ µt√

n

∥∥∥∥
2

∥A−1∥2
∥∥∥∥X0⊤1nt√

n

∥∥∥∥
2

≤ c λ−1√p,
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where the last inequality follows with high probability over the sampling of X0, since X0⊤1nt√
n

is a
vector with p i.i.d entries of mean zero and O(1) variance. Finally, we have

|d| =
∣∣v⊤A−1v

∣∣
=

∥∥∥∥∥1⊤nt
X0

√
n

A−1 X
0⊤1nt√
n

∥∥∥∥∥
2

≤
∥∥∥∥X0⊤1nt√

n

∥∥∥∥
2

∥A−1∥2
∥∥∥∥X0⊤1nt√

n

∥∥∥∥
2

≤ c λ−1p,

again with high probability.

From a slight adjustment of the second part of Proposition A.2, it holds for the top singular value

σ1(A) = σ1(Σ̂s) + λ =

(
σ1

(
X0 + 1nsµ

⊤
s√

n

))2

+ λ = Θ(p),

and for the corresponding right singular vector∣∣∣∣〈v1(A), µs
∥µs∥2

〉∣∣∣∣ = ∣∣∣∣〈v1(Σ̂s), µs
∥µs∥2

〉∣∣∣∣ = ∣∣∣∣〈v1(X0 + 1ns
µ⊤
s√

n

)
,
µs

∥µs∥2

〉∣∣∣∣ =
√

1−O

(
1

p

)
.

Note that, for φ < 1, it holds that
∣∣∣〈 µs

∥µs∥2
, µt

∥µt∥2

〉∣∣∣ = φ < 1. Using the triangle inequality and
Cauchy-Schwarz gives∣∣∣∣〈v1(A), µt

∥µt∥2

〉∣∣∣∣ ≤ ∣∣∣∣〈 µs
∥µs∥2

,
µt

∥µt∥2

〉∣∣∣∣+ ∥∥∥∥v1(A)− µs
∥µs∥2

∥∥∥∥
2

∥∥∥∥ µt
∥µt∥2

∥∥∥∥
2

≤ φ+O

(
1

p

)
.

Therefore, it holds that

|a| =
∣∣u⊤A−1u

∣∣ = ∥∥∥∥ µ⊤
t√
n
A−1 µt√

n

∥∥∥∥
2

=

p∑
i=1

1

σi(A)

∣∣∣∣〈vi(A), µt√
n

〉∣∣∣∣2
= c ·

p∑
i=1

1

σi(A)

∣∣∣∣〈vi(A), µt
∥µt∥2

〉∣∣∣∣2
≥ c

p∑
i=2

1

σi(A)

∣∣∣∣〈vi(A), µt
∥µt∥2

〉∣∣∣∣2
≥ c

1

σ2(A)

p∑
i=2

∣∣∣∣〈vi(A), µt
∥µt∥2

〉∣∣∣∣2
≥ c

(
1−

(
φ+O

(
1

p

))2
)
> 0,

since σ2(A) = σ2(Σ̂s) + λ = O(1) due to the second part of Proposition A.2. Note that, for φ = 1,
we do not need this argument, as the µs terms are taken out of the inverse as well. In that case, we
take A =

(
X0⊤

X0

n + λI
)

, which immediately gives σ1(A) < c.

We can now prove that, with high probability, ∆ = Ω(p). Using Cauchy-Schwarz, it holds that

b2 = |⟨u, v⟩|A−1 ≤ ∥u∥A−1 ∥v∥A−1 = ad,

from which it follows that

∆ = a

(
n
γt
γ

+ d

)
− (1− b)2 ≥ an

γt
γ

− 1 + 2b = Ω(p),
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since a is lower bounded by a constant and |b| ≤ cλ−1√p ≤ cp0.99.

At this point, we have all the necessary bounds and we work towards proving the claim. We first
expand the bias term

B1
X(λ) = λ2β⊤(Σ̂ + λI)−1Σt(Σ̂ + λI)−1β

= λ2β⊤(Σ̂ + λI)−1Σt(A+ UCU⊤)−1β

= λ2β⊤(Σ̂ + λI)−1Σt
(
A−1 −A−1U (C−1 − U⊤A−1U)−1U⊤A−1

)
β

= λ2β⊤(Σ̂ + λI)−1ΣtA
−1β + S,

where S := −λ2β⊤(Σ̂ + λI)−1ΣtA
−1U (C−1 − U⊤A−1U)−1U⊤A−1β.

We now prove that S is small. To do so, we decompose

S = −λ2β⊤(Σ̂ + λI)−1ΣtA
−1U (C−1 − U⊤A−1U)−1U⊤A−1β

= λ2β⊤(Σ̂ + λI)−1Σt
1

∆
A−1

((
n
γt
γ

+ d

)
uu⊤ + (1− b) (uv⊤ + vu⊤) + a vv⊤

)
A−1β

= Tu,u + Tu,v + Tv,v,

where Tu,u is the summand corresponding to uu⊤, Tu,v to uv⊤ + vu⊤, and Tv,v to vv⊤. Zooming
in on one of the terms, it holds that

Tu,u = λ2β⊤(Σ̂ + λI)−1Σt
(nγt/γ + d)

∆
A−1 uu⊤A−1β

=

〈
β, λ2(Σ̂ + λI)−1Σt

(nγt/γ + d)

∆
A−1 u

〉〈
u⊤A−1, β

〉
.

Note that∥∥∥∥λ2(Σ̂ + λI)−1Σt
(nγt/γ + d)

∆
A−1 u

∥∥∥∥
2

≤ λ2
∥∥∥(Σ̂ + λI)−1

∥∥∥
2
∥Σt∥2

(nγt/γ + d)

∆

∥∥A−1
∥∥
2
∥u∥2

≤ cλ−1,

and
∥∥u⊤A−1

∥∥
2
≤ cλ−1. Using this, we get that, with high probability, it holds

|Tu,u| ≤ c
λ−2

p
.

This is similar to how we obtained (A.31), since β is sampled independently from a sphere of constant
radius. With analogous passages, we have that

|Tu,v| ≤ c
λ−2

p
, |Tv,v| ≤ c

λ−2

p

holds with high probability over the sampling of β. Putting all together, we get

B1
X(λ) = λ2β⊤(Σ̂ + λI)−1ΣtA

−1β +O

(
λ−2

p

)
.

Using the same argumentation applied now to (Σ̂ + λI)−1 in λ2β⊤(Σ̂ + λI)−1ΣtA
−1β gives

B1
X(λ) = λ2β⊤A−1ΣtA

−1β +O

(
λ−2

p

)
.

Lastly, doing all of this again to take out the terms containing µs from A, i.e., by taking

Ã := A− X0⊤1ns
µ⊤
s

n
−
µs1

⊤
ns
X0

n
− γs

γ
µsµ

⊤
s = Σ̂0 + λI,

we get

B1
X(λ) = λ2β⊤Ã−1ΣtÃ

−1β +O

(
λ−2

p

)
,
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proving the claim. ♣
From (Song et al., 2024, D.82), it follows that∣∣∣∣β⊤Π0ΣtΠ0β − λ2β⊤

(
Σ̂0 + λI

)−1

Σt

(
Σ̂0 + λI

)−1

β

∣∣∣∣ = O(λ), (A.38)

where Π0 = I − Σ̂+
0 Σ̂0. Thus, by combining (A.33), (A.34) and (A.38), we conclude that∣∣∣B1
X(β̂, β)− β⊤Π0ΣtΠ0β

∣∣∣ = O(λ) +O

(
λ−2

p

)
= O(p−1/3), (A.39)

where the last step is obtained by taking p = λ−1/3 (this also satisfies 1 > λ > p−0.49, which was
required to obtain (A.34)). As BX(β̂, β) = B1

X(β̂, β) + B2
X(β̂, β) and B2

X(β̂, β) = O(1/p) with
high probability by (A.31), we conclude that∣∣∣BX(β̂, β)− β⊤Π0ΣtΠ0β

∣∣∣ = O(p−1/3) (A.40)

holds with high probability over the sampling of β andX . Plugging in the expression of β⊤Π0ΣtΠ0β
given in (Song et al., 2024, Theorem 4.1) yields, with high probability,

BX(β̂, β) =

∫
b3λ

s + (b4 + 1)λt

(b1λs + b2λt + 1)2
dĜp(λ

s, λt) +O(p−c),

where (b1, b2, b3, b4) is the unique solution, with b1, b2 positive, to (A.30). Taking the limit p, n→ ∞
gives the desired result for the bias term.

Bounding the term V 2
X(β̂, β). Notice that the term V 2

X(β̂, β) coincides with T2 from Proposition
A.3. Moreover, we can follow the proof of the bound on T2 verbatim, only substituting p for n in
appropriate places (as we are now in an over-parametrized setting) to get

V 2
X(β̂, β) =

σ2

n
Tr[Σ̂+

0 µtµ
⊤
t ] = O

(
1

p

)
. (A.41)

Bounding the term V 1
X(β̂, β). To make a connection with zero-centered data, we will first prove

that, with high probability, it holds

V 1
X(β̂, β) =

σ2

n
Tr[Σ̂+Σt] =

1

n
Tr
[
Σ̂+

0 Σt
]
+O

(
1

p1/7

)
. (A.42)

Similarly to the computation for B1
X(β̂, β), we introduce an object coming from a variance term of a

ridge regression estimator with coefficient λ:

V 1
X(λ) :=

1

n
Tr[(Σ̂ + λI)−2Σ̂Σt],

defined for any λ > 0. It is more convenient to work with V 1
X(λ) than V 1

X(β̂, β) and, in addition,
V 1
X(λ) approximates V 1

X(β̂, β) well for small λ. We formalize the second claim as∣∣∣V 1
X(β̂, β)− V 1

X(λ)
∣∣∣ = O(λ), (A.43)

proved in the same manner as (Song et al., 2024, D.78). For convenience we also carry out the proof
here.

Proof of claim in (A.43). Let us write the SVD Σ̂ = UDU⊤. Then it holds that

V 1
X(β̂, β) =

1

n
Tr(UD+U⊤Σt),

V 1
X(λ) =

1

n
Tr[U(D + λI)−2DU⊤Σt].
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Therefore, we have∣∣∣V 1
X(β̂, β)− V 1

X(λ)
∣∣∣ = 1

n

∣∣Tr [U⊤ΣtU
(
D+ − (D + λI)−2D

)]∣∣
≤
∥∥U⊤ΣtU

∥∥
2

1

n

n∑
i=1

[
1

λi(D)
− λi(D)

(λi(D) + λ)2

]
≤ 1

τ

2λ

λn(D)2

= c · λ

λn(Σ̂)2
= O(λ).

Here, we used the inequality x−1 − (x+ λ)−2x ≤ 2λ/x2 and the fact that Σ̂ has n non-zero singular
values, each bounded below by a constant, which follows from (A.8). This completes the proof of the
claim. ♣
Relying on the derivations in (Song et al., 2024, D.2) we have that

V 1
X(λ) =

d

dλ

(
λ

n
Tr
(
Σt(Σ̂ + λI)−1

))
.

Let us denote by

Ṽ 1
X(λ) :=

λ

n
Tr
(
Σt(Σ̂ + λI)−1

)
.

We claim that, for any t > 0, it holds∣∣∣∣V 1
X(λ)− 1

tλ

(
Ṽ 1
X(λ+ tλ)− Ṽ 1

X(λ)
)∣∣∣∣ = O(tλ−2). (A.44)

Proof of claim in A.44. We begin by transforming the LHS:

1

tλ
(Ṽ 1
X(λ+ tλ)− Ṽ 1

X(λ)) =
1

n
Tr

(
Σt

1

tλ

(
(λ+ tλ)

(
Σ̂ + (λ+ tλ)I

)−1

− λ
(
Σ̂ + λI

)−1
))

=
1

n
Tr

(
Σt

1

tλ

((
1

λ+ tλ
Σ̂ + I

)−1

−
(
1

λ
Σ̂ + I

)−1
))

=
1

n
Tr

(
Σt

1

tλ

((
1

λ
Σ̂ + I

)−1(
1

λ
Σ̂ + I − 1

λ+ tλ
Σ̂− I

)(
1

λ+ tλ
Σ̂ + I

)−1
))

=
1

n
Tr

(
Σt

(
Σ̂ + λI

)−1

Σ̂
(
Σ̂ + (λ+ tλ)I

)−1
)

=
1

n
Tr

((
Σ̂ + (λ+ tλ)I

)−1 (
Σ̂ + λI

)−1

Σ̂Σt

)
,

where the last line follows from the cyclic property of the trace and the commutativity of Σ̂,(
Σ̂ + λI

)−1

and
(
Σ̂ + (λ+ tλ)I

)−1

. Plugging this into the LHS of (A.44) yields∣∣∣∣V 1
X(λ)− 1

tλ

(
Ṽ 1
X(λ+ tλ)− Ṽ 1

X(λ)
)∣∣∣∣

=

∣∣∣∣ 1n Tr

(((
Σ̂ + λI

)−1

−
(
Σ̂ + (λ+ tλ)I

)−1
)
(Σ̂ + λI)−1Σ̂Σt

)∣∣∣∣
=

∣∣∣∣ tλn Tr

((
Σ̂ + (λ+ tλ)I

)−1

(Σ̂ + λI)−2Σ̂Σt

)∣∣∣∣
≤
∥∥∥∥Σt (Σ̂ + (λ+ tλ)I

)−1

(Σ̂ + λI)−2

∥∥∥∥
2

tλ

n
Tr Σ̂ = O(tλ−2),

where the last line follows from the bound 1
n Tr Σ̂ = O(1), which holds due to Proposition A.2. ♣
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Let us denote the zero-centered counterparts of the corresponding V 1
X terms as

V 0
X(β̂, β) :=

1

n
Tr[Σ̂+

0 Σt]

V 0
X(λ) :=

1

n
Tr[(Σ̂0 + λI)−2Σ̂0Σt] =

d

dλ

(
λ

n
Tr
(
Σt(Σ̂0 + λI)−1

))
,

Ṽ 0
X(λ) :=

λ

n
Tr
(
Σt(Σ̂0 + λI)−1

)
.

Analogously to (A.43) and (A.44), it holds that∣∣∣V 0
X(β̂, β)− V 0

X(λ)
∣∣∣ = O(λ),

∣∣∣∣V 0
X(λ)− 1

tλ

(
Ṽ 0
X(λ+ tλ)− Ṽ 0

X(λ)
)∣∣∣∣ = O(tλ−2). (A.45)

The next step is to prove that, for 1 > λ > p−0.49,

Ṽ 1
X(λ) = Ṽ 0

X(λ) +O

(
λ−2

n

)
. (A.46)

Proof of the claim in (A.46). Expanding the expression, we want to prove that

Ṽ 1
X(λ) =

λ

n
Tr
(
Σt(Σ̂ + λI)−1

)
=
λ

n
Tr
(
Σt(Σ̂0 + λI)−1

)
+O

(
λ−2

n

)
.

Notice that Ṽ 1
X(λ) crucially contains (Σ̂ + λI)−1 in its expression, which we have already analyzed

in the context of B1
X(β̂, β). Recalling the definitions of A, u, v, U,C, a, b, d, and ∆ from (A.35),

(A.36), and (A.37), we can then expand Ṽ 1
X(λ) as

λ

n
Tr
(
Σt(Σ̂ + λI)−1

)
=
λ

n
Tr
(
Σt(A+ UCU⊤)−1

)
=
λ

n
Tr
(
Σt
(
A−1 −A−1U (C−1 − U⊤A−1U)−1U⊤A−1

))
=
λ

n
Tr
(
ΣtA

−1
)
+ Ŝ,

where Ŝ := −λ
n Tr

(
ΣtA

−1U (C−1 − U⊤A−1U)−1U⊤A−1
)
.

We now prove that Ŝ is small. To do so, we decompose

Ŝ =
λ

n
Tr

(
Σt

1

∆
A−1

((
n
γt
γ

+ d

)
uu⊤ + (1− b) (uv⊤ + vu⊤) + a vv⊤

)
A−1

)
= T̂u,u + T̂u,v + T̂v,v,

where T̂u,u is the summand corresponding to uu⊤, T̂u,v to uv⊤ + vu⊤, and T̂v,v to vv⊤. Zooming
in on one of the terms, it holds that

T̂u,u =
λ

n
Tr

(
Σt

1

∆
A−1

(
n
γt
γ

+ d

)
uu⊤A−1

)
=
λ

n

nγtγ + d

∆
Tr
(
ΣtA

−1uu⊤A−1
)

=
λ

n

nγtγ + d

∆
u⊤A−1ΣtA

−1u.

Note that ∥∥A−1ΣtA
−1
∥∥
2
≤ λ−2

τ
,

and ∥u∥2 ≤ c. Using this, we get that, with high probability, it holds

|T̂u,u| ≤ c
λ−2

n
.
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With analogous passages, we have that

|T̂u,v| ≤ c
λ−2

n
, |T̂v,v| ≤ c

λ−2

n

holds with high probability over the sampling of Z. Putting all together, we get

λ

n
Tr
(
Σt(Σ̂ + λI)−1

)
=
λ

n
Tr
(
ΣtA

−1
)
+O

(
λ−2

n

)
.

Lastly, doing all of this again to take out the terms containing µs from A, i.e., by taking

Ã = A− X0⊤1ns
µ⊤
s

n
−
µs1

⊤
ns
X0

n
− γs

γ
µsµ

⊤
s = Σ̂0 + λI,

we get
λ

n
Tr
(
Σt(Σ̂ + λI)−1

)
=
λ

n
Tr

(
Σt

(
Σ̂0 + λI

)−1
)
+O

(
λ−2

n

)
,

proving the claim. ♣
Finally, combining (A.43), (A.44), (A.45) and (A.46), for 1 > λ > p−0.49 and t > 0, we have that∣∣∣V 1

X(β̂, β)− V 0
X(β̂, β)

∣∣∣ ≤ ∣∣∣V 1
X(β̂, β)− V 1

X(λ)
∣∣∣+ ∣∣V 1

X(λ)− V 0
X(λ)

∣∣+ ∣∣∣V 0
X(β̂, β)− V 0

X(λ)
∣∣∣

≤ O(λ) +

∣∣∣∣Ṽ 1
X(λ)− 1

tλ

(
Ṽ 1
X(λ+ tλ)− Ṽ 1

X(λ)
)∣∣∣∣

+

∣∣∣∣Ṽ 0
X(λ)− 1

tλ

(
Ṽ 0
X(λ+ tλ)− Ṽ 0

X(λ)
)∣∣∣∣

+

∣∣∣∣ 1tλ (Ṽ 1
X(λ+ tλ)− Ṽ 1

X(λ)
)
− 1

tλ

(
Ṽ 0
X(λ+ tλ)− Ṽ 0

X(λ)
)∣∣∣∣

≤ O(λ)+O

(
t

λ2

)
+

1

tλ

∣∣∣Ṽ 1
X(λ+tλ)−Ṽ 0

X(λ+tλ)
∣∣∣+ 1

tλ

∣∣∣Ṽ 1
X(λ)−Ṽ 0

X(λ)
∣∣∣

= O(λ)+O(tλ−2)+O

(
t−1λ−3

n

)
.

Taking t = λ3 and λ = n−1/7, we get
∣∣∣V 1
X(β̂, β)− V 0

X(β̂, β)
∣∣∣ = O(n−1/7), proving the claim from

(A.42). As VX(β̂;β) = V 1
X(β̂;β) + V 2

X(β̂;β), and V 2
X(β̂, β) = O(1/p) by (A.41) we conclude that

VX(β̂;β) =
σ2

n
Tr[Σ̂+(Σt + µtµ

⊤
t )] =

σ2

n
Tr[Σ̂+

0 Σt] +O
(
p−1/7

)
.

Plugging in the expression of σ
2

n Tr[Σ̂+
0 Σt] given in (Song et al., 2024, Theorem 4.1) yields, with

high probability,

VX(β̂;β) = −σ
2

γ

∫
λt(a3λ

s + a4λ
t)

(a1λs+ a2λt + 1)2
dĤp(λ

s, λt) +O(p−c),

where (a1, a2, a3, a4) is the unique solution, with a1, a2 positive, to (A.29). Taking the limit p, n→
∞ gives the desired result for the variance term and concludes the proof.

A.7 PROOF OF THEOREM 4.5

For Σt = Ip and Σs ∈ Rp×p≻0 , it holds that

Ro(Σs, Ip, β) = V(Σs, Ip) + B(Σs, Ip, β).

We analyze each of the two terms separately.
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Calculating B(Σs, Ip, β). Note that Σt = Ip implies λti = 1 in all the equations in (A.30). Plugging
this in, one gets that the third and fourth equation in (A.30) are satisfied for b4 = b2 and b3 = b1.
From the uniqueness of a solution (b1, b2, b3, b4) to the whole system of equations in (A.30), and the
fact that b3 and b4 only show up in the mentioned third and fourth equation, we get that it must hold
b4 = b2 and b3 = b1. Plugging this into the bias term we get that

B(Σs, Ip, β) =
∫

b3λ
s + (b4 + 1)λt

(b1λs + b2λt + 1)2
dĜp(λ

s, λt)

=

∫
b1λ

s + b2 + 1

(b1λs + b2 + 1)2
dĜp(λ

s, λt)

=

p∑
i=1

⟨β, ui⟩2

b1λsi + b2 + 1
,

noting that ui ∈ Rp is the eigenvector of the matrix Σs corresponding to the eigenvalue λsi .

Recall that we have assumed in the setup of Section 4.2 that β is sampled from a sphere of constant
radius, which we will denote by rSp−1, i.e., r = ∥β∥2. We now prove concentration of B(Σs, Ip, β)
over this sampling of β. Towards this end, we introduce a matrix A ∈ Rp×p such that

B(Σs, Ip, β) = β⊤Aβ, A :=

p∑
i=1

1

b1λsi + b2 + 1
uiu

⊤
i .

Notice that first equation of (A.30) yields

1

γ p

p∑
i=1

b1λ
s
i + b2

b1λsi + b2 + 1
= 1,

which gives

Tr (A) =

p∑
i=1

1

b1λsi + b2 + 1
= p− n.

Since both b1 and b2 are positive, as stated in Theorem 4.4, it holds

∥A∥2 = λ1(A) =
1

b1λsp + b2 + 1
≤ 1.

Note that

Eβ∼rSp−1β⊤Aβ = E
p∑
i=1

⟨β, ui⟩2

b1λsi + b2 + 1

=

p∑
i=1

1

b1λsi + b2 + 1
E ⟨β, ui⟩2

=
1

p

p∑
i=1

1

b1λsi + b2 + 1
r2

=
p− n

p
r2. (A.47)

Furthermore, the function β → β⊤Aβ is Lipschitz over the sphere. Namely, for two vectors
β1, β2 ∈ rSp−1, it holds that

|β⊤
1 Aβ1−β⊤

2 Aβ2| ≤ |β⊤
1 A(β1−β2)|+|β⊤

2 A(β1−β2)| ≤ 2r ∥A∥2 ∥β1 − β2∥2 ≤ 2r ∥β1 − β2∥2 .
Then, due to the concentration of Lipschitz functions over the sphere (Vershynin, 2018, Theorem
5.1.4), we get that, with overwhelming probability,∣∣β⊤Aβ − Eβ⊤Aβ

∣∣ = O(n−c1),

for any constant c1 < 1/2. Plugging (A.47) gives

B(Σs, Ip, β) = β⊤Aβ =
p− n

p
r2 +O(n−c1),
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with overwhelming probability. We can readily calculate the bias term for Σs = Ip:

B(Ip, Ip, β) =
p∑
i=1

⟨β, ui⟩2

b1 + b2 + 1
=
p− n

p
r2.

Thus, for any Σs ∈ Rp×p≻0 , we have

B(Ip, Ip, β) ≤ B(Σs, Ip, β) +O(n−c1), (A.48)

with overwhelming probability.

Calculating V(Σs, Ip). Note that

V(Σs, Ip) = −σ2 1

γ

∫
λt(a3λ

s + a4λ
t)

(a1λs + a2λt + 1)2
dĤp(λ

s, λt)

= −σ2 1

γ

∫
a3λ

s + a4
(a1λs + a2 + 1)2

dĤp(λ
s, λt)

= σ2(a1 + a2), (A.49)

where the last equality follows from the third equation in (A.29) and the fact that λti = 1 for all
i ∈ [p]. Moreover, subtracting the second from the first equation in (A.29) yields

0 = 1− γs
γ

− 1

γ p

p∑
i=1

a2
a1λsi + a2 + 1

. (A.50)

Analyzing just the first equation in (A.29), we get

1

γ p

(
p−

p∑
i=1

1

a1λsi + a2 + 1

)
=

1

γ p

p∑
i=1

a1λ
s
i + a2

a1λsi + a2 + 1
= 1,

which gives
p∑
i=1

1

a1λsi + a2 + 1
= p− n.

Plugging this into (A.50) we get that a2 = γt
1−γ . Therefore, a1 is the unique solution to

p∑
i=1

1

a1λsi + c2
= p− n, (A.51)

for c2 = γt
1−γ + 1 > 0. From (A.49), we have that V(Σs, Ip) only depends on Σs through a1, with

which it monotonically increases. To conclude this section, we will apply the majorization argument
from the proof of Theorem 4.3 with a slight modification. Almost all parts of the argument are
analogous, and we restate them mainly for convenience.

Let us denote by λ⃗s :=
[
λs1, . . . , λ

s
p

]
. Then, for fixed n, p and λ⃗s, we will refer to a1(λ⃗s) as the

positive solution to (A.51). Note that from Theorem 4.4 we have that this solution is unique. Consider
a function f : Rp≥0 → Rp≥0. We call a function f good, if and only if

p∑
i=1

1

a1(λ⃗s)f(λ⃗s)i + c2
<

p∑
i=1

1

a1(λ⃗s)λsi + c2
. (A.52)

We claim that, if f is good, then
a1(f(λ⃗

s)) < a1(λ⃗
s). (A.53)

Proof of the claim. Consider a good function f . Then, we have
p∑
i=1

1

a1(λ⃗s)f(λ⃗s)i + c2
<

p∑
i=1

1

a1(λ⃗s)λsi + c2
= p− n.
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Furthermore, setting a1 = 0 we get
p∑
i=1

1

0 · f(λ⃗s)i + c2
= p

1
γt

1−γ + 1

= p
p− n

p− ns
> p− n.

By continuity, there exists a′1 ∈ (0, a1(λ⃗
s)) for which

p∑
i=1

1

a′1f(λ⃗
s)i + c2

= n− p,

implying a1(f(λ⃗s)) = a′1 < a1(λ⃗
s), which concludes the proof. ♣

Next, for i, j ∈ [p] s.t. i < j, we introduce a function f i,jc : Rp≥0 → Rp≥0 defined as

f i,jc (λ⃗)k =


λsi − c k = i,

λsj + c k = j,

λsk k ̸= i, j,

where c > 0 is a constant. We now claim that f i,jc is good for any i, j ∈ [p] and c > 0, such that
λsi > λsj + c.

Proof of the claim. The claim is equivalent to

1

a1(λ⃗s)(λsi − c) + c2
+

1

a1(λ⃗s)(λsj + c) + c2
<

1

a1(λ⃗s)λsi + c2
+

1

a1(λ⃗s)λsj + c2
.

For simplicity, let us denote a := a1(λ⃗
s). Then,

1

a(λsi − c) + c2
+

1

a(λsj + c) + c2
<

1

aλsi + c2
+

1

aλsj + c2

⇐⇒
a(λsi + λsj) + 2c2

(λsia− ca+ c2)(λsja+ ca+ c2)
<

a(λsi + λsj) + 2c2

(λsia+ c2)(λsja+ c2)

⇐⇒ (λsia+ c2)(λ
s
ja+ c2) < (λsia− ca+ c2)(λ

s
ja+ ca+ c2)

⇐⇒ ca(λsia+ c2)− ca(λsja+ c2)− c2a2 > 0

⇐⇒ ca2(λsi − λsj) > c2a2

⇐⇒ λsi > λsj + c,

which proves the claim. ♣
This implies that, for t ∈ (0, 1), transformations of the form

(λsi , λ
s
j) → (tλsi + (1− t)λsj , (1− t)λsi + tλsj) (A.54)

are good. Let us denote by λ⃗id := [1, . . . , 1], which corresponds to the matrix Ip. Pick any λ⃗s ̸= λ⃗id

that corresponds to some matrix Σs ∈ S , so it satisfies λs1 ≥ λs2 ≥ · · · ≥ λsp, as well as
∑p
i=1 λ

s
i = p.

Firstly, we claim that λ⃗id is majorized by λ⃗s. Suppose otherwise, that for some k ∈ [p]

k∑
i=1

λsi <

k∑
i=1

1 = k,

implying also that λsk < 1. Then, we have

p =

p∑
i=1

λsi < (p− k)λsk + k < (p− k)1 + k = p,
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which is a contradiction.

Next, as λ⃗id is majorized by λ⃗s, λ⃗id can be derived from λ⃗s by a finite sequence of steps of the form
in (A.54) with t ∈ [0, 1], see (Marshall et al., 1979, Chapter 4, Proposition A.1). Since both vectors
λ⃗id and λ⃗s are non-increasing, the t = 0 transformation can always be omitted. Moreover, t = 1 is
just the identity transformation, so it can also be omitted and we actually have t ∈ (0, 1). In formulas,
we have that

λ⃗id = f il,jlcl
(. . . f i1,j1c1 (λ⃗s) . . . ).

Since each of the functions above is good, we have that a1(λ⃗id) < a1(λ⃗
s). As V(Σs, Ip) is increasing

with a1, this directly implies that, for any Σs ∈ Rp×p≻0 ,

V(Ip, Ip) ≤ V(Σs, Ip).
Combining this with (A.48), we get

Ro(Ip, Ip, β) ≤ Ro(Σs, Ip, β) + o(1),

with overwhelming probability, which concludes the proof.

A.8 WEIGHTED OBJECTIVES UNDER DIFFERENT LABEL NOISE

Let us suppose we work in the setting where the label noise ε(i) differs between real and synthetic
data. A natural way to account for this in training is to assign weights exactly inversely proportional
to the corresponding noise levels. Thus, let w1 be the weight assigned to the real data, and w2 the
weight assigned to synthetic data. This leads to three possible regimes:

• w1 ≪ w2. Here, synthetic data effectively determines the estimator. In this context,
we would be in the scenario of Proposition 4.2. As discussed there, both the mean and
covariance discrepancy play a role, and thus the resulting optimality condition differs from
the mixed-data case.

• w1 ≫ w2. In this regime, the estimator is driven almost entirely by the real data, reducing
to the classical setting studied by Hastie et al. (2022). Consequently, the choice of synthetic
data has negligible impact.

• w1 ∼ w2. This is arguably the most interesting case. The current theory applies directly,
since weighting real and synthetic observations is equivalent to scaling (Σt, µt) by w1 and
(Σs, µs) by w2. Then, by adjusting Theorems 4.1, 4.3, 4.4 and 4.5, one can prove that the
optimal choice becomes Σs ∼ w1

w2
Σt.

Thus, the qualitative conclusion remains unchanged: matching the synthetic covariance to that of
the real data is optimal, where the weighting reflects the appropriate scaling depending on the trust
placed in the labels.

B MODEL SHIFT

In this section we give a precise estimate of the excess risk of the min-norm interpolator using both
training and augmenting synthetic data under model shift, assuming no covariance shift is present.
Interestingly, the difference in means once again does not affect the characterization. Furthermore,
depending on the intensity of model shift, synthetic data may have limited or even negative effect.
By characterizing this, the resulting formula suggests a simple training heuristic for synthetic data
training in the presence of model shift. We focus on the under-parameterized regime, which offers a
technically cleaner setting for analysis. Extending these results to the over-parameterized regime is
more involved, though we anticipate that existing techniques should make this feasible. We leave this
extension for future work.

B.1 PRELIMINARIES

Data model. We consider the setup of Section 3, with the addition of possible model shift. This is
modeled as

y(i) = X(i)β(i) + ε(i), (i) ∈ {t, s}, (B.1)
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where β(i) ∈ Rp, and it is no longer necessary that βs = βt. Note that this is a common modeling
in the transfer learning literature, as done in prior work (Song et al., 2024; Yang et al., 2025). This
setting allows us to explore the impact of model shift on generalization error, as the true parameter is
no longer shared between training and synthetic data. Lastly, to emphasize difference in means we
will assume that the synthetic data is normalized, i.e., µs = 0, while keeping ∥µt∥2 = rt

√
p.

Risk and estimator. As in Section 3, we test estimators on data sampled from the same distribution
as the training data (Xt, yt). Then, under the adjusted data model, the formula for the risk can be
broken down into a bias and variance term as in (3.3). Namely, it holds

RX(β̂;βt, βs) = ∥E[β̂ | X]− βt∥2Σt+µtµ⊤
t
+Tr[Cov(β̂ | X)(Σt + µtµ

⊤
t )]

:= BX(β̂;βt, βs) + VX(β̂;βt, βs).
(B.2)

We are interested in the performance of the minimum norm interpolator. Its closed-form solution is
unaffected by adjustment to the data model, i.e. it remains the same as in (3.4), i.e.,

β̂ := argmin
{
∥b∥2 : b minimizes ∥y −Xb∥22

}
= (X⊤X)+X⊤y. (B.3)

Substituting (B.3) into the excess risk decomposition (B.2) yields closed-form expressions for bias

BX(β̂;βt, βs) =β
⊤
t Π(Σt + µtµ

⊤
t )Πβt − 2β⊤

t Π(Σt + µtµ
⊤
t )Σ̂

+

(
X⊤
s Xs

n

)
(βs − βt)

+ (βs − βt)
⊤
(
X⊤
s Xs

n

)
Σ̂+(Σt + µtµ

⊤
t )Σ̂

+

(
X⊤
s Xs

n

)
(βs − βt)

(B.4)

and variance

VX(β̂;βt, βs) =
σ2

n
Tr[Σ̂+(Σt + µtµ

⊤
t )], (B.5)

where Σ̂ = X⊤X/n and Π = I − Σ̂+Σ̂ (projection on the null space of X).

B.2 THEORETICAL RESULTS

As mentioned at the start of Appendix B, we aim to characterize the excess risk of the min-norm
interpolator under model shift, when no covariance shift is present.

Let us assume that 1 + τ ≤ γ ≤ 1/τ , implying that n > p, which makes the setting under-
parameterized. Thus, Σ̂ = X⊤X/n is full rank almost surely, which implies that Π = I − Σ̂+Σ̂ =

I − Σ̂−1Σ̂ = 0. From (B.4), it follows that

BX(β̂;βt, βs) = (βs − βt)
⊤
(
X⊤
s Xs

n

)
Σ̂−1(Σt + µtµ

⊤
t )Σ̂

−1

(
X⊤
s Xs

n

)
(βs − βt). (B.6)

We additionally constrain the number of samples as 1 + τ ≤ γt, γs ≤ 1/τ and 0 < γs/γt ≤ 1/τ .
Similarly to Section 4.2, βs and βt are sampled from a sphere of constant radius, independently from
X, εt, εs. We will work in the setting where population covariances match, i.e. Σs = Σt, highlighting
the influence of model shift.

The following result provides a precise asymptotic characterization of the excess risk and, in doing
so, it extends results by Yang et al. (2025) to non-zero centered data.
Theorem B.1. Let Σt = Σs. Then under the assumptions from Section 3 and the start of this section
it holds

lim
n→∞

∣∣∣∣RX(β̂;βt, βs)−
∥∥∥Σ1/2

s (βs − βt)
∥∥∥2
2
· s1 − σ2 · s2

∣∣∣∣ = 0,

where

s1 =
n2s(n− p) + pnsnt

n2(n− p)
, s2 =

p

n− p
.

This theorem has an interesting implication. Unlike in the under-parameterized setting without
model shift, the inclusion of synthetic data can degrade performance in the presence of model shift.
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As discussed in the random-effects framework (Section 4.2 of (Yang et al., 2025)), different shift
intensities can cause different effects from training on synthetic data. This observation suggests that
when covariances are matched, a practical training strategy would be to gradually downsample the
synthetic dataset until the performance begins to decrease. We refer the reader to the above-cited
work for a more detailed discussion of these phenomena.

We now proceed to prove the main theorem of this appendix.

Proof of Theorem B.1. Firstly, note that under the assumption µs = 0 it holds that Xs = X0
s , i.e.,

synthetic data is centered. Next, from (B.2), we see that the risk can be broken down into the bias and
variance term. We will handle each of them separately. Let us start by splitting the bias term in (B.6)
into two components, i.e., BX(β̂;βt, βs) = B1 +B2, where

B1 := (βs − βt)
⊤

(
X0
s
⊤
X0
s

n

)
Σ̂−1ΣtΣ̂

−1

(
X0
s
⊤
X0
s

n

)
(βs − βt),

B2 := (βs − βt)
⊤

(
X0
s
⊤
X0
s

n

)
Σ̂−1µtµ

⊤
t Σ̂

−1

(
X0
s
⊤
X0
s

n

)
(βs − βt).

Bounding the term B1. We will first prove that

B1 = (βs − βt)
⊤

(
X0
s
⊤
X0
s

n

)
Σ̂−1

0 ΣtΣ̂
−1
0

(
X0
s
⊤
X0
s

n

)
(βs − βt) +O

(
1

p

)
. (B.7)

The argument mirrors the proof of (A.34), and we include it here to point out the necessary modifica-
tions.

Proof of the claim in (B.7). It holds that

Σ̂ =
1

n
(X⊤X)

=
1

n
(X0 + 1nt

µ⊤
t )

⊤(X0 + 1nt
µ⊤
t )

=

(
X0⊤X0

n
+
X0⊤1nt

µ⊤
t

n
+
µt1

⊤
nt
X0

n
+
γt
γ
µtµ

⊤
t

)
,

where abusing notation we write 1nt = [0, . . . , 0, 1, . . . , 1]⊤ ∈ Rn×1 (ns zeros followed by nt
ones). All the terms above, except the first one, have rank 1, so we use Woodbury formula to take
them out of the inverse when computing Σ̂−1. We introduce the following notation

A :=
X0⊤X0

n
= Σ̂0,

u :=
µt√
n
, v :=

X0⊤1nt√
n

,

U := [u v] ∈ Rp×2, and C :=

[
nγtγ 1

1 0

]
∈ R2×2.

(B.8)

Under this notation, it holds that

X0⊤1nt
µ⊤
t

n
+
µt1

⊤
nt
X0

n
+
γt
γ
µtµ

⊤
t = UCU⊤.

Then, using Woodbury formula, we have

Σ̂−1 =

(
A+ uv⊤ + vu⊤ + n

γt
γ
uu⊤

)−1

= (A+ UCU⊤)−1

= A−1 −A−1U (C−1 − U⊤A−1U)−1U⊤A−1.
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We now compute the 2× 2 block

C−1 − U⊤A−1U =

[
−u⊤A−1u 1− u⊤A−1v

1− v⊤A−1u −nγtγ − v⊤A−1v

]
=

[
−a 1− b
1− b −nγtγ − d

]
,

where
a := u⊤A−1u, b := v⊤A−1u = u⊤A−1v, d := v⊤A−1v. (B.9)

Hence

(C−1 − U⊤A−1U)−1 =
1

∆

[
−nγtγ − d b− 1

b− 1 −a

]
, ∆ := a

(
n
γt
γ

+ d

)
− (1− b)2. (B.10)

Plugging back and simplifying gives the explicit formula:

Σ̂−1 = A−1 − 1

∆
A−1

((
−nγt

γ
− d

)
uu⊤ − (1− b) (uv⊤ + vu⊤)− a vv⊤

)
A−1,

which is valid whenever ∆ ̸= 0, i.e., whenever C−1 − U⊤A−1U is invertible. We will now analyze
the a, b, d terms. First, note that there exist constants c1, c2 > 0 such that

0 < c1 ≤ λp(A) ≤ λ1(A) ≤ c2. (B.11)

By the Bai–Yin theorem (Bai & Silverstein, 2010, Theorem 5.11), this directly implies that
∥∥A−1

∥∥
2
≤

c. From this, it follows that

|a| =
∣∣u⊤A−1u

∣∣ = ∥∥∥∥ µ⊤
t√
n
A−1 µt√

n

∥∥∥∥
2

≤
∥∥∥∥ µt√

n

∥∥∥∥
2

∥∥A−1
∥∥
2

∥∥∥∥ µt√
n

∥∥∥∥
2

≤ c.

Similarly, we have

|b| =
∣∣v⊤A−1u

∣∣
=

∥∥∥∥ µ⊤
t√
n
A−1X

0⊤1nt√
n

∥∥∥∥
2

≤
∥∥∥∥ µt√

n

∥∥∥∥
2

∥A−1∥2
∥∥∥∥X0⊤1nt√

n

∥∥∥∥
2

≤ c
√
p,

where the last inequality follows with high probability over the sampling of X0, since X0⊤1nt√
n

is a
vector with p i.i.d entries of mean zero and O(1) variance. Finally, we have

|d| =
∣∣v⊤A−1v

∣∣
=

∥∥∥∥∥1⊤nt
X0

√
n

A−1 X
0⊤1nt√
n

∥∥∥∥∥
2

≤
∥∥∥∥X0⊤1nt√

n

∥∥∥∥
2

∥A−1∥2
∥∥∥∥X0⊤1nt√

n

∥∥∥∥
2

≤ c p,

again with high probability. Therefore, it holds that

|a| =
∣∣u⊤A−1u

∣∣ = ∥∥∥∥ µ⊤
t√
n
A−1 µt√

n

∥∥∥∥
2

≥ c λp
(
A−1

)
> c1 > 0,

where last inequality follows from (B.11). We can now prove that, with high probability, ∆ = Ω(p).
Using Cauchy-Schwarz, it holds that

b2 = |⟨u, v⟩|A−1 ≤ ∥u∥A−1 ∥v∥A−1 = ad,

from which it follows that

∆ = a

(
n
γt
γ

+ d

)
− (1− b)2 ≥ an

γt
γ

− 1 + 2b = Ω(p),
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since a is lower bounded by a constant and |b| ≤ c
√
p. At this point, we have all the necessary bounds

and we work towards proving the claim. To simplify notation we denote by Σ̂0
s :=

(
X0

s
⊤
X0

s

n

)
and

β̃ = βs − βt. We first expand the bias term

B1 = β̃⊤Σ̂0
sΣ̂

−1ΣtΣ̂
−1Σ̂0

sβ̃

= β̃⊤Σ̂0
sΣ̂

−1Σt(A+ UCU⊤)−1Σ̂0
sβ̃

= β̃⊤Σ̂0
sΣ̂

−1Σt
(
A−1 −A−1U (C−1 − U⊤A−1U)−1U⊤A−1

)
Σ̂0
sβ̃

= β̃⊤Σ̂0
sΣ̂

−1ΣtΣ̂
−1
0 Σ̂0

sβ̃ + S,

where S := −β̃⊤Σ̂0
sΣ̂

−1ΣtA
−1U (C−1 − U⊤A−1U)−1U⊤A−1Σ̂0

sβ̃.

We now prove that S is small. To do so, we decompose

S = −β̃⊤Σ̂0
sΣ̂

−1ΣtA
−1U (C−1 − U⊤A−1U)−1U⊤A−1Σ̂0

sβ̃

= β̃⊤Σ̂0
sΣ̂

−1Σt
1

∆
A−1

((
n
γt
γ

+ d

)
uu⊤ + (1− b) (uv⊤ + vu⊤) + a vv⊤

)
A−1Σ̂0

sβ̃

= Tu,u + Tu,v + Tv,v,

where Tu,u is the summand corresponding to uu⊤, Tu,v to uv⊤ + vu⊤, and Tv,v to vv⊤. Zooming
in on one of the terms, it holds that

Tu,u = β̃⊤Σ̂0
sΣ̂

−1Σt
(nγt/γ + d)

∆
A−1 uu⊤A−1Σ̂0

sβ̃

=

〈
β̃, Σ̂0

sΣ̂
−1Σt

(nγt/γ + d)

∆
A−1 u

〉〈
u⊤A−1Σ̂0

s, β̃
〉
.

Note that∥∥∥∥Σ̂0
sΣ̂

−1Σt
(nγt/γ + d)

∆
A−1 u

∥∥∥∥
2

≤
∥∥∥Σ̂0

s

∥∥∥
2

∥∥∥Σ̂−1
∥∥∥
2
∥Σt∥2

(nγt/γ + d)

∆

∥∥A−1
∥∥
2
∥u∥2 ≤ c

and
∥∥∥u⊤A−1Σ̂0

s

∥∥∥
2
≤ c. Using this, we get that, with high probability, it holds

|Tu,u| ≤
c

p
.

This is similar to how we obtained (A.31), since βs and βt are sampled independently from a sphere
of constant radius. With analogous passages, we have that
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p
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c
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holds with high probability over the sampling of βs and βt. Putting all together, we get
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proving the claim. ♣
By directly applying Yang et al. (2025)[Theorem 6] we obtain that∣∣∣∣β̃⊤Σ̂0

sΣ̂
−1
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Bounding the term B2. We follow the recipe devised in the proof of Proposition A.3. If we denote
by X̃n = X√

n
, then it holds∥∥∥Σ̂−1µt
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where the penultimate inequality follows directly from (A.9) and Proposition A.2. This means that
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with high probability over the sampling of βs and βt. Therefore, we have
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where the last inequality follows by separating βs and βt from the square and using (B.12) on each
term.

Bounding the term VX(β̂;βt, βs). Note that the variance term is the same as in the case without
model shift. This means that we could simply use the already derived results from Section 4. Namely,
directly from the proof of Theorem 4.1, we have that for M = Σ

1/2
s Σ

−1/2
t and λ1 ≥ · · · ≥ λp

eigenvalues of M⊤M , it holds∣∣∣∣VX(β̂;βt, βs)−
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n
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[(
α1M
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where α1 and α2 are the unique positive solutions to the following two equations
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As we assume that Σt = Σs, it follows that M⊤M = Ip and
σ2

n
Tr
[(
α1M

⊤M + α2 Ip
)−1
]
= σ2 p

n− p
,

which ultimately yields ∣∣∣∣VX(β̂;βt, βs)− σ2 p

n− p

∣∣∣∣ = O(p−1/2).

Finally by combining the bounds on BX(β̂;βt, βs) = B1 +B2 and VX(β̂;βt, βs), the desired claim
follows.
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C ADDITIONAL NUMERICAL RESULTS

Setup details. We train for 200 epochs using SGD as optimizer, and we use cosine annealing; the
initial learning rate is 0.1 for Scratch (0.2 for the experiment of Table 3a) and 0.01 for Distillation and
Pretrained. The Distillation teacher is a ResNet-50 trained on CIFAR-10. We use an early stopping
with patience 20 based on a validation subset (10% of the full training dataset). We avoid up-scaling
images in the Pretrained experiments to better demonstrate the effect of synthetic data augmentation.
On the generation side, to generate the images by T2I models, we use CLIP’s text encoder prompt
template on CIFAR-10 and ImageNet labels. Moreover, as models like StableDiffusion1.4 sometimes
generate low quality data or images discarded by the safety checker, before applying all the algorithms,
we do an initial pruning of 2% of the generated pool based on the distance to the CLIP embedding of
the label. For RxRx1, we train a linear classifier on frozen features from an ImageNet-pretrained
ResNet. For each class, MorphGen generates a pool of 500 synthetic images; we augment the real
training set (30 images/class) with 60 selected synthetic images/class and evaluate on a disjoint test
set of 20 images/class. We repeat the experiment 10 times by resampling the real subset from 120
images/class. As in the main setup, CLIP features are used for the selection algorithms.

Transformer-based models. In Table 4, we use the same setup as Table 1, but instead of ResNet,
we train a ViT and a Swin-T model from scratch. We use a patch size of 4 and Adam optimizer with
learning rate 0.0001 for this experiment. We observe that, in accordance with our previous findings,
covariance matching surpasses other algorithms.

Table 4: Covariance matching outperforms all baselines when fully training a transformer model on
a mix of real and synthetic data.

Method ViT Swin-T

Scratch Distillation Scratch Distillation

No synthetic 40.11± 0.59 40.32± 1.01 40.02± 0.70 40.84± 0.73

Center matching (He et al., 2023) 43.89± 0.97 45.61± 0.68 44.39± 0.54 46.64± 0.53
Center sampling (Lin et al., 2023) 43.89± 0.95 46.29± 0.80 43.94± 1.76 46.97± 0.59
DS3 (Hulkund et al., 2025) 45.92± 0.49 48.61± 0.67 46.57± 0.68 49.55± 0.72
K-means (Lin et al., 2023) 44.24± 1.13 47.44± 0.97 44.71± 0.32 48.49± 0.64
Random 44.07± 0.82 46.50± 0.78 44.38± 0.77 47.35± 0.50
Text matching (Lin et al., 2023) 44.57± 0.57 46.02± 1.00 45.15± 0.58 46.55± 2.52
Text sampling (Lin et al., 2023) 43.80± 0.98 46.00± 0.98 44.59± 0.93 47.62± 0.71
Covariance matching (ours) 46.09± 0.91 49.53± 0.61 46.64± 0.96 50.73± 0.44

Real upper bound 51.85± 0.47 53.11± 0.43 52.43± 1.39 54.80± 0.69

Zero-diversity generators. To assess the importance of filtering low-diversity data, we construct a
pool per CIFAR-10 class with 2K images from StyleGAN2-Ada and 8K images from two collapsed
generators. The first collapsed model emits the image whose CLIP embedding is closest to the class
label; the second produces images near the mean embedding of the class’s real subset. We sample 4K
images from each collapsed generator, yielding a total 10K images per class. As shown in Table 5,
most baselines over-select from the collapsed generators because they ignore the diversity of selected
samples. In particular, DS3 retains the two clusters formed by the collapsed outputs and thus fails to
filter them. By contrast, K-means and Covariance matching draw more from the 2K non-collapsed
subset and achieve higher classification accuracy.

Leak experiment. We consider inserting (“leaking”) images from the target distribution into
the pool of synthetic images and test the ability of different methods to select them. We use 1K
leaked CIFAR-10 images, disjoint from the 200 (nt) real reference samples. From a pool of 4K
StableDiffusion1.4 images and 1K leaked images, each method selects 800 (ns). Figure 2 shows,
for each method, the fraction of selected samples drawn from the leak. Because replacing synthetic
with real augmentations yields the best accuracy (Real upper bound), an effective selector should
prioritize leaked real images: covariance matching does, achieving the highest leaked fraction among
all methods.
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Table 5: Covariance matching performs on par with the best baselines across three training paradigms
on CIFAR-10, when the synthetic data is generated via a StyleGAN2-Ada model and two zero-
diversity generators.

Method Scratch Distillation Pretrained

No synthetic 44.36± 1.51 47.33± 0.57 63.40± 1.33

Center matching (He et al., 2023) 45.33± 2.43 47.50± 0.55 62.96± 1.26
Center sampling (Lin et al., 2023) 46.88± 2.59 51.11± 0.60 65.38± 1.14
DS3 (Hulkund et al., 2025) 53.74± 1.92 59.16± 1.56 69.43± 0.93
K-means (Lin et al., 2023) 60.20± 1.35 65.03± 0.81 72.83± 0.48
Random 50.31± 1.28 51.82± 0.91 66.27± 1.21
Text matching (Lin et al., 2023) 42.89± 1.89 47.38± 0.76 62.82± 1.31
Text sampling (Lin et al., 2023) 48.13± 1.81 50.81± 0.77 66.12± 1.06
Covariance matching (ours) 58.97± 1.67 64.85± 0.63 72.38± 0.66

Real upper bound 61.08± 2.54 65.38± 0.51 74.35± 0.56
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(a) CLIP-based algorithms

0 10 20 30 40 50 60 70

Portion of leaks among selected samples

Covariance matching

DS3

Center matching

K-means

Random

70.14%

46.17%

35.16%

32.32%

18.79%

Percentage of selected leaked samples
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Figure 2: The portion of samples chosen from the set of leaked images shows that our proposed
algorithm reliably selects real samples among the pool of generated examples.

Changing the feature extractor. In the main experiments, we use CLIP features for all selection
methods. To test the dependence on the feature extractor, we repeat the setups of Tables 1-2 with
DINO-v2 features. As shown in Tables 6-7, covariance matching matches or surpasses the best
baseline across settings, indicating that its effectiveness is not tied to a specific feature extractor. We
also repeat the leak experiment of Figure 2, see the bar plot in (b), showing again similar results.

Table 6: Covariance matching outperforms all baselines across three training paradigms on CIFAR-
10, when the synthetic data is generated via truncated generative models and features are extracted
with DINO-v2.

Method Scratch Distillation Pretrained

No synthetic 44.36± 1.51 47.33± 0.57 63.40± 1.33

Center matching (He et al., 2023) 50.06± 1.45 54.50± 0.62 66.23± 0.72
DS3 (Hulkund et al., 2025) 52.93± 1.65 58.69± 0.81 68.04± 0.71
K-means (Lin et al., 2023) 51.66± 2.10 55.97± 0.58 67.00± 0.84
Random 49.97± 2.45 54.79± 0.68 66.57± 0.92
Text matching (Lin et al., 2023) 51.52± 1.67 55.17± 0.57 67.13± 0.45
Covariance matching (ours) 54.97± 2.60 59.41± 0.81 68.87± 0.41

Real upper bound 61.08± 2.54 65.38± 0.51 74.35± 0.56

Optimizing the theoretical objective. We also implement a greedy algorithm that, at each step,
adds the sample minimizing the objective in (4.1) (Alpha matching). This method requires computing
the eigenvalues of the current sample covariance and is therefore more costly than Covariance
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Table 7: Covariance matching performs on par with the best baseline across three training paradigms
on CIFAR-10, when the synthetic data is generated via text-to-image (T2I) generative models and
features are extracted with DINO-v2.

Method Scratch Distillation Pretrained

No synthetic 44.36± 1.51 47.33± 0.57 63.40± 1.33

Center matching (He et al., 2023) 51.75± 2.01 55.67± 0.63 66.00± 0.58
DS3 (Hulkund et al., 2025) 52.33± 2.07 58.80± 0.96 66.68± 0.63
K-means (Lin et al., 2023) 51.14± 1.90 56.93± 0.46 65.71± 0.71
Random 50.45± 1.41 55.86± 0.73 65.67± 0.82
Text matching (Lin et al., 2023) 51.38± 1.51 55.81± 0.65 65.76± 1.00
Covariance matching (ours) 52.65± 1.47 58.78± 0.53 67.04± 0.83

Real upper bound 61.08± 2.54 65.38± 0.51 74.35± 0.56

matching. As in Covariance matching, we first fit PCA on the real samples and project all features,
then iteratively add the sample that yields the smallest value of (4.1). Without loss of generality, we
drop the noise variance term since it scales all candidates equally. The results of Table 8 show that
Alpha matching performs similarly to Covariance matching.

Table 8: Covariance matching performs on par with Alpha matching across the experiments on
CIFAR-10.

Experiment Method Scratch Distillation Pretrained

Zero-diversity models Covariance matching 58.97± 1.67 64.85± 0.63 72.38± 0.66
Alpha matching 59.30± 2.50 64.72± 0.55 72.76± 0.73

Truncated models Covariance matching 54.00± 1.89 59.77± 0.61 69.20± 0.56
Alpha matching 52.25± 2.11 59.18± 0.68 68.32± 0.58

T2I models Covariance matching 54.45± 2.11 59.17± 0.64 66.69± 0.70
Alpha matching 53.37± 1.85 59.03± 0.64 66.23± 0.66

Over-parameterized setting. We repeat the setup of Table 1 taking ns = 200 (instead of ns = 800).
This gives a total of ns + nt = 400 samples, which is less than the number of features p = 512, thus
placing us in an over-parameterized regime. As shown in Table 9, the quantitative trends mirror those
in the under-parameterized case.

Table 9: Covariance matching outperforms all baselines across three training paradigms on CIFAR-
10, when the synthetic data is generated via truncated StyleGAN2-Ada models (Karras et al., 2019)
in the over-parameterized regime with 200 training and 200 augmenting synthetic samples.

Method Scratch Distillation Pretrained

No synthetic 44.36± 1.51 47.33± 0.57 63.40± 1.33

Center matching (He et al., 2023) 46.45± 1.97 50.83± 0.50 64.40± 1.11
Center sampling (Lin et al., 2023) 47.29± 1.33 50.89± 0.78 65.64± 0.74
DS3 (Hulkund et al., 2025) 48.09± 2.04 52.65± 0.61 66.41± 1.35
K-means (Lin et al., 2023) 47.75± 0.82 51.56± 0.68 65.47± 0.99
Random 47.39± 1.63 50.96± 0.22 65.49± 1.12
Text matching (Lin et al., 2023) 47.56± 1.09 51.67± 0.65 65.74± 0.78
Text sampling (Lin et al., 2023) 46.93± 1.95 50.64± 0.49 65.13± 1.13
Covariance matching (ours) 48.95± 1.28 53.28± 0.45 66.62± 0.57

Real upper bound 50.79± 1.70 54.66± 0.91 68.97± 0.88

Distribution of selected samples. Beyond accuracy, we assess how well each method’s selections
match the test distribution. In the CIFAR-10 setup of Table 1, each method selects 800 samples per
class given 200 real samples. We then calculate how well these samples match the CIFAR-10 training
dataset. The selection obtained via Covariance matching consistently achieves lower FID/KID and
covariance distance than all other baselines. Metrics that couple fidelity and diversity (e.g., FID/KID)
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show larger gains than quality metrics (e.g., Precision (Kynkäänniemi et al., 2019), Density (Naeem
et al., 2020)), indicating improved distributional alignment rather than mere sample quality. The
results are reported in Table 10.

Table 10: Covariance matching selects samples that better match the target distribution according to
various evaluation metrics.

Method FID ↓ KID ↓ Precision ↑ Recall ↑ Density ↑ Coverage ↑ Covariance Shift ↓
K-means (Lin et al., 2023) 366.52± 2.62 0.59± 0.04 0.77± 0.01 0.41± 0.00 0.87± 0.04 0.58± 0.01 118.91± 0.62
Center matching (He et al., 2023) 544.56± 5.57 0.83± 0.06 0.78± 0.01 0.33± 0.01 0.82± 0.03 0.49± 0.01 212.55± 3.03
Center sampling (Lin et al., 2023) 450.27± 3.86 0.61± 0.04 0.77± 0.01 0.44± 0.01 0.86± 0.03 0.53± 0.01 150.49± 0.79
DS3 (Hulkund et al., 2025) 273.59± 6.72 0.42± 0.04 0.79± 0.01 0.45± 0.01 0.84± 0.03 0.64± 0.01 106.52± 2.44
Random 458.39± 4.16 0.63± 0.04 0.77± 0.02 0.44± 0.01 0.86± 0.05 0.53± 0.01 150.66± 1.08
Text matching (Lin et al., 2023) 454.23± 2.66 0.69± 0.05 0.81± 0.01 0.36± 0.00 0.90± 0.03 0.54± 0.01 172.70± 0.66
Text sampling (Lin et al., 2023) 447.53± 3.99 0.61± 0.04 0.77± 0.01 0.44± 0.01 0.86± 0.03 0.53± 0.01 149.98± 0.95
Covariance matching (ours) 242.09± 1.93 0.41± 0.04 0.78± 0.01 0.50± 0.01 0.84± 0.03 0.68± 0.01 95.55± 0.58

Real and synthetic dataset sizes. Next, we analyze the behavior of selection methods for different
values of real dataset size and synthetic samples gathered. We use the setup of Table 1, with
training from scratch, and change the size of real samples nt ∈ {200, 300} and synthetic samples
ns ∈ {600, 800, 1000} in Table 11.

Table 11: An ablation on the size of the real and synthetic datasets used for training shows results
consistent with those reported in Table 1.

Method (200, 600) (200, 800) (200, 1000) (300, 600) (300, 800) (300, 1000)

No synthetic 44.36± 1.51 44.36± 1.51 44.36± 1.51 47.85± 1.21 47.85± 1.21 47.85± 1.21

Center matching 47.51± 3.04 50.04± 2.84 50.60± 2.87 51.66± 2.19 53.61± 3.57 54.75± 3.44
Center sampling 50.14± 2.42 50.48± 2.03 51.40± 2.84 51.00± 2.22 52.97± 3.11 55.00± 3.45
DS3 50.62± 1.25 52.83± 2.19 53.02± 3.18 53.33± 2.26 55.91± 2.80 55.79± 2.70
K-means 49.65± 2.52 50.74± 1.77 51.31± 3.32 52.10± 2.53 52.65± 3.65 54.22± 3.13
Random 48.07± 2.80 49.38± 2.43 49.34± 2.37 52.38± 2.50 52.96± 3.82 53.47± 2.66
Text matching 49.90± 2.70 50.94± 1.40 50.72± 2.54 52.27± 2.52 53.04± 2.64 52.03± 1.05
Text sampling 49.19± 2.30 50.28± 1.18 49.98± 3.40 52.26± 2.78 51.86± 1.96 53.23± 3.28
Covariance matching (ours) 51.91± 2.05 54.00± 1.89 54.64± 3.79 55.38± 3.27 55.63± 2.70 55.80± 2.25

Upper bound 57.85± 1.86 61.08± 2.54 60.99± 2.11 58.76± 1.85 61.11± 2.87 62.79± 2.56

Variations for covariance matching. We experiment with two other variations for covariance
matching. First, incorporating more compute, we analyze a look-ahead strategy. At each round, we
select the top k samples for minimizing the covariance. We then exhaustively test each pair of these
k samples (total of

(
k
2

)
possibilities) and find out which pair minimizes the covariance shift. We then

only add the first element of the pair. This models a look-ahead strategy for adding a sample during
each round. Second, we perform a method to find the best samples globally. To find ns data among
M samples, we repeat the nt dataset and sample to get ns real data points. We then use the Hungarian
algorithm to match the ns real and M synthetic datasets. After matching, we select only the ns
samples matched from the M total synthetic data points as our selected synthetic data. This imitates
a global strategy to match the covariance of the data points. We use the setup from Table 1 and report
the accuracies in Table 12, observing that the performance is on par with covariance matching.

Table 12: The look-ahead algorithm with k ∈ {50, 100} and the Hungarian algorithm perform on par
with the greedy implementation of covariance matching across three training paradigms on CIFAR-10,
when the synthetic data is generated via five truncated StyleGAN2-Ada models.

Method Scratch Distillation Pretrained

Look-ahead (50) 54.91± 1.60 59.56± 0.71 68.10± 0.84
Look-ahead (100) 53.84± 0.95 59.79± 0.67 68.19± 0.74
Hungarian 53.10± 1.37 58.54± 1.07 68.60± 0.87
Greedy Covariance Matching 54.00± 1.89 59.77± 0.61 69.20± 0.56
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Experiment on a text dataset. To further demonstrate the generality of our approach beyond vision
tasks, we evaluate Covariance Matching on a text classification problem. Following observations
reported by Li et al. (2023), we use the Tweet Irony dataset (Van Hee et al., 2018) as the real dataset
and GPT-generated tweets from Kuo et al. (2025) as the synthetic dataset. The synthetic corpus
contains 3K prompts per class. We sample 100 tweets from the real dataset and augment them with
300 synthetic samples. We extract sentence embeddings using the all-mpnet-base-v2 model (Song
et al., 2020), and apply our selection algorithms in this feature space. A linear classifier is then trained
on the combined real and selected synthetic samples to classify ironic vs. non-ironic tweets. Table 13
shows that synthetic augmentations improve performance, and Covariance Matching outperforms all
baselines, serving as a theory-driven heuristic for selecting synthetic data.

Table 13: Covariance matching outperforms all baselines on the Ironic-Tweet dataset.

Method Tweet Irony

No synthetic 64.60± 3.16

Center Matching 70.80± 1.54
Random 67.97± 1.20
K-means 68.85± 1.26
DS3 69.73± 2.51
Covariance Matching (ours) 71.49± 1.59
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