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Abstract

We try to establish that one of the correct data-dependent quantities to look at while trying1

to prove generalization bounds, even for overparameterized neural networks, are the gradients2

encountered by stochastic gradient descent while training the model. If these are small, then3

the model generalizes. To make this conclusion rigorous, we weaken the notion of uniform4

stability of a learning algorithm in a probabilistic way by positing the notion of almost sure5

(a.s.) support stability and showing that algorithms that have this form of stability have6

generalization error tending to 0 as the training set size increases. Further, we show that7

for Stochastic Gradient Descent to be a.s. support stable we only need the loss function8

to be a.s. locally Lipschitz and locally Smooth at the training points, thereby showing low9

generalization error with weaker conditions than have been used in the literature. We then10

show that Neural Networks with ReLU activation and a doubly differentiable loss function11

possess these properties. Our notion of stability is the first data-dependent notion to be able12

to show good generalization bounds for non-convex functions with learning rates strictly13

slower than 1/t at the t-th step. Finally, we present experimental evidence to validate our14

theoretical results.15

1 Introduction16

Deep neural networks are known to perform well on unseen data (test data), c.f. e.g. Jin et al. (2020)), but17

theoretical explanations of this behaviour are still unsatisfactory. Under the assumption that the error on18

the training set (empirical error) is low, studying the gap between the empirical error and the population19

error is one route to investigating why this performance is good. In this paper we look at the gap between20

the population error (risk) and empirical error (empirical risk) 1. Following works like Bousquet & Elisseeff21

(2002) we use the term generalization error for this quantity. Chatterjee & Zielinski (2022) articulated the22

main question as follows: why (or when) do neural networks generalize well when they have sufficient capacity23

to memorize their training set? Although a number of formalisms have been used in an attempt to derive24

theoretical bounds on the generalization error, e.g., VC dimension (Vapnik, 1998), Rademacher complexity25

(Bartlett & Mendelson, 2003) and uniform stability (Bousquet & Elisseeff, 2002) but, as Zhang et al. (2017)26

showed, all of these fail to resolve the conundrum thrown up by overly parameterized deep neural networks.27

One clear failing identified in Zhang et al. (2017) was that many of these notions were data independent. A28

simple counterexample provided by Zhang et al. (2017) clearly established that a data independent notion was29

bound to fail to distinguish between data distributions on which deep NNs will generalize well and those on30

which they will not. Subsequent research on generalization has tried to tackle the question that Chatterjee &31

Zielinski (2022) formulated as follows: For a neural network, is there a property of the dataset that controls the32

generalization error (assuming the size of the training set, architecture, learning rate, etc are held fixed)? We33

give an affirmative answer to this question in one direction: We identify data-dependent quantities, namely34

the Training Lipschitz constant (LS) and the Test Lipschitz constant (Lg), that control the generalization35

error bound of an NN trained using SGD. In simple terms, we show that if the data distribution is such36

that the gradients computed by SGD during training and the gradients on the test points are bounded, the37

model will generalize well. Our techniques are able to rigorously handle nonlinearities like RELU and work38

for non-convex loss functions and this holds for classification case. We also allow for a learning rate that is39
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Paper Number of
Epochs

Step Size Neural Network
Type

Key Assumptions

Hardt et al. (2016) O(mc), c > 1/2 O(1/t) No restrictions No data-dependence.

Kuzborskij &
Lampert (2018)

1 epoch O(1/t) No restrictions Bounded Hessian

Lei & Ying (2020) O(1) O(1/t) No restrictions Strongly convex
objective but non
convex loss function

Charles &
Papailiopoulos
(2018)

O(m) O(1) 1-layered networks
with leaky ReLU or
linear

PL and QG growth
conditions

Lei et al. (2022) O(m) O(1) 1-layered networks
with smooth
activation functions

Smooth loss function,
Bound in
expectation, lower
bound on number of
parameters
n > m

3
(α+1) , α > 0

Our Paper O(log m) O
(

1/t1− c
ρ(τ,m)

)
,

c ∈ (0, 1)
No restrictions Bounded Spectral

Complexity

Table 1: Recent related works addressing the question of generalization error and stability of neural networks
in comparison to the results in this paper.

asymptotically strictly slower than θ(1/t) at the t-th step of SGD. All this holds for any bounded value loss40

function which is twice differentiable.41

Our work is within the theoretical paradigm of stability. We asked the question, Is there an appropriate42

version of stability that is flexible enough to incorporate dataset properties and can also adapt to most neural43

networks? In a partial answer to this question, we introduce a notion called almost sure (a.s.) support44

stability which is a data-dependent probabilistic weakening of uniform stability. Following the suggestions45

made by Zhang et al. (2017), data-dependent notions of stability were defined in (Kuzborskij & Lampert,46

2018, Definition 2) and (Lei & Ying, 2020, Definition 4) as well. However, a.s. support stability is a more47

useful notion on three counts: it can handle SGD learning rates that are strictly slower than θ(1/t), its initial48

learning rate is much higher, and, while these past works bound generalization error in expectation, a.s.49

support stability can be used to show high probability bounds on generalization error. But, over and above50

these technical benefits, our main contribution here is the identification of the data-dependent Lipschitz51

constants as a key indicator of generalization. A brief description of recent related works are summarized in52

table 1.53

Technically, our approach has several ingredients. We begin by widening the scope of the generalization54

results of Feldman & Vondrak (2018; 2019a) by showing that they hold for algorithms that have a.s. support55

stability using a mild generalization of McDiarmid’s Inequality. Secondly, we show that when SGD is used56

to minimize a non-convex function, its a.s. support stability can be bounded in terms of the gradients57

encountered during the training and testing. This naturally leads to the idea of the two data-dependent58

constants mentioned above, the Training and Test Lipschitz constants. Thirdly we show that NN with ReLU59

activation will be locally Lipschitz and smoothness (w.r.t. to the parameter set) with probability 1 as long60

as the unknown distribution places probability 0 on sets of Lebesgue measure 0, a constraint that holds for61

most natural data distributions. This directly implies the existence of the constants that control the rate of62
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convergence to 0 of the generalization error. The Training Lipschitz constant (LS) depends on the training63

set picked, and the Test Lipschitz constant (Lg) is a function of data distribution. We show bounds on these64

constants based on the spectral property of NN, arguing that although these constants are always small65

for small sized networks, they could also be small for large networks depending on the parameter (weights)66

values. We also consider the randomly labelled example suggested by Zhang et al. (2018) and show that the67

assumption of bounded Lipschitz constants w.r.t training set size breaks. We show that the Lipschitz constants68

are high and keep increasing with the training set size of this bad distribution. Thereby our theory does not69

guarantee any generalization in these cases, which is as it should be.70

We note that although we can say that when the data-dependent Training and Test Lipschitz constants71

are small, our results guarantee good generalization performance, we do not establish that this condition is72

necessary.73

In particular our contributions are:74

• In Section 3 we define a new notion of stability called a.s. support stability and show in Theorem 3.2 that75

algorithms with a.s. support stability o(1/ log2 m) have generalization error tending to 0 as m → ∞ where m76

is the size of the training set.77

• In Section 4 we show that if we run stochastic gradient descent on a parameterized optimization function78

that is only locally Lipschitz and locally smooth in the parameter space and has data-dependent Training and79

Test Lipschitz constants that are bounded with probability 1, then the replace-one error is bounded even if80

the training is conducted for number of epochs proportional to log m. This implies (Corollary 4.4) that any81

learning algorithm trained this way has a generalization error that goes to 0 as m → ∞. If SGD is trained82

for τ epochs, the slowest learning rate for which our result holds is α0/t1−ρ(τ,m) at step t where ρ(τ, m) is83

O (log log m/ (log τ + log m)) for an appropriately selected value of α0. For all reasonable values of m and τ ,84

this marks a significant slowing down of the training rate from θ(1/t).85

• In Section 5.1 we show that the output of an NN with ReLU activations when used with a doubly86

differentiable loss function is locally Lipschitz and locally smooth in the parameter space for all inputs except87

those from a set of Lebesgue measure 0 (Theorem 5.2). We also show a spectral norm based bound for88

Training and Test Lipschitz constants (Lg and LS). We then experimentally verify our theory showing that89

the bounded Lipschitz condition holds and we also plot the generalization error.90

• Then in Section 5.2 we experimentally analyze the Test Lipschitz constant (Lg) for random labelling91

setting suggested by Zhang et al. (2018) and conclude the Test Lipschitz constant is actually not bounded92

and increase with the training set size. We relate this to the high variance of the loss function in random93

labelling case and hence provide an explanation of which this example cannot be proved, incorrectly, to94

generalize using our methods.95

2 Related Work96

Although NNs are known to generalize well in practice, many different theoretical approaches have been97

tried without satisfactorily explaining this phenomenon, c.f., Jin et al. (2020); Chatterjee & Zielinski (2022).98

We refer the reader to the work of Jin et al. (2020) which presents a concise taxonomy of these different99

theoretical approaches. Several works seek to understand what a good theory of generalization should look100

like, c.f. Kawaguchi et al. (2017); Chatterjee & Zielinski (2022). Our own work falls within the paradigm101

that seeks to use notions of algorithmic stability to bound generalization error that began with Vapnik &102

Chervonenkis (1974) but gathered steam with the publication of the work by Bousquet & Elisseeff (2002).103

The applicability of the algorithmic stability paradigm to the study of generalization error in NNs was brought104

to light by Hardt et al. (2016) who showed that functions optimized via Stochastic Gradient Descent have the105

property of uniform stability defined by Bousquet & Elisseeff (2002), implying that NNs should also have this106

property. Subsequently, there was renewed interest in uniform stability and a sequence of papers emerged107

using improved probabilistic tools to give better generalization bounds for uniformly stable algorithms,108

e.g., Feldman & Vondrak (2018; 2019a) and Bousquet et al. (2020). Some other works, e.g. Klochkov &109

Zhivotovskiy (2021), took this line forward by focussing on the relationship of uniform stability with the110
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excess risk. However, the work of Zhang et al. (2017) complicated the picture by pointing out examples where111

the theory suggests the opposite of what happens in practice. This led to two different strands of research.112

In one thread an attempt was made to either discover those cases where uniform stability, (e.g. Charles &113

Papailiopoulos (2018)), or to show lower bounds on stability that ensure that uniform stability does not114

exist, (e.g. Zhang et al. (2022)). The other strand of research, a category in which our work falls, focuses on115

weakening the notion of uniform stability, specifically by making it data-dependent, thereby following the116

suggestion made by Zhang et al. (2017). (Kuzborskij & Lampert, 2018, Definition 2) defined “on-average117

stability” which is weaker than our definition of a.s. support stability. Consequently, their definition leads118

to a weaker in-expectation bound on the generalization error where the expectation is over the training119

set as well as the random choices of the algorithm. Our Theorem 3.2, on the other hand, provides a sharp120

concentration bound on the choice of the training set. (Lei & Ying, 2020, Definition 4) define an “on-average121

model stability” that requires the average replace-one error over all the training points to be bounded in122

expectation. While their smoothness requirements are less stringent, the problem is that their generalization123

results are all relative to the optimal choice of the weight vector, which implies a high generalization error in124

case of early stopping.125

3 Almost Sure (a.s.) Support Stability and Generalization126

In this section, we present a weakening of the notion of uniform stability defined by (Bousquet & Elisseeff,127

2002, Definition 6) and show that exponential concentration bounds on the generalization error can be proved128

for learning algorithms that have this weaker form of stability.129

3.1 Terminology130

Let X and Y be the input and output spaces respectively. We assume we have a training set S ∈ Zm of size131

m where each point is chosen independently at random from an unknown distribution D over Z ⊂ X × Y.132

For z = (x, y) ∈ Z we will use the notation xz to denote x and yz to denote y. Let R be the set of all finite133

strings on some finite alphabet, and let us call the elements of R decision strings and let us assume that there134

is some probability distribution Dr according to which we will select r randomly from R. This random string135

abstracts the random choices of the algorithm. For example, in an NN trained with SGD it encapsulates the136

random initial parameter vector and the random permutation of the training set as seen by SGD. For an137

algorithm like Random Forest r would abstract out the random points chosen to divide the space.138

Further, let F be the set of all functions from X to Y. In machine learning settings we typically compute a139

map from Zm × R to F . We will denote the function computed by this map as AS,r. Since the choice of S140

and r are both random, AS,r is effectively a random function and can also be thought of as a randomized141

algorithm.142

Given a bound M > 0, we assume that we are given a bounded loss function ℓ : Y × Y → [0, M ]. We define143

the risk of AS,r as144

R(AS,r) = Ez∼D [ℓ(AS,r(xz), yz)] ,

where the expectation is over the random choice of point z according to data distribution D. Note that the145

risk is a random variable since both S and r are randomly chosen. The empirical risk of AS,r is defined as146

Re(AS,r) = 1
|S|
∑
z∈S

ℓ(AS,r(xz), yz).

We are interested in bounding the generalization error147

|R(AS,r) − Re(AS,r)| . (1)

When talking about SGD we omit A and just use R(S, r) and Re(S, r) to represent R(AS,r) and Re(AS,r)148

respectively.149
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About the loss function l(·, ·). When we talk about the loss function we refer to the commonly used loss150

functions in machine learning, like cross entropy, focal loss, Mean Squared Error (for bounded inputs) etc.151

Our results are valid for any bounded value loss function which is doubly differentiable. In Machine Learning152

an implicit assumption is that the algorithm is able to successfully minimize the loss function chosen, i.e., a153

reasonable loss function is used that can be minimized to a reasonable value over a training set. We also154

work with this assumption.155

3.2 A Weakening of Uniform Stability156

Given S = {Z1, . . . , Zm} where all points are chosen randomly from D, we construct Si via replacing the i-th157

element of S by an independently generated element from D, to quote it formally we choose {Z1+m, . . . , Z2m}158

points such that all are chosen randomly from D such that they are independent from all points in S, for159

each i ∈ [m] we define160

Si = {Z1, . . . , Zi−1, Zi+m, Zi+1, . . . , Zm}.

Where [m] represents integer points from [1, m].161

Definition 3.1 (Almost Sure (a.s.) Support Stability). We say an algorithm AS,r has almost sure (a.s.)
support stability β with respect to the loss function ℓ(·, ·) if for Z1, . . . , Z2m chosen i.i.d. according to an
unknown distribution D defined over Z,

∀i ∈ [m] : ∀z ∈ supp (D) : Er

[
|ℓ(AS,r(xz), yz) − ℓ(ASi,r(xz), yz)|

]
≤ β

with probability 1 over the choice of points Z1, . . . , Z2m where ∀i, Zi ∼ D or in other words {Z1, . . . , Z2m} ∼162

D2m.163

We note that this notion weakens the notion of uniform stability introduced by (Bousquet & Elisseeff, 2002,164

Definition 6) by requiring the bound on the difference in losses to hold D2m- almost everywhere. This165

probability is defined over the random choices of Z1, . . . , Z2m. Besides the condition on the loss is required to166

hold only for those data points that lie in the support of D. These conditions make a.s. support stability a167

data-dependent quantity on the lines of the suggestion made by Zhang et al. (2017). We also observe that168

a.s. support stability is comparable to but stronger than the hypothesis stability of Kearns & Ron (1999) as169

formulated by Bousquet & Elisseeff (2002).170

While the quantification of z, i.e., ∀z ∼ supp (D) appears to be a very strong condition it is a weakening of171

uniform stability. In (Bousquet & Elisseeff, 2002, Section 5) it was shown that that uniform stability (which172

is ∀z ∼ D) holds for several classical Machine Learning algorithms like soft margin SVM, bounded SVM173

regression and regularized least square regression. Hence a.s. support stability also holds for these algorithms.174

As we will see ahead the weakening helps us fulfill key technical requirements when it comes to the study of175

Neural Networks.176

3.3 Exponential Convergence of Generalization Error177

Almost Sure (a.s.) Support Stability can be used in place of uniform stability in conjunction with the techniques178

of (Feldman & Vondrak, 2019a, Theorem 1.1) to give guarantees on generalization error for algorithms that are179

symmetric in distribution. A function f(x1, . . . , xm) is called symmetric if f(x1, . . . , xm) = f(σ(x1), . . . , σ(xm))180

for any permutation σ . But if we have a function f which is not symmetric but the probability of choosing181

any permutation of a given set of elements is equal then we use the term “symmetric in distribution” to refer182

to such a function along with the distribution by which its inputs are picked. In (Bousquet & Elisseeff, 2002,183

Section 2.1) the term “symmetric algorithm” was used but it was potentially misleading since what they184

meant was “symmetric in distribution” in the sense that we have used it. Since SGD randomly permutes the185

training points it is clearly “symmetric in distribution”.186

In particular, we can derive the following theorem.187

Theorem 3.2. Let AS,r be an algorithm that is symmetric in distribution and has a.s. stability β with
respect to the loss function ℓ(·, ·) such that 0 ≤ ℓ(AS,r(xz), yz) ≤ 1 for all S ∈ Zm, for all r ∈ R and for all
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z = (xz, yz) ∈ Z. Then, there exists a constant c > 0 independent of m s.t. for any m ≥ 1 and δ ∈ (0, 1),
with probability 1 − δ,

Er [R(S, r) − Re(S, r)] ≤ c

(
β log(m) log

(m

δ

)
+
√

log(1/δ)
m

)
.

The constant c is independent of m and, because our analysis is asymptotic in m, this is sufficient for us.188

Proof outline. We give a high-level outline here. Our proof extends the proof of Feldman and Vondrak189

((Feldman & Vondrak, 2019a, Theorem 1.1)) to accommodate the generalization of McDiarmid’s Lemma A.2190

from (Combes, 2015, Proposition 2). Feldman & Vondrak (2019b) used two steps to get a better generalization191

guarantee. The first step is range reduction, where the range of the loss function is reduced. For this, they192

define a new clipping function in Lemma 3.1 Feldman & Vondrak (2019a) which preserves uniform stability193

and hence it will also preserve a.s. support stability. They also use uniform stability in Lemma 3.2 Feldman194

& Vondrak (2019a) where they show the shifted and clipped function will still be stable which is done by195

applying McDiarmid’s inequality to β sensitive functions. Here use a modification of McDiarmid’s Inequality196

(Lemma A.2 given in Appendix A) to get bounds for a.s. support stability. The second step is dataset197

size reduction (as described in Section 3.3 Feldman & Vondrak (2019a)) which will remain the same for a.s.198

support stability as this only involves stating the result for a smaller dataset and the probability, and then199

taking a union bound. Therefore both steps of the argument given in Feldman & Vondrak (2019a) go through200

for a.s. support stability.201

4 Proof of Almost Sure (a.s.) Support Stability of Stochastic Gradient Descent202

As large family of machine learning algorithms follow a paradigm in which the learned function is parameterized203

by a vector w ∈ Rn for some n ≥ 1, i.e., we have some fixed function g : Rn × X → Y. The training set is204

used to learn a suitable parameter vector w ∈ Rn such that the value g(w, xz) is a good estimate of yz for205

all z ∈ Z. This value of w is learned by running Stochastic Gradient Descent (SGD) using a training set206

drawn from the unknown distribution. We will say that the size of the training set is m and the algorithm207

proceeds in epochs of m steps each. The parameter vector at step t is denoted wt for 0 ≤ t ≤ τ · m, where τ208

is the total number of epochs during training. To frame the learned function output by this algorithm in the209

terms defined in Section 3.1, the random decision string r consists of the pair (w0, (π0, . . . , πτ−1)), i.e., the210

random initial parameter vector w0 from which SGD begin and the set of τ random permutations used in211

the τ epochs.212

4.1 Some Properties of Parameterized Functions213

In Hardt et al. (2016), proving that the learning algorithm derived by SGD is stable requires smoothness214

and Lipschitz properties of f , but only for partial derivatives taken on Rn, i.e., on the parameter space. The215

requirement there is that every function in the family of functions {f(·, z) : z ∈ Z} is smooth and has a216

bounded Lipschitz constant. Our key insight is that this requirement is stronger than needed. All we need217

is that the functions induced by the data points that we pick to train SGD have these properties. We now218

present some definitions that encapsulate this idea.219

Definition 4.1 (Almost Lipschitzness of vector-valued function). Given a subset Ω of Z, a parameterized220

function f : Rn × Z → Ro is said to follow β-almost L Lipschitzness property w.r.t Ω if for any w ∈ Rn and221

∀z ∈ Ω there exists constants L > 0 and ϵ > 0 such that, with probability β (over the choice of z), for all222

w′ ∈ Rn, ∥w′ − w∥ < ϵ implies223

∥f(w′, z) − f(w, z)∥ ≤ L∥w′ − w∥.

If β = 1 then we say that f follows almost surely L-Lipschitzness property w.r.t Ω.224

From Lipschitzness to local parameter Lipschitz and local parameter Smoothness. From225

Definition 4.1 we get two local properties of a function which are of interest to us.226
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• For a parameterized function f : Rn × Z → R we call it almost surely locally Ll-parameter Lipschitz227

(a.s. Ll-LPL for short) if it satisfies the Definition 4.1.228

• Also we call this function almost surely locally Kl-parameter Smooth (a.s. Kl-LPS for short) if229

∇wf(·, ·) satisfies the Definition 4.1.230

If the function (or its gradient) is locally bounded, and, if we only look at this function at a finite number of231

points (w), we get a “global” property within this finite set of points:232

Lemma 4.2. Given f : Rn × Z → R we have that if f is bounded and follows almost surely L Lipschitzness233

property at a finite set of points A ⊂ Rn and for a set Ω ⊆ Z, then there is an L > 0 such that for every pair234

w, w′ ∈ A and ∀z ∈ Ω235

∥f(w, z) − f(w′, z)∥ ≤ L∥w − w′∥.

The proof is in Appendix B.236

Discussion: Local properties imply “Global” properties. SGD trained on a finite training set will237

encounter a finite number of parameter vectors in its execution, and hence Lemma 4.2 can be used to say238

that the local properties of a bounded Lipschitz constant and bounded smoothness can be extended to the239

entire set of parameters encountered by SGD. Specifically, we use the lemma in two ways.240

• Setting Ω = S, and taking A to be the set of weights encountered during training over all possible241

permutations of S, we get the Training Lipschitz constant LS and applying it to the gradients of242

function we get the Training Smoothness constant KS .243

• Setting Ω = supp (D) and taking A to be the set of final parameter vectors produced by SGD for244

each of the possible permutations, we get the Test Lipschitz constant Lg which is applicable for each245

test point.246

Note that although we use the term “constant” in their names, all these quantities are random variables that247

depend on the random choice of the initial weight w0. We also give a formal definition of set A for Test248

Lipschitz constant which can be found in Appendix as Definition B.1.249

4.2 Almost Sure (a.s.) Support Stability of SGD250

We now work towards the a.s. support stability of SGD. First, we state a theorem that bounds the replace-one251

error of SGD up to a certain number of epochs. To make the theorem statement easier to read, we first252

separate out our assumptions.253

S1. We are given a space Z = X × Y and a probability distribution D defined over it. We have a254

parameterized loss function f : Rn × Z → R that is a.s. Ll-LPL w.r.t supp (D) and a.s. Kl-LPS255

w.r.t S.256

S2. For a training set S of size m for each i ∈ [m] chosen i.i.d. according to D we run Stochastic Gradient257

Descent on f for τ epochs with random choice r and parallelly, with the same set of random choices258

r, on a set Si wherein the i-th data point zi of S has been replaced by another data point z′
i chosen259

from D independent of all other random choices.260

S3. At step t of SGD let the learning rate αt ≤ α0/t(1−ρ(τ,m)), ρ(τ, m) = log log m
log τ+log m , wt and w′

t the parameter261

vectors obtained while training with set S and S′ respectively.262

Theorem 4.3. Given Assumptions S1, S2 and S3, we have constants LS, KS and Lg as the Training263

Lipschitz constant, Training Smoothness constant and Test Lipschitz constant such that with probability 1264

over z265
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Er [f(wτm, z) − f(w′
τm, z)] ≤ 2τ α0 · Er

[
LSLg · U(α0, KS , ρ(τ, m))

m

(
1− α0KS

ρ(τ,m)

) ]
, (2)

where U(α0, KS , ρ(τ, m)) ≤ 1 + 1
KSα0

, and as α0 → 0, U(α0, KS , ρ(τ, m)) → 1 + mρ(τ,m)

ρ(τ,m) .266

Note that here Expectation will be over random variables Lg, LS and KS which are a function of random267

initialization of initial weights (w0).268

Proof outline. The proof follows the lines of the argument presented by (Hardt et al., 2016, Theorem 3.12)269

with the difference that we allow for a probabilistic relaxation of the smoothness conditions and more relaxed270

constraint on Lipschitz constants in line with our definition of a.s. stability. Also, note that we have to271

account for an expectation over the random string r and that we have been able to extend the argument to272

multiple epochs which was not possible in (Kuzborskij & Lampert, 2018, Theorem 4). The complete proof of273

Theorem 4.3 is in Appendix B.274

Data-dependence with Training Lipschitz constant and Test Lipschitz constant. A key feature of the bound275

presented in equation 2 is that the dependence on the data is expressed through the data-dependent Training276

Lipschitz constant LS and Test Lipschitz constant Lg. Training Lipschitz constant depends on the gradients277

at training points and the replacement point z′
i which is also picked from the data distribution and Training278

Lipschitz constant depends on the gradients of the trained network calculated at points from distribution.279

Further, a line of research in the optimization literature has shown that the gradients associated with SGD280

decay as training proceeds, even for non-convex loss functions, c.f. Section 4 of Bottou et al. (2018). Therefore281

we can conclude that the a.s. stability bound of equation 2 is closely connected to the data distribution and282

is likely to be useful for cases where SGD returns a meaningful solution and vacuous for bad cases like the283

one presented by Zhang et al. (2017).284

Corollary 4.4. Given assumptions S1, S2 and S3, and under the condition that KS is a constant, w.r.t. m,285

for all r, and Er [LgLS ] is also constant w.r.t m, there is a constant c ∈ (0, 1) that depends on α0 and KS286

such that if the number of epochs τ is at most c log m epochs, the expectation of the generalization error of the287

algorithm taken over the random choices of the algorithm decreases as Õ
(
m− min(ϵ,1/2)) (Where tilde hides the288

logarithmic factors) with probability at least 1 − 1/m over the choice of the training set if α0KS

ρ(1,m) + c log 2 < 1,289

where ϵ = 1 − c log 2 − α0KS

ρ(1,m) .290

Proof. Let us consider two cases. In the first case when ϵ > 1/2 (i.e. we get the usual rate Õ(m−1/2)), this291

happens when α0 < ρ(1,m)
2KS

and we choose a small enough c. One the other hand for case where ϵ < 1/2292

(i.e. rate of Õ(m−ϵ)), which allows for a larger learning rate ρ(1,m)
2KS

< α0 < ρ(1,m)
KS

(for small enough c).293

This clearly shoes that larger initial learning rate could be bad for generalization. It is easy to check from294

Theorem 4.3 that with the conditions given in the statement of Corollary 4.4 the learning algorithm has a.s.295

support stability β where β is o(1/mϵ) if α0KS

ρ(1,m) + c log m < 1. We can therefore apply Theorem 3.2 with296

δ = 1/m to get the result.297

We would like to highlight the importance of ρ(τ, m), notice that ρ(τ, m) = O
(

log log m
log τ+log m

)
so it is decreasing298

in m but very slowly, so because of this even for datasets with say 106 points, it turns out to be ρ(τ, m) = 0.19,299

so this helps us achieve a descent value of initial learning rate α0 = 0.19 and also a much slower decay of300

learning rate αt = α0/t0.81. If we directly compare this corollary with Theorem 4 of Kuzborskij & Lampert301

(2018), we note that their analysis requires an αt = α0/t and α0 = O
(
1/ log(m)2) which is a very steep decay302

in learning rate and a very small value of alpha, just to compare for m = 106, for Kuzborskij & Lampert303

(2018) α0 = 0.005. Also, their analysis bounds generalization error only up to the end of a single epoch304

whereas we can bound the error well beyond that. Kuzborskij & Lampert (2018) also require the Hessian to305

have a bounded Lipschitz constant, i.e., the third derivative of the loss function has to be bounded. We do306

not need any such constraint.307
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5 Neural Networks with ReLU Activation308

The main result of this section presents the conditions required for low generalization error for Neural309

Networks with ReLU activation. For ease of reading, we first state our assumptions:310

N1. We have a fully connected Neural Network with ReLU activation and 1 output neuron.311

N2. The NN is trained on set S ∼ Dm using SGD for τ epochs, where D is over Rd × Y, such that Y is312

countable and for each y ∈ Y we get a countable set {x ∈ Rd : PrD {lab(x) = y} > 0}, where lab(x)313

is label of x.314

N3. We have a doubly differentiable loss function with bounded first and second order derivatives and315

learning rate αt = α0/t(1−ρ(τ,m)), where ρ(τ, m) = log log m
log τ+log m and the data points of S and the316

spectral norms of weight matrices explored by SGD are bounded317

Theorem 5.1. If N1, N2 and N3 hold, then KS is constant w.r.t m for all r and Er [Lg · LS ] is also constant
w.r.t. m, with c > 0 such that

Er [|R(S, r) − Re(S, r)|] ≤ c

(
2τ α0 · Er [LSLg] · U(α0, KS , ρ(τ, m)) log(m)2

m

(
1− α0KS

ρ(τ,m)

) +
√

log(m)
m

)
,

with probability at least 1 − 1/m, where U(α0, KS , ρ(τ, m)) ≤ 1 + 1
α0KS

, α0 → 0 implies U(α0, KS , ρ(τ, m)) →318

1 + mρ(τ,m)

ρ(τ,m) .319

Note that for some c1 log(m) epochs and with an initial learning rate of α0 such that α0KS

ρ(1,m) + c1 log 2 < 1,320

the RHS decreases as m increases. It is important to note that Lg is the constant that depends on the actual321

distribution D and is calculated for a trained neural network (i.e. at wτm). This aligns with the notion that322

if the network has reached a “good enough” minima then the gradient values should be less and hence this323

will show better generalization. Also, LS and KS are constants that depend on the training set S. These324

are “global” over the data set in the sense that the expectation is for the entire training process over the325

(random) choice of initial parameters and the permutation that SGD chooses. For cases where SGD chooses326

a good set of initial parameters with good probability these are likely to be small.327

However, our framework allows for a more nuanced analysis that we have presented in brief in Appendix C.328

To understand this line of analysis let us first note that as SGD training proceeds, and if it is able to converge329

to a minima, the Lipschitz constants encountered decrease. Now if we consider the index i of the training330

set that has been changed as per the definition of a.s. support stability, a random permutation of S will331

locate this index at a randomly selected position between 1 and m in the training sequence. If we look at a332

particular trace of SGD, the bounding constant LS can actually be replaced with the constant encountered at333

this position. Hence, when the expectation is taken over the random choices, the bounding value is related to334

the expected value of the Lipschitz constants encountered. The significance of this is that this expected value335

could be substantially smaller than the worst case value in many cases, especially when the training converges336

from a high value of the loss to a low value rapidly. Lg can be significantly smaller that LS but in case the337

training converges early or if the initial choice of weights is close to the final choice of parameters these two338

could be close. Further details of this analysis and alternate theorem statements can be found in Appendix C.339

For KS we are constrained in the sense that we need this value to be small throughout the training, even340

at the beginning. Also it is interesting to note that when LS and Lg → 0 the generalization error becomes341

zero, but when KS → 0, U(α0, KS , ρ(τ, m)) → 1 + mρ(τ,m)

ρ(τ,m) which leads to generalization error behave like342

O

(
log m3

m +
√

log m
m

)
, which is still a decreasing function of m and does not directly reaches 0. Next in343

Section 5.1, we first establish that the theory of a.s. support stability applies to NNs under conditions344

specified, then we prove the above theorem along with empirical validation.345
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5.1 Almost Sure (a.s.) Support Stability of Neural Networks with ReLU Activation346

The key to showing the a.s. support stability of NNs with ReLU is to establish that they are locally347

parameter-Lipschitz and locally parameter-smooth. First, we show the existence of these constants and then348

we will show an upper bound under some reasonable assumptions.349

Theorem 5.2. For every w ∈ Rn, a doubly differentiable loss function, ℓ : R × R → R, applied to the output350

of a NN with ReLU activation is locally parameter-Lipschitz and locally parameter-smooth for all x ∈ Rd
351

except for a set of measure 0.352

Proof outline. The proof of this theorem is based on the argument that for a given w a point of discontinuity353

exists at a given neuron if the input x lies in the set of solutions to a family of equations, i.e., in a lower354

dimensional subspace of Rd. This proof is an adaption of an idea of (Milne, 2019, Lemma 1) and can be355

found in Appendix D.356

Theorem 5.2 begs the question: How large are these Lipschitz and smoothness constants? We provide some357

general bounds that can be improved for specific architectures:358

Proposition 5.3. Suppose we have a fully connected NN of depth H + 1, with ReLU activation at the inner359

nodes. Then, if the spectral norms of weight matrices are bounded for every layer i.e., ∥W i∥σ is bounded360

∀i ∈ [H], and the size of each layer be {l0, . . . , lH} and the distribution of dataset is normalized with ∥x∥2 ≤ 1361

then,362

Lg ≤

(
H∏

k=1
∥W k∥σ

)
× A(M, W )1/2 (3)

KS ≤

(
H∏

k=1
∥W k∥σ

)
× A(M, W ) (4)

where363

A(M, W ) =
H∑

l=1

∥M l∥2
2,2

∥W l−1∥2
σ · ∥W l∥2

σ · ∥W l+1∥2
σ

where (i, j)th element of matrix M l[i, j] = ∥M ′(l, i, j)∥σ, and where M ′(l, i, j) is a matrix such that (p, q)th
364

element is M ′(l, i, j)[p, q] = w
(l+1)
j,p w

(l−1)
q,i . Note that equation 3 holds for both Training Lipschitz constant LS365

and Test Lipschitz constant Lg.366

The proof of the proposition is in Appendix D. Note that it’s possible to give a tighter bound for above367

theorem by not bounding product of weight matrices (which we do after equation 20 in Appendix) but we368

keep the above equation because of its clarity. The bound on Lipschitz constants should be compared to the369

bounds given in the context of Rademacher complexity by (Bartlett et al., 2017, Equation 1.2) and Golowich370

et al. (2018). Our bound is related to the spectral complexity and can potentially be independent of the size371

of the network. We are now ready to prove our main theorem.372

Proof of Theorem 5.1. Theorem 5.2 tells us that a NN with ReLU activations is locally parameter-Lipschitz373

and locally parameter-smooth. From Proposition 5.3 we see that the boundedness of the first and second374

derivatives of the loss function and the boundedness of the spectral norm of weight matrices and data points375

ensures that the Lipschitz constants and smoothness constants associated with the NN’s training are bounded376

w.r.t. m. With all these in place, we can apply Theorem 4.3 to get the a.s. support stability followed by377

Theorem 3.2 to get the desired result.378

379
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Discussion: An example showing the benefits of data-dependent Lipschitz constants. In general380

data-dependent Lipschitz constants can be much smaller than the Lipschitz constants of the space from which381

the data might appear. There are probably many scenarios in which this can be demonstrated but we turn to382

a well-appreciated scenario: a data set which has much smaller dimensionality than the space in which it is383

embedded. We will now argue that in such scenarios data-dependent Lipschitz constants can be significantly384

smaller than the385

Suppose we have data as x ∈ Rd but the actual dimension of the data is D ≪ d, a situation that is often seen386

in many cases, for example image data. For simplicity of presentations we assume that each data point has387

x1, . . . , xD non-zero and the remaining coordinates are 0. The arguments we make can be made even without388

this assumption by considering the data points with coordinates based on their projection onto a basis of the389

subspace they are taken from.390

Suppose we have a neural network with 1 hidden layer of d1 neurons and a single output layer. Let W 1 ∈ Rd1×d
391

and W 2 ∈ R1×d1 be the weights of 1st and 2nd layer respectively and we use w
(l)
i,j to represent i, j weight392

of lth layer. For simplicity, let the output of the neural network O(w, x) = W 2W 1x. Now, assuming MSE393

loss we calculate the gradients and show that the effective upper bound of this could be smaller because of394

the fact that our LS and Lg are calculated only from S and supp(D). This is under the assumption that395

the weights are upper bounded by some quantity B1. We will also assume that all data points have been396

re-scaled so that their norm is at most 1.397

Computing the squared ℓ2 norm of the gradients of the parameter vector w we get,398

∥∇wf(w, x)∥2
2 = ∥∇W 1f(w, x)∥2

2 + ∥∇W 2f(w, x)∥2
2

Calculating gradients norm for both layers, assuming for given w0 (i.e., weight at initialization, note that
this is a part of r randomness) we have value of weights bounded above by B1∥∥∥∥∥∂f(w, x)

∂w
(2)
j

∥∥∥∥∥
2

2

= |⟨W 1
j,:, x⟩|2, Where W 1

j,: are the jth row of W 1

≤ B2
1 · D2

The effective dimension of x is D so the above dot product dimension will also be bounded by D as x is 0 in
all other dimensions. ∥∥∥∥∥∂f(w, x)

∂w
(1)
i,j

∥∥∥∥∥
2

2

= |w(2)
i xj |2

≤ B2
1

So summing up the squared partial derivatives across all parameters we get,

∥∇wf(w, x)∥2
2 ≤ d1 · D · B2

1 + d1 · D2 · B2
1

= B2
1 · d1 · D(1 + D)

Here we see that we obtain a bound on the norm of the gradients that is related to D which is significantly399

smaller than d, whereas in general we can expect the norm of the gradients to be of the order of d even under400

the assumptions of bounded weights and rescaled data points.401

Note that we show here the value of LS and Lg but for generalization we actually need Er[LS · Lg] to be402

bounded. Using Cauchy-Schwarz inequality we could see that we need bound on just the expectation of403

square (or the second moment) of each term. This means that when we select the initial weight parameter404

vector w0 we need the boundedness constraints on weights only which is a fairly mild constraint.405

5.1.1 Experimental Validation of Results406

Here we will experimentally show that the Training Lipschitz constant (LS), Test Lipschitz constant (Lg)407

and Training Smoothness constant (KS) that we reasoned with are indeed bounded, and that the theoretical408

11



Under review as submission to TMLR

0 5000 10000 15000 20000
Number of Datapoints

10

20

30

40

50

60
Em

pi
ric

al
 m

ax

Training Lipschitz constant
Training Smoothness constant

(a) MNIST

0 5000 10000 15000 20000
Number of Datapoints

20

40

60

80

100

Em
pi

ric
al

 m
ax

Training Lipschitz constant
Training Smoothness constant

(b) FashionMNIST

Figure 1: Experiment 1, Maximum of the Lipschitz and smoothness constants at every p (= 20) interval of
updates of SGD (we plot both the running average and the highest value found so far). Notice that these
constants have a clear upper bound throughout the training process.

upper bound that we derived for the generalization error of a neural network holds in practice. For simplicity409

in this experiment, we assume Training Lipschitz constant to be a good proxy for Test Lipschitz constant410

(Lg ≤ LS).411

Setup. For our experiments we use MNIST and FashionMNIST datasets. In both datasets, we randomly412

selected 20, 000 training and 1, 000 test points. All experiments were conducted using a fully connected feed413

forward neural network with a single hidden layer and ReLU activation. We train the model using SGD414

(batch size = 1), with cross-entropy loss, starting with randomly initialized weights. As suggested in our415

analysis we use a decreasing learning rate αt = α0
t . In each epoch, we consider a random permutation of the416

training set. Training Lipschitz constant and Training Smoothness constant are computed by calculating the417

norm of gradients and Hessian across the training steps and taking their max.418

Experiment 1. Our first experiment is aimed towards establishing that the Training Lipschitz constant (LS)419

and Training Smoothness constant (KS) values estimated using local values at each step are bounded. Figure 1420

summarizes the results of these experiments over MNIST and FashionMNIST datasets (α0 = 0.001). The plots421

contain the maximum of the local parameter Lipschitz and smoothness values obtained after running each422

experiment 10 times with random weight initialization. These results support our Theorem 5.2 since the upper423

bound values quickly stabilize and do not grow with the size of the training set in both datasets. Similarly, the424

bounded smoothness constant supports our constraint on the learning rate, α0 ≤ ρ(τ,m)
KS

, ρ(τ, m) = log log m
log τ+log m .425

We find LS to be 8.1174 (MNIST) & 12.5737 (FashionMNIST), and KS to be 58.185 (MNIST) and 102.7096426

(FashionMNIST).427

Experiment 2. We now turn our attention to the experiment to support our main result, i.e., the empirical428

generalization error estimated using validation set is upper bounded by our theoretical upper bound. We first429

split each dataset in a 20:1 ratio into training and validation sets, and train the model at varying sizes of430

training sets. We empirically compute the generalization error at each training set size using the validation431

set. Figure 2 compares this empirical generalization error (in red) with the theoretical upper bound (in blue).432

From these results, we can see that our bound decreases along with the generalization error thus empirically433

validating our reasoning. Clearly, the bound is not as tight as we would like it to be. Our conjecture is that434

this arises from the fact that we use a single value of LS as an upper bound for the gradients encountered435

during the course of the training. Our framework is flexible in the sense that we can use it with a more fine436

grained analysis of the gradients averaged over time. This is likely to achieve a better bound. We leave this437

direction for future work.438
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Figure 2: Experiment 2, Comparison of empirical generalization error (red) vs. theoretical upper bound
(blue) with varying training set size for different datasets.

5.2 Random Labelling Case439

In making their case against the applicability of uniform stability as a tool for theoretically establishing the440

good generalization properties of Neural Networks, Zhang et al. (2017) presented the following classification441

problem: Given points picked from Euclidean space using some well-behaved distribution, say a Gaussian, each442

point was assumed to have a class label picked uniformly at random from a finite set of labels independent443

of all other points. Clearly, any classification algorithm trained on a finite training set will have ω(1)444

generalization error for this problem. We now demonstrate that our results do not imply good generalization445

for this problem. Specifically, we show empirically that the assumption of Test Lipschitz constant (Lg) being446

independent of m breaks in this case and this “constant” actually increases with m.447

Setup. We pick images from the 0 and 1 label class of MNIST dataset. For random labelling case, we448

assign random labels to all the points. We then randomly sample a test set T (|T | = 50). We take a single449

hidden layer (128 neurons) fully connected neural network having ReLU activation in the hidden layer. We450

take the loss function as l(ŷ, y) = 1 − Softmax(c · ŷ, y) where c = 6. We use a constant learning rate of 0.003,451

batch size of size 8.452

Experiment 3. The experiment proceeds by selecting initial random weights for a model say w0 (we do453

this 10 times). Then for every initialization we pick training set S from our modified dataset (we do this454

for 5 times). Now for every training set, we train the model either till accuracy is ≥ 98% or till 500 epochs455

whichever is reached first. Now we calculate the loss i.e. f(r, S, z) and the gradient ∇wf(r, S, z) for all z ∈ T .456

For the Test Lipschitz constant we do Lg ≃ maxz∈T {∥∇wf(r, S, z)∥}. In figure 3a we can clearly see that457

the Test Lipschitz constant Lg scales as the size of the training set (m) increases. On the contrary for the458

standard (non-random) dataset the Test Lipschitz constant Lg shows a decreasing trend with m see figure 3b.459

Therefore we can expect that in the random labelling case, the upper bound in Theorem 5.1 becomes so large460

as to become vacuous.461

Discussion. We note that the random labelling example has the property that the variance over the choice462

of training sets of the loss of any algorithm, V arS [f(r, S, z)], is bound to be high. One possible direction463

for theoretically showing that this implies that the Lipschitz constants are likely to be high is by using464

Poincare-type inequalities that show that the norm of the gradients of a function of a random vector is lower465

bounded by the variance of the function. We do not pursue this direction further here, but we point out that466

it may help develop a general theory for the limitations of what can be learned using parametrized methods467

trained using gradient descent methods.468
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(a) Increasing Lg for random label MNIST (b) Decreasing Lg for standard (non random) MNIST

Figure 3: Experiment 3, Test Lipschitz constant plot as training set size increases

5.3 Discussion on the Applicability of Our Results469

• Removing the fully connectedness constraint. Although Theorem 5.1 is stated for a fully connected network,470

we conjecture that it can be applied to networks like CNNs which have partially connected convolutional471

layers with intermediate pooling and normalization layers (e.g., LeNet, AlexNet, etc.). In such cases, the472

symmetry in distribution condition required for Theorem 3.2 holds as long as the training set is chosen i.i.d.473

from the unknown distribution. Our work provides a framework in which the study of the gradients obtained474

during training such networks can help guide our understanding of their generalization properties.475

• Adding regularization terms to the loss function. Several popular regularizers, the ℓ2 regularizer being a476

prominent example, are doubly differentiable and therefore Theorem 5.1 can be applied when such regularizers477

are used along with a doubly differentiable loss function. Here as well a mild addition for bound on derivative478

of regularization term in Theorem 5.3 may be able to help us prove results for this setting. However, it479

requires further investigation to establish such a result.480

• Activation functions apart from ReLU. We present a comprehensive treatment of ReLU activation but we481

conjecture that results are not restricted to this kind of activation. Non-linearities like max-pool can also be482

handled in our framework by proving that, like with ReLU, the points of discontinuity of such a non-linearity483

also lie in a set of Lebesgue measure 0. This provides a direction for future research in this area.484

• The case of multiple outputs Although we state the Theorem 5.1 for the case of a NN with a single output,485

it is not difficult to extend the technique to cover the case of multiple outputs. However, this requires a full486

treatment which we postpone to future work.487

What about other distributions? The data-dependent Training and Test Lipschitz constants turns out to be488

the deciding factor of generalization error. But our analysis is limited to the bounds we derive for them.489

There is a requirement for a more fine-grained analysis of Training and Test Lipschitz constants and we490

believe that optimizing these data-dependent Lipschitz constants will be the right direction to proceed. This491

may be made possible by looking at the network structures, the data distribution and the training set in492

more detail. We hope that the polynomial characterization of the NN presented in Section D.1.2 will help493

this process. We conjecture that it may be able to show that for certain distributions the constants actually494

improve (decrease) as the training proceeds, resulting in a much slower decay of learning rate and this could495

lead to a proof of a.s. support stability in these cases.496

6 Conclusion497

We have shown the data-dependent quantities which derive the generalization error for NNs. We devised498

a theoretical framework for using algorithmic stability, introduced the data distribution part and proved499
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generalization bounds for NNs with ReLU nonlinearities. We feel that it is possible to prove stronger results500

in this framework than the ones we have presented here, and more widely applicable ones. Immediate lines of501

research that suggest themselves are to apply our methods for CNNs and GNNs and to investigate what other502

architectures can be approached with our method and does the Lipschitz constants play some significant503

role because of a different network structure. It would be particularly interesting to see if there is some504

analog of our polynomial characterisation for GNNs. Although we tackle the overparameterization setting505

to some extent we feel more in-depth analysis is required to give better insights into when we can expect506

overparametrized NNs to generalize.507
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A Modification of McDiarmid’s Theorem588

Symbol Explanation
LS Train Lipschitz constant.
Lg Test Lipschitz constant.
KS Train Smoothness constant.
X , Y Input and output Space.
D Distribution over Z ⊂ X Y.
z =
(xz, yz)

Input point and label picked from
distribution D defined over Z.

r ∈ R random string from a random set to
show randomness in an algorithm.

S Training set of size m.
Si Training set S with ith point replaced

by another point picked i.i.d from D.
AS,r Training Algorithm.
ℓ Bounded value Loss function with

domain Y × Y → [0, M ].
R(AS,r) Risk (Population error).
Re(AS,r) Empirical Risk (Training error).
wt Weight of the parameterized function

trained by SGD at tth step.
αt Learning rate at t-th step of SGD.
∥.∥σ Spectral norm of matrix.

Symbol Explanation
τ Total number of epochs, each epoch is

of m step, w0 is the initial weight.
π ∈ Π π is some permutation of m points

picked from set of all possible
permutation Π.

rinit Random initialization i.e. w0.
rp a Random permutation for m points.
r =
(rinit, rp)

Random string r having w0 and
{πi}τ−1

i=0 i.e., for all epochs.
Ll Local parameter Lipschitz constant.
Kl Local parameter Smoothness constant.
W l Weight matrix of l-th layer on NN.
W l

j,: The row of l-th layer weight of NN.
w

(l)
i,j weight value of l-th layer from ith

neuron of l-th layer to j-th neuron of
l + 1-th layer.

T Size of test set.
f(wt, z) Loss at t-th step of SGD computed on

point z.
f(r, S, z) Loss of NN trained on set S and

evaluated on point z.

Table 2: Notation used in the body of the paper.

We first define a probabilistic weakening of bounded difference property.589

Definition A.1. Given 2m i.i.d. random variables X1, . . . , X2m drawn from some domain Z according to590

some probability distribution D, for some β > 0 and η ∈ [0, 1], a function f : Zm → R is called η-almost β-591

bounded difference w.r.t. D if592

∀i ∈ {1, · · · , m} : |f (X1, . . . , Xm) − f (X1, . . . , Xi−1, X ′
i, Xi+1, . . . , Xm)| ≤ β,

with probability at least 1 − η. In case η = 0 we say that f satisfies almost surely β-bounded difference w.r.t593

D. When D is understood we will omit it, and for the case η = 1 we will simply write that f is almost surely594

(or just a.s.) β-Lipschitz.595

We now state a modified version of McDiarmid’s theorem that holds for η-almost β- bounded difference596

functions.597

Lemma A.2. Let X1, . . . , Xm be i.i.d. random variables. If f satisfies η-almost β- bounded difference and598

takes values between 0 and M , then,599

Pr {f(X1, . . . , Xm) − E [f(X1, . . . , Xm)] ≥ ϵ} ≤ exp
[

−2ϵ2

m (β + Mη)2

]
+ η.

Lemma A.2 follows directly from a result shown in (Combes, 2015, Proposition 2). Since the proof is available600

in Combes (2015) we omit it here.601

B Almost Sure (a.s.) Support Stability of SGD Proved602

Proof of Lemma 4.2. Let f be the partial function of w (i.e., assuming z is already given) is locally Lipschitz603

at w ∈ A, there is an εw > 0 and an Lw > 0 such that for all w′ ∈ Rn with ∥w −w′∥ ≤ εw, |f(w)−f(w′)| ≤604
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Lw∥w − w′∥. So, let us turn our attention to those w′ ∈ A that lie outside the ball of radius εw around w.605

Note that for such a w′, if B > 0 is the bound on f , we have that606

|f(w) − f(w′)|
∥w − w′∥

≤ 2B

εw
.

Therefore the “global” Lipschitz constant for f within A is max{Lw, 2B/εw : w ∈ A} which is bounded since607

A is finite. This is valid for all the partial functions (i.e., for all z ∈ Ω) and hence proves the theorem.608

Now we define the weight set for Test Lipschitz constant.609

Definition B.1. The weight set for Test Lipschitz constant A is the set of weights encountered while training610

through SGD, for all possible permutation of points in training set S. Let the set of all permutations of S be611

Π and π ∈ Π be a permutation of S, let wi,π be the weight at i-th step of SGD where gradients are computed612

using first i points of S indexed using permutation π. So weights encountered across all permutations613

A =
⋃

π∈Π
{w1,π, w2,π, · · · , wm,π}.

Proof of Theorem 4.3. For some i ∈ [m] we couple the trajectory of SGD on S and Si where zi ∈ S has been614

replaced with z′
i. Our random string r, in this case, is a random choice of an initial parameter vector, w0,615

and a random set of τ i.i.d permutations π0, . . . , πτ−1 of [m] chosen uniformly at random. We use these616

random choices for training both the algorithms with S and Si. For 0 ≤ j ≤ τ − 1, we denote π−1
j (i) by Ij ,617

i.e., Ij is the (random) position where the ith training point is encountered in the jth training epoch. The618

key quantity we will track through the coupled training process will be619

δt = ∥wt − w′
t∥,

for 1 ≤ t ≤ τm. If we can show that Er [Lgδτm] is bounded by some quantity B almost surely, we can invoke620

the fact that f is a.s. Ll-LPL to say that ∥Er [f(wt, z) − f(w′
t, z)] ∥ ≤ Er [Lgδτm] ≤ B for all z ∈ supp (D),621

where Lg is the Test Lipschitz constant.622

We argue differently for the first epoch and differently for later epochs. For the first epoch, we note that for623

t ≤ I0, δt = 0 since SGD performs identical moves in both cases. At t = I0 + 1624

δI0+1 = ∥wI0 − αI0∇f(wI0 , zi) − (w′
I0

− αI0∇f(w′
I0

, z′
i))∥ = αI0∥∇f(wI0 , zi) − ∇f(w′

I0
, z′

i)∥,

where the second equality follows from the fact that wI0 = w′
I0

by the definition of I0. Using Lemma 4.2 we625

can say that δI0+1 ≤ 2αI0LS almost surely. Notice here we used data dependent Training Lipschitz constant626

LS which is only defined for points in set S, unlike Test Lipschitz constant. Now,627

δI0+2 ≤ ∥wI0+1 − w′
I0+1∥ + αI0+1∥∇f(wI0+1, zi) − ∇f(w′

I0+1, z′
i))∥.

Here although the parameter vectors wI0+1 and w′
I0+1 are not the same, zπ0(I0+1) and z′

π0(I0+1) are the same628

by the definition of I0 (assuming that I0 ̸= m). Therefore we get that629

δI0+2 ≤ δI0+1 + αI0+1KSδI0+1

with probability 1 since from Lemma 4.2 we have that f has a “global” smoothness property for the entire set630

of at most 2τm parameter vectors that will be encountered during the coupled training of S and Si. Noting631

that a similar recursion can be applied all the way to the end of the first epoch, i.e. till t = m we get632

δm ≤ 2αI0LS

m∏
t=I0+1

(1 + αtKS) ≤ 2αI0LS exp
{

m∑
t=I0+1

αtKS

}
, (5)

with probability 1. Moving on to the next epoch we note that we can make the argument above till the next633

point where the two training sequences differ, i.e., till the m + I1 + 1st step. At this point we have,634

δm+I1+1 ≤ δm+I1 + αm+I1∥∇f(wm+I1 , zi) − ∇f(w′
m+I1

, z′
i))∥.
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Since neither the parameter vector nor the training points are the same in the second term, we have no option635

but to use the almost data dependent Lipschitz constant to say that636

δm+I1+1 ≤ δm+I1 + αm+I12LS .

Since αm+I1 < αI0 , observing that our current bound for δm+I1 is larger than αm+I12LS . Therefore637

δm+I1+1 ≤ 2δm+I1 .

So, we see that in the second and subsequent epochs, for time step jm + Ij + 1, 1 ≤ j < τ we have the bound638

δjm+Ij+1 ≤ 2δjm+Ij ,

and for all t > m + I1, t ̸= I1, . . . , Iτ−1 we have, as before, by the smoothness property that639

δt+1 ≤ δt(1 + αt+1KS).

Therefore, we have that640

δτm ≤ 2αI0LS(2)τ−1 exp
{

τm∑
t=I0+1

αtKS

}
≤ α0LS2τ 1

I
1−ρ(τ,m)
0

exp

α0KS

(
(τm)ρ(τ,m) − I

ρ(τ,m)
0

)
ρ(τ, m)

 . (6)

where, in the first inequality for ease of calculation we have retained the terms of the form (1 + αIj KS),641

2 ≤ j < τ in the product on the right although we can ignore them. In the second inequality, we have642

substituted αt = α0/t(1−ρ(τ,m)) and bound the summation using integration.643

Finally, in order to compute Er [LgδT ] remember there were two source of randomness first is random644

initialization w0 or lets call it rinit and random permutation π lets call it rp. Now because rinit and rp are645

independent we can write Er [Lgδτm] = Erinit

[
Erp

[Lgδτm|rinit]
]
. Now in order to compute Erp

[Lgδτm|rinit]646

note that Lg, LS and KS are constant.647

Note that, since π0 is uniformly drawn from the set of permutations of [m], I0 is uniformly distributed on648

[m]. Summing up the last term of (6) over I0 ∈ [m] and dividing further by m we get649

Erp
[Lgδτm|rinit] ≤ 2τ α0LgLS × 1

m

m∑
I0=1

1
I

1−ρ(τ,m)
0

exp

α0KS

(
(τm)ρ(τ,m) − I

ρ(τ,m)
0

)
ρ(τ, m)


Using integration we bound the summation part and also using exp(−α0KS/ρ(τ, m)) ≤ 1 we get the upper650

bound for the summation part as651

≤ U (α0, KS , ρ(τ, m)) · exp
(

α0KS

ρ(τ, m) (τm)ρ(τ,m)
)

where652

U (α0, KS , ρ(τ, m)) := 1 + 1 − exp(−α0KSmρ(τ,m)/ρ(τ, m))
α0KS

,

we get653

Erp [LgδT |rinit] ≤ 2τ α0LgLS · U (α0, KS , ρ(τ, m)) ·
exp

{
α0KS

ρ(τ,m) (τm)ρ(τ,m)
}

m
(7)

taking ρ(τ, m) = log log m
log τ+log m and expectation over rinit we get the desired result.654

C An improved generalization result with “Expected” Lipschitz constants and an655

application656

We present a more fine-grained analysis that improves the bounds of Theorem 4.3 and Theorem 5.1 by657

replacing the worst-case Lipschitz constant LS with the square root of the second moment of the random658

Lipschitz constants encountered during training. With this new analysis we are able to present a concrete659

example where the applicability of the bounds can be established directly.660
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C.1 The improved result661

A key issue with the use of the constant LS is that it is a worst-case constants over the entire training662

trajectory. In fact our analysis allows for a more fine-grained analysis that may give better results in certain663

cases. Below we present versions of our key theorems where the bounds depend on an “expected” LS which is664

in fact the square-root of the second moment of the random Lipschitz constants encountered during training.665

To understand what this means, let us note that as SGD training proceeds, and if it is able to converge to a666

minima, the Lipschitz constants encountered decrease. Now if we consider the index i of the training set that667

has been changed as per the definition of η-almost β- bounded difference, a random permutation of S will668

locate this index at a randomly selected position between 1 and m in the training sequence. If we look at a669

particular trace of SGD, the bounding constant LS can actually be replaced with the constant encountered670

at this position. Hence, when the expectation is taken over the random choices, the bounding value is related671

to the expected value of the Lipschitz constants encountered. The significance of this is that this expected672

value could be substantially smaller than the worst case value in many cases, especially when the training673

converges from a high value of the loss to a low value rapidly.674

We formalize this argument below. For simplicity we present the analysis for a single epoch of training.675

For a given choice of initial paramters of SGD, we define LS,i to be the maximum over all possible permutations676

of S of the Lipschitz constant encountered at i-th step of the training. Note that maxi∈[m](LS,i) = LS . And677

since we have shown in Lemma 4.2 that LS is bounded so LS,i will also be bounded for every i ∈ [m].678

We now state the revised version of Theorem 4.3. Note that the random string r will be presented in two679

independent parts (rinit, rp) with the former being the random choice of initial parameters and the latter680

being the random permutation used by SGD.681

Theorem C.1. Given the assumption S1, S2 and S3 for τ = 1, we have bounded values Lg, KS and LS,I0 for682

each I0 ∈ [m], which are functions of the random string r = (rinit, rp), and we have with probability 1 over z,683

Er [f(wm, z) − f(w′
m, z)] ≤ α0 · Erinit

Lg

√
Erp

[
L2

S,I0

]√
U ′(α0, KS , m)

m
1
2 − α0KS log(m)

log log m

 (8)

Where U ′(α0, KS , m) ≤ 1 + 1
2α0KS

and as α0 → 0, U ′(α0, KS , m) → 1 + log(m)2

log log m and Erp [LS,I0 ] is expectation684

of LS,I0 over I0 ∈ [m].685

The key point to note here is that we now have
√

Erp

[
L2

S,I0

]
.686

Proof sketch We provide a proof sketch as it’s very similar to the proof of Theorem 4.3. The main point
is that in line 626, we can actually use LS,I0 instead of LS as it’s the gradient at I0-th step. The rest of the
steps follow similarly till equation 5 so we get

δm ≤ 2αI0LS,I0 exp
{

m∑
t=I0+1

αtKS

}

Now calculating Er [Lgδm], note that earlier (in line 622) LS was constant w.r.t the permutation (rp) but687

here LS,I0 depends on the step, so taking expectation over permutation is equivalent to taking expectation688

over random variable I0 which is picked uniformly from 1 to m.689

Erp
[Lgδm|rinit] ≤ α0Lg · Erp

 LS,I0

I
1− log log m

log m

0

exp
{

m∑
t=I0+1

αtKS

}
So using Cauchy Schwarz inequality to separate expectation over the random variable LS,I0690
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Erp
[Lgδm|rinit] ≤ α0Lg ·

√
Erp

[
L2

S,I0

]√√√√ 1
m

m∑
I0=1

1

I
2− 2 log log m

log m

0

exp
{

m∑
t=I0+1

2αtKS

}

Upper bounding summation inside exponent by integration exactly like we did in equation 6. we get the691

second square-root terms as692

≤ 1
m

m∑
I0=1

1

I
2− 2 log log m

log m

0

exp


2α0KS

(
(m)

log log m
log m − I

log log m
log m

0

)
log m

log log m


Here using the fact that I

2− 2 log log m
log m

0 ≥ I
1− log log m

log m

0 (because I0 ≥ 1) and then using integration to bound the693

summation (exactly like done on line 650) we have694

Erp [Lgδm|rinit] ≤ α0Lg · U ′ (α0, KS , m)
√

Erp

[
L2

S,I0

]
· 1

m
1
2 − 2α0KS log m

log log m

(9)

where695

U ′(α0, KS , m) = 1 + 1 − exp{−2α0KS log(m)2/ log log m}
2α0KS

Now taking expectation over rinit we get the result.696

Now applying this to NNs we get a generalization error result which is an alternate version of Theorem 5.1697

for the 1-epoch case.698

Theorem C.2. If N1, N2 and N3 hold and r = (rinit, rp) then KS is constant w.r.t m for all r and Erinit

[
L2

g

]
and Er

[
L2

S,I0

]
are also constants w.r.t. m, with c > 0 such that

Er [|R(S, r) − Re(S, r)|] ≤ c

(
α0 ·

√
Erinit

[
L2

g

]
Er

[
L2

S,I0

]
· U ′(α0, KS , S) log(m)2

m

(
1
2 − α0KS log m

log log m

) +
√

log(m)
m

)
,

with probability at least 1−1/m, where U ′(α0, KS , m) ≤ 1+ 1
2α0KS

and as α0 → 0, U ′(α0, KS , m) → 1+ log(m)2

log log m699

and Er

[
L2

S,I0

]
is expectation of L2

S,I0
over I0 ∈ [m] (i.e., rp) and also rinit.700

Note the presence of
√

Er

[
L2

S,I0

]
on the R.H.S here as opposed to LS in the statement of Theorem 5.1701

Proof sketch It is easy to see that using C.1, Theorem 5.2 and Proposition 5.3 and putting the value of α0702

we get this result.703

C.2 A framework for bounding the second moment of the Lipschitz constant704

In order to boundEr

[
L2

S,I0

]
, we use result from (Bottou et al., 2018, Theorem 4.10) and modify it to get the705

result. This theorem provides a bound on the second moment of the random gradients computed during SGD.706

The bound is in terms of the initial and optimal (final) values of the loss function (and includes terms based707

on the learning rate). Therefore the bound is very useful in practice. The theorem requires the following708

condition which is a kind of version of a bound on the variance of the gradients encountered during training.709

P1. (Assumption 4.3 (equation 4.9) of Bottou et al. (2018)). There exist constants M ≥ 0 and710

MG ≥ 0 (independent of the size of training set) such that,711

Ez∈S

[
∥∇f(wt, z)∥2] ≤ M + MG∥Ez∈S [∇f(wt, z)] ∥2. (10)
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Theorem C.3. (Bottou et al., 2018, Theorem 4.10) Suppose we run SGD under the assumption that KS is712

constant for all r and P1 holds, for M ≥ 0, MG ≥ 0. If w0 is the initialization weight, w∗ is optimal value713

for Ez∈S [f(w, z)] and αt is any diminishing step size then,714

T∑
t=1

αtEz∈S

[
∥∇f(wt, z)∥2] ≤ 2(Ez∈S [f(w0, z)] − Ez∈S [f(w∗, z)]) + KSM

T∑
t=1

α2
t (11)

Now using Theorem C.3 and assumption P1 we can get a bound on Er

[
L2

S,I0

]
, we state this in the next715

corollary716

Corollary C.4. If we run Stochastic Gradient Descent for 1 epoch under the assumption that KS is constant717

for all r and P1 holds, for M ≥ 0, MG ≥ 0, w0 is the initialization weight, w∗ is optimal value for718

Ez∈S [f(w, z)], r = (w0, rp) is the random string for SGD and αt is any diminishing learning rate then,719

α0Er

[
L2

S,I0

]
≤ α0M + 2α0MGEw0,z∈S [f(w0, z) − f(w∗, z)] + Ew0 [KS ] MGM

T∑
t=0

α2
t (12)

The R.H.S of this equation is constant w.r.t. m f
∑T

t=1 α2
t is constant w.r.t. m. In our analysis this is true720

(c.f. assumption S3). Hence this corollary becomes useful for us since it shows that under mild and reasonable721

assumptions we can bound the second moment of the Lipschitz constants encountered during training.722

Proof of C.4. Writing assumption P1 averaged over T steps and multiplying both side by α0 we get,723

1
T

T∑
t=1

α0Ez∈S

[
L2

S,I0

]
≤ α0M + α0MG

T

T∑
t=1

∥Ez∈S [∇f(wt, z)] ∥2

L.H.S. could be written as α0Erp

[
L2

S,I0

]
as rp is the random permutation string of SGD. Using724

α0
T

∑T
t=1 ∥Ez∈S [∇f(wt, z)] ∥2 ≤

∑T
t=1 αtEz∈S

[
∥∇f(wt, z)∥2] we can use bound of theorem C.3, and taking725

expectation over w0 we get the result.726

727

C.3 Application: Classification with a two-layer Neural Network728

We now use CorollaryC.4 to establish a generalization bound for the case of two-class classification with a729

two-layer Neural Network. For simplicity of exposition we have assumed that the data points are taken from730

R2. We fully specify the problem through the following assumptions:731

X1. We have a two class classification (Y = {−1, 1}) in 2 dimension (x = [x1, x2]) such that for expectations732

of centers we have E [x1|y = 1] = E [x2|y = 1] = 2 and E [x1|y = −1] = E [x2|y = −1] = −1, for733

second moment for a constant σ > 0 we have E
[
x2

1
]

= E
[
x2

2
]

= σ2 and also for a constant µp > 0734

E [|x1|] = E [|x2|] = µp.735

X2. We use a single hidden layer feed-forward neural network, with k as hidden layer size. Its parameters736

are initialized from w
(l)
i,j = N (0, 1). The total number of parameter values are n = 2k + k. For a737

loss function f(w, z) = |y − O(w, x)|, where O(w, x) is the output of the neural network, ∇f(w, z)j738

denotes the j-th partial derivative of function f and wj1
j2,j3

be the associated weight. Let αt be any739

diminishing step size at step t of SGD.740

X3. We assume the ratio of absolute values of the weights of the Neural Network are bounded by B where741

B > 1.742

22



Under review as submission to TMLR

Theorem C.5. If X1,X2,X3 hold, we have743

Er

[
L2

S,I0

]
≤

16B4σ2 (π + 4kσ2µp

)
(B − 1)2π

(13)

Since the distance between the centers of the two classes is fixed at 2, the bound presented here satisfies our744

intuition by showing that if the variances of the two classes are small, i.e., the classes are well-separated,745

then the second moment of the Lipschitz constants encountered during training is small, and hence the746

generalization bound of Theorem C.2 is small.747

Proof of Theorem C.5. First lets assume that assumption P1 holds so we need to show Ew0,z∈S [f(w0, z)] is
bounded, so calculating the value for this,

f(w0, z) = |y − O(w, x)|

=
∣∣∣∣∣y −

k∑
i=1

w
(2)
i w

(1)
i,1 x1 −

k∑
i=1

w
(2)
i w

(1)
i,2 x2

∣∣∣∣∣
= |y| +

∣∣∣∣∣
k∑

i=1
w

(2)
i w

(1)
i,1 x1

∣∣∣∣∣+
∣∣∣∣∣

k∑
i=1

w
(2)
i w

(1)
i,2 x2

∣∣∣∣∣
Let o1(w0) =

∑k
i=1 w

(2)
i w

(1)
i,1 and o2(w0) =

∑k
i=1 w

(2)
i w

(1)
i,2 for ease of writing, then take expectation over

w0, we directly place Ew0 [|o1(w0)|] = Ew0 [|o2(w0)|] ≤ 2kσ2

π because of half normal distribution and i.i.d
assumption ,i.e.,

Ew0 [f(w0, z)] ≤ |y| + 2kσ2

π
(|x1| + |x2|)

Taking expectation over z, we have748

Ew0,z∈S [f(w0, z)] = 1 + 4kσ2µp

π
(14)

Now, we show the assumption P1 holds. Note that we ignore the case when weights are exactly zero or749

weights become exactly equal to other weights to avoid zero in the denominator. We take M = 0 from750

assumption P1. Now we take the upper bound of L.H.S. of assumption P1 (without expectation),751

∥∇f(w, z)∥2 ≤ n · max
j

(∇f(w, z)2
j )

and we take the lower bound of R.H.S. using752

n · min
i

(Ez∈S [∇f(w, z)i])2 ≤ ∥Ez∈S [∇f(w, z)] ∥2

Using the above two inequalities and taking M = 0 in assumption P1, we get,753 (
Ez∈S

[
maxj∈[n]{∇f(w, z)2

j}
]

mini∈n{Ez∈S [∇f(w, z)i]2}

)
≤ MG

Now, calculating for numerator, we first write the max over the square of gradients,

max
j

{(∇f(w, z)j)2} = max
j


(

∂O(w, x)
∂w

(j1)
j2,j3

)2


= max{(w(2)
j2

)x2
j3

}, if j1 = 1

= max{(w(1)
j2,1x1 + w

(1)
j2,2x2)2}, if j1 = 2
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Let wh be the highest absolute value of weight(s) and wl be the lowest absolute value of weight(s). To easily
calculate expectation, we take out the max weights across all, we get an upper bound for the numerator,

Ez∈S

[
max

j

{
(∇f(w, z)j)2}] ≤ 2w2

hσ2 (15)

Now lower bounding denominator, so square of expectation of partial derivative, i.e.,

Ez∈S [∇f(w, z)i]2 =
(

Ez∈S

[
∂O(w, x)
∂w

(i1)
i2,i3

])2

= (w(2)
i2

E [xi3 ])2, if i1 = 1

= (w(1)
i2,1E [x1] + w

(1)
i2,2E [x2])2, if i1 = 2

For i1 = 2 term, after taking expectation, we could write it as,754

(w(1)
i2,1E [x1] + w

(1)
i2,2E [x2])2 = 1

4

(
w

(1)
i2,1 + w

(1)
i2,1

)2

Since we have B for all ratios of weights we could use this to bound below the absolute difference between755

any pair of weights (i.e., |w′
l − wl| ≥ |wl/B − wl|), and we get756

(w(1)
i2,1E [x1] + w

(1)
i2,2E [x2])2 ≥ w2

l (B − 1)2/B2

So we can bound the whole denominator by,

min
i

{
(Ez∈S [∇f(w, z)i])2} ≥ 1

4 min
{

w2
l ,

w2
l (B − 1)2

B2

}
(16)

≥ w2
l (B − 1)2

4B2 (17)

Using 15 and 16 we get,757

MG = 8B4σ2

(B − 1)2 (18)

And from 14 and 18 we get the theorem statement.758

D Neural Networks: Characterization and Proofs759

In order to prove Theorem 5.2 we first need to describe a characterization of Neural Networks that allows us760

to get a better insight into their smoothness properties. We present the characterization in Section D.1 and761

the proof in Section D.2.762

D.1 A Polynomial-based Characterization Neural Networks763

D.1.1 Neural Network Terminology764

Neural networks provide a family of parameterized functions of the form we have discussed in Section 4. The765

parameter vector w ∈ Rn is applied over a network structure with layers. In this case, we specify Z to be766

Rd × R, i.e., the data points are from Rd and the label is from R, i.e., the NN has a single output. We will767

denote the depth of the network by H. The layers will be numbered 0 to H with layer 0 being the input layer.768

The number of neurons in layer i will be ki. For this discussion, we assume a fully connected network. We769

will denote by wi
j,k the weight of the edge from the j neuron of the ith layer to the kth neuron of the i + 1st770

layer. For the NN with parameters w at a point x ∈ Rd we will denote the input into the jth neuron of the771

ith layer by ini,j(w, x) and its output by outi,j(w, x). Further, we will assume that all neurons in all layers772

of the network except the input layer and the output layer have ReLU activation applied to them. In case773

the output of a node is 0 due to ReLU activation we will say the ReLU gate is closed otherwise we will say it774

is open. The label output by the network will be outH,1 = out(w, x). For each exposition, we will assume775

that out(w, x) = 1 if in(w, x) > 0 and 0 otherwise, i.e., there are only two labels in Y. For convenience we776

will denote this architecture as N .777
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Symbol Explanation
kl Number of neurons in l-th layer.
H Depth of neural network.
ini,j(w, x) input to the i-th neuron of j-th layer.
outi,j(w, x) Output of the i-th neuron of j-th layer.
outH,1 =
out(w, x)

Is the label returned by the neural network.

ϕ(w, x) Polynomial associated with fully connected NN.
ϕi,j(w, x) Base polynomial associated with j-th neuron of i-th layer.
Gw,x The set of weights need to set to zero, to apply all closed ReLU gate in NN (with

ReLU).
ϕ(w, x){Gw,x} A neural network with ReLU activation with closed ReLU gates set to 0.
lab(x) label of point x.
Ij Position in permutation in j-th epoch when i-th training points (i.e. the replaced

point) is encountered based on πj .
δt Norm of difference between weights for S and Si at t-th step of SGD (i.e., ∥wt − w′

t∥).

Table 3: Notation used in section D

D.1.2 Multivariate Polynomials Associated with a Neural Network778

Given a set of indeterminates x = x1, . . . , xl, let P(x) be the set of multivariate polynomials on x1, . . . , xl779

with real coefficients. For any polynomial p(x), i1, . . . , iq ∈ [l] and any α1, . . . , αq ∈ R for some q ≤ l, we will780

denote by p(x)
{

xij
=αj :j∈[q]

}
the polynomial in P(x\{xi1 , . . . , xiq

}) that is obtained by setting all occurrences781

of xij to αj in p(x). In particular, p(x) {xi=0} is the polynomial p(x) with all monomials containing xi782

removed, and p(x) {xi=1} retains all the monomials of p(x) but those monomials that contain xi appear783

without the term xi.784

Returning to NNs, let us consider two sets of indeterminates: x = {xi : i ∈ [d]} and w = {w
(i)
j,k : 0 ≤ i <785

H, 1 ≤ j ≤ ki, 1 ≤ k ≤ ki+1} and k0 = d. Let us consider N defined in Sec. D.1.1 and create a version of it786

that replaced the ReLU activation at each node with the identity activation function. We will call this the787

identity version of N and denote it I(N ). We will say that I(N ) has the following polynomial associated788

with it:789

ϕ(w, x) =
k0∑

j0=1

k1∑
j1=1

· · ·
kH−1∑

jH−1=1
xj0w

(0)
j0,j1

w
(1)
j1,j2

· · · w
(H−1)
jH−1,1.

Note that the output layer has only one neuron. We will refer to this as the base polynomial of N . The base790

polynomial associated with the jth neuron in layer i can be derived from the base polynomial of the network,791

we express this in figure 4 and also write formally as follows792

ϕi,j(w, x) =
ϕ(w, x)

{
w

(i)
l1,l2

=0,w
(l3)
l4,l5

=1:l1∈[ki]\{j},l2∈[ki+1],l3>i,l4∈[kl3 ],l5∈[kl3+1]
}∏H

p=i+1 ki

. (19)

Also we could describe a Network whose say ith layer jth neuron’s gate is closed by ϕ(w, x){wi
l1,j = 0, ∀l1 ∈793

ki−1}, This is represented by the figure 5. We will write Gw,x as the set of weights needed to be equated to794

zero for all closed ReLU gates. It’s clearly visible that due to ReLU activations varying at different points,795

there is no single polynomial that captures the output of the NN everywhere in Rn × Rd. However, the796

following observation shows a way of defining polynomials that describe the output over certain subsets of797

space.798

Observation D.1. Given w ∈ Rn and x ̸= (0, . . . , 0) ∈ Rd, i ∈ [H], j ∈ [ki] and ϕi,j(w, x){Gw,x = 0} be the
polynomial representing output and Gw,x be the set of weights for closed ReLU gates as discussed above. For

25



Under review as submission to TMLR

-th layer -th layer

-th
node

Figure 4: The output of the j-th neuron of the i-th layer represented represented by the base polynomial.
Here the weights along the dotted red lines are set to zero and the weights along the green lines are set to
one. The output of the neuron is represented by the values on the connection. Notice that the output is
scaled by the product of the number of intermediate nodes because of which we divide it later in 19.

  -th
node

-th layer-th layer

Figure 5: For a neural network with ReLU, if the i-th layers j-th neuron’s ReLU gate is closed, this is
represented by the base polynomial. Here the dotted red lines are set to zero.

the case where inl1,l2(w, x) ̸= 0 for all 1 ≤ l1 ≤ i and all 1 ≤ l2 ≤ kl1 , there is an ϵ > 0 depending on w, x
such that, for all w′ with ∥w − w′∥ < ϵ,

ϕi,j(w′, x){Gw′,x = 0} = ϕi,j(w′, x){Gw,x = 0}

i.e. the polynomial remains same for w′ and w.799

Proof. Since ini,j(w, x) is strictly separated from 0 and there are only a finite number of neurons in the800

network there must be an ϵ small enough for which all open ReLU gates remain open and all closed gates801

remain closed. And because of this, we can use the same polynomial with new weights as no ReLU gate802

switches their state.803
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D.2 Proof of Theorem 5.2804

Proof of Theorem 5.2. The idea behind this proof is due to (Milne, 2019, Lemma 1) who used it for a different805

purpose. From Observation D.1 it follows that if we have x ̸= (0, . . . , 0) ∈ Rd such that ini,j(w, x) ̸= 0 for all806

1 ≤ i ≤ H and all 1 ≤ j ≤ ki, then out(w, x) is, in fact, just the polynomial ϕ(w′, x){Gw,x = 0} within a807

small neighbourhood of w. Therefore it is doubly differentiable. Since the loss function is also differentiable,808

we are done for all such values of x.809

So now let us consider the set of points x for which i is the smallest layer index such that ini,j(w, x) = 0.810

In case there are two such indices, we break ties using the neuron index j. By Observation D.1, in a811

neighbourhood of w, ini,j(w, x) is a polynomial in w and x for each x.812

Now, we consider two cases. In the first case, outi−1,j′(w, x) = 0 for all j′ ∈ [ki−1], i.e., all the ReLU gates813

from the previous layers are closed because ini−1,j′(w, x) < 0 for all j′ ∈ [ki−1]. In this case out(w′, x) = 0814

everywhere in the neighbourhood guaranteed by Observation D.1 and therefore ℓ(out(w′, x), lab(x)) is doubly815

differentiable in the parameter space at w for all such x, where we assume that each data point has a label816

lab(x) ∈ {0, 1} associated with it. We note that this argument is easily portable to the case of a more general817

label set Y with the property described in the statement of Theorem 5.1 since inH,1 will be 0 everywhere in a818

small neighbourhood.819

In the second case we have some j′ ∈ [ki−1] such that outi−1,j′(w, x) > 0. Let Ci,j ⊆ Rd be those x for which820

this case holds. Ci,j contains the solutions to ini,j(w, x) = 0. Since we are working with a specific value of w,821

this simply becomes a polynomial in x. In fact, inspecting the definition of base polynomials we note that822

when w is fixed ini,j(w, x) is simply a linear combination of x1, . . . , xd
R. This implies that Ci,j is a hyperplane823

in Rd. We note that this argument can also be made of the output node under the condition on the label824

set given in the statement of Theorem 5.1 because for inH,1(w, x) to give a value that lies on the boundary825

between two sets with different labels for a given w, x must be drawn from a set of Lebesgue measure 0.826

Since the network size is finite the set of all possible values of x for which case 2 occurs, i.e.,
⋃

i∈[H],j∈[ki] Ci,j827

is a finite union of hyperplanes in Rd and therefore a set of Lebesgue measure 0.828

Proof of Proposition 5.3. Let us consider the partial derivative w.r.t w
(l)
i,j . For this let I

(l)
i,j , A

(l+1)
j and B

(l−1)
i829

be 3 matrices of size W (l), W (l+1) and W (l−1) respectively such that I
(l)
i,j [i, i] = 1 and reset all entries are 0,830

A
(l+1)
j [k, j] = W (l+1)[k, j], ∀k and rest all entries are 0 and B

(l−1)
i [i, k] = W (l−1)[i, k], ∀k and rest all entries831

are one. Using these 3 matrices and the weight matrices we can compute the gradient as832

∂ϕ(w, x)
∂w

(l)
i,j

= W (H) · · · W (l+2) · A
(l+1)
j · I

(l)
i,j · B

(l−1)
i · W l−2 · · · W 1 · x (20)

Let M ′(l, i, j) be a matrix such that833

M ′
l,i,j = A

(l+1)
j · I

(l)
i,j · B

(l−1)
i

Although we have scalar values taking spectral norm on both sides of eq 20 we get834 ∣∣∣∣∣∂ϕ(w, x)
∂w

(l)
i,j

∣∣∣∣∣ =
H∏

k=1
∥W (k)∥σ

∥M ′
l,i,j∥σ

∥W (l+1)∥σ · ∥W (l)∥σ · ∥W (l−1)∥σ
∥x∥

Now lets define another matrix Ml such that (p, q)th element of matrix Ml[p, q] = ∥M ′
l,i,j∥σ. Now the835

expression for 2, 2 norm (Frobenius norm) of the gradient vector directly gives us the required expression for836

Lipschitz constants.837

We can give a similar argument for bounding KS , for some w
(l1)
i1,j1

and w
(l2)
i2,j2

we have838
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∣∣∣∣∣ ∂2ϕ(w, x)
∂w

(l2)
i2,j2

∂w
(l1)
i1,j1

∣∣∣∣∣ ≤
H∏

k=1
∥W (k)∥σ

( ∥M ′
l1,i1,j1

∥σ

∥W (l1+1)∥σ · ∥W (l1)∥σ · ∥W (l1−1)∥σ

)

·
( ∥M ′

l2,i2,j2
∥σ

∥W (l2+1)∥σ · ∥W (l2)∥σ · ∥W (l2−1)∥σ

)
∥x∥

Note that the above equation is exactly if l1 + 2 < l2 or l1 − 2 > l2 and for the rest of the case we can use839

this as the upper bound this is because for a matrix M spectral norm ∥M∥σ is upper bound for when we set840

all except one row or column of matrix to zero and calculate the spectral norm. Now if we take the 2, 2 norm841

(Frobenius norm) of the Hessian matrix we get the desired result.842

E Rebuttal843

We would like to thank all three reviewers for their close reading of our paper and their detailed comments and844

suggestions. We have tried to address as many of the comments and incorporate as many of the suggestions845

as possible. Below we have brought out lists of relevant statements from each review and addressed each of846

them. There are more than 50 such comments and their responses below.847

We have marked the edited text in 2 colors. Red indicates that the changes are important and add some848

extra information/value to the paper. Blue indicates the changes are mainly to increase readability, and they849

do not affect the paper’s claims. We request the reviewers to go through them and respond and help us850

further improve this work.851

Thanks.852

E.1 Reviewer 1,853

ReviewComment E.1.1. Reviewer Comment: The write up is missing a clearly formulated target problem854

(neural network classification?) and explicitly formulated target question(s) corresponding to the problem855

(e.g. generalization). Note that targeting generalization requires explicit definitions such that it might be856

possible to judge the claims. For instance, I didn’t see explicit description of the meaning of "generalization857

error" in the introduction. A short sentence saying that this is the gap between the expected (population)858

error and the empirical error rate would be sufficient to clarify what is meant, and better if a cross-reference859

to the formal definition in Section 3.1 is given, to avoid confusions.860

Rebuttal: We have given a more nuanced introduction to the notion of “generalization error” at the861

beginning of para 1 of the intro [lines: 17-22] and also clarified the applicability of our techniques in terms of862

target problems at the bottom of Para 1 [lines: 39-41].1863

ReviewComment E.1.2. Reviewer Comment: I flag for criticism the opening sentence "The low general-864

ization error of Deep neural networks is now a well known empirical result" - if the meaning of generalization865

error is as I just described above, then this claim is unfounded. It might be that the authors (or the authors866

of the cited paper) are trying to refer in this claim to the gap between test error rate and training error rate.867

This needs clarification.868

Rebuttal: We have clarified this. Please see the response to the previous pointE.1.1.869

ReviewComment E.1.3. Reviewer Comment: Define formally the meaning of "generalization" such that870

readers may evaluate the claims regarding it.871

Rebuttal: We have now added this in the first few lines of the paper as mentioned above.[line: 17-22]872

ReviewComment E.1.4. Reviewer Comment: Clarify the setting of this work by formulating explicitly873

the target problem, which I think it is neural network classification.874

Rebuttal: We have added in introduction at end of first paragraph [line: 39-40] that our result is valid for875

both classification and regression as there is no condition on some kind of separability for the data.1876
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ReviewComment E.1.5. Reviewer Comment: Accordingly, clearly restrict the loss function (s) under877

consideration. Is it not the cross-entropy as surrogate loss for training?878

Rebuttal: We need a bounded value and twice differentiable loss function. We have added the condition on879

the loss function in Introduction at the end of first paragraph 1 and in Section 3.1 in paragraph "About the880

loss function" 3.1.881

ReviewComment E.1.6. Reviewer Comment: The role of the set R and its elements (decision strings) is882

unclear. Needs discussion/illustration for adding clarity.883

Rebuttal: We have added some discussion about the random string in Section 3.1 first paragraph [lines:884

133-136] 3.1.885

ReviewComment E.1.7. Reviewer Comment: The meaning of "loss function" needs to be specified before886

defining risks and other things. At least some discussion of the typical loss functions that are considered, and887

that one of those is referred to when we read "loss function" in the sequel.888

Rebuttal: We have added some discussion on the loss function in Sec 3.1 [lines: 148-153;3.1].889

ReviewComment E.1.8. Reviewer Comment: The notations xz and yz are unnecessary. Simply replace890

z ∼ D with (x, y) ∼ D and then you can write l(AS,r(x), y) in the definition of risk. Similarly, replace z ∈ S891

with (x, y) ∈ S in the sums for the empirical risk.892

Rebuttal: We were trying to clearly specify the dataset point z, the label yz and the input point xz. We893

almost everywhere use z as a point of the dataset, this is the only reason we keep using z here as well. But if894

the reviewer still prefers it we can remove z from this argument.895

ReviewComment E.1.9. Reviewer Comment: Reading sometimes AS,r and sometimes AS or A caused896

confusion. Can the relation between these things be declared? Perhaps a formal definition of each of these897

things would help to clear the confusion.898

Rebuttal: AS didn’t mean anything it was a typing mistake, we have corrected it (as AS,r). We have also899

changed R(A, S, r) to R(AS,r) [line: 142; 3.1] while defining generalization error in Section 3.1 to improve900

clarity.901

ReviewComment E.1.10. Reviewer Comment: When declaring Si , after the definition perhaps add902

comments to the effect that Si is formed by replacing the i th entry of S with an independent copy (which is903

taken as the i th entry from the "second set of size m "). By the way, this reminds of the double sample904

argument, which goes back to classical literature on statistical learning, which might be good to cite.905

Rebuttal: We have added this now. Just above Definition 3.1 [lines: 155-157;3.2].906

ReviewComment E.1.11. Reviewer Comment: Definition 3.1: Poor choices of terminology (η -almost907

support stability, a.s. support stability) which don’t add much clarity. I suggest reformulating these things.908

The way I see it, the main idea being defined is that of "support stability" corresponding to the displayed909

condition, which may hold with some probability 1 − η or with probability 1 (almost surely). Then you could910

reformulate this definition writing "support stability β with probability 1 − η " and "support stability β almost911

surely" – the latter formulations are way more clear in conveying the meaning of what’s being defined.912

Rebuttal: We have modified Definition 3.1 and removed the η probability part as we are only using the913

almost surely part (as suggested by reviewer d5U1) now we only use a.s. support stability. 3.1914

ReviewComment E.1.12. Reviewer Comment: I don’t think the notation [m] was declared. Just declare915

it somewhere before this definition.916

Rebuttal: Done, above the Definition 3.1 [line: 159;3.2].917

ReviewComment E.1.13. Reviewer Comment: If we choose a constant loss function l = 1 , then this918

satisfies support stability β for any β > 0 ? This perhaps shows one of the problems in not restricting the919

meaning of "loss function" from the start.920

Rebuttal: The reviewer is right. In Section 3.1 in the discussion on loss functions [lines: 148-153] we have921

clarified that we work with loss functions that can be minimized to some meaningful value. As we have922

mentioned now at the beginning of the intro, bounding what we call the generalization error is only useful923

when the empirical error is low.924
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ReviewComment E.1.14. Reviewer Comment: Also I’d like to flag the restriction "∀z ∈ supp(D)" in this925

definition. It appears to contradict the statements "with probability at least 1 − η" and "almost surely" so926

this needs clarification.927

Rebuttal: Here the probability is over selecting the 2m points from D2m, including the training points and928

their random replacements. The z mentioned here is the population data point on which the AS,r is applied929

after it has learned it’s parameters.930

ReviewComment E.1.15. Reviewer Comment: Actually, a few lines below it is stated that "This probability931

is defined over the random choices of Z1, . . . , Z2m " which then suggests that Definition 3.1 needs to be932

rewritten making this explicit. Since the distribution of the random sample (i.i.d. points) of size 2m is D⊗2m
933

, this would be written saying "D⊗2m -probability 1 − η " and "D⊗2m -almost surely"934

Rebuttal: The reviewer is right. We have simplified the statement in Definition 3.1. [line: 160,3.1].935

ReviewComment E.1.16. Reviewer Comment: Still, it is a very strong requirement that the inequality936

holds ∀z ∈ supp(D) (and ∀i ∈ [m] ). Could the authors give illustrative examples of cases for which it is937

possible to calculate or estimate this condition.938

Rebuttal: The reviewer will recall that an even stricter notion of stability (Uniform stability) was defined939

in Bousquet & Elisseeff (2002). This was ∀z. Even for that definition the authors showed that it holds for940

some classical ML algorithms like soft margin SVM, bounded SVM regression and regularized least square941

regression. So, our weakening will hold for all these algorithms as well. We have added this in second942

paragraph after definition 3.1. [lines: 168-173;3.2]943

ReviewComment E.1.17. Reviewer Comment: Theorem 3.2: Could the authors comment on the constant944

c > 0 please. The exact value of this constant can make all the difference between the bound being useful or945

it being useless.946

Rebuttal: This constant comes from the result of Feldman and Vondrak (2019b). Since our analysis is947

asymptotic we only need this to be independent of m which it is. We have added this clarification just below948

Theorem 3.2. [line: 185;3.3]949

ReviewComment E.1.18. Reviewer Comment: The meaning of "symmetric in distribution" needs to be950

specified (before Theorem 3.2).951

Rebuttal: We have added a discussion in Section 3.3 [lines: 177-183; 3.3] before the statement of the952

theorem.953

ReviewComment E.1.19. Reviewer Comment: Definitions 4.1 and 4.2: I don’t know what meaning to954

map to "Given a set Ω defined over Z .955

Rebuttal: We meant Ω is a subset of Z, we have changed this to "given a subset Ω of Z", for clarity in956

Definition 4.1. Also please note that based on other reviews we have combined the Definitions 4.1 and 4.2957

into a single definition for clarity. [line: 216;4.1]958

ReviewComment E.1.20. Reviewer Comment: Theorem 4.4: Reading "We are given a labelled data set Z959

" is surprising. I thought Z was reserved for the space of all possible instances and labels, i.e. Z = X × Y ;960

while a "labelled data set" should be a finite sequence in this space.961

Rebuttal: We appreciate the reviewer’s attention to detail. We have fixed this in Theorem 4.3 (earlier 4.4),962

Z is the space and D is the probability distribution defined over it. [lines: 250-252;4.3]963

ReviewComment E.1.21. Reviewer Comment: The rest of the theorem statement is really (!) hard to964

parse. Could this be improved? Similar comment for Theorem 5.1.965

Rebuttal: We have tried to simplify Theorems 4.3 (earlier 4.4), Corollary 4.4 and Theorem 5.1. We have966

moved the assumptions out of the statements and broken them in points. We hope this makes them more967

readable. [from line: 259; 4.3],[from line: 280;4.4],[from line: 312; 5.1]968

ReviewComment E.1.22. Reviewer Comment: Note that Theorem 5.1 neglects many details of the neural969

network architecture. Does this mean that the theorem holds for any choice of architecture (e.g. any depth970

and and widths in the hidden layers) as long as the output layer is 1-dimensional?971
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Rebuttal: We currently show this for fully connected networks. In theorem 5.1 we need a bound on972

Er[LgLS ] and KS , in Proposition 5.3 we bound these terms for a fully connected network. We don’t bound973

these quantities for other types of architectures like ResNet, GCN etc it’s an open question to bound these974

quantities for these networks. We now have added the fully connected criteria in Theorem 5.1. [line: 306;5.1]975

ReviewComment E.1.23. Reviewer Comment: Figure 2: The obvious question coming to mind is what976

is being plotted for "generalizaion error" here. If we take the definition stated earlier on in the paper that977

"generalization error" stands for the gap between risk and empirical risk, then I would ask how the authors978

obtained the values plotted here. Perhaps the plotted quantity is a proxy for the generalization error. I any979

case, this needs explanation.980

Rebuttal: Here a validation set is used as a proxy for the population error (risk). This kind of approach to981

empirically studying what we call the generalization error has been taken before in the literature, an example982

being in the work of Kuzborskij & Lampert (2018). Our precise methodology is explained in Section 5.1.1 in983

the paragraph entitled Experiment 2. [line: 425;5.1.1]984

ReviewComment E.1.24. Reviewer Comment: Another observation regarding Figure 2: The bound values985

appear to be loose. Definitely they are not nearly the best bound values for neural network classifiers reported986

in the literature. This raises the question about what is the take-home message that readers could get from987

reading this paper. If not tightness of the bound values, then it must be something else, but currently unclear.988

989

Rebuttal: Undoubtedly the bounds are loose. We have mentioned at the bottom of Sec 5.1.1 paragraph990

“Experiment 2”[line: 430;5.1.1] that the use of an upper bound for LS is a possible reason. Our goal in this991

paper was to build a framework and to establish that the study of gradient sizes can yield insights into992

generalization behaviour. This is the take-home message. We hope that more finegrained analysis on these993

lines will yield such bounds. The graphs in Figure 2 should be seen as a proof of concept rather than the best994

possible result obtainable from our framework.995

ReviewComment E.1.25. Reviewer Comment: Bottom of page 11, bullet about NTK: I could not make996

sense of what’s written here. Please elaborate and clarify.997

Rebuttal: NTK is highly technical and elaborating it would send us into a rabbithole of notation and998

lemmas that are not really relevant here. So, we have removed the bullet.999

ReviewComment E.1.26. Reviewer Comment: I think "data-dependent" needs hyphenation (throughout1000

the paper).1001

Rebuttal: Done throughout the paper.1002

E.2 Reviewer 2, d5U11003

E.2.1 Weaknesses pointed out by the reviewer1004

ReviewComment E.2.1. Reviewer Comment: A notion of stability holding with any probability is introduced,1005

only for its particular case of holding with probability one to be used later. In this case, introducing the1006

almost sure version directly makes the paper easier to follow.1007

Rebuttal: Following the reviewer’s suggestion we have restricted the Definition 3.1 to a.s. Support stability.1008

[line: 160][3.1]1009

ReviewComment E.2.2. Reviewer Comment: The terms Ll Lipschitzness and Kl smoothness allude to1010

constants Ll and Kl , yet these constants might depend on z. Isn’t it more convenient to consider Ll and Kl1011

as functions rather than constants in this case ?1012

Rebuttal: We have made a minor mistake, Ll and Kl are not only function of z rather they are a function1013

of Ω from which z is picked. So we added it in the name of the property i.e. Ll Lipschitzness property w.r.t1014

Ω in Definition 4.1 [line: 220] and everywhere else including assumption S1 [line: 251-252; 4.1].1015

ReviewComment E.2.3. Reviewer Comment: Thm 4.4: Error in a claim: from the proof of the theorem,1016

we have U(α0, KS , ρ(τ, m)) = 1 + 1−exp(−α0KSmρ(τ,m)/ρ(τ,m))
α0KS

, in which the second term converges to mρ(τ,m)

ρ(τ,m)1017

rather than to 0. Also, due to the concavity of the numerator of the second term, one can bound U by1018
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1 + mρ(τ,m)

ρ(τ,m) which is more informative than the bound in the paper, as it corresponds also to the limit for1019

very small α0.1020

Rebuttal: Note that because of mρ(τ,m) the expression inside exp(·) is unbounded and could → −∞.1021

Therefore we bound the numerator by 1. In the case when α0 → 0 we agree and we have fixed this in Theorem1022

4.3 (earlier 4.4)[line: 262; 4.3] Also please note in order to simplify the Theorem 4.3 (earlier 4.4) and 5.1 we1023

have moved out the assumptions and stated them in bullet points before the respective theorems.1024

ReviewComment E.2.4. Reviewer Comment: Thm 4.4: Unsubstantiated claim: Just after the statement1025

of Theorem 4.4, in the "Data dependence with Training Lipschitz constant and Test Lipschitz constant",1026

there is the statement "we expect that if the unknown distribution D has a low variance then the Lipschitz1027

constants will be small". Although this is a conjecture, some justification of motivation for it should be1028

provided, experimentally at least (for example, by plotting the data-dependent Lipschitz constant bounds1029

against the variance of a data set.1030

Rebuttal: This line was actually an artifact from an earlier draft that should have been removed. We have1031

removed it now. To see the context in which this remark had earlier been made, please see the Discussion1032

paragraph at the end of Sec 5.2.[lines: 458-464; 5.2]1033

ReviewComment E.2.5. Reviewer Comment: Unsubstiantiated claim and unclarity on the behaviour of β1034

after Corollary 4.5: it is mentioned that β = o( 1
m ) with the conditions of Theorem 4.4 and Corollary 4.5.1035

However, applying that to Theorem 3.2, one would expect a behaviour that is
√

log(m)
m as the second term in1036

the generalization bounds dominates in this case. However, the bound given in the corollary still keeps a term1037

growing in 1
mϵ . Also, I could not find the justification for this asymptotic behaviour of β in the appendix.1038

Rebuttal: We have corrected the β = o( 1
mϵ ) and provided the exact value of ϵ to make the Corollary 4.41039

(earlier 4.5) more clear.[lines: 284-285 ;4.4]1040

E.2.2 Requested changes, Other suggestions1041

ReviewComment E.2.6. Reviewer Comment: Constructing a simple theoretical example in which data-de-1042

pendent Lipschitz and smoothness constants are small or moderately large, but absolute ones are too large or1043

even infinite.1044

Rebuttal: We have added a Discussion at the end of section 5.1 just before the experiments where we discuss1045

in detail a scenario in which data-dependent Lipschitz constants are significantly smaller than the absolute1046

Lipschitz constants.[from line: 376;5.1]1047

ReviewComment E.2.7. Reviewer Comment: Adding a discussion on the interaction between the two1048

terms in the bound in Corollary 4.5. Indeed, the first term divided by the second yields (log m3/2

mϵ−1/2 , which means1049

that one gets the "usual" rate of Õ( 1√
m

whenever ϵ ≥ 1/2 (where the tilde hides the logarithmic factors), and1050

will be slower if ϵ < 1/2 . It would be interesting to analyze this behavior and to give an intuition of the1051

slow rate, and when would it be beneficial to slow it for example. The overall rate can also be written as1052

Õ(m− min(ϵ,1/2)) .1053

Rebuttal: We have added a discussion inside the Proof of Corollary 4.4.[lines: 286-289 ;4.2]1054

ReviewComment E.2.8. Reviewer Comment: In the proof of Proposition 5.3, the product of norms is used1055

to bound the norm of products. I think it would have been fine to let the norm of the product of matrices1056

without further bounding it. Indeed, besides the fact that it already only incorporates quantities that appear1057

in the bound stated by the proposition, it would result in a much tighter bound.1058

Rebuttal: We agree that this will give a better bound, But we avoided directly writing this because then the1059

final term becomes very hard to interpret. This is because in the proof of Theorem 5.3 in equation 8 (Appendix),1060

for lth layer we can at best break the product of matrices in just two parts i.e. ∥W H · · · W l+2∥·∥W l−2 · · · W 1∥,1061

but now when we square and sum these partial derivatives across all layers this becomes very hard to interpret.1062

So we keep this product of norm terms in proposition 5.3 but we add a statement [lines: 363-365; 5.1] that it’s1063

possible to get a better bound by not taking the bound on product of matrices however for the sake of clarity1064

we use this bound. If the reviewer still thinks we should put norm of product variant we can change this.1065
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ReviewComment E.2.9. Reviewer Comment: The McDiarmid inequality for functions satisfying the1066

bounded differences with high probability can be related to the result of [1].1067

Rebuttal: We thank the reviewer for pointing us to the work of Combes. He has actually proved the same1068

result before we did. We have now cited his work as the source of this result and removed the proof from the1069

Appendix to ensure that readers do not think we are claiming to be the first to prove this result. [line: 1871070

and 587 ;A]1071

ReviewComment E.2.10. Reviewer Comment: In the discussion just after Theorem 5.1, it is written "then1072

these values will be high and reflect a bad generalization", where "these values" refers to LS and KS . While1073

the right-hand side of the generalization inequality of the theorem vanishes as LS approaches 0 (since F (τ)1074

is proportional to LS ), I do not think that seeing it holds for KS is straightforward. Indeed,on the one1075

hand, when KS tends to 0, m1− α0KS
ρ(τ,m) tends to m . On the other one, we have U(α0, KS , ρ(τ, m) = 1 +1076

1−exp(−α0KSmρ(τ,m)/ρ(τ,m))
α0KS

converges to its upper bound 1+ mρ(τ,m)

ρ(τ,m) as KS vanishes. However, since ρ(τ, m) =1077

log log m
log m+log τ , we have mρ(τ,m) = exp( log m log log m

log m+log τ ) behaves as log m as m grows, hence the bound on U behaves1078

as log m . In the end, we would have a generalization bound that behaves as O( (log m)3

m +
√

log m
m ) = Õ(

√
1
m ).1079

Hence, I think a more detailed explanation should be given.1080

Rebuttal: We thank the reviewer for this insight. We are adding a discussion around this near the end of1081

paragraph after Theorem 5.1. We would like the reviewer to note that there is a slight change in the line1082

identified. Another reviewer suggested a change so we have slightly modified the statement. [lines: 336-341;5]1083

E.2.3 To facilitate reading1084

ReviewComment E.2.11. Reviewer Comment: Unifying Lipschitzness and smoothness: Definitions 4.11085

and 4.2 can be unified under the same definition of Lipschitzness of a vector-valued function. Then, local1086

parameter-Lipschitzness and local parameter-smoothness can be stated as simple specializations of that1087

definition to the function itself and to its gradient, respectively. The same holds for Lemma 4.31088

Rebuttal: We have merged Definitions 4.1 and 4.2 and stated the two local properties as specializations of1089

the definition. We have also updated the Lemma 4.3(now Lemma 4.2) accordingly. [lines: 290;4.2]1090

ReviewComment E.2.12. Reviewer Comment: At the beginning of Section 3.2, the sentence "Given the set1091

S , we construct Si via replacing the i− th element of S by an independently generated element from D "1092

would facilitate conveying the idea, along with the given formula1093

Rebuttal: We have now added this in first para of Section 3.2. [lines: 155-157;3.2]1094

ReviewComment E.2.13. Reviewer Comment: In the discussion just after the statement of Lemma 4.3,1095

the expressions "set of weights encountered during training over all possible permutations" and "set of final1096

parameter vectors produced by SGD for each of the possible permutations" would be much clearer if a formal1097

definition is provided for the set A in each case. This definition can for example be only in the appendix, but1098

I think it clarifies these quantities.1099

Rebuttal: We have written a formal definition of A in the Appendix (Definition B.1, line 597) and pointed1100

towards it in the main paper at the end of section 4.2 after Discussion of "Global" properties. [4.1]1101

ReviewComment E.2.14. Reviewer Comment: Base polynomials, Adding interpretations:1102

Full NN: for example, "output of a network with the identity activation function, i.e. fully linear".1103

Specific neuron: obtained by setting... In this case, a figure illustrating the concerned neuron and the1104

operation applied to obtain the polynomial can significantly quicken understanding.1105

Provide references for the base polynomial (if any)1106

Rebuttal: We have clarified the full NN point in Appendix section C.1.2 in second paragraph. We have1107

added figures for ease of understanding [4, 5]. We would also like to point out that we have not taken this1108

construction form anywhere, it is an original contribution of this paper. [line:647]1109

ReviewComment E.2.15. Reviewer Comment: Adding a notation table in the supplementary material1110
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Rebuttal: We have added the 2 notation table on at start of appendix 2 and another for appendix section D1111

for it. 3.1112

ReviewComment E.2.16. Reviewer Comment: Using the same letter to index layers, and neurons. I agree1113

this is nitpicky, but I think it would facilitate reading more. For example, the index l for layers (including li1114

where i is any index).1115

Rebuttal: We might have missed the point here but as we understand we are defining such neurons as l-th1116

layer’s i-th neuron, like on the first line [line: 715] in paragraph just above Observation D.1, we write ith
1117

layer jth neuron. Please let us know if we misinterpreted something.1118

ReviewComment E.2.17. Reviewer Comment: Specifying the exact source of inspiration for the proofs1119

(precisely which results in the mentioned reference.)1120

Rebuttal: We would like to point out that we have tried to include all the source of inspirations and1121

references which we used.1122

• In the paragraph just below Definition 3.1 on [line: 161] “this notion weakens the notion of uniform1123

stability introduced by Bousquet & Elisseeff (2002)”. 3.21124

• In proof outline of Theorem 3.2 on [lines: 186-188] “Our proof extends the proof of Feldman and1125

Vondrak (Feldman & Vondrak (2019a)) to accommodate the generalization of McDiarmid’s Lemma1126

A.2 from Combes (2015)”. 3.31127

• In proof outline of Theorem 4.3 on [lines: 265-266] “The proof follows the lines of the argument1128

presented by Hardt et al. (2016) with the difference that we allow for a probabilistic relaxation...”.4.21129

• In proof outline of Theorem 5.2 on [lines: 351-352] “This proof is an adaption of an idea of Milne1130

(2019) and can be found in Appendix C”. 5.11131

If the reviewer feels we missed something please let use know we will definitely add them.1132

ReviewComment E.2.18. Reviewer Comment: In the second point of the list of contributions, a number1133

of epochs of c log(m) is mentioned, but there is no explanation on the nature of constant c (e.g. a universal1134

constant, a constant depending on some parameters ...). Alternatively, if it is just the log(m) growth rate1135

that is to be highlighted, then for instance, writing "for a number of epochs proportional to log(m) " solves1136

the issue1137

Rebuttal: The reviewer is right: we only needed to highlight the log(m) term. We have updated this in the1138

2nd bullet point of the last paragraph in the Intro. [line: 80; 1]1139

ReviewComment E.2.19. Reviewer Comment: In Theorem 4.4 F (τ)’s expression can be directly incorpo-1140

rated in the bound, i.e. without introducing F (τ).1141

Rebuttal: We have directly written the value of F (τ) in Theorem 4.3 (earlier Theorem 4.4) and Theorem 5.1.1142

Please also note in order to simplify the Theorem 4.3 (earlier 4.4) and 5.1 we have moved out the assumptions1143

part and stated it in points just before the respective theorems.1144

ReviewComment E.2.20. Reviewer Comment: Avoiding long sentences, or adding commas at least:1145

Corollary 4.5: The first sentence is very long, and needs a comma after....1146

Rebuttal: We have incorporated the requested changes in Corollary 4.5. [4.4]1147

ReviewComment E.2.21. Reviewer Comment: In proposition 5.3, it is written "Note that this equation1148

holds for both Training Lipschitz ...". While It is understandable that the meant equation is the one providing1149

a bound on Lg , attributing a number to it would be clearer1150

Rebuttal: Done, we have added this in proposition 5.3 in the last line of the proof. [line: 361;5.3]1151

ReviewComment E.2.22. Reviewer Comment: In the Definition A.1 in the appendix, the bounded1152

differences property is called β− Lipschitzness. However, Lipschitzness is a well-known property that is1153

totally different from the bounded differences. This can be confusing for readers and I recommend calling it1154

the bounded differences property.1155

Rebuttal: We have updated it’s name in Definition A.1.1156
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E.2.4 Smaller changes1157

ReviewComment E.2.23. Reviewer Comment: Notation and terms issues: No definition of the term1158

"symmetric in distribution" was given before its first use in Theorem 3.2.1159

Rebuttal: We have added the definition of "symmetric in distribution" in the first paragraph of section1160

3.3.[from line: 176]1161

ReviewComment E.2.24. Reviewer Comment: It should be indicated whether constant c in Theorem 3.21162

is universal, and if not, what quantities it depends on.1163

Rebuttal: This constant comes from the proof of Feldman and Vondrak (2019b). Since our analysis is1164

asymptotic we only need this to be independent of m which it is. We have added this clarification just below1165

Theorem 3.2. [line: 185, 3.3]1166

ReviewComment E.2.25. Reviewer Comment: n Definitions 4.1 and 4.2, z is used in the Lipschitzness1167

condition for the first time, without being introduced. Only later it is specified that the constant Ll or Kl1168

depends on z. This can be fixed by introducing z at the moment when w is introduced.1169

Rebuttal: We have incorporated this suggestion in Def 4.1. [4.1]1170

ReviewComment E.2.26. Reviewer Comment: The logarithm is denoted "log " in all of the paper except1171

for the expression of ρ. Homogeneity of notation is better.1172

Rebuttal: We have made the notation homogenous through the paper as suggested.1173

ReviewComment E.2.27. Reviewer Comment: For points on Formatting, Grammar and Typos...1174

Rebuttal: We thank the reviewer for reading the paper closely. We have incorporated all the changes of this1175

kind that were requested.1176

E.3 Reviewer 3, 2QBs1177

E.3.1 Weakness1178

ReviewComment E.3.1. Reviewer Comment: However, I am unconvinced regarding the applicability of1179

the obtained results. Compared to similar data-dependent bounds such as the ones in (Hardt et al. 2016)1180

or (Kuzborskij and Lampert 2018), the constants LS , KS and Lg have a very complicated dependence in1181

the data distribution and the specifics of the SGD dynamics (which can be very hard to analyze). Further,1182

it seems to me like those bounds can increase arbitrarily in m (as in the random label example), and the1183

conditions under which LS , KS or Lg are bounded seem very hard to verify compared to previous work.1184

Rebuttal: Although it appears that the dependence of the constants on the data distribution is complicated,1185

there are useful and commonly encountered cases where this not so.On the reviewer’s suggestion we have1186

included a simple but widely applicable example [line: 376; 5.1] where we have shown that for a low-dimensional1187

data set in a high-dimensional space, using constants such as ours highlights the fact that it is the dimension1188

of the data rather than the dimension of the space that controls the generalization properties. This satisfies1189

the intuition of ML practitioners.1190

We would like the reviewer to consider that the fact that the constants grow with m is actually a good thing1191

in this case since it is clear that no ML model can generalize on ths example.1192

We understand that applicability is subjective and we appreciate the reviewer’s concern, but we would like1193

the reviewer to consider that our framework is a powerful one that can be used with good effect on specific1194

examples like the one we have now included.1195

ReviewComment E.3.2. Reviewer Comment: Further, all of section 5.3 consists in unsubstantiated claims1196

about extensions of the results to other settings, without much theoretical footing; either those are easy1197

adaptations and the theorem statements could be adapted to include those changes, or there are significant1198

challenges that should be underlined.1199

Rebuttal: The reviewer is right. Our language was casual and could easily be misinterpreted to imply that1200

the possibilities we suggest are trivial to establish as results. This was not our intent. We have moderated1201
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the language significantly now and hope that we have been able to convey that a good amount of research is1202

required on each of those directions. [from line: 466; 5.3],[from line: 472;5.3], [from line: 477; 5.3]1203

E.3.2 Requested changes1204

ReviewComment E.3.3. Reviewer Comment: In my opinion, the paper requires a much larger discussion1205

on the scaling of the three constants LS , KS or Lg; the ReLU network example still consists in a norm1206

supremum over all possible trajectories of SGD, and thus is still very delicate to bound. Even a toy model for1207

which those constants can be easily bounded could already be a good addition to the paper.1208

Rebuttal: We thank the reviewer for this suggestion as it encouraged us to add an example. We have added1209

it in a discussion just before section 5.1.1. For a more detailed response to this point we refer the reviewer1210

back to our response to comment E.3.1.[line: 376; 5.1]1211

ReviewComment E.3.4. Reviewer Comment: At the very least, a discussion on what those constants1212

imply on the training procedure is in order. For example, the authors state that "if the model can’t fit the1213

training set properly then these values will be high and reflect a bad generalization"; why would a high1214

training loss imply high Lipschitz constants ?1215

Rebuttal: We thank the reviewer for this comment because it brought back a line of analysis we had earlier1216

followed and then abandoned for simplicity of presentation. Appendix C presents an alternate line of analysis1217

that shows that the expected value of the Lipschitz constants encountered during the training is the relevant1218

value and not the worst case value encapsulated in LS . We have added a detailed discussion on this below the1219

statement of Theorem 5.1 [from line: 323]. Hopefully this will shed better light on the relationship between1220

the training and these quantities as requested by the reviewer.1221

ReviewComment E.3.5. Reviewer Comment: Regarding section 5.1.1, under which conditions can we1222

expect that LS and Lg are close ?1223

Rebuttal: We have addressed this question in terms of our current and alternate analysis in the paragraphs1224

below the statement of Theorem 5.1. In case the training converges early (as per the alternate analysis of1225

Appendix C) or if the initial choice of weights is close to the final choice of parameters (in either the original1226

or the alternate analysis) these two could be close.1227

ReviewComment E.3.6. Reviewer Comment: Minor remarks: I found the theorem statements quite heavy1228

to read; a lot of the preambles are very similar, and should be broken down into separate assumptions.1229

Less inline math should also be used. the notion of "symmetric in distribution" is never defined1230

Rebuttal: We thank the reviewer for these suggestions. To make the theorem statements easier to read1231

we have moved the assumptions out for Theorem 4.3 (earlier Theorem 4.4) and Theorem 5.1. We have also1232

made some changes based on other reviews, we hope this makes the paper a better read. If the reviewer finds1233

some more improvements which we can make then please let us know.1234

We have added the definition of "Symmetric in distribution" on the first paragraph of section 3.3.1235

F Post-Rebuttal question1236

F.1 Reviewer 2, d5U1, dated: 14 Nov 2023, 18:371237

Reviewer Comment: Typos in the newly added text1238

Rebuttal: We have fixed them now. Thank you.1239

F.1.1 Other remarks1240

Reviewer Comment: Line 39: It is mentioned that the results hold "for both classification and regression1241

cases." However, assumption N2 requires that the output space is countably infinite, which does not agree1242

with the regression setting. Can it be relaxed to incorporate the uncountable setting ? Otherwise, can the1243

scope be restricted to classification ?1244
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Rebuttal: The reviewer is right. We have now clarified on Line 39 that the scope is restricted to classification.1245

Reviewer Comment: Line 162: The expression "with a certain probability" is more convient to the1246

previous version that considers an arbitrary probability 1 − η in my opinion. I would replace "with a certain1247

probability" to "almost everywhere" or more precisely D2m- or D⊗2m- almost everywhere.., as in the review1248

of Reviewer FJNX.1249

Rebuttal: We have fixed this on Line 165 and also at the end of Definition 3.1.1250

Reviewer Comment: Line 169: z ∈ D does not hold as D is not a set. Either z ∈ Z or z ∼ D .1251

Rebuttal: We have fixed this now [Lines 171,173].1252

Reviewer Comment: Line 326: The η almost β bounded difference is mentioned. However, it is only1253

defined in the appendix, so a remark (even between parentheses) referring to the appendix is necessary.1254

Rebuttal: This was a mistake and we have corrected it. We wanted to write a.s. support stability [Line 331].1255

Reviewer Comment: Line 400: It is mentioned that "we need bound on just the square of the expectation1256

of each term." By the Cauchy-Schwarz inequality, we have E[LS .Lg] ≤
√

E[L2
S ]E[L2

g] . Hence, I think it is1257

rather "the expectation of the square (or the second moment) of each term".1258

Rebuttal: The reviewer is correct. We have fixed this now [Line 404].1259

Reviewer Comment: In line 710, I appreciate adding the "NN with identity function" precision to facilitate1260

the interpreation of the base polynomial. However, as I read it "a fully connected NN defined in ..., i.e. NN1261

with the identity function", this implies that the neural network defined in section D.1.1. has an identity1262

activation function which is not the case. Also, the formulation makes it look as if the base polynomial is1263

defined for an NN with an identity activation function, whereas it can be defined as the output for any fully1264

connected NN if we assume it has the identity activation, while its weights are kept.1265

Rebuttal: The reviewer is right. As suggested by the reviewer, we have now made a distinction between the1266

NN as defined and a different version of the NN where the ReLU activation at each node is replaced by the1267

identity activation. The base polynomial is then defined over this version.1268

Reviewer Comment: In my previous review, in the comment about the sources for inspiration in the1269

proofs, I was meaning for example "[Reference R, Theorem T]" instead of just "[Refernce R]". It is not1270

necessary but its role is to locate the result quickly in the mentioned references. I apologize for any lack of1271

clarity.1272

Rebuttal: We had not understood the request earlier. It makes perfect sense and we have now given the1273

specific theorem references throughout the paper.1274

F.1.2 Questions1275

Reviewer Comment: In line 251, in assumption S1, it is written: "Ll -LPL w.r.t. suppD and "Kl -LPS1276

w.r.t. D ". Is there a difference between saying "w.r.t. D " or suppD ?1277

Rebuttal: This is a typing error, thank you for pointing it out. Kl will only be w.r.t S as it only depends1278

on training set. We have fixed this now [Line 256].1279

Reviewer Comment: Is it possible to develop more on the advantages on the product of norms in1280

Proposition 5.3, in terms of interpretability ?1281

Rebuttal: Several works in the literature have commented on the connection between spectral norms like1282

the ones we have presented in Prop 5.3 (e.g. Bartlett et al. (2017), Lin et al. (2021)) and some works also use1283

spectral regularizers to improve generalization Yoshida & Miyato (2017). However, there is no clear answer1284

in the literature for how we can interpret such norms. The general feeling is that a low product of norms1285

implies a distribution that is “easier” to learn and a high product of norms implies a distribution that is1286

“harder” to learn. That may be one way of interpreting the message of works such as Rahaman et al. (2019).1287
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However, it is very hard to make such a statement mathematically rigorous. But this question of the reviewer1288

is very thought provoking and could lead to interesting lines of research.1289

F.2 Reviewer 3, 2QBs, dated: 13 Nov 2023, 22:161290

Reviewer Comment: I have read both the rebuttal and the new version of the paper. I welcome the1291

additional clarity changes; however I am still unconvinced by the added example to illustrate the applicability1292

of the theorems. Indeed, the example shows that the test Lipschitz constant Lg can be better bounded when1293

W1 ranges across the space of bounded vectors. However, as the training goes, I would expect W1 to align1294

with the structure of x and hence to be fully concentrated in its first D coordinates as well. This would imply1295

that the upper bounds over Ω and supp(D) actually coincide...1296

This discrepancy is a good example of the (in my opinion) flaw in the results : the need to bound the Lipschitz1297

constants over all possible training trajectories makes it extremely difficult to provide examples where there1298

is a significant improvement over the previous results.1299

Rebuttal: The reviewer’s observation that as the training proceeds W1 aligns with the subspace of the1300

training points is correct. And, in fact, this is the crux of our work. The reviewer appears to claim that1301

previous works can easily adopt this idea into their own frameworks but, to the best of our understanding, it1302

is not trivial to do so and requires the machinery we have carefully developed for this purpose.1303

Having said that, we appreciate the spirit of the reviewer’s comment. This comment pushed us to further1304

develop the material in Appendix C and we now believe we that we have demonstrated the kind of concrete1305

applicability that the reviewer has been concerned about from the beginning. In the first rebuttal we had1306

added an alternate analysis that gives a generalization bound based on the square root of the second moment1307

of the Lipschitz constants encountered during training:
√

Er

[
L2

S,I0
]
]
. In the current revision of the paper1308

we show in Appendix C.2 how a theorem of (Bottou et. al., 2018) can be used to bound this quantity in a1309

variety of settings. This result is presented as Corollary C.4. In Appendix C.3 we consider a specific two-class1310

classfication problem learned by a two-layer NN and show a generalization bound for this case in terms of the1311

parameters of the problem (Theorem C.5).1312

We hope that the reviewer will agree that the framework of Appendix C.2 is quite useful, as illustrated by the1313

concrete example in Sec C.3. We feel that this is indeed the missing piece of the puzzle and we are grateful1314

to the reviewer for pushing us to develop it. The ease with which our alternate analysis connected with the1315

theory developed by (Bottou et. al. 2018) was exciting for us as we felt that it shows that we have now1316

reached a way of looking at the problem that has appropriate resonances in the works of others.1317

Reviewer Comment: New minor remarks:1318

Rebuttal: We have fixed the minor remarks. Thank you for the careful look over our paper.1319
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