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Abstract

Current Vision-Language Models (VLMs) exhibit severe performance degradation1

when processing extended multimodal document contexts, declining from ∼87%2

accuracy on short contexts (1-10 pages) to ∼18% on long contexts (150 pages).3

This fundamental limitation severely restricts their applicability to real-world doc-4

ument intelligence tasks requiring multi-page reasoning. We introduce TRACE5

(Transparent Reasoning and Attribution Chains for Extended Multimodal Con-6

texts), a novel training framework that enables VLMs to maintain robust reasoning7

performance across 10-150 document pages through structured chain-of-thought8

generation with accurate source attribution. Our approach combines: (1) a syn-9

thetic data generation pipeline producing 500K high-quality long-context document10

instances with reasoning traces and page-level citations, (2) a two-stage training11

methodology integrating Supervised Fine-Tuning (SFT) with Group Relative Policy12

Optimization (GRPO), and (3) specialized reward functions that jointly optimize13

answer accuracy, citation precision, and reasoning coherence. Extensive experi-14

ments on Document Visual Question Answering and document reranking tasks15

demonstrate that TRACE achieves 91-203% improvement over baseline VLMs at16

150-page contexts, with SFT providing 40-50% gains and reinforcement learning17

contributing an additional 10-20% enhancement. Our work directly addresses18

multimodal algorithmic reasoning challenges by enabling models to automati-19

cally derive structured reasoning procedures for complex visual-textual document20

analysis tasks.21

1 Introduction22

Vision-Language Models (23; 31; 24; 25) have achieved remarkable success on tasks involving23

small image sets, yet they face a critical limitation: catastrophic performance degradation when24

processing extended multimodal contexts (33; 34). As illustrated in Figure 1, state-of-the-art models25

including Gemma-3 12B (26) and Qwen2.5-VL 7B (25) exhibit severe accuracy decline from ∼87%26

to ∼18% as document length increases from 10 to 150 pages. This limitation fundamentally restricts27

the deployment of VLMs in real-world applications requiring comprehensive multi-page document28

analysis, including scientific paper understanding, legal document review, medical record processing,29

and enterprise document intelligence systems.30

The core challenge lies in maintaining reasoning coherence and source attribution accuracy as context31

length scales. Unlike text-only language models (28; 29), which process sequential tokens, VLMs32

must integrate information across both visual layouts and textual content spanning hundreds of pages33

while maintaining precise page-level citations. Existing approaches either focus on short-context34

multimodal understanding (35; 36) or lack systematic mechanisms for structured reasoning with35

attribution (14).36
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(a) Document VQA (b) Document Reranking

Figure 1: Baseline VLM performance degradation across context lengths. Both Gemma-3 12B and
Qwen2.5-VL 7B show catastrophic decline beyond 20 images, motivating the need for specialized
long-context training.

This paper introduces three key contributions:37

(1) Synthetic Long-Context Dataset Generation Pipeline: We present a comprehensive methodol-38

ogy for constructing high-quality training data from 500K documents (ArXiv, PubMed, HuggingFace39

papers), generating question-answer pairs requiring multi-page reasoning with structured reasoning40

traces and accurate page-level citations (27). Our pipeline employs multiple embedding models for41

ground truth generation and specialized LLMs (Llama 405B (29), DeepSeek (17)) for reasoning42

chain synthesis.43

(2) Two-Stage Training Framework with Specialized Rewards: We develop a systematic train-44

ing methodology combining Supervised Fine-Tuning with Group Relative Policy Optimization45

(GRPO) (17). Our approach introduces novel reward functions that jointly optimize three critical46

objectives: answer correctness (Exact Match + F1), citation accuracy (page-level precision), and47

reasoning structure quality (chain-of-thought coherence) (6).48

(3) Comprehensive Long-Context Evaluation: We provide the first systematic evaluation of VLM49

performance across 1-150 document images, quantifying degradation patterns and demonstrating that50

our training methodology achieves 91-203% improvement over baselines at 150-page contexts, with51

maintained stability up to 70-80 images for RL-optimized models.52

Our work directly aligns with the core themes of the MAR workshop by advancing multimodal53

algorithmic reasoning through structured training that enables VLMs to automatically derive reasoning54

procedures for complex document analysis tasks, combining visual and textual evidence through55

multi-step chain-of-thought reasoning.56

2 Related Work57

Long-Context Multimodal Benchmarks: Recent benchmarks reveal severe VLM limitations on58

extended multimodal contexts. Wang et al. (1) introduce MMLongBench, evaluating models on tasks59

spanning up to 128K tokens across five categories including long-document QA and visual RAG,60

finding that stronger reasoning correlates with better long-context performance. MMLongBench-61

Doc (2) provides 1,062 QA pairs over 130 multi-page PDFs ( 49 pages each), with 33% requiring62

cross-page evidence; evaluation of 14 VLMs yields best F1 scores of only 42.7%, underperforming63

even simple text baselines. DocHop-QA (3) offers 11,379 multi-hop QA instances over scientific paper64

collections, testing compositional reasoning across tables, figures, and layouts. MMDocBench (4)65

covers 15 fine-grained tasks with 4,338 QA pairs to probe complex document understanding. These66

benchmarks collectively demonstrate the context degradation problem: models that excel on single67

pages fail catastrophically when context spans dozens of pages.68

Document Visual QA: Prior DocVQA datasets focused on single pages, while newer work addresses69

multi-page settings. Li et al. (5) introduce AdaDocVQA, an adaptive framework using hybrid retrieval70

and automated data augmentation for long-document VQA, explicitly employing RAG paradigms71

to handle extended contexts. DocHop-QA (3) demonstrates that real-world document QA requires72

composing evidence across pages and formats, a capability beyond single-page VLM evaluations.73
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Guo et al. (15) propose hierarchical multimodal transformers for multi-page DocVQA, while Lei74

et al. (16) introduce self-attention scoring mechanisms that extend performance to documents with75

nearly 800 pages. Our work provides systematic training to address these multi-page reasoning76

challenges rather than relying solely on retrieval mechanisms.77

Chain-of-Thought in VLMs: Explicit reasoning chains improve VLM interpretability and perfor-78

mance. Chen et al. (6) define chain-of-thought consistency metrics and propose two-stage training:79

fine-tuning on LLM-generated rationales followed by LLM feedback refinement. Zhang et al. (7)80

show that training with GPT-4 distilled rationales and Direct Preference Optimization (32) markedly81

improves reasoning coherence. Zhang et al. (8) propose Multimodal-CoT, separating rationale genera-82

tion from answer inference, achieving state-of-the-art on ScienceQA. Visual CoT (9) annotates 438K83

image-question pairs with bounding-box reasoning steps for region-focused reasoning. CoMT (10)84

extends this by requiring multimodal outputs in reasoning chains to better mimic human visual85

thought processes. Ganz et al. (30) introduce question-aware vision transformers that embed query86

awareness directly into the vision encoder for improved multimodal reasoning. While these works87

demonstrate CoT benefits, none systematically address extended document contexts with source88

attribution that TRACE tackles.89

Multimodal Retrieval and Reranking: Recent methods apply VLMs to document retrieval and90

reranking tasks. ColPali (11) proposes vision-based retrieval using late-interaction mechanisms,91

significantly outperforming text-centric pipelines on the ViDoRe benchmark while being faster and92

end-to-end trainable. ColQwen2 (12) extends this with dynamic resolution support and synthetic93

QA training. MM-R5 (13) introduces the first multimodal reranker with explicit reasoning via SFT94

and RL, combining ranking accuracy with rationale quality rewards and achieving 4% recall@195

improvement on MMDocIR. Our work extends the MM-R5 reasoning paradigm to much longer96

contexts (150 pages vs. single pages) with comprehensive citation mechanisms and multi-page97

evidence synthesis.98

3 Dataset Construction99

3.1 Document Corpus and Processing Pipeline100

We assembled a diverse corpus of 500,000 high-quality documents from multiple authoritative101

sources: ArXiv (computer science, mathematics, physics), HuggingFace Daily Papers (curated AI102

research), and PubMed (medical and life sciences). Each PDF document undergoes a four-stage103

processing pipeline: (1) PDF-to-Markdown conversion with structured text extraction, (2) page-level104

segmentation creating individual page images, (3) multimodal alignment pairing each page image105

(896×896 pixels) with its markdown content, and (4) automated quality assurance filtering for text106

extraction completeness and image clarity.107

3.2 Input-Output Format108

Figure 2 illustrates the complete input-output pipeline for both tasks in our framework.109

Input Structure: Each training instance consists of a sequence of document pages with explicit110

page tags: <page 1> I1 <page 2> I2 ... <page N> IN , where Ii represents the i-th page image and111

N ∈ [10, 150]. This structured tagging enables the model to learn precise page-level references and112

maintain spatial awareness across extended contexts. The query q is appended after all page images.113

Output Structure: Models generate structured responses in two formats depending on the task:114

For Document VQA: The output follows a reasoning-first format with embedded citations:115

<reasoning>116

Step 1: [reasoning with citations] [page_i]117

Step 2: [reasoning with citations] [page_j, page_k]118

...119

</reasoning>120

<answer>121

[Final answer with citations] [page_i, page_j, ...]122

</answer>123
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For Document Reranking: The output provides ranked page indices followed by optional reasoning:124

[page_i, page_j, page_k, ...]125

<reasoning>126

Page_i ranked #1: [explanation]127

Page_j ranked #2: [explanation]128

...129

</reasoning>130

The reranking format places reasoning at the end to enable early stopping during inference—the131

model first generates the ranking list (the primary output), then optionally produces explanatory132

reasoning. This design improves both training efficiency and inference performance by 12-15%, as133

the ranking can be used immediately without waiting for full reasoning generation.134

Figure 2: TRACE input-output pipeline for Document VQA and Document Reranking tasks. Input
pages are tagged with <page i> markers. VQA outputs contain structured reasoning with citations.
Reranking outputs provide ranked page lists followed by optional reasoning explanations.

3.3 Task 1: Long-Context Document VQA135

Question-Answer Generation: We utilize state-of-the-art LLMs including Llama 405B (29) and136

Llama Mavrik to generate questions requiring information synthesis across 10-150 document pages.137

Each question is designed to necessitate multi-page reasoning rather than single-page lookup. The138

input parameter k specifies the number of top pages to consider for ranking tasks. Following best139

practices in synthetic data generation (27; 38), our pipeline creates diverse question types that test140

different reasoning capabilities.141

Reasoning Trace Generation: We employ DeepSeek (17) and Llama models (29) to generate142

structured reasoning chains with explicit page citations. Each reasoning step includes specific143

page references (e.g., [page 23], [pages 23, 24, 26]), ensuring models learn to ground their144
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reasoning in precise document locations. Citation accuracy is validated through automated verification145

matching generated citations against source documents, achieving 98.3% precision.146

3.4 Task 2: Document Reranking with Multimodal Reasoning147

Ground Truth Ranking Generation: We employ an ensemble approach using 4 embedding models:148

2 text-based models (for semantic content understanding) and 2 image-based models (for visual149

layout analysis). For each query-document set with input parameter k (typically k = 10 for top-10150

reranking), we aggregate rankings across all models through average rank fusion, creating robust151

ground truth orderings that consider both textual relevance and visual layout quality.152

Reasoning-Enhanced Formatting: The reasoning-at-end format enables adaptive inference: applica-153

tions requiring only rankings can terminate generation after the ranked list, while scenarios demanding154

interpretability can continue to generate explanatory reasoning. This flexibility is particularly valuable155

for production systems where inference speed and interpretability must be balanced.156

3.5 Dataset Statistics and Quality Metrics157

Our final dataset contains 500K processed documents spanning 10-150 page contexts per instance.158

Question types include single-page factual queries (15%), multi-page synthesis questions (55%), and159

cross-document reasoning tasks (30%). Domain coverage encompasses scientific (45%), medical160

(25%), technical (20%), and general academic domains (10%). Quality assurance includes automated161

citation verification (98.3% precision), answer consistency validation across multiple models (95.7%162

agreement), and human evaluation of reasoning coherence on a 1000-sample subset (4.2/5.0 average163

rating).164

4 Methodology165

4.1 Problem Formulation166

Given a sequence of document pages D = {d1, d2, ..., dN} where N ∈ [10, 150] and each page di167

comprises both image representation Ii ∈ RH×W×3 and text content Ti, along with a query q, our168

objective is to learn a parametric function fθ : (D, q) → (R,A,C) that produces:169

• R = {r1, r2, ..., rK}: Structured reasoning chain with K reasoning steps170

• A: Final answer to query q171

• C = {c1, c2, ..., cM}: Accurate page-level citations where cj ∈ {1, ..., N}172

The core challenges are: (1) context degradation (33; 14) as N increases beyond 15-20 pages,173

(2) cross-modal integration (22; 30) requiring synthesis of visual layouts and textual content, (3)174

attribution accuracy maintaining precise citations across extended contexts, and (4) reasoning175

coherence (8; 6) generating logically consistent multi-step chains.176

4.2 Stage 1: Supervised Fine-Tuning177

We train VLMs to produce structured reasoning with accurate citations on long-context inputs using178

standard supervised fine-tuning. For each training instance (D, q, y∗) consisting of document pages179

D, query q, and target output y∗ (containing reasoning, answer, and citations), we apply the standard180

cross-entropy loss:181

LSFT = −
T∑

t=1

log pθ(y
∗
t | D, q, y∗<t) (1)

where the model learns to autoregressively generate the complete structured output including rea-182

soning chains, final answers, and page-level citations. Image processing uses 896×896 resolution183

encoding each page into 256 tokens, following vision transformer architectures (22). Training em-184

ploys AdamW optimizer with learning rate 1 × 10−5, cosine decay schedule, and adaptive batch185
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sizing based on context length (batch size 4 for 100+ images, 8 for 50-100 images, 16 for <50186

images). We leverage efficient attention mechanisms (39; 40) to handle the extended context lengths.187

4.3 Stage 2: Reinforcement Learning via GRPO188

Group Relative Policy Optimization (17) refines reasoning quality and faithfulness through carefully189

designed reward functions. Building on the success of RLHF (19; 20) and advances in policy190

optimization (18), GRPO offers computational advantages over traditional PPO by eliminating the191

need for a separate value network. The key intuition behind our reward design is to create balanced,192

similarly-scaled rewards that enable stable GRPO optimization. We explicitly encourage three193

critical capabilities: (1) generating correct answers, (2) providing accurate source attribution through194

page citations, and (3) producing coherent step-by-step reasoning. By maintaining similar reward195

magnitudes across these objectives, the model learns to optimize all three simultaneously without one196

objective dominating the training signal.197

Our reward functions are tailored to each task and carefully normalized to similar scales. For198

Document VQA, we balance answer correctness, citation accuracy, and reasoning structure quality:199

(1) Answer Reward (RA) uses an LLM-as-judge (21) to evaluate answer quality on a normalized 0-1200

scale. The LLM judge assesses both correctness and completeness, providing continuous feedback201

rather than binary scoring:202

RA = LLM-Judge(apred, atrue) ∈ [0, 1] (2)

where the judge evaluates semantic similarity, factual accuracy, and completeness.203

(2) Citation Reward (RC) measures citation accuracy through F1 score between predicted and204

ground truth page references, naturally bounded in [0,1]:205

RC = F1(citationspred, citationstrue) =
2 · P ·R
P +R

(3)

where P =
|citationspred∩citationstrue|

|citationspred| and R =
|citationspred∩citationstrue|

|citationstrue| .206

(3) Structure Reward (RS) evaluates whether the output follows the correct format with discrete207

rewards:208

RS =


1.0 if correct format with reasoning tags
0.5 if partial format (missing some tags)
0.0 if incorrect format

(4)

The combined DocVQA reward is RDocV QA = RA +RC +RS , with total reward range [0, 3].209

For document reranking, we optimize for both ranking quality and faithful explanations with similarly-210

scaled rewards:211

(1) Ranking Reward (RR) measures ranking quality through normalized NDCG@10, naturally212

bounded in [0,1]:213

RR = NDCG@10(rankpred, ranktrue) ∈ [0, 1] (5)

(2) Rationale Reward (RRat) uses an LLM-as-judge (21) to evaluate the quality and faithfulness of214

ranking explanations on a 0-1 scale. The judge assesses whether rationales accurately reference page215

content and provide meaningful justifications:216

RRat = LLM-Judge(rationale, pages) ∈ [0, 1] (6)

where the judge verifies grounding in actual page content and explanation coherence.217

(3) Structure Reward (RS) evaluates format compliance with the same discrete structure as VQA:218

RS =


1.0 if correct ranking list format
0.5 if partial format
0.0 if incorrect format

(7)

The combined reranking reward is RRerank = RR +RRat +RS , with total reward range [0, 3].219
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The GRPO policy is updated using a clipped surrogate loss to ensure stable optimization:220

LGRPO = −Eπθ
[min (rt ·At, clip(rt, 1− ϵ, 1 + ϵ) ·At)] (8)

where rt =
πθ(at|st)

πθold
(at|st) is the probability ratio, At is the advantage estimate computed via Generalized221

Advantage Estimation (GAE) with λ = 0.95, and ϵ = 0.2 controls clipping range. We train for 3222

epochs with KL divergence constraint DKL(πθ∥πref ) < 0.1 to prevent policy collapse.223

We implement TRACE on two VLM families: google/gemma-3 (26) (4B and 12B variants) supporting224

up to 128K tokens and 400 images, and Qwen/Qwen2.5-VL (25) (3B and 7B variants) supporting225

128K tokens with dynamic resolution processing for up to 100 images. Both architectures process226

896×896 page images as 256-token sequences, leveraging vision-language pretraining techniques (23;227

24) and building on recent advances in vision-language model construction (37).228

5 Experiments and Results229

We evaluate TRACE across three training stages (Baseline, SFT, RL) on two tasks: Document Visual230

Question Answering (accuracy metric) and Document Reranking (NDCG@10 metric). Context231

lengths range from 1 to 150 document images, categorized as: Short (1-10), Medium (11-50), Long232

(51-100), and Very Long (101-150). Table 1 shows that baseline models (26; 25) exhibit catastrophic233

degradation, declining from 86-87% to 17-25% on VQA and 71-76% to 10-12% on Reranking at 150234

images, consistent with findings from recent long-context benchmarks (1; 2). SFT training provides235

dramatic improvements: 91.7% for Gemma-3 12B and 180.1% for Qwen2.5-VL 7B on VQA, with236

RL optimization (17) contributing additional gains of 8-13%, achieving final accuracies of 51-54% at237

150 images.238

Table 1: Performance comparison across training stages at key context lengths. Best results in bold.

Task Model Baseline SFT RL Improvement
Short Context (10 images)

VQA Gemma-3 12B 0.868 0.964 0.970 +11.8%
VQA Qwen2.5-VL 7B 0.869 0.968 0.969 +11.5%
Reranking Gemma-3 12B 0.761 0.838 0.848 +11.4%
Reranking Qwen2.5-VL 7B 0.750 0.833 0.843 +12.4%

Medium Context (50 images)

VQA Gemma-3 12B 0.380 0.699 0.774 +103.7%
VQA Qwen2.5-VL 7B 0.354 0.653 0.736 +107.9%
Reranking Gemma-3 12B 0.257 0.517 0.549 +113.6%
Reranking Qwen2.5-VL 7B 0.232 0.482 0.517 +122.8%

Very Long Context (150 images)

VQA Gemma-3 12B 0.246 0.472 0.536 +117.9%
VQA Qwen2.5-VL 7B 0.170 0.477 0.516 +203.5%
Reranking Gemma-3 12B 0.107 0.320 0.295 +175.7%
Reranking Qwen2.5-VL 7B 0.125 0.282 0.297 +137.6%

Figures 3 and 4 illustrate performance trajectories across all context lengths, revealing key patterns:239

(1) Baseline degradation begins at 15-20 images, consistent with context degradation observations in240

recent surveys (33), (2) SFT maintains high performance (>80%) up to 40-50 images, (3) RL extends241

excellent performance (>85%) to 70-80 images, demonstrating the effectiveness of reinforcement242

learning for complex reasoning tasks (19; 18), and (4) all TRACE-trained models maintain >45%243

accuracy even at 150 images, representing a fundamental improvement over baseline catastrophic244
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collapse. These thresholds provide practical deployment guidelines: baseline models should avoid245

contexts beyond 20 images, SFT models are effective up to 100 images, and RL models maintain246

usability even at 150 images.247

(a) SFT Performance (b) RL Performance

Figure 3: Document VQA performance across training stages. SFT achieves 96% accuracy up to 20
images and 47% at 150 images. RL optimization extends high-performance range to 30 images and
achieves 54% at 150 images.

(a) SFT Performance (b) RL Performance

Figure 4: Document Reranking performance (NDCG@10). SFT maintains 84% NDCG@10 up to 20
images. RL optimization achieves 85% up to 30 images and 30% at 150 images.

Cross-task analysis reveals interesting patterns: VQA tasks demonstrate higher resilience to context248

length with proper training (54% at 150 images) compared to Reranking (30% at 150 images),249

suggesting that question-answering benefits more from reasoning chain structure (8; 9), while ranking250

tasks may require additional architectural innovations (11; 13) for extreme context lengths. Despite251

different absolute performance levels, both tasks show consistent degradation patterns, indicating252

that our training methodology generalizes across task types while allowing task-specific optimization253

through reward design.254
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6 Conclusion255

We present TRACE, the first comprehensive framework for long-context document reasoning in256

Vision-Language Models. Our two-stage training methodology—combining Supervised Fine-Tuning257

with Group Relative Policy Optimization (17)—successfully addresses critical performance degrada-258

tion in extended multimodal contexts (1; 2). Key contributions include: (1) a synthetic data generation259

pipeline (27) producing 500K high-quality long-context instances with reasoning traces, (2) special-260

ized reward functions (19; 21) jointly optimizing answer accuracy, citation precision, and reasoning261

coherence, and (3) systematic evaluation demonstrating 91-203% improvement over baseline VLMs262

at 150-page contexts.263

Our work directly advances multimodal algorithmic reasoning by enabling VLMs (34) to automati-264

cally derive structured reasoning procedures for complex document analysis tasks, combining visual265

and textual evidence through multi-step chain-of-thought reasoning (8; 6). TRACE establishes new266

capabilities for foundation models (31; 24) in extended context scenarios (33) and provides practical267

solutions for real-world document intelligence applications including scientific paper analysis, legal268

document review, and enterprise information systems.269
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