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Abstract

Game-theoretic feature attribution methods are popular in XAI because they satisfy1

several desirable axioms. Approximating a model as a game with input features as2

players, these methods measure the weighted average contribution of each feature3

to a model’s prediction across different feature subsets. However, these techniques4

also make strict assumptions that may affect the quality of the explanations. One5

common assumption is that all features can join or leave a subset with probability of6

0.5, i.e., all subsets are equally likely to form. However, in real games, each player7

can have different preference for joining a coalition, shifting the probability of the8

subsets and thus the attribution values. Following this notion, we introduce Pref-9

erence Banzhaf, which calculates Banzhaf-like value with adjusted probabilities10

using centered linear regression. We theoretically show the convergence of Prefer-11

ence Banzhaf and empirically demonstrate the effect of probability adjustment on12

explanation quality and sensitivity.13

1 Introduction14

Artificial Intelligence (AI) is becoming a ubiquitous tool in many fields thanks to their capacity15

to reflect complicated patterns in large datasets. However, this capacity is often accompanied by16

high model complexity, making it difficult to interpret a model’s prediction process. In high-stakes17

domains like health care or finance [1, 2], interpretability is as important as the accuracy of prediction,18

and model complexity hinders the practical adoption of AI in these domains. Explainable AI (XAI)19

tackles this issue by attaching explanations to the models [3, 4, 5].20

Among different explanations, feature attribution measures the contribution of input features to a21

model’s prediction. In particular, local model-agnostic methods compute the input importance at22

instance level regardless of target model’s architecture [6]. There are two major branches of local23

model-agnostic attribution: Locally Interpretable Model Explanation (LIME) [7] and game-theoretic24

techniques. On the one hand, LIME fits a surrogate model gθ to randomly sampled perturbations25

around the target instance x with a locality-defining kernel π. Most LIME-based technique use26

a linear gθ since θ corresponds directly to importance, and most improvements are derived from27

modifying the noise generation process or the fitting process [8, 9, 10].28

The second branch of local model-agnostic attribution is game-theoretic XAI. These methods ap-29

proach the explanation process as a cooperative game, considering input features as players and the30

model as the value function. The game theory solution of a player’s contribution corresponds directly31

to a feature’s importance. The main strength of game-theoretic attribution is that they satisfy the32

underlying axioms of the corresponding solution. For example, the Shapley value [11]:33

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



ϕi =
1

n

∑
S⊆N\i

(
n− 1

|S|

)
[v(S ∪ i)− v(S)] (1)

is a solution of cooperative game theory that uniquely satisfies linearity, dummy, symmetry, and34

efficiency. While the combinatorial nature of Shapley values make it impossible to calculate exactly35

for large number of features, KernelSHAP [12] shows that it can be approximated with a weighted36

linear regression. Due to its massive popularity, KernelSHAP has been explored thoroughly in the37

past literature [13, 14, 15, 16].38

Unfortunately, KernelSHAP is suffers from issues like numerical instability. Consequently, more39

recent literature focuses on relaxing some axioms to improve the quality of the explanations. One40

example is the Banzhaf value [17], which is another solution of cooperative game theory which41

satisfies the same axioms as the Shapley value except efficiency:42

ϕi =
1

2n−1

∑
S⊆N\i

[v(S ∪ i)− v(S)] (2)

The Banzhaf value is simply an average of the payoff difference caused by player i across all possible43

coalitions excluding said player. More generally, values of the form:44

ϕi =
∑

S⊆N\i

p(S)[v(S ∪ i)− v(S)] (3)

where p(S) is the probability of coalition S, are referred to as probabilistic values [18].45

One problem with regular Banzhaf value is that it assumes that all coalitions are equally likely to form.46

This assumption is equivalent assuming each player being neutral to joining a coalition. However, in47

real life, players are likely to have different preferences depending on their objectives. For example,48

if each player wishes to maximize their payoff, a player would have a higher probability of joining49

(i.e., a preference) the greater their expected payoff in larger coalitions. The criteria may not even be50

directly related to the game: for instance, if political parties vote on a regulation, they may make their51

vote not based on the game payoff (passing the regulation), but another criteria like future likelihood52

of re-election. Regardless of cause, reflecting the preference of coalition is critical for more accurate53

evaluation of each player’s importance in a game.54

Based on this notion, we introduce Preference Banzhaf, which computes Banzhaf value given each55

feature’s probability of forming a coalition. We show that the attribution values can be computed56

through a centered (and later a regular) linear regression with binary masks, prove the convergence57

rate of the value, and empirically demonstrate the benefits of preference reflection. Our contributions58

are as follows:59

• We introduce Preference Banzhaf, a novel algorithm that efficiently computes axiom-60

satisfying attribution using a different coalition-forming probability for each feature61

• We show the equivalence between Preference Banzhaf and (a) a centered linear regression62

shifted by each feature’s probability, and (b) a regular linear regression with intercept63

• We derive the theoretical convergence rate of Preference Banzhaf64

• We empirically demonstrate the effect of using Preference Banzhaf and interpret what the65

different weights mean intuitively66

2 Related Work67

2.1 Model-Agnostic Explanations68

Model-agnostic explanations usually involve perturbing the input and measuring the change in the69

output. A fundamental method in this category is LIME [7], which fits an interpretable model70

with kernel-weighted loss. The original method uses a linear model with a radial basis function71

(RBF) kernel, but other kernels (such as cosine similarity kernel in Captum [19]) can be used.72

2



Studies building upon LIME usually upgrade the sampling scheme or kernel selection. [9] trains a73

causal model for generating perturbations, and [20] uses a clustering model to select perturbations74

deterministically from the training dataset. [8] reformulates LIME as a Bayesian model to adjust the75

LIME coefficients by some prior. [21] adopts an empirical pipeline to measure optimal RBF kernel76

width for a desired level of local goodness of fit. [10] shows equivalence between RBF kernel and77

adjusted feature mask probability, significantly stabilizing the attribution results by removing the78

kernel from the regression.79

2.2 Game-Theoretic XAI80

Game theory-based XAI literature focuses on developing methods that satisfy certain axiomatic81

properties. They tend to use Shapley value [11] (Equation 1) as the basis, which satisfies four82

properties: linearity, dummy, symmetry, and efficiency. While the Shapley value is too costly to83

calculate exactly, [12] shows that it can be estimated using a linear regression, a method known as84

KernelSHAP. The method has been adapted in many different directions [16], such as architecture85

specialization [22, 23, 24] or estimation method improvements [25, 26]. One issue with Shapley86

value is that it can be numerically unstable and difficult to compute in practice. Recent works relax87

some of the axioms - mainly efficiency - to address these shortcomings. For example, [27] propose88

Beta Shapley, which adjust the Shapley averaging scheme to include a Beta distribution.89

A growingly popular alternative is Banzhaf value (Equation 2). While similar in construction to90

Shapley value, they differ in the treatment of the order of feature subsets. For Shapley value, the91

order is important: a set of size s that includes i as the m-th element is different from that as the l-th92

element, assigning different weights to the two coalitions. Banzhaf value considers both sets to be93

the same and simply averages across all possible subsets. Despite this difference, the two values are94

extremely similar, especially in terms of the rank of contributions [28, 29].95

Most papers that use Banzhaf value often use regular Banzhaf value. [29] uses Banzhaf value for96

data valuation; [30] uses Shapley and Banzhaf value to select the optimal vocabulary subset for97

NLP tasks; and [31] utilizes Banzhaf value to create counterfactuals in graph neural networks. [32]98

generalizes Banzhaf value to weighted Banzhaf value for data valuation and shows that optimal99

weight w is dependent on the dataset and model. However, there has not been any research on100

computing Banzhaf values when all features have different weights, especially without relying on101

feature-wise calculations (referred to as Maximum Sample Reuse).102

3 Method103

3.1 Definition104

Given players i ∈ S ⊆ N , let v(S) be the target value function for subset S. Letwi be the probability105

that player i joins a coalition, i.e., their coalition preference. Then, the Preference Banzhaf value ψi
p106

of player i is defined as:107

ψi
p =

∑
S∈N\i

[
∏
j∈S

wj

∏
j /∈S

(1− wj)][v(S ∪ i)− v(S)] (4)

Intuitively, ψi
p is the expected change in v given that each player may join the coalition following108

a multivariate binomial distribution with parameter w = {w1, w2, ..., wd}. Regular Banzhaf value109

is a special case where wi = 0.5∀i, while weighted Banzhaf value is another special case where110

wi = α∀i.111

3.2 Preference Banzhaf Approximation with Centered Linear Regression112

KernelBanzhaf [33] approximates the Banzhaf value by masking each feature with probability113

w = 0.5, and regressing the results against z = {−0.5, 0.5}d, where zi = −0.5 if xi is masked114

and 0.5 otherwise. This formulation can be generalized to any set of wi by using centered linear115

regression:116

Theorem 1. Preference Banzhaf as Centered Linear Regression. Preference Banzhaf ψp is the117

solution of the centered linear regression:118
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Figure 1: Illustration of regular versus Preference Banzhaf. Regular Banzhaf takes a simple average
of payoff difference. Preference Banzhaf takes a weighted average of payoff difference based on the
coalition-forming probability wi.

ψp = argmin
β
EX [(v(z)− βT z)2] (5)

where zi = mi − wi, p(mi = 1) = wi,mi = 0, 1.119

We can further show that the solution is still ψp after adding an intercept term.120

Theorem 2. Preference Banzhaf as Centered Linear Regression with Intercept. Preference121

Banzhaf ψp is the solution of the centered linear regression with intercept:122

β∗
0 , ψp = argmin

β0,β
EX [(v(z)− β0 − βT z)2] (6)

The full proof for Theorems 1 and 2 are presented in the Appendix.123

A consequence of Theorem 2 is that in terms of implementation, we do not need to center z to124

approximate the Preference Banzhaf value since centering does not affect the coefficients of a linear125

model when an intercept exists. We may perform the linear regression directly.126

3.3 Convergence to True Value127

A key question associated with kernel approximation of Banzhaf values is the rate of convergence128

to the true value. In the case of Preference Banzhaf value, it is closely related to GLIME [10] in129

implementation. Consequently, we can provide similar convergence guarantees.130

Theorem 3. Convergence of Preference Banzhaf Assume that Z ∼ {bi − wi}d, where131

bi ∼ Ber(wi). Then, given an empirical sample Zn and corresponding values vn, the linear132

regression solution βn converges to ψp with probability 1 − δ (i.e., P (|βn − ψp|2 ≤ ϵ) ≤ 1 − δ133
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(a)

(b)

(c)

Figure 2: Convergence experiments. (a) v2γ4 for random probabilities and models generated from the
seeds. (b) γ4 when v2 is constant at 0.25. (c) Same as (b) with N = 2000. Generally, γ4 dominates
the convergence relation with the volatility terms.

for n = Ω(ϵ−2M2v2d3γ4log(4/δ))) for some constant M , where v2 = max(wi(1 − wi)) and134

γ2 =
∑d

i=1 1/(wi(1− wi)).135

The full proof for convergence is presented in the Appendix. This theorem implies that, with all else136

held constant, the solution converges the fastest when wi(1− wi) is maximized at wi = 0.5, i.e., the137

regular Banzhaf value. It also implies that weighted Banzhaf values with wi = α and wi = 1− α138

should have equal convergence under identical conditions.139

3.4 Synthetic Experiment for Convergence140

Figure 3.4 shows the plots L2 error of Preference Banzhaf estimates against v2 and γ4 for synthetic141

datasets. Each subplot contains estimates for a model with 4 to 7 input features. The first row shows142

the relation between L2 error and v2γ4 for random w applied on random quadratic functions, while143

the second row shows the effect of γ4 when v2 is held constant at 0.25 (i.e., at least 1 wi=0.5). We144
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Figure 3: L2-normalized error over N across real datasets. We see that Kernel Banzhaf generally
achieves the lowest sensitivity among Banzhaf methods as expected from Theorem 3.

see that the relation is linear for both cases. The third row shows the same plot as the second row145

except at N = 2000 instead of N = 1000. We see that while the maximum error decreases, the linear146

relation between error and γ4 still holds. While not reported to conserve space, the relation between147

L2 error and v2 is generally constant or slightly linear, and γ4 dominates most of the error relation.148

4 Experiment149

4.1 Setup150

Algorithms. We use the following algorithms for the experiments:151

• KernelBanzhaf (Kbanzhaf ) [33]: this is equivalent to setting wi = 0.5.152

• Weighted Banzhaf with probability α (WBanzhaf(α)): this is equivalent to settingwi = α.153

We use α of 0.25 and 0.75 to test the effect of α on convergence and explanation quality.154

• KernelSHAP [12] (KernelSHAP ): this method approximates Shapley value using linear155

regression with combinatorial kernel.156

• MRLN [34]: We use this method to choose wi for Preference Banzhaf. Model Response157

Localized Attribution (MRLN) computes the empirical probability by sorting the samples by158

a distance metric from the original instance and averaging the mask of the closest samples.159

We follow the original paper for the best empirical thresholds.160

Models and datasets. We train an XGBoost classifier for several datasets (Adult Census, Communi-161

ties and Crime, California Housing, Diabetes, and Bank Marketing). We use the default settings from162

training the classifiers. Each model is trained on an random 80% split of the corresponding dataset.163

Settings. For the Adult and Diabetes datasets, which have only 8 features, we generate explanations164

with maximum sample size equal to 2d. For the rest of the tabular datasets, we use 500, 1000, and165

2000 samples to evaluate the explanations. For tabular datasets, the evaluation is performed across166

40 different seeds between 0 and 800. The replacement value for masking is a random instance in167

the opposite class. For image datasets, we use a baseline of 0 with a fixed seed of 0. The images are168

segmented into 64 equal segments. All evaluations are performed on the remaining 20% test split.169

Faithfulness. We evaluate the faithfulness of the attributions using Area over Perturbation Curve170

[35] with predicted class’s logit (AOPCL) and probability (AOPCP ), as well as Iterative Removal171

of Features (IROF) [36]. It should be noted that while there are discussions on biases with these172

metrics [37, 38, 39], they are still widely used in the XAI literature for evaluation and it is outside of173

the scope of the study to discuss their limitations.174

Sensitivity. We evaluate the sensitivity of the attributions using L2-normalized error [33], average175

pairwise rank correlation, and top-K Jaccard index. For The last metric, we set K to 5 for Adult and176

Diabetes datasets, and the minimum between 20 and half of the number of features for the rest of the177

datasets. The sensitivity is evaluated only for tabular data due to computational constraints.178
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4.2 Quantitative Evaluation179

4.2.1 Sensitivity180

The L2-normalized error for real datasets over N is presented in Figure 4.2.1. It is immediately181

obvious that Kbanzhaf achieves the lowest sensitivity amongst Banzhaf values, which agrees182

with Theorem 3 and the synthetic results since it minimizes v2γ4. KernelSHAP achieves lower183

sensitivity than WBanzhaf(0.75) in most datasets, but often loses to the other methods. MRLN184

is surprisingly robust, achieving third or second lowest L2-normalized error across all datasets. As185

will be shown in the subsequent section, MRLN also achieves higher average faithfulness than186

other methods, which suggests that we may generate high fidelity explanations with small robustness187

tradeoff by adjusting wi to a model’s internal behavior. The sensitivity measured using Jaccard188

distance and correlation index (reported in Appendix C) also agree with that using L2-normalized189

error.190

4.2.2 Faithfulness191

The faithfulness evaluation of experiments on real tabular datasets is reported in Table 1. We can192

observe several patterns:193

• Excluding Preference Banzhaf with MRLN setup, the average faithfulness is generally the194

highest for regular Banzhaf value.195

• The average standard error of faithfulness (the standard deviation of a metric for each instance196

divided by square root of number of seeds, averaged across instances) follows similar order197

as sensitivity: generally, KBanzhaf is the smallest, followed by WBanzhaf(0.25) or198

MRLN , then KernelSHAP and WBanzhaf(0.75).199

• The average standard error of faithfulness for WBanzhaf(0.75) tends to be much larger200

than the others. In particular, the average standard error for MRLN is comparable to201

WBanzhaf(0.25) despite the additional randomness caused by probability estimation.202

These patterns demonstrate the effectiveness of using properly adjusted probabilities for Banzhaf203

values: we can achieve high and stable average fidelity.204

4.3 Qualitative Evaluation205

In this section, we analyze samples from image datasets to investigate the information captured by206

wi. Specifically, we compare the faithfulness of explanations depending on the location of high wi207

with respect to the true object in the image. Given a 64 equally divided segmentation map, we use208

wi = 0.7 (high weight) and wi = 0.3 (low weight) and either place the higher weight in the center209

4 × 4 segments (Banzhaf(Center)) or the remaining periphery segments (Banzhaf(Periph)).210

Comparing the faithfulness between the two setups, we find the following patterns:211

• In terms of average faithfulness, Banzhaf(Center) has much higher fidelity than212

Banzhaf(Periph) as shown in Table 2. Given that many images in the Imagenette213

and Imagewoof datasets have their objects at the center of the image, this result implies that214

a higher overlap between the object and wi results in more faithful attributions.215

• This pattern coincides with instance-level differences. In Figure 4.3, we have examples216

where Banzhaf(Center) has much higher fidelity metric than Banzhaf(Periph) and217

vice versa. We see that when faithfulness of Banzhaf(Center) is higher, the main object218

is usually at the center. In the opposite case, the object is off-center or is too small compared219

to the window size.220

This trend suggests that, to generate more faithful explanations, we need to select wi that is effectively221

the ’attention’ of the model: higher wi should be assigned to features that the model focuses on222

for its predictions. It also explains why MRLN has higher average fidelity than other methods: it223

dynamically selects wi that aligns with the ’attention’ of the model based on the target model’s224

internal behavior. Note that the interpretation of wi is slightly different from an attribution, which225

determines how much (in positive or negative direction) a segment contributes to a prediction. wi226

only implies that the segment is important - we do not know the direction of said importance.227
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Table 1: Average Faithfulness and Standard Errors for Tabular Datasets

Name Logit_AOPC Prob_AOPC Logit_IROF

WBanzhaf(0.25) 1.3794 ± 0.0041 0.5551 ± 0.0010 0.3624 ± 0.0011
Kbanzhaf 1.3866 ± 0.0040 0.5589 ± 0.0009 0.3578 ± 0.0011
WBanzhaf(0.75) 1.2480 ± 0.0084 0.5259 ± 0.0022 0.3957 ± 0.0024
KernelSHAP 1.3831 ± 0.0052 0.5572 ± 0.0013 0.3598 ± 0.0015
MRLN 1.4271 ± 0.0038 0.5667 ± 0.0009 0.3486 ± 0.0010

(a) Bank Marketing
Name Logit_AOPC Prob_AOPC Logit_IROF

WBanzhaf(0.25) 5.5966 ± 0.0090 0.8703 ± 0.0004 0.0607 ± 0.0004
Kbanzhaf 5.6177 ± 0.0096 0.8763 ± 0.0004 0.0544 ± 0.0004
WBanzhaf(0.75) 5.1575 ± 0.0261 0.8666 ± 0.0010 0.0641 ± 0.0010
KernelSHAP 5.3053 ± 0.0226 0.8562 ± 0.0015 0.0746 ± 0.0015
MRLN 5.6942 ± 0.0080 0.8782 ± 0.0003 0.0525 ± 0.0003

(b) Communities and Crime
Name Logit_AOPC Prob_AOPC Logit_IROF

WBanzhaf(0.25) 2.7230 ± 0.0025 0.6417 ± 0.0003 0.2666 ± 0.0004
Kbanzhaf 2.7221 ± 0.0020 0.6432 ± 0.0003 0.2648 ± 0.0003
WBanzhaf(0.75) 2.6663 ± 0.0059 0.6370 ± 0.0008 0.2718 ± 0.0008
KernelSHAP 2.7234 ± 0.0031 0.6424 ± 0.0004 0.2656 ± 0.0005
MRLN 2.7396 ± 0.0022 0.6447 ± 0.0003 0.2630 ± 0.0004

(c) Adult
Name Logit_AOPC Prob_AOPC Logit_IROF

WBanzhaf(0.25) 3.4762 ± 0.0082 0.7881 ± 0.0010 0.1839 ± 0.0011
Kbanzhaf 3.5125 ± 0.0063 0.7972 ± 0.0005 0.1745 ± 0.0005
WBanzhaf(0.75) 3.4157 ± 0.0168 0.7964 ± 0.0012 0.1752 ± 0.0012
KernelSHAP 3.4892 ± 0.0095 0.7919 ± 0.0012 0.1798 ± 0.0012
MRLN 3.5303 ± 0.0073 0.7971 ± 0.0006 0.1746 ± 0.0007

(d) Diabetes
Name Logit_AOPC Prob_AOPC Logit_IROF

WBanzhaf(0.25) 4.4203 ± 0.0068 0.7983 ± 0.0004 0.1310 ± 0.0005
Kbanzhaf 4.4382 ± 0.0049 0.8010 ± 0.0002 0.1280 ± 0.0002
WBanzhaf(0.75) 4.3462 ± 0.0154 0.7990 ± 0.0006 0.1301 ± 0.0006
KernelSHAP 4.4308 ± 0.0069 0.8002 ± 0.0004 0.1288 ± 0.0004
MRLN 4.4485 ± 0.0059 0.8011 ± 0.0003 0.1279 ± 0.0003

(e) California Housing

Table 2: Average Faithfulness for High Probability at the Center and at the Periphery for Images

Name Logit_AOPC Prob_AOPC Logit_IROF

Banzhaf(Center) 5.0321 0.7224 0.2049
Banzhaf(Periph) 4.8623 0.7154 0.2113

(a) Imagenette
Name Logit_AOPC Prob_AOPC Logit_IROF

Banzhaf(Center) 5.2139 0.7388 0.1413
Banzhaf(Periph) 5.0047 0.7310 0.1482

(b) Imagewoof

8



(a)

(b)

Figure 4: Examples (first column) from Imagenette and segment importance for (a) high positive
faithfulness difference between Banzhaf(Center) (2nd column) and Banzhaf(Periph) (3rd
column), and (b) high negative difference. The object tends to be large and at the center for the
former, while it is small or off-center for the latter.

5 Conclusion228

In this paper, we present Preference Banzhaf, where each input feature is masked following a different229

probability, i.e., their preference of forming a coalition. We prove that Preference Banzhaf values230

can be computed through (a) a centered linear regression without intercept, and (b) a regular linear231

regression with intercept. We also derive the theoretical convergence given a set of preferences.232

We compare the faithfulness and sensitivity of MLRN-based Preference Banzhaf against different233

model-agnostic baseline methods across several tabular and image datasets. We find that Preference234

Banzhaf achieves the best average fidelity across all datasets, often followed by vanilla Banzhaf235

values. In terms of sensitivity, vanilla Banzhaf achieves the lowest sensitivity across all datasets, but236

is usually closely followed by Preference Banzhaf.237

6 Limitations and Future Directions238

There are several limitations to this work. Firstly, this paper focuses on accurately computing239

Preference Banzhaf values given wi. Discovering methods of finding optimal wi for a given objective240

using the relation between Preference Banzhaf and linear regression would be interesting. Secondly,241

Preference Banzhaf is limited to fixed wi. Finding a fuzzy equivalent could help extend game-242

theoretic XAI to more diverse set of model-agnostic explanations. Lastly, this research focuses solely243

on feature attribution task. Extending Preference Banzhaf to other tasks such as data valuation could244

show the benefits of using more generalized forms of game-theoretic XAI in different applications.245
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A Experimental Details353

The XGBoost classifiers are trained with default parameters from the xgboost package, while the354

image classifiers are fine-tuned from IMAGENET10K weight available in the torchvision package.355

The classification layer of the image classifiers consist of 4 linear layers with 20% dropout, batch356

normalization, and ReLU activation. All training and experiments are performed on Intel(R) Xeon(R)357

Gold 6342 CPU @ 2.8GHz and NVidia RTX A6000 (48GB).358

Table 3: Model details.

DATASET MODEL PACKAGE ACC (%)

ADULT XGBOOST XGBOOST 87.29
CALIFORNIA XGBOOST XGBOOST 84.74
CRIME XGBOOST XGBOOST 80.75
IMAGENETTE RESNET101 TORCHVISION 89.81
IMAGEWOOF RESNET101 TORCHVISION 79.89

Table 4: MLP layer details.

BLOCK LAYERS

1 RELU
1 LINEAR(2048,1024)
1 BATCHNORM

2 RELU
2 DROPOUT(0.2)
2 LINEAR(1024,512)
2 BATCHNORM

3 RELU
3 DROPOUT(0.2)
3 LINEAR(512,256)
3 BATCHNORM

4 RELU
4 DROPOUT(0.2)
4 LINEAR(512,10)
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B Proofs359

In this section, we present the full proofs for theorems 1 through 3.360

B.1 Proof for Theorem 1361

Expanding the objective, we have:362

E[(f(x)− βTx)2] = E[(f(x)−
d∑

i=1

βixi)
2] = E[f2 − 2f

d∑
i=1

βixi +

d∑
i=1

d∑
j=1

βixiβjxj ]

= E[f2 − 2f

d∑
i=1

βixi +

d∑
i=1

β2
i x

2
i +

d∑
i̸=j

βiβjxixj ]

= E[(1− d)f2 +

d∑
i=1

(f − βixi)
2 +

d∑
i̸=j

βiβjxixj ]

= (1− d)E[f2] +

d∑
i=1

E[(f − βixi)
2] +

d∑
i̸=j

βiβjE[xixj ]

(7)

xi are independent Bernouilli variables with probability wi, which means Cov(xi, xj) = 0.363

Therefore, if we center xi so that E(xi) = 0, i.e., subtract wi, then E(xixj) = Cov(xi, xj) +364

E(xi)E(xj) = 0.365

Then, the equation changes to:366

βpref = argmin
β

[(1− d)E[f2] +

d∑
i=1

E[(f − βixi)
2]] = argmin

β
[

d∑
i=1

E[(f − βixi)
2]] (8)

which is equivalent to minimizing βpref,i individually. Taking the derivative for a single βpref,i, we367

have:368

dE[(f − βixi)
2]

dβi
= E[−2xi(f − βixi)] = 0

→ βi = E[xif ]/E[x2i ]

(9)

Since E[x2i ] = V ar(xi) = wi(1 − wi) and E[xif ] = wi(1 − wi)E[f |xi = 1 − wi] + (1 −369

wi)(−wi)E[f |xi = −wi]:370

βi =
wi(1− wi)E[f |xi = 1− wi] + (1− wi)(−wi)E[f |xi = −wi]

wi(1− wi)

= E[f |xi = 1− wi]− E[f |xi = −wi]

(10)

Since xi = 1− wi means feature i is included in the input set S and xi = −wi means it is excluded371

from S, the above equation becomes:372

βi = E[f(i ∪ S)]− E[f(S)]

=
∑

S⊆N\i

[
∏
j∈S

wj

∏
j /∈S

(1− wj)][f(S ∪ i)]−
∑

S⊆N\i

[
∏
j∈S

wj

∏
j /∈S

(1− wj)][f(S)]

=
∑

S⊆N\i

[
∏
j∈S

wj

∏
j /∈S

(1− wj)][f(S ∪ i)− f(S)] = βpref,i

(11)
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B.2 Proof for Theorem 2373

Equation 6 is identical to 5 except that we have the intercept term β0. Expanding the equation, we374

have:375

E[(f(x)− β0 − βTx)2]

= E[(f(x)− β0 −
d∑

i=1

βixi)
2]

= E[f2 − 2f

d∑
i=1

βixi +

d∑
i=1

d∑
j=1

βixiβjxj + β2
0 − 2β0f + 2β0

d∑
i=1

βixi]

= E[f2 − 2f

d∑
i=1

βixi +

d∑
i=1

β2
i x

2
i +

d∑
i̸=j

βiβjxixj + β2
0 − 2β0f + 2β0

d∑
i=1

βixi]

= E[(1− d)f2 +
d∑

i=1

(f − βixi)
2 +

d∑
i ̸=j

βiβjxixj + β2
0 − 2β0f + 2β0

d∑
i=1

βixi]

= (1− d)E[f2] +

d∑
i=1

E[(f − βixi)
2] +

d∑
i̸=j

βiβjE[xixj ] + β2
0 − 2β0E[f ] + 2β0

d∑
i=1

βiE[xi]

(12)

Since centering sets E[xi] = 0 and E[xixj ] = 0:376

βpref = argmin
β

[(1−d)E[f2]+

d∑
i=1

E[(f − βixi)
2]+β2

0−2β0E[f ]] = argmin
β

[

d∑
i=1

E[(f − βixi)
2]]

(13)

Since the objective is equivalent, the solution stays identical as that from Equation 5.377

B.3 Proof for Theorem 3378

This proof closely follows the convergence of GLIME [10]. Since Preference Banzhaf is the solution379

for a linear regression model, we know that:380

ϕpref = (XT
nXn)

−1Xnyn (14)

whereXn is the centered sampled masks and yn is the corresponding model predictions. Representing381

Σn = XT
nXn and Γn = Xnyn, we would like to find the convergence of Σ−1

n Γn to the limit Σ−1Γ.382

First, we can find the limit for Σn as:383

Σ = lim
n→∞

Σn = lim
n→∞

XT
nXn = E(XTX) = V ar(X) = diag(σ2

i ) = diag(wi(1− wi)) (15)

E(XTX) is equal to the variance of X since X has been centered, i.e., E(xi) = 0∀i, which makes384

Cov(xi, xj) = E(xixj) − E(xi)E(xj) = E(xixj). Note that 0 ≤ σ2
i ≤ 0.25 since each mask385

follows a Bernouilli distribution. We can also bound the values of Σn as follows:386

σ̂i
n =

1

n
{
∑
k∈S1

w2
i +

∑
k∈S2

(1− wi)
2} ≤ 1

n

n∑
k=1

max(wi, 1− wi)
2 (16)
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σ̂n
ij =

1

n
{
∑
k∈S1

wiwj +
∑
k∈S2

−wi(1− wj)

+
∑
k∈S3

−(1− wi)wj +
1

n

∑
k∈S4

(1− wi)(1− wj)}

≤ 1

n

n∑
k=1

max(wiwj , (1− wi)(1− wj) ≤ 1

(17)

Therefore, all elements of ||Σn−Σ|| are bounded to [−0.25, 1], and we may apply matrix Hoeffding’s387

inequality with v2 = max(σ2
i ):388

P (||Σn − Σ||2 ≥ t) ≤ 2dexp

(
−nt

2

8v2

)
(18)

||Σ−1||2F is simply the sum of inverse of variances
∑

d 1/σ
2
i = γ2. Lastly, we may apply Hoeffding’s389

inequality to Γn to find:390

P (||Γn − Γ||2 ≥ t) ≤ 2dexp

(
− nt2

8M2d2

)
(19)

Following [10], if we let n be the maximum among n1 = 32γ2v2log(4d/δ), n2 =391

32ϵ−2M2d2γ2log(4d/δ), and n3 = 32ϵ−2M2v2dγ4log(4d/δ), we have P (||Σ−1
n Γn − Σ−1Γ|| ≤392

1− δ).393
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C Sensitivity394

The sensitivity results using Jaccard distance and correlation index are as follows. The results agree395

with that in the main figure with L2-normalized error.396

(a)

(b)

Figure 5: (a) Jaccard distance and (b) correlation index across different datasets. The patterns match
those implied by L2-normalized error in Figure 4.2.1.
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NeurIPS Paper Checklist397

1. Claims398

Question: Do the main claims made in the abstract and introduction accurately reflect the399

paper’s contributions and scope?400

Answer: [Yes]401

Justification: Our claims in the abstract and introduction summarize the conclusions drawn402

from the main theoretical and empirical findings.403

Guidelines:404

• The answer NA means that the abstract and introduction do not include the claims405

made in the paper.406

• The abstract and/or introduction should clearly state the claims made, including the407

contributions made in the paper and important assumptions and limitations. A No or408

NA answer to this question will not be perceived well by the reviewers.409

• The claims made should match theoretical and experimental results, and reflect how410

much the results can be expected to generalize to other settings.411

• It is fine to include aspirational goals as motivation as long as it is clear that these goals412

are not attained by the paper.413

2. Limitations414

Question: Does the paper discuss the limitations of the work performed by the authors?415

Answer: [Yes]416

Justification:We discuss the limitations in the Limitations and Future Directions section.417

Guidelines:418

• The answer NA means that the paper has no limitation while the answer No means that419

the paper has limitations, but those are not discussed in the paper.420

• The authors are encouraged to create a separate "Limitations" section in their paper.421

• The paper should point out any strong assumptions and how robust the results are to422

violations of these assumptions (e.g., independence assumptions, noiseless settings,423

model well-specification, asymptotic approximations only holding locally). The authors424

should reflect on how these assumptions might be violated in practice and what the425

implications would be.426

• The authors should reflect on the scope of the claims made, e.g., if the approach was427

only tested on a few datasets or with a few runs. In general, empirical results often428

depend on implicit assumptions, which should be articulated.429

• The authors should reflect on the factors that influence the performance of the approach.430

For example, a facial recognition algorithm may perform poorly when image resolution431

is low or images are taken in low lighting. Or a speech-to-text system might not be432

used reliably to provide closed captions for online lectures because it fails to handle433

technical jargon.434

• The authors should discuss the computational efficiency of the proposed algorithms435

and how they scale with dataset size.436

• If applicable, the authors should discuss possible limitations of their approach to437

address problems of privacy and fairness.438

• While the authors might fear that complete honesty about limitations might be used by439

reviewers as grounds for rejection, a worse outcome might be that reviewers discover440

limitations that aren’t acknowledged in the paper. The authors should use their best441

judgment and recognize that individual actions in favor of transparency play an impor-442

tant role in developing norms that preserve the integrity of the community. Reviewers443

will be specifically instructed to not penalize honesty concerning limitations.444

3. Theory assumptions and proofs445

Question: For each theoretical result, does the paper provide the full set of assumptions and446

a complete (and correct) proof?447

Answer: [Yes]448
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Justification: The full proofs for the main theorems are provided in the appendix.449

Guidelines:450

• The answer NA means that the paper does not include theoretical results.451

• All the theorems, formulas, and proofs in the paper should be numbered and cross-452

referenced.453

• All assumptions should be clearly stated or referenced in the statement of any theorems.454

• The proofs can either appear in the main paper or the supplemental material, but if455

they appear in the supplemental material, the authors are encouraged to provide a short456

proof sketch to provide intuition.457

• Inversely, any informal proof provided in the core of the paper should be complemented458

by formal proofs provided in appendix or supplemental material.459

• Theorems and Lemmas that the proof relies upon should be properly referenced.460

4. Experimental result reproducibility461

Question: Does the paper fully disclose all the information needed to reproduce the main ex-462

perimental results of the paper to the extent that it affects the main claims and/or conclusions463

of the paper (regardless of whether the code and data are provided or not)?464

Answer: [Yes]465

Justification: All details on the experiments are provided either in the main text or the466

appendix.467

Guidelines:468

• The answer NA means that the paper does not include experiments.469

• If the paper includes experiments, a No answer to this question will not be perceived470

well by the reviewers: Making the paper reproducible is important, regardless of471

whether the code and data are provided or not.472

• If the contribution is a dataset and/or model, the authors should describe the steps taken473

to make their results reproducible or verifiable.474

• Depending on the contribution, reproducibility can be accomplished in various ways.475

For example, if the contribution is a novel architecture, describing the architecture fully476

might suffice, or if the contribution is a specific model and empirical evaluation, it may477

be necessary to either make it possible for others to replicate the model with the same478

dataset, or provide access to the model. In general. releasing code and data is often479

one good way to accomplish this, but reproducibility can also be provided via detailed480

instructions for how to replicate the results, access to a hosted model (e.g., in the case481

of a large language model), releasing of a model checkpoint, or other means that are482

appropriate to the research performed.483

• While NeurIPS does not require releasing code, the conference does require all submis-484

sions to provide some reasonable avenue for reproducibility, which may depend on the485

nature of the contribution. For example486

(a) If the contribution is primarily a new algorithm, the paper should make it clear how487

to reproduce that algorithm.488

(b) If the contribution is primarily a new model architecture, the paper should describe489

the architecture clearly and fully.490

(c) If the contribution is a new model (e.g., a large language model), then there should491

either be a way to access this model for reproducing the results or a way to reproduce492

the model (e.g., with an open-source dataset or instructions for how to construct493

the dataset).494

(d) We recognize that reproducibility may be tricky in some cases, in which case495

authors are welcome to describe the particular way they provide for reproducibility.496

In the case of closed-source models, it may be that access to the model is limited in497

some way (e.g., to registered users), but it should be possible for other researchers498

to have some path to reproducing or verifying the results.499

5. Open access to data and code500

Question: Does the paper provide open access to the data and code, with sufficient instruc-501

tions to faithfully reproduce the main experimental results, as described in supplemental502

material?503
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Answer: [No]504

Justification: The code has not yet been published. However, all experiments are performed505

using PyTorch and XGBoost, both of which are open source packages in Python. All datasets506

are also open source and their references have been provided.507

Guidelines:508

• The answer NA means that paper does not include experiments requiring code.509

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/510

public/guides/CodeSubmissionPolicy) for more details.511

• While we encourage the release of code and data, we understand that this might not be512

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not513

including code, unless this is central to the contribution (e.g., for a new open-source514

benchmark).515

• The instructions should contain the exact command and environment needed to run to516

reproduce the results. See the NeurIPS code and data submission guidelines (https:517

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.518

• The authors should provide instructions on data access and preparation, including how519

to access the raw data, preprocessed data, intermediate data, and generated data, etc.520

• The authors should provide scripts to reproduce all experimental results for the new521

proposed method and baselines. If only a subset of experiments are reproducible, they522

should state which ones are omitted from the script and why.523

• At submission time, to preserve anonymity, the authors should release anonymized524

versions (if applicable).525

• Providing as much information as possible in supplemental material (appended to the526

paper) is recommended, but including URLs to data and code is permitted.527

6. Experimental setting/details528

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-529

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the530

results?531

Answer: [Yes]532

Justification: The main details such as the main datasets, model architectures, and hyperpa-533

rameters are discussed in the main text. Further details are provided in the appendix.534

Guidelines:535

• The answer NA means that the paper does not include experiments.536

• The experimental setting should be presented in the core of the paper to a level of detail537

that is necessary to appreciate the results and make sense of them.538

• The full details can be provided either with the code, in appendix, or as supplemental539

material.540

7. Experiment statistical significance541

Question: Does the paper report error bars suitably and correctly defined or other appropriate542

information about the statistical significance of the experiments?543

Answer: [Yes]544

Justification: We provide the average of instance-wise standard errors for faithfulness metrics545

in quantitative evaluations.546

Guidelines:547

• The answer NA means that the paper does not include experiments.548

• The authors should answer "Yes" if the results are accompanied by error bars, confi-549

dence intervals, or statistical significance tests, at least for the experiments that support550

the main claims of the paper.551

• The factors of variability that the error bars are capturing should be clearly stated (for552

example, train/test split, initialization, random drawing of some parameter, or overall553

run with given experimental conditions).554
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• The method for calculating the error bars should be explained (closed form formula,555

call to a library function, bootstrap, etc.)556

• The assumptions made should be given (e.g., Normally distributed errors).557

• It should be clear whether the error bar is the standard deviation or the standard error558

of the mean.559

• It is OK to report 1-sigma error bars, but one should state it. The authors should560

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis561

of Normality of errors is not verified.562

• For asymmetric distributions, the authors should be careful not to show in tables or563

figures symmetric error bars that would yield results that are out of range (e.g. negative564

error rates).565

• If error bars are reported in tables or plots, The authors should explain in the text how566

they were calculated and reference the corresponding figures or tables in the text.567

8. Experiments compute resources568

Question: For each experiment, does the paper provide sufficient information on the com-569

puter resources (type of compute workers, memory, time of execution) needed to reproduce570

the experiments?571

Answer: [Yes]572

Justification: The CPU and GPU specifications are provided in the appendix.573

Guidelines:574

• The answer NA means that the paper does not include experiments.575

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,576

or cloud provider, including relevant memory and storage.577

• The paper should provide the amount of compute required for each of the individual578

experimental runs as well as estimate the total compute.579

• The paper should disclose whether the full research project required more compute580

than the experiments reported in the paper (e.g., preliminary or failed experiments that581

didn’t make it into the paper).582

9. Code of ethics583

Question: Does the research conducted in the paper conform, in every respect, with the584

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?585

Answer: [Yes]586

Justification: The authors have reviewed the NeurIPS Code of Ethics.587

Guidelines:588

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.589

• If the authors answer No, they should explain the special circumstances that require a590

deviation from the Code of Ethics.591

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-592

eration due to laws or regulations in their jurisdiction).593

10. Broader impacts594

Question: Does the paper discuss both potential positive societal impacts and negative595

societal impacts of the work performed?596

Answer: [No]597

Justification: This paper analyzes the theoretical equivalence between preference-adjusted598

Banzhaf values and centered linear regression. Consequently, it does not have risks for599

critical isssues such as malicious misuse, societal bias, and privacy and security risks. Given600

the low negative impact, we do not discuss societal impact to conserve space.601

Guidelines:602

• The answer NA means that there is no societal impact of the work performed.603

• If the authors answer NA or No, they should explain why their work has no societal604

impact or why the paper does not address societal impact.605

21

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses606

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations607

(e.g., deployment of technologies that could make decisions that unfairly impact specific608

groups), privacy considerations, and security considerations.609

• The conference expects that many papers will be foundational research and not tied610

to particular applications, let alone deployments. However, if there is a direct path to611

any negative applications, the authors should point it out. For example, it is legitimate612

to point out that an improvement in the quality of generative models could be used to613

generate deepfakes for disinformation. On the other hand, it is not needed to point out614

that a generic algorithm for optimizing neural networks could enable people to train615

models that generate Deepfakes faster.616

• The authors should consider possible harms that could arise when the technology is617

being used as intended and functioning correctly, harms that could arise when the618

technology is being used as intended but gives incorrect results, and harms following619

from (intentional or unintentional) misuse of the technology.620

• If there are negative societal impacts, the authors could also discuss possible mitigation621

strategies (e.g., gated release of models, providing defenses in addition to attacks,622

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from623

feedback over time, improving the efficiency and accessibility of ML).624

11. Safeguards625

Question: Does the paper describe safeguards that have been put in place for responsible626

release of data or models that have a high risk for misuse (e.g., pretrained language models,627

image generators, or scraped datasets)?628

Answer: [NA]629

Justification:630

Guidelines:631

• The answer NA means that the paper poses no such risks.632

• Released models that have a high risk for misuse or dual-use should be released with633

necessary safeguards to allow for controlled use of the model, for example by requiring634

that users adhere to usage guidelines or restrictions to access the model or implementing635

safety filters.636

• Datasets that have been scraped from the Internet could pose safety risks. The authors637

should describe how they avoided releasing unsafe images.638

• We recognize that providing effective safeguards is challenging, and many papers do639

not require this, but we encourage authors to take this into account and make a best640

faith effort.641

12. Licenses for existing assets642

Question: Are the creators or original owners of assets (e.g., code, data, models), used in643

the paper, properly credited and are the license and terms of use explicitly mentioned and644

properly respected?645

Answer: [Yes]646

Justification: The original sources of the datasets used in the experiments are provided in647

the references.648

Guidelines:649

• The answer NA means that the paper does not use existing assets.650

• The authors should cite the original paper that produced the code package or dataset.651

• The authors should state which version of the asset is used and, if possible, include a652

URL.653

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.654

• For scraped data from a particular source (e.g., website), the copyright and terms of655

service of that source should be provided.656
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• If assets are released, the license, copyright information, and terms of use in the657

package should be provided. For popular datasets, paperswithcode.com/datasets658

has curated licenses for some datasets. Their licensing guide can help determine the659

license of a dataset.660

• For existing datasets that are re-packaged, both the original license and the license of661

the derived asset (if it has changed) should be provided.662

• If this information is not available online, the authors are encouraged to reach out to663

the asset’s creators.664

13. New assets665

Question: Are new assets introduced in the paper well documented and is the documentation666

provided alongside the assets?667

Answer: [NA]668

Justification:669

Guidelines:670

• The answer NA means that the paper does not release new assets.671

• Researchers should communicate the details of the dataset/code/model as part of their672

submissions via structured templates. This includes details about training, license,673

limitations, etc.674

• The paper should discuss whether and how consent was obtained from people whose675

asset is used.676

• At submission time, remember to anonymize your assets (if applicable). You can either677

create an anonymized URL or include an anonymized zip file.678

14. Crowdsourcing and research with human subjects679

Question: For crowdsourcing experiments and research with human subjects, does the paper680

include the full text of instructions given to participants and screenshots, if applicable, as681

well as details about compensation (if any)?682

Answer: [NA]683

Justification:684

Guidelines:685

• The answer NA means that the paper does not involve crowdsourcing nor research with686

human subjects.687

• Including this information in the supplemental material is fine, but if the main contribu-688

tion of the paper involves human subjects, then as much detail as possible should be689

included in the main paper.690

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,691

or other labor should be paid at least the minimum wage in the country of the data692

collector.693

15. Institutional review board (IRB) approvals or equivalent for research with human694

subjects695

Question: Does the paper describe potential risks incurred by study participants, whether696

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)697

approvals (or an equivalent approval/review based on the requirements of your country or698

institution) were obtained?699

Answer: [NA]700

Justification:701

Guidelines:702

• The answer NA means that the paper does not involve crowdsourcing nor research with703

human subjects.704

• Depending on the country in which research is conducted, IRB approval (or equivalent)705

may be required for any human subjects research. If you obtained IRB approval, you706

should clearly state this in the paper.707
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• We recognize that the procedures for this may vary significantly between institutions708

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the709

guidelines for their institution.710

• For initial submissions, do not include any information that would break anonymity (if711

applicable), such as the institution conducting the review.712

16. Declaration of LLM usage713

Question: Does the paper describe the usage of LLMs if it is an important, original, or714

non-standard component of the core methods in this research? Note that if the LLM is used715

only for writing, editing, or formatting purposes and does not impact the core methodology,716

scientific rigorousness, or originality of the research, declaration is not required.717

Answer: [NA]718

Justification:719

Guidelines:720

• The answer NA means that the core method development in this research does not721

involve LLMs as any important, original, or non-standard components.722

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)723

for what should or should not be described.724
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