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Abstract

In this work, we explore online convex optimization (OCO) and introduce a new
condition and analysis that provides fast rates by exploiting the curvature of fea-
sible sets. In online linear optimization, it is known that if the average gradient
of loss functions exceeds a certain threshold, the curvature of feasible sets can be
exploited by the follow-the-leader (FTL) algorithm to achieve a logarithmic regret.
This study reveals that algorithms adaptive to the curvature of loss functions can
also leverage the curvature of feasible sets. In particular, we first prove that if an op-
timal decision is on the boundary of a feasible set and the gradient of an underlying
loss function is non-zero, then the algorithm achieves a regret bound of O(ρ lnT )
in stochastic environments. Here, ρ > 0 is the radius of the smallest sphere that in-
cludes the optimal decision and encloses the feasible set. Our approach, unlike ex-
isting ones, can work directly with convex loss functions, exploiting the curvature
of loss functions simultaneously, and can achieve the logarithmic regret only with
a local property of feasible sets. Additionally, the algorithm achieves an O(

√
T )

regret even in adversarial environments, in which FTL suffers an Ω(T ) regret, and
achieves an O(ρ lnT +

√
Cρ lnT ) regret in corrupted stochastic environments

with corruption level C. Furthermore, by extending our analysis, we establish a
matching regret upper bound of O

(
T

q−2
2(q−1) (lnT )

q
2(q−1)

)
for q-uniformly convex

feasible sets, where uniformly convex sets include strongly convex sets and ℓp-
balls for p ∈ [2,∞). This bound bridges the gap between the O(lnT ) bound for
strongly convex sets (q = 2) and the O(

√
T ) bound for non-curved sets (q → ∞).

1 Introduction

This paper considers online convex optimization (OCO), a framework in which a learner and an
environment interact in a sequential manner. At the beginning, a convex body (or feasible set) K ⊆
Rd is given. At each round t ∈ [T ] := {1, . . . , T}, the learner selects a decision xt ∈ K from the
convex body K using information obtained up to round t − 1. Then, the environment determines a
convex loss function ft : K → R, and the learner suffers loss ft(xt) and observes ∇ft(xt) ∈ Rd.
The goal of the learner is to minimize the regret, which is the expectation of the difference between the
cumulative loss of decisions (xt)

T
t=1 and that of a single optimal decision x⋆ fixed in hindsight, that

is, RT = E
[∑T

t=1(ft(xt)− ft(x⋆))
]

for x⋆ = argminx∈K E
[∑T

t=1 ft(x)
]
. OCO is called online

linear optimization (OLO) when (ft)t are linear functions, i.e., ft(·) = 〈gt, ·〉 for some gt ∈ Rd.

In OCO and OLO, the well-known online gradient descent (OGD) achieves an O(
√
T ) regret upper

bound for Lipschitz continuous ft [27]. In general, this upper bound cannot be improved and is known
to match the Ω(

√
T ) regret lower bound [8]. However, this lower bound can be circumvented under

certain conditions. The most typical way is to exploit the curvature of loss functions. It is known
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Table 1: Comparison of our regret upper bounds with existing bounds. All bounds assume that loss functions
are G-Lipschitz (except Lines 1–3) and x⋆ is on the boundary of K. The upper bounds that contain the variable
L > 0 assume ∥g1 + · · · + gt∥2 ≥ tL for all t ∈ [T ]. We use f◦ = Ef∼D[f ], C ≥ 0 is the corruption level,
and the Ω̃ notation ignores logarithmic factors. The (κ, 2)-uniformly convex set is κ-strongly convex. Theorem
is abbreviated as as Thm, Corollary as Cor, and sphere-enclosed as sphere-enc. Note that regret bounds proven
in this study can be simultaneously achieved by the same algorithm with identical parameters.

Reference Feasible set Loss functions Regret bound

[9], This work (Thm 8) ellipsoid Wλ

in Sec-
tion 2.3.2
(λ-strongly
convex)

ft(·) = ⟨hL
t , ·⟩

in Thm 6
Ω

(
1

λL
lnT

)
, Ω
(

1

λ∥∇f◦(x⋆)∥2
lnT

)

This work (Thm 9) corrupted Ω̃

(
1

λ∥∇f◦(x⋆)∥2
+

√
C

λ∥∇f◦(x⋆)∥2

)
This work (Cor 12) ft(·) = ⟨hL

t , ·⟩
in Thm 6

O

(
1

λL
lnT

)

This work (Thms 10, 14) (ρ, x⋆, f
◦)-

sphere-enc.
stochastic,
convex

O

(
G2ρ

∥∇f◦(x⋆)∥ 2

lnT

)
This work (Thm 13) (ρ, x̃⋆, f̃

◦)-
sphere-enc.

corrupted,
convex

O

(
G2ρ

∥∇f̃◦(x̃⋆)∥ 2

lnT +

√
CG2ρ

∥∇f̃◦(x̃⋆)∥ 2

lnT

)

Huang et al. [9] λ-strongly
convex

adversarial,
linear

O

(
G2

λL
lnT

)
Molinaro [17] adversarial,

linear
O

(
Gc′

λ
lnT

) (
c′ = maxx∈Rd

>0 : ∥x∥=1⟨u, x⟩
)

This work (Thm 15) stochastic,
convex

O

(
G2

λ∥∇f◦(x⋆)∥⋆
lnT

)

Kerdreux et al. [11] (κ, q)-
uniformly
convex

adversarial,
linear

O

(
G

q
q−1

(κL)
1

q−1

T
q−2
q−1

)

This work (Thm 15) stochastic,
convex

O

(
G

q
q−1

(κ∥∇f◦(x⋆)∥⋆)
1

q−1

T
q−2

2(q−1) (lnT )
q

2(q−1)

)

that OGD with a learning rate of Θ(1/t) and online Newton step (ONS) can achieve an O( 1
α lnT )

and O( dβ lnT ) regret for α-strongly-convex and β-exp-concave loss functions, respectively [8].

Another way to circumvent the lower bound is to harness the curvature of the feasible set K. Exist-
ing studies proved that in OLO if the feasible set is curved and loss vectors gt are biased towards a
specific direction, the follow-the-leader (FTL) algorithm can achieve a logarithmic regret. In partic-
ular, Huang et al. [9] first proved that under the growth condition that there exists L > 0 such that
‖g1 + · · · + gt‖2 ≥ tL for any t ∈ [T ], FTL achieves an O(G

2

λL lnT ) regret for λ-strongly convex
K and G-Lipschitz loss functions. This bound matches their lower bound of Ω( 1

λL lnT ). Molinaro
[17] also proves that FTL can achieve a logarithmic regret under the different assumption on the loss
vectors that gt ≤ 0 for all t ∈ [T ], providing an intuitive and simple proof.
Their approach, however, has several remaining limitations. First, they only consider OLO. While
the linearization technique allows us to solve OCO by OLO, this may prevent us from leveraging the
curvature of loss functions. Second, their analysis requires the curvature over the entire boundary
of the feasible set, which is a rather limited condition. Finally, some of their approach suffers an
Ω(T ) regret if the ideal conditions on loss vectors, such as the growth condition, are not satisfied.
Note that we cannot know in advance whether such conditions are satisfied or not. Exceptions are
the method based on expert tracking algorithm in [9, Section 4], in which FTL is combined with
follow-the-regularized-leader, and the work by Anderson and Leith [1], who investigated the online
lazy gradient descent over the strongly convex sets.
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To overcome these limitations, we consider using algorithms adaptive to the curvature of loss func-
tions [21, 22, 24], also known as universal online learning. The original motivation of this line of
work is to automatically achieve a regret bound that depends on the true curvature level of loss func-
tions, e.g., parameters of strong convexity or exp-concavity, without knowing them. The crux of their
analysis is to derive a bound of

∑T
t=1〈∇ft(xt), xt − x⋆〉 = O

(√∑T
t=1‖xt − x⋆‖22 lnT

)
.

Contributions of this paper We introduce a new condition for achieving fast rates in OCO. We
first show that algorithms adaptive to the curvature of loss functions can exploit the curvature of
feasible sets and overcome the three limitations mentioned earlier. We prove the following theorem:

Theorem 1 (informal version of Theorems 10 and 13). Any algorithm with
∑T

t=1〈∇ft(xt), xt −

x⋆〉 = O
(
csc

√∑T
t=1‖xt − x⋆‖22 lnT

)
for some csc > 0 achieves RT = O

(
c2sc ρ

∥∇f◦(x⋆)∥2
lnT

)
in

stochastic environments, where f◦ = Eft [ft] and ρ > 0 is the smallest radius of a sphere that
includes x⋆ and enclosesK. The same algorithm achievesRT = O(ρ lnT+

√
Cρ lnT ) in corrupted

stochastic environments for corruption level C and RT = O(
√
T ) in adversarial environments.

This upper bound matches an existing lower bound [9, Theorem 9], specifically when considering the
environment employed to construct their lower bound. This will be formally stated in Corollary 12.
The advantage of our approach over the existing approach is that it overcomes all three limitations of
the existing approach mentioned earlier. That is, (i) in contrast to existing studies, it can work with
OCO without the linearization, allowing us to simultaneously exploit the curvature of feasible sets
and the curvature of loss functions (see Theorem 14). (ii) Even in worst cases, where the specific
conditions on loss vectors, such as the growth condition, are not satisfied, an O(

√
T ) regret upper

bound can be achieved. (iii) The local structure of K around optimal decision x⋆ is sufficient for
our approach to achieve the logarithmic regret. As a further advantage, our approach can achieve
an O(ρ lnT +

√
Cρ lnT ) regret bound for corrupted stochastic environments with corruption level

C ≥ 0, which are intermediate environments between stochastic and adversarial environments (The-
orem 13). We provide a regret lower bound that nearly matches this upper bound (Theorem 9).
Our approach can also be used to obtain fast rates on uniformly convex feasible sets, a broader class
that includes strongly convex sets and ℓp-balls for p ∈ [2,∞). For q-uniformly convex K, Kerdreux
et al. [11] proves an regret bound of O

(
T

q−2
q−1
)
, which is smaller than O(

√
T ) only when q ∈ (2, 3).

We improve this bound by proving the following upper bound, which matches the lower bound in [2]:
Theorem 2 (informal version of Theorem 15). In online convex optimization with q-uniformly convex
feasible set K, the same algorithm as Theorem 1 achieves RT = O

(
T

q−2
2(q−1) (lnT )

q
2(q−1)

)
.

This becomes a fast rate for any q > 2 and is strictly better than the bound in [11]. Our bound
interpolates between the O(lnT ) bound for strongly convex sets (when q = 2) and the O(

√
T )

bound for non-curved feasible sets (when q → ∞). Table 1 summarizes the regret comparison.

2 Preliminaries

Let ei ∈ {0, 1}d be the i-th standard basis of Rd, and 1 be the all-one vector. For p ∈ [1,∞] and
vector x, let ‖x‖p be ℓp-norm. Let ξ > 0 be a constant satisfying ‖x‖2 ≤ ξ‖x‖ for any x ∈ Rd.
For a norm ‖·‖, we use ‖x‖⋆ = sup{〈x, y〉 : ‖y‖ ≤ 1} to denote its dual norm. Let B∥·∥(x, r) be
a ball with radius r centered at x associated with ‖·‖, i.e., B∥·∥(x, r) = {z : ‖z − x‖ ≤ r}. We use
B(x, r) to denote the Euclidean ball with radius r centered at x and B∥·∥ to denote the unit ball. Let
bd(K) be the boundary of K. A function f : Rd → (−∞,∞] is convex if for all x ∈ int dom f ,
f(y) ≥ f(x)+ 〈∇f(x), y−x〉 for all y ∈ Rd.1 For α > 0, f : K → (−∞,∞] is α-strongly convex
over K ⊆ dom f w.r.t. ‖·‖ if for all x, y ∈ K, f(y) ≥ f(x) + 〈∇f(x), y − x〉 + α

2 ‖x − y‖2. For
β > 0, f : K → (−∞,∞] is β-exp-concave if exp(−βf(x)) is concave.

1For simplicity, this paper only considers the case that loss functions ft’s are differentiable, but one can
extend all the results to the subdifferentiable case in a straightforward manner.
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2.1 Online convex optimization

We consider online convex optimization (OCO). In OCO, a convex body (or feasible set) K ⊆ Rd

is given before the game starts. Let D = maxx,y∈K‖x − y‖2 be the diameter of K. At each round
t ∈ [T ], the learner selects a decision xt ∈ K using information obtained up to round t − 1, and a
convex loss function ft : K → R is determined by the environment. The learner then suffers a loss
ft(xt) and observes∇ft(xt) ∈ Rd. The goal of the learner is to minimize the regret, which is defined
as RT = E

[∑T
t=1(ft(xt)− ft(x⋆))

]
for the optimal decision x⋆ = argminx∈K E

[∑T
t=1 ft(x)

]
.

When loss functions are restricted solely to linear functions, that is, when ft(·) = 〈gt, ·〉 for some
gt ∈ Rd, OCO is referred to as online linear optimization (OLO).

2.2 Assumptions on loss functions

In this study, we assume that ft is G-Lipschitz, i.e., supx∈K‖∇ft(x)‖2 ≤ G. In the following, we
list three assumptions on how a sequence of f1, . . . , fT is generated. In stochastic environments, ft is
sampled in an i.i.d. manner from a certain probability distributionD. The expectation of ft is denoted
as f◦ = Ef∼D[f ]. In adversarial environments, ft is arbitrarily determined depending on the past
history, and ft may depend on xt. The corrupted stochastic environment is an intermediate setting
between stochastic and adversarial environments. The motivation for considering this environment is
that in real-world problems, a sequence of loss functions is neither stochastic nor (fully) adversarial.
In this environment, at each round t ∈ [T ], f̃t ∼ D̃ is obtained according to a certain distribution D̃,
where the expectation of f̃t is defined by f̃◦ = Ef̃∼D̃[f̃ ]. Then, possibly depending on f̃t and the past
history, loss function ft is determined by the environment so that E

[∑T
t=1‖ft − f̃t‖∞

]
≤ C, where

E
[∑T

t=1‖ft − f̃t‖∞
]

is the corruption level. In this paper, we consider these three environments.

2.3 Exploiting the curvature of feasible sets

We start by introducing the definition of strongly and uniformly convex sets. We then define a new
notion of convex bodies, sphere-enclosed set, for which we can also achieve the fast rates of O(lnT ).
We finally discuss the existing lower bound when exploiting the curvature.

2.3.1 Strong convexity and sphere-enclosedness

One common way to describe the curvature of a convex body is with the following strong convexity.
Definition 3. A convex body K is λ-strongly convex w.r.t. a norm ‖·‖ if for any x, y ∈ K and any
θ ∈ [0, 1], it holds that θx+ (1− θ)y + θ(1− θ)λ2 ‖x− y‖2 · B∥·∥ ⊆ K .

For example, ℓp-balls for p ∈ [1, 2] are (p − 1)/2-strongly convex w.r.t. ‖·‖p [7, Theorem 2], and
another various examples of strongly convex sets can be found in [6, Section 5]. A more general
notion of the curvature is by the following uniform convexity:
Definition 4. A convex body K is (κ, q)-uniformly convex w.r.t. a norm ‖·‖ (or q-uniformly convex)
if for any x, y ∈ K and any θ ∈ [0, 1], it holds that θx+ (1− θ)y+ θ(1− θ)κ‖x− y‖q ·B∥·∥ ⊆ K .

For example, ℓp-balls for p ≥ 2 are (1/p, p)-uniformly convex w.r.t. ‖·‖p [7, Theorem 2], and p-
Schatten balls are (1/p, p)-uniformly convex w.r.t. the Schatten norm ‖·‖S(p) (See [11] and Ap-
pendix H for the connection between the uniform convexity of a normed space and the uniform
convexity of sets.) Note that (κ, 2)-uniformly convex sets are κ-strongly convex.

x
K

∇f(x)

K

z

∇f(y)

∇f(z)y

Figure 1: Examples of sphere-enclosed sets.

In this paper, we introduce a new, different character-
ization of convex bodies.
Definition 5 (sphere-enclosed sets). Let K ⊆ Rd be
a convex body, u ∈ bd(K), and f : K → R. Then,
K is (ρ, u, f)-sphere-enclosed (or simply sphere-
enclosed facing u) if there exists a sphere of radius ρ
that has u on it, encloses K, and the gradient of f at
point u is directed towards the center of the sphere.
That is, there exists a ball B(c, ρ) with c ∈ Rd and
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ρ > 0 satisfying (i) u ∈ bd(B(c, ρ)), (ii) K ⊆ B(c, ρ), and (iii) there exists r0 > 0 such that
u+ r0∇f(u) = c.2

One might think that the sphere-enclosed condition is complicated but Condition (iii) in Definition 5
is only for the case when x⋆ is at the corner of K. Figure 1 shows examples of sphere-enclosed sets.
The area enclosed by the solid black lines is the convex body K. In the left figure, we can see that
K is sphere-enclosed facing x (the red dotted line is the minimum sphere facing x), but K is not
sphere-enclosed facing y. In the right figure, we can see that K is sphere-enclosed facing z (the blue
dotted line is the minimum sphere facing z for K). Note that the notion of sphere-enclosedness is a
local property defined for each point of the boundary of convex bodies, in contrast to the definition
of strong convexity. In the next section, we will see that we can achieve a logarithmic regret if K is
sphere-enclosed facing at optimal decision x⋆.

2.3.2 Existing lower bound

Here, we discuss a lower bound when exploiting the curvature of feasible sets. For λ ∈ (0, 1),
let Wλ = {(x, y) ∈ R2 : x2 + y2/λ2 ≤ 1} be an ellipsoid with principal curvature λ. From [9,
Proposition 4], ellipsoid Wλ is λ-strongly convex w.r.t. ‖·‖2. The following lower bound provided
in [9, Theorem 9] is for this Wλ, which matches the upper bound in [9, Theorem 5].
Theorem 6. Consider online linear optimization. Let λ,L ∈ (0, 1) and K = Wλ. Then, for
any algorithm, there exists a sequence of linear loss functions f1, . . . , fT satisfying ft(·) = 〈gt, ·〉,
g1, . . . , gT ∈ {(1,−L), (−1,−L)}, and the growth condition that ‖g1 + · · · + gt‖2 ≥ tL for all
t ∈ [T ] such that RT ≥ 1

84
√
2

1
λL lnT − δ for δ = 1

λL

(
2

1−eλ2L2 + π2

108

)
.

In their proof, they use the following sequence of linear functions ft(·) = 〈hL
t , ·〉. Let P be a

random variable following a Beta distribution, Beta(k, k), for some k > 0. For this P , let (Xt)
T
t=1

be i.i.d. random variables following a Bernoulli distribution with parameter P . Then for L ∈ (0, 1),
let hL

t = (2Xt − 1,−L), which indeed satisfies the growth condition ‖hL
1 + · · · + hL

t ‖2 ≥ tL for
all t ∈ [T ]. This construction of loss functions will be exploited to prove lower bounds in Section 3,
and we will provide a matching upper bound in Corollary 12.

2.4 Universal online learning

Our algorithm is based on the results of universal online learning. In the literature, the following
regret upper bound is the crux for being adaptivity to the curvature of loss functions:
Lemma 7. Consider online convex optimization. Then, there exists an (efficient) algorithm such that∑T

t=1〈∇ft(xt), xt − x⋆〉 is bounded from above by the order of

min

{
csc

√√√√ T∑
t=1

‖xt − x⋆‖22 lnT+c′sc lnT , cec

√√√√ T∑
t=1

(〈∇ft(xt), xt − x⋆〉)2 lnT+c′ec lnT , GD
√
Tcg

}
,

(1)
where csc, c′sc, cec, c′ec, cg > 0 are algorithm dependent variables provided in the following.3

For example, upper bound (1) can be achieved by the MetaGrad algorithm with csc = G
√
d, c′sc = d,

cec =
√
d, c′ec = d, and cg = ln lnT [21, 22] and the Maler algorithm with csc = G, c′sc = GD,

cec =
√
d, c′ec = GD + d, and cg = 1 [24, Theorem 1]. We will see that our regret bounds depend

on csc, c
′
sc, cec, c

′
ec, cg > 0, and one can use any algorithm with bound (1).

3 Regret lower bounds

In this section, we construct lower bounds that align with the assumptions of our regret bounds. Con-
sidering a sequence of loss functions to construct the lower bound in Theorem 6, we can immediately
obtain the following lower bound.

2We will see that the third condition that the gradient of f at point u is directed towards the center of the
sphere needs to be cared when optimal decision x⋆ is on corners of feasible sets.

3The subscripts sc and ec in csc and cec are the abbreviations of strongly-convex and exp-concave.
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Theorem 8. Consider online linear optimization. Let λ,L ∈ (0, 1) and K = Wλ. Then, for any
algorithm, there exists a stochastic sequence of loss functions f1, . . . , fT satisfying ft(·) = 〈gt, ·〉,
g1, . . . , gT ∈ {(1,−L), (−1,−L)}, and ‖∇f◦(x⋆)‖2 = L such thatRT ≥ 1

84
√
2

1
λ∥∇f◦(x⋆)∥ 2

lnT−
δ, where δ is defined in Theorem 6.

Proof. Consider the sequence of loss vectors hL
1 , . . . , h

L
T after Theorem 6 and let ft(·) = 〈hL

t , ·〉 for
all t ∈ [T ]. For this sequence of (ft)Tt=1, it holds that ‖∇f◦(xt)‖2 = ‖E

[
hL
t

]
‖2 = ‖(0,−L)‖2 =

L 6= 0, which completes the proof.

With this lower bound, we have the following lower bound for corrupted stochastic environments.
Theorem 9. Consider online linear optimization. Let λ,L ∈ (0, 1) and K = Wλ. Suppose that
T ≥ C/(λL)2 and C ≥ 1/(λL). Then, for any algorithm, there exists a corrupted stochastic
environment with corruption level at most C ≥ 0 satisfying ‖∇f◦(x⋆)‖2 = L such that

RT ≥ 1

168
√
2

(
1

λ‖∇f◦(xt)‖2
+

√
C

λ‖∇f◦(xt)‖2

)√
ln

(
C

λ‖∇f◦(xt)‖2

)
− δ ,

where δ is defined in Theorem 6.

The assumption that T ≥ C/(λL)2 makes some sense since the construction of this lower bound
relies on Theorem 8, and if the assumption does not hold then the lower bound becomes vacuous.

Proof. We will construct (ft)Tt=1 in a corrupted stochastic environment, where (ft)t are generated
so that f̃t(·) = 〈g̃t, ·〉 with g̃1, . . . , g̃T following a distribution D and ft is a corrupted function of f̃t.

We first note that we have T ≥ C/(λL) ≥ 1/(λL)2. Define L̂ > 0 such that λL̂ =
√
λL/C.

Note that since C ≥ 1/(λL), we have λL̂ ≤ λL, implying that L̂ ∈ (0, 1). We also define τ :=

d1/(λL̂)2e = dC/(λL)e ≤ T , which follows from λL̂ =
√

λL/C and T ≥ C/(λL).
With these definitions, we then consider the following corrupted stochastic environments:

• For t ∈ {1, . . . , τ}, define f̃t by f̃t(·) = 〈g̃t, ·〉 for g̃t = hL
t , where hL

t is defined after Theorem 8,
and define loss function ft by ft(·) = 〈gt, ·〉 with gt = hL̂

t .
• For t ∈ {τ + 1, . . . , T}, let f̃t(·) = ft(·) = 〈gt, ·〉 with gt = hL

t , where there is no corruption.

In fact, the corruption level of this environment is bounded by C since
∑T

t=1 E
[
‖ft − f̃t‖∞

]
=∑τ

t=1 E
[
supx∈K |〈gt − g̃t, x〉|

]
≤ τ |L − L̂|λ ≤ dC/(λL)e · |L − L̂|λ ≤ C, where in the first

inequality we used the fact that the first elements of gt and g̃t are the same and that K = Wλ and in
the second inequality we used L ≥ L̂ > 0. This implies that the sequence of (ft)Tt=1 is a corrupted
stochastic environment with the corruption level at most C.

Hence, from Theorem 8 with L̂ ∈ (0, 1), λL̂ =
√

λL/C, and the definition of τ , the regret is
bounded from below as RT ≥ 1

84
√
2

1

λL̂
ln τ − δ ≥ 1

84
√
2

√
C
λL ln

(
C
λL

)
− δ ≥ 1

84
√
2

1
λL ln

(
C
λL

)
− δ.

Taking the average of the last two inequalities completes the proof.

Note that our lower bounds are not for general sphere-enclosed feasible sets, and establishing a new
lower bound is important future work.

4 Regret upper bounds

In this section, we provide regret upper bounds that nearly match the lower bounds in Section 3, by
the universal online learning framework, whose regret is bounded as (1). Note that this section works
with convex loss functions.

4.1 Regret bounds in stochastic environments
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x⋆

∇f ◦(x⋆)

x⋆ +
1

2γ⋆
∇f ◦(x⋆)

BK
γ⋆

K

Figure 2: The region enclosed by the
black solid line is feasible set K and
the red dotted line BK

γ⋆
is the smallest

sphere enclosing K and facing x⋆.

We provide logarithmic regret for stochastic environments. De-
fine the ball BK

γ ⊆ Rd for γ > 0 by

BK
γ = B

(
x⋆ +

1

2γ
∇f◦(x⋆) ,

1

2γ
‖∇f◦(x⋆)‖2

)
. (2)

By the definition, we have x⋆ ∈ bd(BK
γ ). See Figure 2.

Remark 1. The ball BK
γ is determined in the following man-

ner. We will see in the following proof that the inequality
〈∇f◦(x⋆), x− x⋆〉 ≥ γ‖x − x⋆‖22 that holds for some γ > 0
and any actionx plays a key role in proving a logarithmic regret.
This inequality is equivalent to ‖x−

(
x⋆ +

1
2γ∇f◦(x⋆)

)
‖2 ≤

1
2γ ‖∇f◦(x⋆)‖2 and we define BK

γ as the set of all x ∈ Rd

satisfying this inequality.

Using this BK
γ , we let γ⋆ = sup{γ ≥ 0: K ⊆ BK

γ }. Then, we can prove the following theorem.
Theorem 10. Consider online convex optimization in stochastic environments, where the optimal
decision is x⋆ = argminx∈K f◦(x). Suppose that K is (ρ, x⋆, f

◦)-sphere-enclosed and that
∇f◦(x⋆) 6= 0. Then, any algorithm with the bound (1) achieves

RT = O

(
c2sc
γ⋆

lnT + c′sc lnT

)
= O

(
c2sc ρ

‖∇f◦(x⋆)‖ 2

lnT + c′sc lnT

)
.

int(−NK(x⋆))

x⋆

K

undesirable direction of ∇f◦(x⋆)

Figure 3: An example of an undesir-
able direction of ∇f◦(x⋆).

The assumption that K is sphere-enclosed around x⋆ is satis-
fied for many typical feasible sets. It holds if the feasible set
K is a ball, or a polytope with a mild condition on ∇f◦(x⋆).
Specifically, the condition ∇f◦(x⋆) ∈ int(−NK(x⋆)) is
sufficient to ensure that the feasible K is sphere-enclosed
around x⋆, where −NK(x⋆) = {g ∈ Rd : 〈g, x − x⋆〉 ≥
0 ∀x ∈ K} is the negative normal cone. This condition
is mild since, from the optimailty condition of x⋆, we have
∇f◦(x⋆) ∈ −NK(x⋆). Hence the undesirable case is re-
stricted to ∇f◦(x⋆) ∈ bd(−NK(x⋆)) (see Figure 3 for an
example). One might think that the assumption that x∗ is on
the boundary of K is restrictive, but for example, when the loss functions are linear, the minimizer is
indeed on the boundary of the feasible set. We will see in Corollary 12 that this upper bound matches
the lower bound in Theorem 8 in the environment used to construct the lower bound.

Proof. The regret is bounded from below by RT = E
[∑T

t=1 (f
◦(xt)− f◦(x⋆))

]
≥

E
[∑T

t=1〈∇f◦(x⋆), xt − x⋆〉
]
≥ E

[∑T
t=1 γ⋆‖xt − x⋆‖22

]
, where the first inequality follows from

the convexity of f◦, and the last inequality follows from xt ∈ K ⊆ BK
γ⋆

and the defini-
tion of γ⋆. By combining this inequality with inequality (1), the regret is bounded as RT ≤
E
[∑T

t=1〈∇ft(xt), xt − x⋆〉
]
= O

(
csc

√
RT

γ⋆
lnT + c′sc lnT

)
. Solving this inequation w.r.t. RT , we

get RT = O
(

c2sc
γ⋆

lnT + c′sc lnT
)
. Observing that 1

2γ⋆
‖∇f◦(x⋆)‖2 = ρ, which holds from the as-

sumption that K is (ρ, x⋆, f
◦)-sphere-enclosed, we complete the proof.

The advantages of the regret bound in Theorem 10 compared to the existing upper bounds are the
following: (i) The logarithmic regret can be achieved as long as the boundary of K is curved around
the optimal decision x⋆ or x⋆ is on corners (see Figure 1), while the existing analysis requires strong
convexity over the entire feasible set K. (ii) While the existing analysis only considers linear loss
functions, our approach can handle convex loss functions and thus the curvature of loss functions
(e.g., strong convexity or exp-concavity) can be simultaneously exploited (see Section 4.3). (iii) Even
if the growth assumptions on loss vectors g1, . . . , gT are not satisfied, the O(

√
T ) regret upper bound

can be achieved in adversarial environments, while the existing approach, FTL, can suffer Ω(T )
regret.
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A limitation of the proposed approach is that it assumes stochastic environments. However, our
approach at least guarantees an O(

√
T ) bound in the (fully) adversarial environments, where the

growth assumption needed for FTL to achieve the fast rates is not satisfied, and as we will see in the
following section, we can achieve the fast rates also in corrupted stochastic environments.
For the assumption on loss vectors, the existing studies consider the following assumptions on loss
vectors gt: There existsL > 0 such that ‖g1+· · ·+gt‖2 ≥ tL for all t ∈ [T ], or gt ≤ 0 for all t ∈ [T ].
These assumptions cannot be directly comparable with our assumption that ∇f◦(x⋆) 6= 0. Note that
the assumption that infx∈K‖∇f◦(x)‖ > 0 is standard in the literature of offline optimization, when
deriving the fast convergence rate, see [4, 5, 14] and discussion in [6] for details.
Extending the sphere-enclosed condition to an arbitrary norm is challenging because the sphere-
enclosed condition leverages the fact that the enclosing ball is a Euclidean ball. However, we will
see in Section 4.4 that fast rates for uniformly convex sets can be achieved for general norms (Theo-
rem 15).
Remark 2. The sphere-enclosed condition is similar to the Bernstein condition investigated
by Koolen et al. [13]. These conditions are different for general convex loss functions; however,
when the loss functions are linear, the sphere-enclosed condition implies the Bernstein condition,
allowing us to apply their analysis in this case. Thus, our research can also be viewed as identify-
ing a new condition that satisfies the Bernstein condition. Still, our analysis is more general in the
sense that we can deal with general convex loss functions. See Appendix I for a detailed comparison
between the sphere-enclosed condition and the Bernstein condition.

Tightness of regret upper bound in Theorem 10 In the remainder of this subsection, we investi-
gate the tightness of the regret upper bound in Theorem 10. To see the tightness of our regret bound,
we consider the case when K is an ellipsoid. The following proposition implies that the regret upper
bound in Theorem 10 matches the lower bound in Theorem 8.
Proposition 11. For λ ∈ (0, 1), let Wλ be the ellipsoid defined in Section 2.3.2. Then, its minimum
enclosing sphere S such that (0,−λ) ∈ S is S = {(x, y) ∈ R2 : x2 + [y − (1− λ2)/λ]2 = 1/λ2} .

The proof of Proposition 11 is deferred to Appendix B. This result immediately implies the following:
Corollary 12. Let K be Wλ and x∗ = (0,−λ). Under the same assumption as in Theorem 10, in the
environment considered in the construction of the lower bound in Theorem 6, the algorithm in [24]
achieves RT = O

(
1
λL lnT +GD lnT

)
.

This upper bound matches the lower bound in Theorem 8 up to the additive GD lnT factor.

Proof. From Proposition 11 and the fact that Euclidean ball with radius r is 1/r strongly convex
w.r.t. ‖·‖2, we have ρ = 1/λ. This proposition with Theorem 10 gives the desired bound.

The upper bound in Theorem 10 is applicable when K is a polytope. We will see that our approach
work also in the corrupted stochastic environment in Section 4.2, and to our knowledge, this is the
first upper bound that achieves fast rates when the feasible set is a polytope in non-stochastic envi-
ronments. A further discussion when K is a polytope can be found in Appendix C.

4.2 Regret bounds in corrupted stochastic environments

Another advantage of our approach is that it can achieve nearly optimal regret upper bounds even
in corrupted stochastic environments. For γ > 0, we define ball B̃K

γ ⊆ Rd by B̃K
γ = B

(
x̃⋆ +

1
2γ∇f̃◦(x̃⋆) ,

1
2γ

∥∥∇f̃◦(x̃⋆)
∥∥
2

)
, which is defined in the same manner as BK

γ . For this B̃K
γ , we let

γ̃⋆ = sup{γ ≥ 0: K ⊆ B̃K
γ }. Then, we can prove the following regret upper bound.

Theorem 13. Consider online convex optimization in corrupted stochastic environments with cor-
ruption level at most C, where x̃⋆ = argminx∈K f̃◦(x). Suppose K is (ρ, x̃⋆, f̃

◦)-sphere enclosed
and ∇f̃◦(x̃⋆) 6= 0. Then, any algorithm with the bound (1) achieves

RT = O

(
c2sc
γ̃⋆

lnT +

√
Cc2sc
γ̃⋆

lnT + c′sc lnT

)
= O

(
c2sc ρ

‖∇f̃◦(x̃⋆)‖ 2

lnT +

√
Cc2sc ρ

‖∇f̃◦(x̃⋆)‖ 2

lnT + c′sc lnT

)
.
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The proof of Theorem 13 can be found in Appendix D. One can see that this upper bound matches
the lower bound in Theorem 9 up to logarithmic factors. Note that all upper bounds provided in this
study can be extended following the same line as the proof of Theorem 13.

4.3 Exploiting the curvature of loss functions and feasible set simultaneously

One of the advantages of directly solving OCO over reducing to OLO is that we can obtain upper
bounds that can simultaneously exploit the curvature of feasible sets and loss functions:
Theorem 14. Suppose that the same assumption as in Theorem 10 holds. If f1, . . . , fT areα-strongly
convex w.r.t. a norm ‖·‖, then RT = O

(
c2sc

γ⋆+α/ξ lnT + c′sc lnT
)
. If f1, . . . , fT are β-exp-concave,

then RT = O
(
min

{
c2sc
γ⋆

,
c2ec

β′+γ⋆/G2

}
lnT +max{c′sc, c′ec} lnT

)
for β′ ≤ 1

2 min
{

1
4GD , β

}
.

The proof can be found in Appendix E. Theorem 14 implies that one can simultaneously exploit the
curvature of feasible sets and loss functions.

4.4 Matching regret upper bound for uniformly convex sets

Here, we prove that a regret bound smaller thanO(
√
T ) can be achieved whenK is uniformly convex.

This can be proven by a similar argument using the idea of exploiting the lower bound, as in the proof
for sphere-enclosed sets. For uniformly convex feasible sets, we can prove the following theorem.
Theorem 15. Consider online convex optimization in stochastic environments, where the optimal
decision is x⋆ = argminx∈K f◦(x). Suppose that K is (κ, q)-uniformly convex w.r.t. a norm ‖·‖
for some q ≥ 2 and that ∇f◦(x⋆) 6= 0. Then, any algorithm with bound (1) achieves

RT = O

(
(ξcsc)

q
q−1

(qκ‖∇f◦(x⋆)‖⋆)
1

q−1

T
q−2

2(q−1) (lnT )
q

2(q−1) + c′sc lnT

)
. (3)

In particular, when K is λ-strongly convex w.r.t. ‖·‖, RT = O
(

ξcsc
λ∥∇f◦(x⋆)∥⋆

lnT + c′sc lnT
)
.

The dependence on T in this bound isO
(
T

q−2
2(q−1) (lnT )

q
2(q−1)

)
, which becomesO(lnT )when q = 2

and Õ(
√
T ) when q → ∞, and thus interpolates between the bound over the strongly convex sets

and non-curved feasible sets. This is strictly better than the O
(
T

q−2
q−1

)
bound in [11]; their regret

upper bound is better than O(
√
T ) only when q ∈ (2, 3). Notably, our bound matches the existing

lower bound of Ω
(
T

q−2
2(q−1)

)
proven for a stochastic environment with d = 2 [2, Theorem C.1]. For

example, when K is ℓp-ball, by ‖x‖2 ≤ d
1
2−

1
p ‖x‖p for any x ∈ Rd and p > 2, the regret is bounded

as RT = O

(
(ξcsc)

p
p−1 d

p−2
2(p−1)

(∥∇f◦(x⋆)∥⋆)
1

p−1
T

p−2
2(p−1) (lnT )

p
2(p−1) + c′sc lnT

)
.

It is worth noting that the result of Theorem 15 corresponds to the result for sphere-enclosed sets when
q = 2 and ‖·‖ is the Euclidean norm. Additionally, Theorem 15 does not require the feasible set K to
be globally “curved.” In fact, the proof of Theorem 15 only uses the inequality 〈∇f◦(x⋆), x−x⋆〉 ≥
κ
4 ‖x − x⋆‖q · ‖∇f◦(x⋆)‖⋆ for all x ∈ K, which describes the local curvature around the optimal
solution x⋆.
Before proving Theorem 15, we present the following lemma, which offers a characterization of
uniformly convex sets. This directly follows from the definition in Definition 4:
Lemma 16. Suppose that a convex bodyK is (κ, q)-uniformly convex w.r.t. a norm ‖·‖ for κ > 0 and
q ≥ 2. Let y ∈ K, g ∈ Rd, and y⋆ ∈ argminy′∈K〈g, y′〉. Then, 〈−g, y⋆ − y〉 ≥ κ

4 ‖y− y⋆‖q · ‖g‖⋆.

The proof can be found in [12, Lemma 2.1], and we include the proof in Appendix F for completeness.

Proof of Theorem 15. From x⋆ = argminx∈K f◦(x) and the first-order optimality condition,
〈∇f◦(x⋆), x− x⋆〉 ≥ 0 for all x ∈ K, which implies that x⋆ = argminx∈K〈∇f◦(x⋆), x〉. Hence,
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by combining this with Lemma 16 and that K is (κ, q)-uniformly convex w.r.t. a norm ‖·‖, we have
〈∇f◦(x⋆), x− x⋆〉 ≥ κ

4 ‖x− x⋆‖q · ‖∇f◦(x⋆)‖⋆ for all x ∈ K. Using this inequality,

RT ≥ E

[
T∑

t=1

〈∇f◦(x⋆), xt − x⋆〉

]
≥ κ

4
‖∇f◦(x⋆)‖⋆ E

[
T∑

t=1

‖x− x⋆‖q
]

≥ κ

4ξq
‖∇f◦(x⋆)‖⋆E

[
T∑

t=1

‖x− x⋆‖q2

]
≥ κ

4ξq
‖∇f◦(x⋆)‖⋆ T 1− q

2

(
E

[
T∑

t=1

‖x− x⋆‖22

])q/2

, (4)

where the first inequality follows from the convexity of f◦, the second inequality by ‖x‖2 ≤ ξ‖x‖
for any x ∈ Rd, and the last inequality by Jensen’s inequality and the fact that x 7→ xq/2 is convex
for q ≥ 2. Combining (1) and (4), we can bound the regret as
RT = 2RT − RT

= O

csc

√√√√E

[
T∑

t=1

‖xt − x⋆‖22

]
lnT − κ

ξq
‖∇f◦(x⋆)‖⋆ T 1− q

2

(
E

[
T∑

t=1

‖x− x⋆‖22

])q/2

+ c′sc lnT


= O

(
(ξcsc)

q
q−1

(qκ‖∇f◦(x⋆)‖⋆)
1

q−1

T
q−2

2(q−1) (lnT )
q

2(q−1) + c′sc lnT

)
, (5)

where in the last line we used the inequality a
√
x− bxq/2 ≤ a

q
q−1
/
(qb)

1
q−1 that holds for a, b, x > 0

and q ≥ 2. This completes the proof.

The above analysis can be extended to corrupted stochastic environments in a straightforward manner:
Theorem 17. Consider online convex optimization in corrupted stochastic environments with cor-
ruption level C, where the optimal decision is x̃⋆ = argminx∈K f̃◦(x). Suppose that K is (κ, q)-
uniformly convex w.r.t. a norm ‖·‖ for some q ≥ 2 and that ∇f̃◦(x̃⋆) 6= 0. Then, any algorithm with
the bound (1) achieves

RT = O
(
R+ C

1
q R

q−1
q + c′sc lnT

)
for R =

(ξcsc)
q

q−1(
qκ‖∇f̃◦(x̃⋆)‖⋆

) 1
q−1

T
q−2

2(q−1) (lnT )
q

2(q−1) . (6)

WhenK is λ-strongly convex w.r.t. ‖·‖, RT = O
(

ξcsc
λ∥∇f̃◦(x̃⋆)∥⋆

lnT+
√

Cξcsc
λ∥∇f̃◦(x̃⋆)∥⋆

lnT+c′sc lnT
)
.

The proof can be found in Appendix G. When q = 2, the dependence on the corruption level C is
same as that in Theorem 13.

5 Conclusion

In this work, we introduce a new curvature condition for achieving fast rates in online convex opti-
mization. Under this condition, we developed a new analysis to achieve fast rates by exploiting the
curvature of feasible sets. In particular, by the algorithm adaptive to the curvature of loss functions,
we proved an O(ρ lnT ) regret bound for (ρ, x⋆, f

◦)-sphere enclosed feasible sets. There are several
advantages of our approach: it can exploit the curvature of loss functions, can achieve the O(lnT )
regret bound only with local curvature properties, and can work robustly even in environments where
loss vectors do not satisfy the ideal conditions. Notably, following a similar analysis, we proved the
matching regret upper bound for uniformly convex feasible sets, which include strongly convex sets
and ℓp-balls for p ∈ [2,∞) as special cases. This regret bound interpolates the O(lnT ) regret over
strongly convex sets and the O(

√
T ) regret over non-curved sets.
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A Additional related work

This appendix discusses the additional related work.

Fast rates on strongly or uniformly convex sets Exploiting the curvature of feasible sets has been
considered in OLO. In addition to the previously discussed studies [9, 11, 17], in online learning
with a hint, where a context mt satisfying m⊤

t xt ≥ c‖xt‖22 is given every round, we can achieve an
O( 1c lnT ) regret [3], which was further extended in [2] with the lower bound for uniformly convex
sets. The curvature was also exploited for improving a regret upper bound and reducing the number
of linear optimization oracle calls in constructing Frank-Wolfe-based algorithms [16, 23]. Beyond
the scope of online learning, exploiting the curvature of feasible sets has been investigated also in
offline optimization, where the goal is to solveminx∈K f(x) for a given smooth convex function f [4,
5, 6, 11, 14].

Fast rates on curved loss functions One classical and seminal work to exploit the curvature
of loss functions is by Hazan et al. [8]. Our approach is based on the results of universal on-
line learning, the motivation of which is to be adaptive to parameters of loss curvature without
knowing them. This line of investigation was initiated by van Erven and Koolen [21], van Er-
ven et al. [22], who establish an algorithm, MetaGrad, that achieves an O( dβ lnT ) regret bound
if loss functions are β-exp-concave and an O(

√
T ln lnT ) bound otherwise, without knowing the

curvature of loss functions. The underlying idea is to run several experts in parallel with differ-
ent curvature parameters, and then another expert algorithm integrates their results to choose de-
cisions. This algorithm was later extended to achieve an O( 1

α lnT ) regret bound when the loss
functions are α-strongly convex [24]. Roughly speaking, this was made possible by considering
MetaGrad with additional experts of OGD with a learning rate of Θ(1/t). They provided a bound of∑T

t=1〈∇ft(xt), xt−x⋆〉 = O(G
√∑T

t=1‖xt − x⋆‖22 lnT+GD lnT ) for D = maxx,y∈K‖x−y‖2.
This universal online learning framework has been extended to a simpler form [26] and to a form with
the path-length bound [25]. It is worth noting that these algorithms are efficient since the number of
experts is at most O(lnT ).

Intermediate environments in OCO The corrupted stochastic environments considered in this
paper are similar to the formulations investigated in the context of expert problems and multi-armed
bandit problems [10, 15], and this environment is also referred to as stochastic environments with
adversarial corruptions. Sachs et al. [19, 20] considered a more general environment, the stochasti-
cally extended adversary (SEA) model. It would be important future work to extend our results to
the SEA model. Note that they do not consider the curvature of feasible sets.

B Proof of Proposition 11

Proof. Since K is Wλ and x⋆ = (0,−λ), the optimization problem we need to solve is fomulated
as follows:

minimize
r>0, c>0

r2 subject to sup
(x,y)∈K

∥∥∥∥(xy
)
−
(
0
c

)∥∥∥∥2 ≤ r2 , B((0, c), r) is tangent to x⋆ . (7)

From geometric observations, we have c − r = −λ. Hence, the optimization problem (7) can be
rewritten as

minimize
c∈R

(c+ λ)2 subject to sup
(x,y)∈K

{x2 + y2 − 2cy} ≤ 2cλ+ λ2 . (8)

In the following, to make the constraint in the optimization problem (8) simpler, we consider the
following optimization problem:

maximize
(x,y)∈R2

x2 + y2 − 2cy subject to x2 +
y2

λ2
≤ 1 . (9)
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By the standard method of Lagrange multiplier, one can compute that the optimal value of this opti-
mization problem is max

{
−2λc+ λ2, 2λc+ λ2, 1

1
λ2 −1

c2 + 1
}
. Since the inequality

max

{
−2λc+ λ2, 2λc+ λ2,

1
1
λ2 − 1

c2 + 1

}
≤ 2λc+ λ2 (10)

only holds when c = 1−λ2

λ , the feasible set of the optimization problem (8) is singleton set
{

1−λ2

λ

}
.

Combining this fact with c− r = −λ, we get the desired result.

C Discussion when feasible set is polytope

Here we discuss the pros/cons of our regret bound against an existing bound when feasible set K is a
polytope. The results mentioned in Section 4 mainly focus on the case where the feasible set is curved.
However, as one can see from the definition of the sphere-enclosedness, even if the feasible set is
polytope or does not have the curvature, a regret upper bound better than O(

√
T ) can be achieved.

In the existing study, the following upper bound is known in stochastic OCO over polytope [9, Corol-
lary 11].
Theorem 18. Consider online online linear optimization in stochastic environments with g◦ = E[gt].
Assume that K is polytope and ‖gt‖∞ ≤ M . Further assume that there exsits r > 0 such that
Φ(·) = maxx∈K〈x, ·〉 is differentiable for any ν such that ‖ν − g◦‖ ≤ r. Then, the regret of FTL is
bounded by RT = O

(
M3D
r2 ln

(
M2d
r2

))
.

The comparison of this bound with our regret upper bound is not straightforward. If ∇f◦(x⋆) is
not toward the “unfavorable” direction in K, then it is trivial that polytope K is (ρ, x⋆, f

◦)-sphere-
enclosed for some ρ, and thus the regret bound in Theorem 10 can be achieved. When T is large
enough, the bound in Theorem 18 is better since it does not depend on T . However, their regret
upper bound depends on 1/r2 and M3, and the relation between them and 1/‖∇f◦(xt)‖2 is unclear,
and our bound can be smaller than their bound. Note that the “unfavorable” direction coincides
between these upper bounds when OLO is considered.
While the direct comparison is not straightforward, we would like to emphasize that our regret upper
bound, in contrast to their bound, is obtained as a corollary of the general analysis, and our bound
inherits all the advantages discussed in Section 4. In particular, while their bound is valid only
in stochastic environments, our regret guarantee is valid in stochastic, adversarial, and corrupted
stochastic environments.

D Proof of Theorem 13

Proof. Recalling that x̃⋆ = argminx∈K f̃◦(x), we can bound the regret from below as

RT = max
x∈K

E

[
T∑

t=1

(ft(xt)− ft(x))

]

= max
x∈K

{
E

[
T∑

t=1

(
f̃t(xt)− f̃t(x)

)]
+ E

[
T∑

t=1

((
ft(xt)− f̃t(xt)

)
−
(
ft(x)− f̃t(x)

))]}

≥ max
x∈K

E

[
T∑

t=1

(
f̃t(xt)− f̃t(x)

)]
− 2C . (11)

The first term in the last inequality is further bounded from below as

max
x∈K

E

[
T∑

t=1

(
f̃t(xt)− f̃t(x)

)]
≥ E

[
T∑

t=1

(
f̃◦(xt)− f̃◦(x⋆)

)]

≥ E

[
T∑

t=1

〈∇f̃◦(x̃⋆), xt − x⋆〉

]
≥ E

[
T∑

t=1

γ̃⋆‖xt − x⋆‖22

]
, (12)
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where the first inequality follows by the definition of x̃⋆ and the last inequality follows by xt ∈ K ⊆
B̃K

γ⋆
. Combining the above inequalities with (1), we have RT = O

(
csc

√
RT+C

γ̃⋆
lnT + c′sc lnT

)
.

Solving this inequation and following the similar analysis as the proof of Theorem 10 complete the
proof.

E Proof of Theorem 14

Proof. Following the same argument as in the proof of Theorem 10, we have

RT = 2RT − RT ≤ 2RT − E

[
T∑

t=1

γ⋆‖xt − x⋆‖22

]
. (13)

From the strong convexity of ft, we also have

RT ≤ E

[
T∑

t=1

(
〈∇ft(xt), xt − x⋆〉 −

α

2
‖xt − x⋆‖2

)]

≤ E

[
T∑

t=1

(
〈∇ft(xt), xt − x⋆〉 −

α

2ξ
‖xt − x⋆‖22

)]
. (14)

Plugging (14) in (13) and from Lemma 7 and Jensen’s inequality,

RT = O

(
csc

√√√√E

[
T∑

t=1

‖xt − x⋆‖22

]
lnT + c′sc lnT −

(
α

ξ
+ γ⋆

)
E

[
T∑

t=1

‖xt − x⋆‖22

])

= O

(
c2sc

α/ξ + γ⋆
lnT + c′sc lnT

)
, (15)

which completes the proof for the strongly convex loss functions.
Next, we consider the case where ft’s are exp-concave. By [8, Lemma 3], the G-Lipschitzness and
β-exp-concavity of ft implies

ft(x⋆) ≥ ft(xt) + 〈∇ft(xt), x⋆ − xt〉+
β′

2
(〈∇ft(xt), xt − x⋆〉)2 (16)

for β′ ≤ 1
2 min

{
1

4GD , β
}

. Using this and Lemma 7 to follow a similar argument as the strongly-
convex case, we can bound the regret as

RT = O

(√√√√min

{
c2scE

[
T∑

t=1

‖xt − x⋆‖22

]
, c2ecE

[
T∑

t=1

(〈∇ft(xt), xt − x⋆〉)2
]}

lnT

− γ⋆E

[
T∑

t=1

‖xt − x⋆‖22

]
− β′E

[
T∑

t=1

(〈∇ft(xt), xt − x⋆〉)2
]
+max{c′sc, c′ec} lnT

)

= O

(
min

{
c2sc
γ⋆

,
c2ec

β′ + γ⋆/G2

}
+max{c′sc, c′ec} lnT

)
, (17)

where in the last inequality we used ‖xt − x⋆‖22 ≥ 1
G2

(
∇ft(xt)

⊤(xt − x⋆)
)2 that holds by the

Cauchy–Schwarz inequality.

F Proof of Lemma 16

Proof. Since K is (κ, q)-uniformly convex w.r.t. norm ‖ · ‖,
y + y⋆

2
+

κ

8
‖y − y⋆‖q · B∥·∥ ⊆ K. (18)

Hence, for any z ∈ B∥·∥, the definition of y⋆ implies that

〈g, y⋆〉 ≤
〈
g,

y + y⋆
2

+
κ

8
‖y − y⋆‖qz

〉
=

〈
g,

y + y⋆
2

〉
+
〈
g,

κ

8
‖y − y⋆‖qz

〉
. (19)

Rearranging the last inequality implies 〈−g, y⋆−y〉 ≥ κ
4 ‖y−y⋆‖q〈−g, z〉.Choosing z = −g/‖g‖ ∈

B∥·∥ completes the proof.
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G Proof of Theorem 17

Proof. The regret is bounded from below as

RT ≥ E

[
T∑

t=1

〈∇f̃◦(x̃⋆), xt − x⋆〉

]
−2C ≥ κ

4ξq
‖∇f̃◦(x̃⋆)‖⋆ T 1− q

2

(
E

[
T∑

t=1

‖x− x⋆‖22

])q/2

−2C ,

(20)
where the first inequality follows from the same argument as in the proof of Theorem 13 in
Appendix D and the second inequality from the same argument as in (4). Recall that R =

(ξcsc)
q

q−1

(qκ∥∇f̃◦(x̃⋆)∥⋆)
1

q−1
T

q−2
2(q−1) (lnT )

q
2(q−1) . Then from (1) and (20), for any λ ∈ (0, 1] we have

RT = (1 + λ)RT − λRT

≤ (1 + λ)csc

√√√√E

[
T∑

t=1

‖xt − x⋆‖22

]
lnT − κ

4ξq
‖∇f̃◦(x̃⋆)‖⋆ T 1− q

2

(
E

[
T∑

t=1

‖x− x⋆‖22

])q/2

+ 2λC + (1 + λ)c′sc lnT

≤ (1 + λ)
q

q−1

λ
1

q−1

R+ 2λC + 2c′sc lnT

≤ 4

λ
1

q−1

c
q

q−1
sc

(qz)
1

q−1

T
q−2

2(q−1) (lnT )
q

2(q−1) + 2λC + 2c′sc lnT (21)

where in the second inequality we used a
√
x− bxq/2 ≤ a

q
q−1
/
(qb)

1
q−1 that holds for a, b, x > 0 and

q ≥ 2 and in the last inequality we used (1+λ)
q

q−1 ≤ 2
q

q−1 ≤ 4.Choosing λ =
(

R
C+R

) q−1
q ∈ (0, 1]

in (21) gives RT = O(R+ C
1
q R

q−1
q + c′sc lnT ), which completes the proof.

H Connection between uniform convexity in Banach space and uniformly
convex sets

This appendix discusses the connection between the uniform convexity in Banach space and the
uniformly convex sets. While the notion of uniformly convex set was employed in the context of
achieving fast rates by exploiting the curvature of feasible sets [11], some papers in the context of
online learning with a hint consider uniformly convex Banach spaces [2, 3]. This appendix may be
useful in making the claims of the main body clearer by clarifying these relationships.

Uniformly convex space and modulus of uniform convexity We start from the definition of the
uniform conexity in Banach spaces [18, Definition 4.16].
Definition 19. A Banach space (B, ‖·‖) is uniformly convex if for any ε ∈ (0, 2] there exists a δ > 0
such that

∀x, y ∈ B , ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε =⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ . (22)

The modulus of uniform convexity δB(ε) is the best possible δ for that ε, that is,

δB(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
. (23)

Further, we say that B is (C, q)-uniformly convex if δB(ε) = Cεq .

We say that a Banach space B is uniformly convex if δB(ε) > 0 for any ε ∈ (0, 2]. The modulus
of convexity captures the strength of convexity, and intuitively, if the convexity of the space is large,
then any two arbitrarily chosen points on the unit sphere will have their midpoints located deep
inside the unit sphere. From this intuition, one can imagine that ℓ∞ space is not uniformly convex.
In fact, x = (1, 1, 1, . . . ), y = (−1, 1, 1, . . . ) satisfies ‖x‖∞ = ‖y‖∞ = 1, ‖x − y‖∞ = 2 but
1− ‖(x+ y)/2‖∞ = 0.
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Uniformly convex sets Here, we adopt a slightly generalized definition of uniformly convexity.
Definition 20. A convex body K is γK(·)-uniformly convex w.r.t. a norm ‖·‖ if for any x, y ∈ K
and any θ ∈ [0, 1], it holds that

θx+ (1− θ)y + θ(1− θ)γK(‖x− y‖) · B∥·∥ ⊆ K . (24)

In particular, we say that a convex bodyK is (κ, q)-uniformly convex w.r.t. a norm ‖·‖ (or q-uniformly
convex) if γK(r) ≥ κrq .

Connection between uniform convexity in Banach space and uniformly convex sets It is known
that the unit ball on a uniformly convex space is a uniformly convex set and their uniform convexity
matches up to a constant factor [11, Lemma 4.2].
Proposition 21. Suppose that a Banach space is uniformly convex with a modulus of convexity δ(·).
Then the unit ball on the Banach space, B∥·∥, is 2δ(·)-uniformly convex set w.r.t. ‖·‖. That is, for any
x, y ∈ B∥·∥ and any θ ∈ [0, 1], θx+ (1− θ)y + θ(1− θ)2δ(‖x− y‖) · B∥·∥ ⊆ B∥·∥.

In existing studies, there is no explicit discussion on whether the converse of Proposition 21 is true.
However, they are necessary to convert the major result known for uniformly convex spaces (e.g., [7,
Theorem 2]) into a result for uniformly convex balls. In the following, we show that the converse of
Proposition 21 indeed holds for completeness:
Proposition 22. If a ball K = B∥·∥ is γ(·)-uniformly convex set w.r.t. a norm ‖·‖, then a Banach
space with the norm ‖·‖ is uniformly convex with a modulus of convexity 1

4γ(·).

Proof. Since K is γ(·)-uniformly convex w.r.t. a norm ‖·‖, it holds for any x, y ∈ K and z ∈ B∥·∥
that

x+ y

2
+

1

4
γ(‖x− y‖)z ∈ K . (25)

Taking z = 1
2 (x+ y)/‖ 1

2 (x+ y)‖ ∈ B∥·∥ implies

x+ y

2
+

1

4
γ(‖x− y‖) · (x+ y)/2

‖(x+ y)/2‖
∈ K . (26)

From this observation, we obtain∥∥∥∥x+ y

2
+

1

4
γ(‖x− y‖) · (x+ y)/2

‖(x+ y)/2‖

∥∥∥∥ =

(
1 +

1

4
γ(‖x− y‖) 1

‖(x+ y)/2‖

)∥∥∥∥x+ y

2

∥∥∥∥
=

∥∥∥∥x+ y

2

∥∥∥∥+ 1

4
γ(‖x− y‖) ≤ 1 , (27)

where the last inequality follows from the assumption that K = B∥·∥. Hence, for any x, y ∈ K =
B∥·∥, it holds that

1−
∥∥∥∥x+ y

2

∥∥∥∥ ≥ 1

4
γ(‖x− y‖) , (28)

which implies that Banach space with the norm ‖·‖ is uniformly convex with the modulus of convexity
of δ(·) = 1

4γ(·).

I Comparison of sphere-enclosed condition and Bernstein condition

This appendix discusses the relation between the sphere-enclsoed condition and the Bernstein con-
dition. We use Et[ · ] to denote the expectation given f1, . . . , ft−1.

Bernstein condition The seminal paper by Koolen et al. [13] provides the following Bernstein
condition to obtain fast rates in OCO:
Definition 23. In online convex optimization, a sequence of loss functions (ft)

T
t=1 satisfies the

(B, κ)-Bernstein condition if 10

Et

[
(〈∇ft(x), x− x⋆〉)2

]
≤ B Et[〈∇ft(x), x− x⋆〉]κ (29)

almost surely for all x ∈ K and t ∈ [T ].

17



When κ = 1, this condition is also known as the Massart condition. They proved that if the (B, κ)-
Bernstein conditions is satisfied, then the MetaGrad algorithm achieves a regret bound of RT =

O
(
(d lnT )

1
2−κT

1−κ
2−κ

)
.

Sphere-enclosed condition Under the same assumption as in Theorem 10, the (ρ, x⋆, f
◦)-sphere-

enclosed condition implies that

〈∇f◦(x⋆), x− x⋆〉 ≥ γ∗‖x− x⋆‖22 =
‖∇f◦(x⋆)‖2

2ρ
‖x− x⋆‖22 (30)

for any x ∈ K. Rearranging the last inequality gives that

‖x− x⋆‖22 ≤ 2ρ

‖∇f◦(x⋆)‖2
〈∇f◦(x⋆), x− x⋆〉 (31)

holds for any x ∈ K. When loss functions are stochastic, the last inequality implies

Et

[
(〈∇ft(x), x− x⋆〉)2

]
≤ G2‖x− x⋆‖22 ≤ 2G2ρ

‖∇f◦(x⋆)‖2
〈∇f◦(x⋆), x− x⋆〉 , (32)

where the first inequality follows from the Cauchy–Schwarz inequality and the second inequality
follows from (31).

Comparison between Bernstein condition and sphere-enclosed condition Comparing (29)
and (32), we can see that they look similar but different and there is no direct connection between
the sphere-enclosed condition and Bernstein condition, since the RHS of (29) has x in ∇ft(x) while
the RHS of (32) has x⋆ in ∇f◦(x⋆). However, when loss functions are linear with g◦ = ∇f◦(x) for
all x ∈ K, Eq. (32) is equivalent to

Et

[
(〈∇ft(x), x− x⋆〉)2

]
≤ 2G2ρ

‖g◦‖2
〈∇f◦(x⋆), x− x⋆〉 =

2G2ρ

‖g◦‖2
Et[〈∇ft(xt), x− x⋆〉] . (33)

Therefore, when loss functions are stochastic and linear, the (ρ, x⋆, f
◦)-sphere-enclosed condition

implies the (2G2ρ/‖g◦‖2, 1)-Bernstein condition for g◦ = ∇f◦(x). Hence, in stochastic OLO one
can directly apply the result in [13] to obtain fast rates. Still, our analysis deals with general convex
loss functions, can also be extended to OCO over uniformly convex sets, and has several advantages
as detailed in Section 1.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we claims that we consider online convex
optimization and introduce a new approach and analysis for achieving fast rates over curved
feasible sets.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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the implications would be.
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not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.
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sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The focus of this study is on theory and does not include experiments.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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missions to provide some reasonable avenue for reproducibility, which may depend on
the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should
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produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).
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thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The focus of this study is on theory and does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The focus of this study is on theory and does not include contents that can
violate the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative so-
cietal impacts of the work performed?
Answer: [NA]
Justification: The focus of this study is on theory and does not have societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the tech-
nology is being used as intended but gives incorrect results, and harms following from
(intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The focus of this study is on theory and does not include experiments.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implement-
ing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The focus of this study is on theory and does not include experiments using
existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The focus of this study is on theory and does not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The focus of this study is on theory and does not involve crowdsourcing and
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The focus of this study is on theory and does not involve study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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