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Abstract

Game-theoretic feature attribution methods are popular in XAl because they satisfy
several desirable axioms. Approximating a model as a game with input features as
players, these methods measure the weighted average contribution of each feature
to a model’s prediction across different feature subsets. However, these techniques
also make strict assumptions that may affect the quality of the explanations. One
common assumption is that all features can join or leave a subset with probability of
0.5, i.e., all subsets are equally likely to form. However, in real games, each player
can have different preference for joining a coalition, shifting the probability of the
subsets and thus the attribution values. Following this notion, we introduce Pref-
erence Banzhaf, which calculates Banzhaf-like value with adjusted probabilities
using centered linear regression. We theoretically show the convergence of Prefer-
ence Banzhaf and empirically demonstrate the effect of probability adjustment on
explanation quality and sensitivity.

1 Introduction

Artificial Intelligence (Al) is becoming a ubiquitous tool in many fields thanks to their capacity
to reflect complicated patterns in large datasets. However, this capacity is often accompanied by
high model complexity, making it difficult to interpret a model’s prediction process. In high-stakes
domains like health care or finance [[1} 2], interpretability is as important as the accuracy of prediction,
and model complexity hinders the practical adoption of Al in these domains. Explainable AI (XAI)
tackles this issue by attaching explanations to the models [3} 4, |5].

Among different explanations, feature attribution measures the contribution of input features to a
model’s prediction. In particular, local model-agnostic methods compute the input importance at
instance level regardless of target model’s architecture [6]. There are two major branches of local
model-agnostic attribution: Locally Interpretable Model Explanation (LIME) [7] and game-theoretic
techniques. On the one hand, LIME fits a surrogate model gg to randomly sampled perturbations
around the target instance z with a locality-defining kernel 7. Most LIME-based technique use
a linear gy since 6 corresponds directly to importance, and most improvements are derived from
modifying the noise generation process or the fitting process [8} 9, [10].

The second branch of local model-agnostic attribution is game-theoretic XAI. These methods ap-
proach the explanation process as a cooperative game, considering input features as players and the
model as the value function. The game theory solution of a player’s contribution corresponds directly
to a feature’s importance. The main strength of game-theoretic attribution is that they satisfy the
underlying axioms of the corresponding solution. For example, the Shapley value [11]:
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is a solution of cooperative game theory that uniquely satisfies linearity, dummy, symmetry, and
efficiency. While the combinatorial nature of Shapley values make it impossible to calculate exactly
for large number of features, KernelSHAP [12] shows that it can be approximated with a weighted
linear regression. Due to its massive popularity, KernelSSHAP has been explored thoroughly in the
past literature [[13} 14} (15} [16]].

Unfortunately, KernelSHAP is suffers from issues like numerical instability. Consequently, more
recent literature focuses on relaxing some axioms to improve the quality of the explanations. One
example is the Banzhaf value [17], which is another solution of cooperative game theory which
satisfies the same axioms as the Shapley value except efficiency:

i =gy D, [(SUD) —v(9)] ©)
SCN\i

The Banzhaf value is simply an average of the payoff difference caused by player ¢ across all possible

coalitions excluding said player. More generally, values of the form:

di= Y p(S)(SUi)—v(9)] 3)

SCN\i

where p(.9) is the probability of coalition S, are referred to as probabilistic values [[18]].

One problem with regular Banzhaf value is that it assumes that all coalitions are equally likely to form.
This assumption is equivalent assuming each player being neutral to joining a coalition. However, in
real life, players are likely to have different preferences depending on their objectives. For example,
if each player wishes to maximize their payoff, a player would have a higher probability of joining
(i.e., a preference) the greater their expected payoff in larger coalitions. The criteria may not even be
directly related to the game: for instance, if political parties vote on a regulation, they may make their
vote not based on the game payoff (passing the regulation), but another criteria like future likelihood
of re-election. Regardless of cause, reflecting the preference of coalition is critical for more accurate
evaluation of each player’s importance in a game.

Based on this notion, we introduce Preference Banzhaf, which computes Banzhaf value given each
feature’s probability of forming a coalition. We show that the attribution values can be computed
through a centered (and later a regular) linear regression with binary masks, prove the convergence
rate of the value, and empirically demonstrate the benefits of preference reflection. Our contributions
are as follows:

* We introduce Preference Banzhaf, a novel algorithm that efficiently computes axiom-
satisfying attribution using a different coalition-forming probability for each feature

* We show the equivalence between Preference Banzhaf and (a) a centered linear regression
shifted by each feature’s probability, and (b) a regular linear regression with intercept

* We derive the theoretical convergence rate of Preference Banzhaf

* We empirically demonstrate the effect of using Preference Banzhaf and interpret what the
different weights mean intuitively

2 Related Work

2.1 Model-Agnostic Explanations

Model-agnostic explanations usually involve perturbing the input and measuring the change in the
output. A fundamental method in this category is LIME [7], which fits an interpretable model
with kernel-weighted loss. The original method uses a linear model with a radial basis function
(RBF) kernel, but other kernels (such as cosine similarity kernel in Captum [19]) can be used.
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Studies building upon LIME usually upgrade the sampling scheme or kernel selection. [9] trains a
causal model for generating perturbations, and [20] uses a clustering model to select perturbations
deterministically from the training dataset. [8] reformulates LIME as a Bayesian model to adjust the
LIME coefficients by some prior. [21]] adopts an empirical pipeline to measure optimal RBF kernel
width for a desired level of local goodness of fit. [10] shows equivalence between RBF kernel and
adjusted feature mask probability, significantly stabilizing the attribution results by removing the
kernel from the regression.

2.2 Game-Theoretic XAI

Game theory-based XAl literature focuses on developing methods that satisfy certain axiomatic
properties. They tend to use Shapley value [[11] (Equation |l)) as the basis, which satisfies four
properties: linearity, dummy, symmetry, and efficiency. While the Shapley value is too costly to
calculate exactly, [[12] shows that it can be estimated using a linear regression, a method known as
KernelSHAP. The method has been adapted in many different directions [16]], such as architecture
specialization [22} 23| [24]] or estimation method improvements [25, [26]]. One issue with Shapley
value is that it can be numerically unstable and difficult to compute in practice. Recent works relax
some of the axioms - mainly efficiency - to address these shortcomings. For example, [27] propose
Beta Shapley, which adjust the Shapley averaging scheme to include a Beta distribution.

A growingly popular alternative is Banzhaf value (Equation [2). While similar in construction to
Shapley value, they differ in the treatment of the order of feature subsets. For Shapley value, the
order is important: a set of size s that includes 7 as the m-th element is different from that as the I-th
element, assigning different weights to the two coalitions. Banzhaf value considers both sets to be
the same and simply averages across all possible subsets. Despite this difference, the two values are
extremely similar, especially in terms of the rank of contributions [28 29].

Most papers that use Banzhaf value often use regular Banzhaf value. [29] uses Banzhaf value for
data valuation; [30]] uses Shapley and Banzhaf value to select the optimal vocabulary subset for
NLP tasks; and [31] utilizes Banzhaf value to create counterfactuals in graph neural networks. [32]]
generalizes Banzhaf value to weighted Banzhaf value for data valuation and shows that optimal
weight w is dependent on the dataset and model. However, there has not been any research on
computing Banzhaf values when all features have different weights, especially without relying on
feature-wise calculations (referred to as Maximum Sample Reuse).

3 Method

3.1 Definition

Given playersi € S C N, let v(S) be the target value function for subset S. Let w; be the probability
that player ¢ joins a coalition, i.e., their coalition preference. Then, the Preference Banzhaf value z/J;
of player 1 is defined as:

vh= > (] w [] - w)lw(sui)—v(s)] )

SEN\i j€S  j¢S

Intuitively, 1/}}, is the expected change in v given that each player may join the coalition following
a multivariate binomial distribution with parameter w = {wy, wa, ..., wq}. Regular Banzhaf value
is a special case where w; = 0.5Vi, while weighted Banzhaf value is another special case where
w; = aVvi.

3.2 Preference Banzhaf Approximation with Centered Linear Regression

KernelBanzhaf [33] approximates the Banzhaf value by masking each feature with probability
w = 0.5, and regressing the results against z = {—0.5,0.5}%, where z; = —0.5 if z; is masked
and 0.5 otherwise. This formulation can be generalized to any set of w; by using centered linear
regression:

Theorem 1. Preference Banzhaf as Centered Linear Regression. Preference Banzhaf 1)), is the
solution of the centered linear regression:
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Figure 1: Illustration of regular versus Preference Banzhaf. Regular Banzhaf takes a simple average
of payoff difference. Preference Banzhaf takes a weighted average of payoff difference based on the
coalition-forming probability w;.

Wp = argmin Bx[(v(z) - 5'2)%) ®)

where z; = m; —w;, p(m; = 1) = w;,m; =0, 1.
We can further show that the solution is still v, after adding an intercept term.

Theorem 2. Preference Banzhaf as Centered Linear Regression with Intercept. Preference
Banzhaf 1), is the solution of the centered linear regression with intercept:

B3 ¥p = argmin Ex[(v(z) - fo — Bz)?] (6)

The full proof for Theorems 1 and 2 are presented in the Appendix.

A consequence of Theorem 2 is that in terms of implementation, we do not need to center z to
approximate the Preference Banzhaf value since centering does not affect the coefficients of a linear
model when an intercept exists. We may perform the linear regression directly.

3.3 Convergence to True Value

A key question associated with kernel approximation of Banzhaf values is the rate of convergence
to the true value. In the case of Preference Banzhaf value, it is closely related to GLIME [10] in
implementation. Consequently, we can provide similar convergence guarantees.

Theorem 3. Convergence of Preference Banzhaf Assume that Z ~ {b; — w;}%, where
b; ~ Ber(w;). Then, given an empirical sample Z, and corresponding values v, the linear
regression solution [3, converges to 1, with probability 1 — 0 (i.e., P(|8, — tpla <€) <1—94
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Figure 2: Convergence experiments. (a) v2y* for random probabilities and models generated from the
seeds. (b) v* when v? is constant at 0.25. (c) Same as (b) with N = 2000. Generally, y* dominates
the convergence relation with the volatility terms.

for n = Qe 2M?>*v%d3y*log(4/5))) for some constant M, where v = maz(w;(1 — w;)) and
d

v =i 1/ (wi(1 = wy)).

The full proof for convergence is presented in the Appendix. This theorem implies that, with all else

held constant, the solution converges the fastest when w;(1 — w;) is maximized at w; = 0.5, i.e., the

regular Banzhaf value. It also implies that weighted Banzhaf values with w; = candw; =1 — «
should have equal convergence under identical conditions.

3.4 Synthetic Experiment for Convergence

Figure [3.4 shows the plots L error of Preference Banzhaf estimates against v2 and v* for synthetic
datasets. Each subplot contains estimates for a model with 4 to 7 input features. The first row shows
the relation between Lo error and v2~* for random w applied on random quadratic functions, while
the second row shows the effect of 74 when v? is held constant at 0.25 (i.e., at least 1 w;=0.5). We
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Figure 3: Lo-normalized error over IV across real datasets. We see that Kernel Banzhaf generally
achieves the lowest sensitivity among Banzhaf methods as expected from Theorem 3.

see that the relation is linear for both cases. The third row shows the same plot as the second row
except at N = 2000 instead of N = 1000. We see that while the maximum error decreases, the linear
relation between error and * still holds. While not reported to conserve space, the relation between
Lo error and v? is generally constant or slightly linear, and 4* dominates most of the error relation.

4 Experiment

4.1 Setup
Algorithms. We use the following algorithms for the experiments:

 KernelBanzhaf (Kbanzha f) [33]: this is equivalent to setting w; = 0.5.

» Weighted Banzhaf with probability o (W Banzha f(«)): this is equivalent to setting w; = .
We use a of 0.25 and 0.75 to test the effect of o on convergence and explanation quality.

» KernelSHAP [12] (K ernel SH AP): this method approximates Shapley value using linear
regression with combinatorial kernel.

e M RLN [34]: We use this method to choose w; for Preference Banzhaf. Model Response
Localized Attribution (MRLN) computes the empirical probability by sorting the samples by
a distance metric from the original instance and averaging the mask of the closest samples.
We follow the original paper for the best empirical thresholds.

Models and datasets. We train an XGBoost classifier for several datasets (Adult Census, Communi-
ties and Crime, California Housing, Diabetes, and Bank Marketing). We use the default settings from
training the classifiers. Each model is trained on an random 80% split of the corresponding dataset.

Settings. For the Adult and Diabetes datasets, which have only 8 features, we generate explanations
with maximum sample size equal to 2¢. For the rest of the tabular datasets, we use 500, 1000, and
2000 samples to evaluate the explanations. For tabular datasets, the evaluation is performed across
40 different seeds between 0 and 800. The replacement value for masking is a random instance in
the opposite class. For image datasets, we use a baseline of 0 with a fixed seed of 0. The images are
segmented into 64 equal segments. All evaluations are performed on the remaining 20% test split.

Faithfulness. We evaluate the faithfulness of the attributions using Area over Perturbation Curve
[35]] with predicted class’s logit (AO PC',) and probability (AO PC'p), as well as Iterative Removal
of Features (IROF) [36]. It should be noted that while there are discussions on biases with these
metrics [37,138L139], they are still widely used in the XAl literature for evaluation and it is outside of
the scope of the study to discuss their limitations.

Sensitivity. We evaluate the sensitivity of the attributions using L2-normalized error [33], average
pairwise rank correlation, and top-K Jaccard index. For The last metric, we set K to 5 for Adult and
Diabetes datasets, and the minimum between 20 and half of the number of features for the rest of the
datasets. The sensitivity is evaluated only for tabular data due to computational constraints.
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4.2 Quantitative Evaluation
4.2.1 Sensitivity

The Ly-normalized error for real datasets over N is presented in Figure d.2.1] It is immediately
obvious that Kbanzhaf achieves the lowest sensitivity amongst Banzhaf values, which agrees
with Theorem 3 and the synthetic results since it minimizes v>y*. Kernel SH AP achieves lower
sensitivity than W Banzha f(0.75) in most datasets, but often loses to the other methods. M RLN
is surprisingly robust, achieving third or second lowest Lo-normalized error across all datasets. As
will be shown in the subsequent section, M RLN also achieves higher average faithfulness than
other methods, which suggests that we may generate high fidelity explanations with small robustness
tradeoff by adjusting w; to a model’s internal behavior. The sensitivity measured using Jaccard
distance and correlation index (reported in Appendix [C) also agree with that using L,-normalized
error.

4.2.2 Faithfulness

The faithfulness evaluation of experiments on real tabular datasets is reported in Table [I] We can
observe several patterns:

* Excluding Preference Banzhaf with M RL N setup, the average faithfulness is generally the
highest for regular Banzhaf value.

* The average standard error of faithfulness (the standard deviation of a metric for each instance
divided by square root of number of seeds, averaged across instances) follows similar order
as sensitivity: generally, K Banzhaf is the smallest, followed by W Banzhaf(0.25) or
MRLN, then KernelSHAP and W Banzhaf(0.75).

* The average standard error of faithfulness for W Banzhaf(0.75) tends to be much larger
than the others. In particular, the average standard error for M RLN is comparable to
W Banzhaf(0.25) despite the additional randomness caused by probability estimation.

These patterns demonstrate the effectiveness of using properly adjusted probabilities for Banzhaf
values: we can achieve high and stable average fidelity.

4.3 Qualitative Evaluation

In this section, we analyze samples from image datasets to investigate the information captured by
w;,. Specifically, we compare the faithfulness of explanations depending on the location of high w;
with respect to the true object in the image. Given a 64 equally divided segmentation map, we use
w; = 0.7 (high weight) and w; = 0.3 (low weight) and either place the higher weight in the center
4 x 4 segments (Banzhaf(Center)) or the remaining periphery segments (Banzhaf(Periph)).
Comparing the faithfulness between the two setups, we find the following patterns:

* In terms of average faithfulness, Banzhaf(Center) has much higher fidelity than
Banzhaf(Periph) as shown in Table Given that many images in the Imagenette
and Imagewoof datasets have their objects at the center of the image, this result implies that
a higher overlap between the object and w; results in more faithful attributions.

* This pattern coincides with instance-level differences. In Figure [4.3] we have examples
where Banzhaf(Center) has much higher fidelity metric than Banzhaf(Periph) and
vice versa. We see that when faithfulness of Banzhaf(Center) is higher, the main object
is usually at the center. In the opposite case, the object is off-center or is too small compared
to the window size.

This trend suggests that, to generate more faithful explanations, we need to select w; that is effectively
the ’attention’ of the model: higher w; should be assigned to features that the model focuses on
for its predictions. It also explains why MRLN has higher average fidelity than other methods: it
dynamically selects w; that aligns with the ’attention’ of the model based on the target model’s
internal behavior. Note that the interpretation of w; is slightly different from an attribution, which
determines how much (in positive or negative direction) a segment contributes to a prediction. w;
only implies that the segment is important - we do not know the direction of said importance.



Table 1: Average Faithfulness and Standard Errors for Tabular Datasets

Name Logit_AOPC Prob_AOPC Logit_IROF

W Banzhaf(0.25) 1.3794 +£0.0041 0.5551 £0.0010 0.3624 + 0.0011
Kbanzhaf 1.3866 + 0.0040  0.5589 + 0.0009 0.3578 + 0.0011
W Banzhaf(0.75) 12480 £+ 0.0084 0.5259 £+ 0.0022 0.3957 £ 0.0024
Kernel SHAP 1.3831 + 0.0052 0.5572 +£0.0013 0.3598 + 0.0015
MRLN 1.4271 £+ 0.0038 0.5667 £+ 0.0009 0.3486 4+ 0.0010

(a) Bank Marketing

Name Logit AOPC Prob_AOPC Logit_IROF

W Banzhaf(0.25) 5.5966 + 0.0090 0.8703 £+ 0.0004 0.0607 £ 0.0004
Kbanzhaf 5.6177 £0.0096 0.8763 £+ 0.0004 0.0544 + 0.0004
W Banzhaf(0.75) 5.1575 £0.0261 0.8666 + 0.0010 0.0641 £ 0.0010
KernelSHAP 5.3053 +£0.0226  0.8562 + 0.0015 0.0746 4+ 0.0015
MRLN 5.6942 + 0.0080 0.8782 £+ 0.0003 0.0525 4+ 0.0003

(b) Communities and Crime

Name Logit_ AOPC Prob_AOPC Logit_IROF

W Banzhaf(0.25) 2.7230 £0.0025 0.6417 £ 0.0003  0.2666 + 0.0004
Kbanzhaf 2.7221 +0.0020 0.6432 £+ 0.0003 0.2648 + 0.0003
W Banzhaf(0.75) 2.6663 £0.0059 0.6370 £ 0.0008 0.2718 £ 0.0008
KernelSHAP 2.7234 £ 0.0031 0.6424 £+ 0.0004 0.2656 4+ 0.0005
MRLN 2.7396 + 0.0022  0.6447 £+ 0.0003  0.2630 4+ 0.0004

(c) Adult

Name Logit AOPC Prob_AOPC Logit_IROF

W Banzhaf(0.25) 3.4762 +0.0082 0.7881 £ 0.0010 0.1839 + 0.0011
Kbanzhaf 3.5125 + 0.0063 0.7972 £+ 0.0005 0.1745 4+ 0.0005
W Banzhaf(0.75) 3.4157 £0.0168 0.7964 + 0.0012 0.1752 £ 0.0012
KernelSHAP 3.4892 + 0.0095 0.7919 £ 0.0012  0.1798 + 0.0012
MRLN 3.5303 +0.0073  0.7971 £ 0.0006 0.1746 + 0.0007

(d) Diabetes

Name Logit_ AOPC Prob_AOPC Logit_IROF

W Banzhaf(0.25) 4.4203 £0.0068 0.7983 £ 0.0004 0.1310 £ 0.0005
Kbanzhaf 4.4382 +£0.0049 0.8010 4+ 0.0002 0.1280 + 0.0002
W Banzhaf(0.75) 4.3462 £0.0154 0.7990 £ 0.0006 0.1301 £ 0.0006
KernelSHAP 4.4308 £+ 0.0069 0.8002 4+ 0.0004 0.1288 + 0.0004
MRLN 4.4485 + 0.0059 0.8011 4+ 0.0003 0.1279 + 0.0003

(e) California Housing

Table 2: Average Faithfulness for High Probability at the Center and at the Periphery for Images

Name Logit_ AOPC  Prob_AOPC Logit_IROF
Banzhaf(Center) 5.0321 0.7224 0.2049
Banzhaf(Periph) 4.8623 0.7154 0.2113

(a) Imagenette
Name Logit AOPC  Prob_AOPC Logit_IROF
Banzhaf(Center) 52139 0.7388 0.1413
Banzhaf(Periph) 5.0047 0.7310 0.1482

(b) Imagewoof
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(b)

Figure 4: Examples (first column) from Imagenette and segment importance for (a) high positive
faithfulness difference between Banzhaf(Center) (2nd column) and Banzhaf(Periph) (3rd
column), and (b) high negative difference. The object tends to be large and at the center for the
former, while it is small or off-center for the latter.

5 Conclusion

In this paper, we present Preference Banzhaf, where each input feature is masked following a different
probability, i.e., their preference of forming a coalition. We prove that Preference Banzhaf values
can be computed through (a) a centered linear regression without intercept, and (b) a regular linear
regression with intercept. We also derive the theoretical convergence given a set of preferences.
We compare the faithfulness and sensitivity of MLRN-based Preference Banzhaf against different
model-agnostic baseline methods across several tabular and image datasets. We find that Preference
Banzhaf achieves the best average fidelity across all datasets, often followed by vanilla Banzhaf
values. In terms of sensitivity, vanilla Banzhaf achieves the lowest sensitivity across all datasets, but
is usually closely followed by Preference Banzhaf.

6 Limitations and Future Directions

There are several limitations to this work. Firstly, this paper focuses on accurately computing
Preference Banzhaf values given w;. Discovering methods of finding optimal w; for a given objective
using the relation between Preference Banzhaf and linear regression would be interesting. Secondly,
Preference Banzhaf is limited to fixed w;. Finding a fuzzy equivalent could help extend game-
theoretic XAl to more diverse set of model-agnostic explanations. Lastly, this research focuses solely
on feature attribution task. Extending Preference Banzhaf to other tasks such as data valuation could
show the benefits of using more generalized forms of game-theoretic XAl in different applications.
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3 A Experimental Details

354 The XGBoost classifiers are trained with default parameters from the xgboost package, while the
355 image classifiers are fine-tuned from IMAGENET10K weight available in the torchvision package.
ss6 The classification layer of the image classifiers consist of 4 linear layers with 20% dropout, batch
357 normalization, and ReLU activation. All training and experiments are performed on Intel(R) Xeon(R)
358  Gold 6342 CPU @ 2.8GHz and NVidia RTX A6000 (48GB).

Table 3: Model details.

DATASET MODEL PACKAGE Acc (%)
ADULT XGBoosST XGBOOST 87.29
CALIFORNIA  XGBOOST XGBOOST 84.74
CRIME XGBooSsT XGBOOST 80.75

IMAGENETTE RESNET101 TORCHVISION 89.81
IMAGEWOOF  RESNET101 TORCHVISION  79.89

Table 4: MLP layer details.

BLOCK  LAYERS

1 RELU
1 LINEAR(2048,1024)
BATCHNORM

RELU
DropPOUT(0.2)
LINEAR(1024,512)
BATCHNORM

RELU
DRroproUT(0.2)
LINEAR(512,256)
BATCHNORM

RELU
DRroproUT(0.2)
LINEAR(512,10)

AA PRl LWLLWLW|INDDNDND
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B Proofs

In this section, we present the full proofs for theorems 1 through 3.

B.1 Proof for Theorem 1

Expanding the objective, we have:

E[(f(z) - Tx)? Zﬁm = —%“ZBJJ—ZZ@:Q@%

=1 j=1
= E[f* -2f Zﬁil‘i + Z Tt + Zﬁiﬁjxifﬂj]
i=1 i=1 i#j 7
4 4 (N
=EB[(1-d)f*+ Z (f = Bizs)® + Zﬂiﬁjxﬂj]
i=1 i#j
d d
=(1-d)E[f*] + Z E[(f — Bix:)?] + Z BiBj Elwx;]
i=1 i#j
x; are independent Bernouilli variables with probability w;, which means Cov(z;,z;) = 0.

Therefore, if we center z; so that E(x;) = 0, i.e., subtract w;, then E(z;x;) = Cov(z;, ;) +
E(x;)E(z;) = 0.

Then, the equation changes to:

d d
Bpres = argmin[(1 - d)E[f?] + Z E[(f — Biw:)?]] = arg mﬁin[z E[(f = Biz:)?]]  (8)

which is equivalent to minimizing 3y, ,; individually. Taking the derivative for a single Bp.c¢,i, We
have:

dE((f — Bixwi)?] =
e = E[-2z(f — Bizi)] =0 )

— B; = Elxif]/Blx}]

Since E[z?] = Var(z;) = wi(l —w;) and E[z;f] = w;(1 — w)E[flz; = 1 —wi] + (1 —
wi)(—wi) E[f|zi = —wi:

wi(1 —w)E[f|z; =1 —wi] + (1 — w;)(—w;) E[f|2; = —w]

o= w;(1— w;) (10)
Since x; = 1 — w; means feature 7 is included in the input set S and x; = —w; means it is excluded

from S, the above equation becomes:

Bi = E[f(iUS)] - E[f(5)]

SN | (7)) T LCIED ol | (00 ) )

SCN\i je€S  j¢S SCN\i jeS  j¢s (11

ST T ws T (= wdlF(SUa) = ()] = Byrera

SCN\i j€S  j¢s
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373 B.2 Proof for Theorem 2

s7+  Equation|[f]is identical to[5]except that we have the intercept term y. Expanding the equation, we
375 have:

E[(f(z) — Bo — B x)?]
d
—Bo — Z Bixi)?]

d d d d
=E[f*—2f Y Bimi+ > BiwiBjzm;+ B3 —2B0f +280 > Bixs]

=1 i=1 j=1 =1

d d d d
[f2=2f) B+ Y Blai+ Y BiBjmizs + B3 — 280f + 280 Y _ Biai]

=1 i=1 i#£] i=1

d d d
=E[(1=d)f>+>_(f = Biwi)> +>_ BiBjaix; + 65 — 280f + 250 > Biwi

i=1 i£] i=1

d d d
= (1= d)E[f|+ > _E[(f - Biz:)*| + Y BiBiElwiz;] + 85 — 2B0E[f] + 280 Y _ BiE[xi]
i=1 it i=1
(12)

76 Since centering sets E[z;| = 0 and Efx;x;] = 0:

d d
Bores = argmin[(1=d)E[f*|+)_ E[(f = Bix:)*|+85~280 Elf]] = argmin[y | B((f ~ Biwi)’]
i=1 i=1
(13)
a77  Since the objective is equivalent, the solution stays identical as that from Equation 3]
sz B.3 Proof for Theorem 3
379 This proof closely follows the convergence of GLIME [10Q]. Since Preference Banzhaf is the solution

sso for a linear regression model, we know that:

¢pref = (Xan)_anyn (14)

381 where X, is the centered sampled masks and y,, is the corresponding model predictions. Representing
s Y, =XIX, andT, = X,y,, we would like to find the convergence of .. 'T,, to the limit X',

383 First, we can find the limit for XJ,, as:

Y= lim ¥, = lim XX, = B(XTX) =Var(X) = diag(c?) = diag(w;(1 — w;)) (15)

n—o0 n—r 00
s¢  E(XTX) is equal to the variance of X since X has been centered, i.e., F(x;) = 04, which makes

sss Cov(w;,x;) = E(viz;) — E(x;)E(xj) = E(z;x;). Note that 0 < o2 < 0.25 since each mask
ss6  follows a Bernouilli distribution. We can also bound the values of X,, as follows:

,{Zw _|_Z 1—w)?} < — Zmax (w;, 1 — w;)? (16)

k€St k€S2
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388

389
390

391
392
393

G, = %{ > wiwi+ > —wi(1 - wy)

keSy keS2

+ Y (1= wi)w; +% D (1 —w) (1 —wy)} (17)

keSs keSy
1 n
<*§ iwj, (1 —w;)(1 —wj) <1
< nk_lmax(w wy, ( w;)( wj)

Therefore, all elements of ||3,, — X|| are bounded to [—0.25, 1], and we may apply matrix Hoeffding’s
inequality with v = max(a?):

nt?

~1|2 is simply the sum of inverse of variances 02 = ~2. Lastly, we may a oeffding’s
$71|2 is simply th fi f vari 41/02 =~2. Lastly. y apply Hoeffding’
inequality to I, to find:

nt?
P([|[Tn =Tz 2 1) < 2dexp<—W) (19)
Following [10], if we let n be the maximum among n; = 32v2v2log(4d/s), no

32¢~2M?d*~%log(4d/$), and n3 = 32¢~2M?v2dy*log(4d/5), we have P(||X, T, — 27IT| <
1-9).
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s« C  Sensitivity

The sensitivity results using Jaccard distance and correlation index are as follows. The results agree

Adult Bank Marketing [2 and Crime Diabetes California Housing
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(b)

Figure 5: (a) Jaccard distance and (b) correlation index across different datasets.
those implied by Ly-normalized error in Figure .2.1]
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims in the abstract and introduction summarize the conclusions drawn
from the main theoretical and empirical findings.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification:We discuss the limitations in the Limitations and Future Directions section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The full proofs for the main theorems are provided in the appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All details on the experiments are provided either in the main text or the
appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: The code has not yet been published. However, all experiments are performed
using PyTorch and XGBoost, both of which are open source packages in Python. All datasets
are also open source and their references have been provided.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The main details such as the main datasets, model architectures, and hyperpa-
rameters are discussed in the main text. Further details are provided in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the average of instance-wise standard errors for faithfulness metrics
in quantitative evaluations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The CPU and GPU specifications are provided in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The authors have reviewed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: This paper analyzes the theoretical equivalence between preference-adjusted
Banzhaf values and centered linear regression. Consequently, it does not have risks for
critical isssues such as malicious misuse, societal bias, and privacy and security risks. Given
the low negative impact, we do not discuss societal impact to conserve space.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original sources of the datasets used in the experiments are provided in
the references.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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708 * We recognize that the procedures for this may vary significantly between institutions

709 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
710 guidelines for their institution.

711 * For initial submissions, do not include any information that would break anonymity (if
712 applicable), such as the institution conducting the review.

713 16. Declaration of LLM usage

714 Question: Does the paper describe the usage of LLMs if it is an important, original, or
715 non-standard component of the core methods in this research? Note that if the LLM is used
716 only for writing, editing, or formatting purposes and does not impact the core methodology,
717 scientific rigorousness, or originality of the research, declaration is not required.

718 Answer: [NA]

719 Justification:

720 Guidelines:

721 * The answer NA means that the core method development in this research does not
722 involve LLMs as any important, original, or non-standard components.

723 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
724 for what should or should not be described.
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