
Under review as a conference paper at ICLR 2020

Neurosymbolic Deep Generative Models for
Sequence Data with Relational Constraints

Anonymous authors
Paper under double-blind review

Abstract

Recently, there has been significant progress designing deep generative mod-
els that generate realistic sequence data such as text or music. Nevertheless,
it remains difficult to incorporate high-level structure to guide the gener-
ative process. We propose a novel approach for incorporating structure in
the form of relational constraints between different subcomponents of an
example (e.g., lines of a poem or measures of music). Our generative model
has two parts: (i) one model to generate a realistic set of relational con-
straints, and (ii) a second model to generate realistic data satisfying these
constraints. To train model (i), we propose a novel program synthesis algo-
rithm that infers the relational constraints present in the training data, and
then train the models based on the resulting relational constraints. In our
experiments, we show that our approach significantly improves over state-
of-the-art approaches in terms of capturing high-level structure in the data,
while performing comparably or better in terms of low-level structure.

1 Introduction

Over the past few years, there has been tremendous progress in designing deep generative
models for generating sequence data such as natural language (Vaswani et al., 2017) or
music (Huang et al., 2019). These approaches leverage the vast quantities of data available
in conjunction with unsupervised and self-supervised learning to learn probabilistic models
of the data; then, new examples can be generated by sampling from these models, with the
possibility of conditioning on initial elements of the sequence.

Despite this progress, a key challenge facing deep generative models is the difficulty incor-
porating high-level structure into the generated examples—e.g., rhyming and meter across
lines of a poem, or repetition across measures of a piece of music. The ability to capture
high-level structure is important for improving the quality of the generated data, especially
in low-data regimes where only small numbers of examples are available—intuitively, knowl-
edge of the structure compresses the amount of information that the generative model has
to learn. Furthermore, explicit representations of structure—i.e., in a symbolic way rather
than implicitly in a vector embedding—can have the added benefit that users can modify
the structure to guide the generative process.

Recently, Young et al. (2019) proposed a technique called neurosymbolic generative models
for incorporating high-level structure into image generation, focusing on simple 2D repeating
patterns in images of building facades (e.g., repeating windows). The basic idea is to leverage
program synthesis to extract structure from data—in particular, given an example image
x, they devise an algorithm A that extracts a program c = A(x) that represents the set
of 2D repeating patterns present in training examples x. Then, using the pairs (x, c), they
train two generative models: (i) a model pφ(c) that generates a program, and (ii) a model
pθ(x | c) that generates an image that contains the structure represented by c.

However, their approach is heavily tailored to the image domain in several ways. First, their
representation of structure is geared towards relatively simple patterns occurring in images
of building facades. In addition, their algorithm A is specifically designed to extract this
kind of program from an input image, as are their models pφ(c) for generating programs
and pθ(x | c) for generating images conditioned on the program.

1

Under review as a conference paper at ICLR 2020

We represent relational constraints cx present in an example x by relating each subcompo-
nent w of a given example x with a prototype w̃, which can intuitively be thought of as the
“original” subcomponent from which w is constructed. In particular, the relationship be-
tween w and w̃ is labeled with a set of relations R, which encodes the constraint that w and w̃
should satisfy relation r for each r ∈ R. Importantly, while each subcomponent is associated
with a single prototype, each prototype may be associated with multiple subcomponents.
As a consequence, different subcomponents associated with the same prototype are related
in some way. This representation is compact, only requiring linearly many constraints in the
number of subcomponents in x (assuming the number of prototypes is constant). Intuitively,
compactness ensures the representation both generalizes well and is easy to generate.

Then, we design a program synthesis algorithm that can extract an optimal representation of
the structure present in a training example x. We show how to express the synthesis problem
as a constrained combinatorial optimization problem, which we solve using an SMT solver
Z3 (De Moura & Bjørner, 2008). Next, we represent c as a sequence, and design pφ(c) to
be inferred through a specialized sequence VAE. Finally, we propose three possible designs
of pθ(x | c) based on trying to identify an example x that is realistic (e.g., according to a
pretrained generative model pθ(x)) while simultaneously satisfies the constraints c.

We evaluate our approach on two tasks: poetry generation, where the relational constraints
include rhyming lines or lines with shared meter, and music generation, where the relational
constraints include equality in terms of pitch or rhythm, that one measure is a transposition
of another (i.e., pitches shifted up or down by a constant amount), etc. We show that our
approaches outperform or perform similarly to SOTA models according to many metrics.

Finally, we also perform a qualitative evaluation where we show how the user can modify
the high-level to generate examples that satisfy additional desired constraints. This abil-
ity demonstrates an important feature of our approach—i.e., that the user can guide the
generative process by modifying the relational constraints as desired.

Example. Figure 1 illustrates how our approach is applied to generate poetry. During
training, our approach uses program synthesis to infer relational constraints cx present in
the examples x, and uses both x and cx to train the generative models. Here, cx is a
bipartite graph, where the LHS vertices are prototypes, and the RHS vertices correspond to
lines of x. Each vertex on the right is connected to exactly one prototype, and is labeled
with constraints on how it should relate to its prototype. To generate new examples, it first
samples relational constraints c, and then samples an example x that satisfies c—i.e., we need
to choose a line to fill each RHS node in a way that the line satisfies the relations with its
prototype. Furthermore, a user can modify the sampled constraint c to guide the generative
process. Thus, our approach enables users to flexibly incorporate domain knowledge on the
high-level structure of the data into the generative process, both in terms of the relational
constraints included and by allowing them to modify the generated relational constraints.

Related work. There has been recent interest in leveraging program synthesis to improve
machine learning. For instance, it has been applied to unsupervised learning of latent
structure in drawings (Ellis et al., 2015) and to reinforcement learning (Verma et al., 2018).
These techniques have benefits such as improving interpretability Verma et al. (2018); Ellis
et al. (2020), enabling learning from fewer examples (Ellis et al., 2015), generalizing more
robustly (Inala et al., 2019), and being easier to formally reason about (Bastani et al.,
2018). More recently, there has been work leveraging program synthesis in conjunction with
deep learning, where the DNN handles perception and program synthesis handles high-level
structure (Ellis et al., 2017), including work in the lifelong learning setting (Valkov et al.,
2018). In contrast to these approaches, our focus is on generative models. In particular, we
extend recent work leveraging these ideas in the setting of image generation to incorporating
high-level relational structure into sequence generation tasks (Young et al., 2019).

Early music generation approaches were rule-based (Ovans & Davison, 1992) or used simple
statistical models such as Markov models (Sandred et al., 2009; Cope, 1987) or probabilistic
CFGs (Quick, 2016). Recent work has used deep learning to generate music (Huang et al.,
2019; OpenAI, 2019) and poetry (Liao et al., 2019); our experiments show that these ap-
proaches have difficulty generating realistic high-level structure. Approaches have incorpo-

2

Under review as a conference paper at ICLR 2020

Sample Relational Constraints
𝑐 ∼ 𝑝! ⋅ 𝑧

Sample Example
𝑥 ∼ 𝑝" ⋅ 𝑐

Sample Latent Vector
𝑧 ∼ 𝑝 ⋅

rhymes, meter
rhymes, meter

𝑧 =
0.5
…
−1.2

Music to song, on the city air
A little music to live upon
Song, a song, yes, yes, a long with the sun,
And all together if they are all ten,
Until all is ready for men again and then,
To the capital I hall ride with chase,
And look like men tied full all around
You, and whisper that I shall found,
Though I’m not built upon a little dome,
I say, I made a home, I make a roam.

Music to song, on the city air

A little music to live upon

rhymes, meterSong, a song, yes, yes, a long with the sun,

Until all is ready for men again and then,

To the capital I hall ride with chase,

And look like men tied full all around

Though I’m not built upon a little dome,

rhymes
rhymes, meter
rhymes, meter
rhymes, meter
rhymes
rhymes, meter
rhymes

"Father," I said, "Father, I cannot play
The harp that thou didst give me, and all day
I sit in idleness, while to and fro
About me thy serene, grave servants go;
And I am weary of my lonely ease.
Better a perilous journey overseas
Away from thee, than this, the life I lead,
To sit all day in the sunshine like a weed
That grows to naught—I love thee more than they
Who serve thee most; yet serve thee in no way

Training Example 𝑥 Relational Constraints 𝑐#

The harp that thou didst give me, and all day

I sit in idleness, while to and fro

And I am weary of my lonely ease.

Away from thee, than this, the life I lead,

rhymes, meter
rhymes

rhymes, meter
rhymes

rhymes, meter
rhymes, meter
rhymes, meter
rhymes
rhymes, meter
rhymes, meter

Figure 1: Top: Process for training. For each training example x, our algorithm uses
program synthesis to infer the relational constraints cx = A(x) present in x. Then, it (i)
uses cx to train pφ(c) = Ez∼p(·)[pφ(c | z)·p(z)], and (ii) uses (cx, x) to train pθ(x | c). Bottom:
Process for generating a sample x from the learned models pφ(c | z) and pθ(x | c). Lines
with the same prototype are shown in the same color; metrical constraints are represented
as purple and rhyme constraints as green edges.

rated structure into deep learning to generate music (Medeot et al., 2018) or poetry (Castro
& Attarian, 2018), but they are domain specific; we find they do not perform at a human
level on capturing global (and sometimes local) structure. Some approaches incorporate
expert-provided constraints such as rhyme and meter to generate poetry (Lau et al., 2018);
unlike our approach, they cannot automatically learn and generate these constraints from
data.

2 Background on Neurosymbolic Generative Models

Consider the problem of learning a generative model given training data from the underlying
distribution. Given training examples x1, ..., xk ∼ p∗, our goal is to learn a generative model
pθ ≈ p∗ from which we can draw additional samples x ∼ pθ. We consider sequence data—i.e.,
an example x ∈ X is a sequence x = (w1, ..., wm) ∈ Wm.1 For example, each subcomponent
w may be a line of a poem or a measure of music, and x may be a poem or song.

We are interested in domains where likely examples satisfy latent relational constraints c ∈ C
over the subcomponents. For instance, c may say that two measures wi and wj of x start
with the same series of pitches, or two lines wi and wj of x rhyme. We assume given a set of
relations R (e.g., r ∈ R might be “rhyme” or “equal”), and a function f :W×W ×R → B
(where B = {0, 1}) such that f(w,w′, r) indicates whether w and w′ satisfy relation r.
Then, c is a compact representation of the relations present in an input x. We describe
the structure of c in detail in Section 3.1; for now, the approach we describe works for any
choice of c. In particular, we build on neurosymbolic generative models (Young et al., 2019),

1We use a fixed m to simplify our exposition; our approach trivially extends to variable m.

3

Under review as a conference paper at ICLR 2020

where c is itself generated based on a latent value z ∈ Z—i.e.,

pθ,φ(x) =

∫ ∑
c∈C

pθ(x | c) · pφ(c | z) · p(z)dz.

Then, Young et al. (2019) considers the variational distribution

qφ̃(c, z | x) = qφ̃(z | c) · q(c | x) where q(c | x) = δ(c− cx).

Here, δ is the Dirac delta function, and cx is a single representative associated with x. In
particular, cx is generated from x using a program synthesis algorithm David & Kroening
(2017)—i.e., an algorithm A that takes as input an example x and outputs a program
c = A(x) encoding the relational constraints present in x. Next, Young et al. (2019) derive
an evidence lower bound

log pθ,φ(x) ≥ log pθ(x | cx) + Eqφ̃(z|cx)[log pφ(cx | z)]−DKL(qφ̃(z | cx) ‖ p(z)). (1)

where DKL is the KL divergence and H is the information entropy. The first term of (1)
is the log-likelihood of a generative model predicting the probability of example x given
relational structure cx, and the second and third terms form the loss of a variational au-
toencoder (VAE) pφ(c | z) and qφ̃(z | c) (Kingma & Welling, 2019). In summary, this

approach separately learns (i) a VAE to generate c given z, and (ii) a generative model
to generate x given c; the latter can be a second VAE or a generative adversarial network
(GAN) (Goodfellow et al., 2014). This approach is called synthesis-guided generative models
(SGM) since it uses program synthesis to guide training.

To leverage this framework, we have to instantiate (i) the space of relational constraints C,
(ii) the synthesis algorithmA : X → C used to extract a program encoding the structure of x,
and (iii) the architectures of pφ(c | z), qφ̃(z | c), and pθ(x | c). In previous work, Young et al.

(2019) used heuristics specific to the the image domain to achieve these goals—in particular,
they used (i) simple equality constraints on sub-regions of the image designed to capture
2D repeating patterns, (ii) a custom synthesis algorithm that greedily adds constraints in
the data to the program, and (iii) a representation of cx as an image, in which case pθ is a
generative model over images, and pφ, qφ̃ based on an encoding of c as a fixed-length vector.

We design a synthesis algorithm that expresses the synthesis problem as a constrained com-
binatorial optimization problem, which it solves using Z3 (De Moura & Bjørner, 2008). In
terms of (iii), our programs encode declarative constraints rather than imperative render-
ings, so the previous architectures of pφ, and qφ̃ cannot be used. Instead, we use expert

domain-specific heuristics, transformers (Vaswani et al., 2017), or graph neural networks
(GNNs) (Kipf & Welling, 2017) for pφ and qφ̃. For pθ, we propose several methods for
imposing the constraints encoded by c when generating an example x.

3 Relational Constraints for Sequence Data

In this section, we describe how we represent relational constraints r, as well as our algorithm
A for synthesizing the relational constraints cx = A(x) present in an example sequence x.

3.1 Graph Representation of Relational Constraints

Recall that our generative model operates by first generating a relational program c, and
then generating an example x that satisfies c. Thus, we need to design relational programs
c that encode constraints on the structure of an example x. Our programs c encode a set of
relational constraints, each of which imposes a constraint that subcomponents of x should
have certain kinds of relations. We begin by describing the structure of a single relational
constraint, and then describe how c encodes a set of relational constraints.

A relational constraint φ ∈ Φ = W × I × R, where I = {1, ...,m}, is a tuple φ = (w̃, i, r);
we call w̃ ∈ W a prototype subcomponent. An example x satisfies φ (denoted x |= φ) if
f(w̃, wi, r) = 1, where wi is the ith subcomponent of x. That is, φ says the ith subcomponent

4

Under review as a conference paper at ICLR 2020

wi of x should have relation r with prototype subcomponent w̃. Thus, we can interpret φ
as a function φ : X → B, where φ(x) = 1 if x satisfies φ and φ(x) = 0 otherwise.

Next, a relational program c encodes a collection of relational constraints on examples
x. We represent c as an undirected labeled bipartite graph c = (Ṽ , V, E) with vertices

Ṽ and V and edges E ⊆ Ṽ × V × L, where L are the labels. The vertices w̃ ∈ Ṽ are
prototype subcomponents w̃ ∈ W; equivalently, they may be vector embeddings of prototype
subcomponents. The vertices i ∈ V = {1, ...,m} are the indices of subcomponents in x. The
edges e ∈ E are tuples e = (w̃, i, R), where R ⊆ R is a set of relations. We impose the

constraint that each v ∈ V is part of a single edge (w̃, v, R) (though ṽ ∈ Ṽ may be part of
multiple edges). Finally, c encodes the set of relational constraints

Φc = {(w̃, i, r) | (w̃, i, R) ∈ E ∧ r ∈ R} .
In other words, c includes the relational constraint that each subcomponent wi of x should
have all relations r ∈ R with prototype w̃, where v is connected to w̃.

As an example, in Figure 1, the graph shown on the top right encodes a relational constraint
cx, and the top right shows an example x that satisfies all the constraints φ ∈ Φcx . The
nodes on the left-hand side of cx are prototype subcomponents w̃ ∈ W, each of which is a
line of poetry. The nodes on the right-hand side correspond to indices i (from i = 1 on top
to i = m = 10 on the bottom); each one is labeled with a set of relations Ri. Then, Φcx
contains constraints φ = (w̃, i, Ri) for each edge w̃ → i in the graph, which says that line
i of x should have relations r ∈ Ri with w̃. For instance, the last (10th) node in cx has
constraints R10 = {rhyme,meter}, and is connected to prototype line w̃ =“The harp that
thou...”. Thus, this edge encodes a constraint φ = (w̃, 10, R10) saying that the last line of x
should rhyme and have the same meter as w̃. Indeed, the last line of x is w10 =“Who serve
thee most...”, which rhymes and has the same meter as “The harp that thou...”.

Remark 3.1. We use prototypes rather than direct relationships between components to
ensure the size of the graph is tractable. In particular, our approach ensures that the graph
is linear in the size of the input (assuming the number of prototypes is constant). A compact
graph is both to synthesize (for training) or train a model to generate (for generation). Our
approach can easily be generalized to more complex representations.

Remark 3.2. We refer to c as a program since it can be interpreted as a Datalog pro-
gram Ceri et al. (1989) (i.e., a relational logic program). At a high level, Φc is a set of
Datalog relations over examples x ∈ X . Thus, c can be interpreted as a program c : X → B
such that c(x) = 1 if φ(x) = 1 for all φ ∈ Φc and c(x) = 0 otherwise.

3.2 Synthesizing Relational Constraints

Recall that when training our generative model, we need to design a program synthesis
algorithm A that synthesizes a relational program cx = A(x) that best encodes the latent
relational constraints present in each training example x. A key question is where the
prototypes come from. We simply choose the prototypes w̃ to be actual subcomponents in
x. Thus, cx encodes that subcomponents of x are each related to one of a small number
of distinguished subcomponents of x. We formulate the problem of synthesizing cx as a
constrained optimization problem, which we describe below.

Optimization variables. The variables are a binary vector H ∈ Bm and a binary ma-
trix K ∈ Bm×m. Intuitively, Hi indicates whether subcomponent wi of x is a prototype
subcomponent in c, and Kij indicates whether wi is the prototype for subcomponent wj .

Constraints. Our optimization problem has the following three constraints:

ψ1 ≡ kmin ≤
m∑
i=1

Hi ≤ kmax, ψ2 ≡
m∧
j=1

m∑
i=1

Kij = 1, ψ3 ≡
m∧
i=1

m∑
j=1

Kij ≤ m ·Hi.

First, ψ1 says that the number of prototype subcomponents is between kmin and kmax. Next,
ψ2 says that every subcomponent wj corresponds to exactly one prototype subcomponent
wi. Finally, ψ3 says that for every i, if wi is the prototype subcomponent of wj according
to K, then it must be a prototype subcomponent according to H as well.

5

Under review as a conference paper at ICLR 2020

Objective. The objective of our optimization problem is expressed in terms of a precom-
puted distance matrix D ∈ Rm×m, where Dij measures the similarity between components
wi and wj ; smaller values indicate a greater degree of similarity. In particular, we define

Dij =
1

|R|
∑
r∈R

1(f(wi, wj , r) = 0),

i.e., Dij is the fraction of relations that are not satisfied by wi and wj . Then, our objective
(which is to be minimized) has the following three terms:

J1 =

m∑
i,j=1

Kij ·Dij , J2 =

m∑
i,j=1

(∏
k

Kki ·Kkj

)
·Dij , J3 = −

m∑
i,j=1

Mi ·Mj ·Dij .

First, J1 says that subcomponents should be similar to their prototypes. Second, J2 says
that subcomponents should also be similar to other subcomponents that share the same
prototype. Third, J3 says that different prototype subcomponents should be dissimilar.

Optimization problem. Our algorithm A uses Z3 to solve the optimization problem

(H∗,K∗) = arg min
H,K

{λ1 · J1 + λ2 · J2 + λ3 · J3} subj. to ψ1 ∧ ψ2 ∧ ψ3,

where λ1, λ2, λ3 ∈ R≥0 are hyperparameters. Finally, to construct cx, A chooses

Ṽ = {wi | H∗i = 1}, V = {1, ...,m}, E = {(wi, j, Rij) | K∗ij = 1},

where Rij = {r ∈ R | f(wi, wj , r) = 1}—i.e., Ṽ are the prototype subcomponents according
to H∗, E are the edges according to K∗, and Rij are the relations satisfied by wi and wj .

Z3 is guaranteed to find the optimal solution; in the unlikely event that multiple such
solutions exist, it chooses one nondeterministically. Intuitively, our approach should perform
well when a handful of prototypes are sufficient to approximately capture the relational
structure in the data. Furthermore, since the user has the ability to define relations, they
can adjust their definitions as needed to capture the desired structures.

4 Neurosymbolic Generative Models with Relational
Constraints

In this section, we describe our deep generative model for generating examples x. Recall
that our approach proceeds in two steps: (i) generate c, and (ii) generate x given Φc. We
describe each of these steps in detail below.

4.1 Step 1: Generating Relational Constraints

The first step of our generative model is to generate relational constraints Φc using a VAE—
i.e., z ∼ p(·) and c ∼ pφ(· | z), where pφ(c | z) is a VAE and p(z) = N (z; 0, I) is a Gaussian
distribution. The main choice is the architecture to use for the VAE. In particular, we
consider a representation of c as a sequence (s1, ..., sm), where si ∈ {0, 1, ...,m} for each i;
intuitively, si encodes that subcomponent wi should have the same prototype subcomponent
as wi−si , or if si = 0, that wi corresponds to a new prototype subcomponent.

More precisely, we initialize Φc = ∅. Then, we generate the sequence si ∈ {0, 1, ...,m} and
ri ∈ {0, 1, ...,m} (where ri is represented as a binary vector of length n = |R|) using an
LSTM-VAE. For each i, we generate (w̃, Ri) based on si and ri. If si = 0, we generate a new
prototype subcomponent w̃ using a domain-specific generative model, generate with using
another LSTM-VAE, and add φi = (w̃i, i, Ri) to Φc. If si > 0, we let φi = (w̃i−si , i, Ri).

4.2 Step 2: Generating Examples Given Relational Constraints

Next, we describe how we implement the second step pθ(x | c) of our generative model. We
propose three approaches for generating x given Φc; we give details in Appendix A.

6

Under review as a conference paper at ICLR 2020

Approach 1: Constrained sampling. We sample values x ∼ pθ(·) by sequentially
sampling wi ∼ pθ(·) from a pretrained generative model pθ(w). We do so using rejection
sampling at each step—i.e., we sample wi ∼ pθ(·) until we find wi satisfying f(w̃, wi, r) = 1
for each (w̃, i, r) ∈ Φc. In addition, to speed up sampling, at each step of sampling wi (e.g.,
a word in a line or a pitch in a measure), we eliminate choices that violate Φc.

Approach 2: Constraint-aware embeddings. We train a conditional generative model
pθ(w1, ..., wm | c) (in the form of a graph convolutional network) that simultaneously gener-
ates all m subcomponents in a way that satisfies c, and sample x = (w1, ..., wm) ∼ pθ(· | c).
Approach 3: Combinatorial optimization. We sample x ∼ pθ(·) by sequentially gen-
erating wi by solving an optimization problem whose objective is to maximize adherence to
Φc plus additional terms encoding domain-specific heuristics encouraging wi to be realistic.

5 Experiments

We evaluate our approach on music and poetry generation; see Appendix B.6 for details.

Music generation. We evaluated our approach on a music generation task. In this setting,
x is a song, and w are measures of music. We consider 20 relations including equality, same
rhythm, same pitch progression, etc.; a full list is given in Appendix B.2. We used songs
from the Essen folk song corpus (Schaffrath, 1995), using 2000 for training and 500 for
testing. For this dataset, we used each of the three approaches A1, A2, and A3 described
in Section 4 to sample x ∼ pθ(· | c). For A1, we use a pretrained transformer called
MusicAutoBot (Shaw, 2020). For A2, we require a generative model that constructs vector
embeddings of measures; we use the version of Magenta’s MusicVAE which embeds single
measures (Roberts et al., 2018). We finetune all models on our training examples.

We compare to MusicAutoBot, an LSTM model with attention (AttentionRNN) (Waite,
2016), Magenta’s 16-bar MusicVAE, and an implementation of StructureNet, an approach
that integrates structure into an LSTM (Medeot et al., 2018). We also compare to a con-
straint generation approach called Motifate (Muhammad Faisal, 2017); see Appendix B.5.
We compare performance in terms of both high-level and low-level structure. For high-level
structure, given a generated (or human held-out) example x, we use our program synthe-
sis algorithm to synthesize its relational structure cx = A(x). Then, given a collection
Cgen = {cx | x ∈ Xgen} of synthesized structure for generated examples, along with a collec-
tion Chuman = {cx | x ∈ Xhuman} of synthesized structure for the held-out human examples,
we train a graph convolutional neural network (GCN) to try and discriminate Cgen from
Chuman. In addition, we also train a random forest (RF) over handcrafted features (de-
scribed in B.4) to try and discriminate them. In both cases, we use a balanced dataset (i.e.,
50% human held-out and 50% generated) so random predictions have accuracy 0.5. For
low-level structure, we use the negative log likelihood (NLL) according to MusicAutoBot
(pretrained and then fine-tuned on our dataset), MusicVAE, and our own GraphVAE (de-
scribed in Section A.2). While these metrics are not perfect, they can be used to evaluate
across all approaches. For models where NLL is available, we also compare their NLL on
the held-out humand data.

We show results in Table 1. For each approach (as well as a held-out human dataset),
we show the negative log-likelihood (NLL) assigned to that approach by one of the three
models “MusicAutoBot”, “MusicVAE”, and “GraphVAE”. According to almost all metrics,
our algorithm (using A2 for sampling pθ(x | c)) outperforms or performs equally to all
others, and achieves performance very similar to human. The one exception is our measure
of low-level structure according to MusicAutoBot; however, this model rates StructureNet
and MusicVAE-16 as substantially better than human, indicating that it is not a good
measure of quality. Finally, our GraphVAE produces a lower NLL for the held-out human
music than either MusicAutoBot or MusicVAE-16, which indicates that it models human
data better than the others (the other approaches cannot be used to compute NLL).

Poetry generation. We use Project Gutenberg’s poetry collection (Parrish, 2018), filtered
to focus on examples that contain rhymes and meter. We use 2700 10-line poems for
training and 300 for testing. In this case, we were unable to apply A3 due to the large

7

Under review as a conference paper at ICLR 2020

Model
Low-Level High-Level

MusicAutoBot MusicVAE GraphVAE RF Disc. GCN Disc.

Ours (A1) 1518 1161 1037 0.89 0.54
Ours (A2) 1184 1156 1027 0.79 0.63
Ours (A3) 1240 1161 1029 0.91 0.43

MusicVAE-16 1093 1170 1070 0.85 0.50
MusicAutoBot 5452 1172 1100 0.95 0.51
AttentionRNN 1920 1271 1089 0.88 0.47
StructureNet 902 1162 1062 0.91 0.45

Human 1764 1160 1028 0.51 0.69

Table 1: Results for the music domain. To evaluate low-level structure, we use negative
log likelihood according to MusicAutoBot, Magenta’s verrsion of MusicVAE designed for
hierarchical 16-bar melodies, and GraphVAE. For high-level structure, we use accuracy of
the random forest (“RF Disc.”) and GCN cross entropy loss (“GCN Disc.”). The best
(non-human) score in each column is bolded; the human score is italicized if best. We also
bold the model that achieves the best NLL on the held-out human data.

Model
Low-Level High-Level Diversity

BERT GPT2 GCN Disc. Entropy

Ours (A1) 3.66 6.51 0.69 4.64
Ours (Ablation) 3.72 6.60 0.59 4.67

GPT2 3.30 3.13 0.47 4.32
GPT2-Opt 3.63 3.87 0.56 4.35

BERT 3.90 5.76 0.50 2.59
RichLyrics 4.66 8.04 0.51 4.86

Human 4.02 4.98 0.70 4.86

Table 2: Results for the poetry domain. To evaluate low-level structure, we use the negative
log likelihood per token of a fine-tuned version of BERT and GPT2. For high-level structure,
we use cross-entropy loss of the GCN (“GCN Disc.”). We also show the information entropy.
The highest (non-human) score in each column is bolded.

size of the vocabulary, making constrained optimization infeasible. We were also unable to
apply A2 since state-of-the-art generative models such as BERT and GPT2 were unable to
capture rhyming and meter, since they operate at the word level where this information is
unavailable. In A1, rather than sample words going forward, we sample them backwards,
making it easier to sample lines that satisfy rhyming constraints; see Appendix A. Thus,
we use BERT to sample (Devlin et al., 2018), since it supports bidirectional sampling.

We compare to BERT and GPT2 (Radford et al., 2019), both finetuned on our dataset. We
also consider a variant GPT2-Opt of GPT2 where we use beam search to choose line breaks
in a way that maximizes occurrences of rhyme and meter. We also tried a variant of GPT2
that used constrained sampling to try and find poems that fit a given rhyme and meter
scheme, but the search space was too large and it was unable to generate a single poem
even after several hours. We also compare to an implementation of RichLyrics (Castro &
Attarian, 2018), where the consecutive parts of speech for each line given the previous line
and the ability to fill in the correct word for the given part of speech were both learned
separately from the corpus. Finally, in addition to using BERT as a sequential generator,
we considered an ablation where we perform constrained sampling, but with a uniformly
random Φc rather than sampling it from a learned distribution.

As before, we compare both high-level structure and low-level structure. For high-level
structure, we again use a GCN discriminator. For low-level structure, we use the negative
log likelihoods per token according to each of BERT and GPT2 (finetuned on our training
dataset). In this case, because our approach uses constrained sampling from a pretrained
generative model, we could not evaluate negative log-likelihood according to our approach.

We show results in Table 2. Our approach significantly outperforms all baselines (including
RichLyrics) in terms of high-level structure. Furthermore, our approach produces a lower
BERT NLL than either unmodified-BERT or the BERT-based implementation of Rich-
Lyrics. GPT2 and GPT2-Opt produce more likely output than our technique according to

8

Under review as a conference paper at ICLR 2020

One was done. Another was done.
And I wish you know the way,
Full name and date to whom this story pour
And know a lot of things that were called a war
See a soldier, fair fair beautiful grace
That men turn’d toward. Another race
Together, married. Much to see, the dead
Were gone. The man who ascended to the head
Office retired, and gave birth to a trace
That doesn’t tell a name, but tells a face.

One was done. Another was done.
And I wish you know the way,
Full name and date to whom this story pour
And know a lot of things that were called a war
See a soldier, fair fair beautiful grace
That men turn’d toward. Another race
Together, married. Much to see, the dead
Were gone. The man who ascended to the head
With full beard and hair was a little said
But was old and not intended for bed.

Of nature and of nature nature is the
Only being able in human affairs to
Combine with herself
Her will and therefore her existence cannot ever fail even
As nature having no desire can create itself so too
Alone can nature produce any being the
Human existence cannot
Then exist because
It only can
Exist because the nature only is

Figure 2: Left: Poetry generated using relational constraints c ∼ pφ(·). Middle: user
modified variant of c where the last two lines share a prototype with the two lines before
them. Right: A poem generated by GPT2 optimized to maximize rhyme and meter. The
colors indicate the relations synthesized by our algorithm after the examples were generated.

the transformer probability metrics, most likely because they are better at natural language
generation than BERT. If we could instead build on GPT2 (i.e., perform backwards sam-
pling with GPT2), then our approach would likely achieve better performance; we leave this
direction to future work. Furthermore, our approach achieved comparable BERT scores to
GPT2-Opt, while significantly outperforming it in terms of structure.

Finally, we noticed that one way the baselines (except for the ablation study and RichLyrics)
tended to perform well was by being very repetitive. Thus, we additionally measured the
information entropy of the different models. As can be seen, our approach (both with learned
and random Φc) is by far closer to human in terms of human entropy than GPT2-Opt and
BERT, supporting our hypothesis that the baselines were overly repetitive. RichLyrics
avoided this lack of entropy, as consecutive words were constrained to belong to different
part of speech groups. However, it did not receive a high likelihood score, as the transformer
model used to produce those parts of speech often resulted in unlikely output.

In Figure 2, we show an example poem generated using our approach (left) along with one
generated using GPT2-Opt (right). As can be seen, the GPT2-Opt poem does not capture
structure in the same way human poems do—e.g., adjacent lines are unrelated, lines have
very unequal length, and the only rhymes are the word “the” in the brown lines and the words
“to” and “too” in the green lines. There is even less structure in poems generated using
vanilla GPT2. Thus, GPT2 is completely unable to capture high-level structure present in
the real poetry provided as training data. In contrast, our poem captures structure very
similar to the human poem shown in Figure 1, such as rhyming adjacent lines.

User modifications. A key benefit of our approach is that the user can modify the
relational constraints c (or construct their own from scratch) for use in the second step
pθ(x | c), giving the user a way to guide the generative process. Figure 2 demonstrates this
process. We manually edited the part of the program corresponding to the last two lines so
that they shared a prototype with the previous two lines. The example generated using the
unmodified (sampled) constraints is shown on the left, and the example generated using the
modified constraints is shown in the middle. We show in the supplement a similar process
performed with music data.

6 Conclusion

We have presented a novel approach for representing and synthesizing relational constraints
on sequence data, and for generating examples whose relational structure resembles that of
the training data. Our experiments demonstrate that we outperform existing approaches in
terms of achieving human-like structure, while performing comparably or better on widely-
used metrics which do not explicitly account for structure. Equally importantly, our ap-
proach gives the user a way to guide the generative process by modifying the relational
constraints. Directions for future work include automatically discovering relational prim-
itives, integrating our structure generator with more powerful language models such as
GPT-3, and improving the ability to sample from generative models subject to constraints.

9

Under review as a conference paper at ICLR 2020

References

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning
via policy extraction. In Advances in neural information processing systems, pp. 2494–
2504, 2018.

Pablo Samuel Castro and Maria Attarian. Combining learned lyrical structures and
vocabulary for improved lyric generation. CoRR, abs/1811.04651, 2018. URL
http://arxiv.org/abs/1811.04651.

Stefano Ceri, Georg Gottlob, Letizia Tanca, et al. What you always wanted to know about
datalog(and never dared to ask). IEEE transactions on knowledge and data engineering,
1(1):146–166, 1989.

David Cope. An expert system for computer-assisted composition. Com-
puter Music Journal, 11(4):30–46, 1987. ISSN 01489267, 15315169. URL
http://www.jstor.org/stable/3680238.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan
Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length context.
CoRR, abs/1901.02860, 2019. URL http://arxiv.org/abs/1901.02860.

Cristina David and Daniel Kroening. Program synthesis: challenges and opportunities.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineer-
ing Sciences, 375(2104):20150403, 2017. doi: 10.1098/rsta.2015.0403.

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. Berlin, Heidelberg,
2008. Springer-Verlag. ISBN 3540787992.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805,
2018. URL http://arxiv.org/abs/1810.04805.

Kevin Ellis, Armando Solar-Lezama, and Josh Tenenbaum. Unsupervised learning by pro-
gram synthesis. In Advances in neural information processing systems, pp. 973–981, 2015.

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Joshua B. Tenenbaum. Learning
to infer graphics programs from hand-drawn images. CoRR, abs/1707.09627, 2017. URL
http://arxiv.org/abs/1707.09627.

Kevin Ellis, Catherine Wong, Maxwell I. Nye, Mathias Sablé-Meyer, Luc Cary, Lucas
Morales, Luke B. Hewitt, Armando Solar-Lezama, and Joshua B. Tenenbaum. Dream-
coder: Growing generalizable, interpretable knowledge with wake-sleep bayesian program
learning. CoRR, abs/2006.08381, 2020. URL https://arxiv.org/abs/2006.08381.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (eds.), Advances in
Neural Information Processing Systems 27, pp. 2672–2680. Curran Associates, Inc., 2014.
URL http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf.

C. Horton and L. Ritchey. Workbook for Harmony Through Melody: The Interaction of
Melody, Counterpoint, and Harmony in Western Music. Scarecrow Press, 2000. ISBN
9781461664147. URL https://books.google.com/books?id=XK3psrVckcAC.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon,
Curtis Hawthorne, Andrew Dai, Matt Hoffman, Monica Dinculescu, and Douglas
Eck. Music transformer: Generating music with long-term structure. 2019. URL
https://arxiv.org/abs/1809.04281.

Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. Synthe-
sizing programmatic policies that inductively generalize. In International Conference on
Learning Representations, 2019.

10

Under review as a conference paper at ICLR 2020

Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. CoRR,
abs/1906.02691, 2019. URL http://arxiv.org/abs/1906.02691.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In Proceedings of the 5th International Conference on Learning Representa-
tions, ICLR ’17, 2017. URL https://openreview.net/forum?id=SJU4ayYgl.

Jey Han Lau, Trevor Cohn, Timothy Baldwin, Julian Brooke, and Adam Hammond. Deep-
speare: A joint neural model of poetic language, meter and rhyme. CoRR, abs/1807.03491,
2018. URL http://arxiv.org/abs/1807.03491.

Yi Liao, Yasheng Wang, Qun Liu, and Xin Jiang. Gpt-based generation for classical chinese
poetry. CoRR, abs/1907.00151, 2019. URL http://arxiv.org/abs/1907.00151.

Gabriele Medeot, Srikanth Cherla, Katerina Kosta, Matt McVicar, Samer Abdallah, Marco
Selvi, Ed Newton-Rex, and Kevin Webster. Structurenet: Inducing structure in gen-
erated melodies. In Emilia Gómez, Xiao Hu, Eric Humphrey, and Emmanouil Benetos
(eds.), Proceedings of the 19th International Society for Music Information Retrieval Con-
ference, ISMIR 2018, Paris, France, September 23-27, 2018, pp. 725–731, 2018. URL
http://ismir2018.ircam.fr/doc/pdfs/126 Paper.pdf.

Islam Elgamal Muhammad Faisal, Islam Faisal. Generating random, yet, constrained music.
2017. URL https://decltype.me/publication/motifate-me/.

OpenAI. Musenet, 2019. URL https://openai.com/blog/musenet.

Russell Ovans and Rod Davison. An iterative constraint-based expert assistant for music
composition. In Proceedings of the Biennial Conference-Canadian Society for Computa-
tional Studies of Intelligence, pp. 76–76. Citeseer, 1992.

Allison Parrish, 2018. URL https://github.com/aparrish/gutenberg-poetry-corpus.

Donya Quick. Learning production probabilities for musical grammars. Journal of New
Music Research, 45:295–313, 10 2016. doi: 10.1080/09298215.2016.1228680.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019.

Adam Roberts, Jesse H. Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck. A
hierarchical latent vector model for learning long-term structure in music. CoRR,
abs/1803.05428, 2018. URL http://arxiv.org/abs/1803.05428.

Örjan Sandred, Mikael Laurson, and Mika Kuuskankare. Revisiting the illiac suite - a
rule-based approach to stochastic processes. Sonic Ideas/Ideas Sonicas, 2:42–46, 01 2009.

H. Schaffrath. The essen folksong collection in the humdrum kern format. 1995.

Andrew Shaw, 2020. URL https://github.com/bearpelican/musicautobot.

Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, and Swarat Chaudhuri.
Houdini: Lifelong learning as program synthesis. In Advances in Neural Information
Processing Systems, pp. 8687–8698, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat
Chaudhuri. Programmatically interpretable reinforcement learning. In International Con-
ference on Machine Learning, pp. 5045–5054, 2018.

Elliot Waite, 2016. URL https://magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn.

Halley Young, Osbert Bastani, and Mayur Naik. Learning neurosymbolic generative models
via program synthesis. 2019.

11

Under review as a conference paper at ICLR 2020

A Generating Examples Given Relational Constraints

A.1 Approach 1: Constrained Sampling

In the music domain, we choose the pretrained generative model pθ(w) to be a pretrained
version of MusicAutoBot. To generate x, we sequentially sample each measure wi condi-
tioned on all prior measures w1, ..., wi−1. Each measure is sampled by sequentially sampling
a sequence of pitch-duration pairs until the total duration is 16 beats (i.e., the length of a
measure). During sampling, we mask pitch-duration pairs that cannot satisfy Φc (i.e., we
set their sampling probability to zero and rescale the remaining probabilities). For instance,
if the “has similar interval” relation is supposed to hold between the the prototype measure
and measure i, and we are sampling the second note of measure i, then we mask any pitch
j in measure i such that

|(pitchj − pitchj−1)− (p̃itchj − p̃itchj−1)| ≥ 3,

where p̃itchj is pitch j in the prototype corresponding to wi. In other words, we eliminate
pitches that would cause sampling to violate this constraint.

In the the poetry domain, we finetune a pretrained BERT model on our dataset, by taking
the pretrained models weights and then training the model on our dataset with a strong
gradient weight decay. BERT has the ability to complete masked words in a sentence.
We leverage this ability to sample lines that rhyme and have the same meter, which is a
challenging task since such lines are a tiny fraction of the search space. We describe how
we simultaneously handle rhyming and equal meter; the cases where only one of these two
constraints has to hold are similar. Given a prototype w̃, we work backwards—on each
step j, we sample from BERT a word wordj that has the same number of syllables as the

corresponding word w̃ordj in the prototype. More precisely, we feed BERT the sequence

w̃ord1, ..., w̃ordj−1,MASK,wordj+1, ...

and ask it to fill in the masked word, setting the probability of any word with different

number of syllables as w̃ordj to zero. In addition, we also set the probability of any word
too similar to the original word in terms of cosine similarity to zero. For the last word

(which we sample first), we additionally restrict to words that rhyme with w̃ordj . To
increase diversity, we sample the remaining words twice—(i) backwards-to-forwards from
word k − 1 to word 1, where k is the number of words, and (ii) we resample each of the
k− 1 words (i.e., except the last word) in a random order. We discard any lines which after
being sampled are determined to be too unlikely according to BERT.

A.2 Approach 2: Constraint-Aware Embeddings

In this approach, we start with a pretrained generative model pθ(w) that ignores c; in
particular, we assume that

pθ(w) =

∫
pθ(w | u) · p(u)du,

where pθ(w | u) is the decoder network of a VAE over w, and p(u) = N (0, I). Now, rather
than sample wi ∼ pθ(·), we train another generative model

pψ(u1, ..., um...um | c) = N ((u1, ..., um) | µψ(c),Σψ(c))

to generate latent vectors ui ∈ U such that wi ∼ pθ(· | ui) are likely to satisfy Φc.
More precisely, µψ and Σψ are the intermediate outputs of a graph convolutional net-
work (GCN) (Kipf & Welling, 2017) that takes as input the graph c (where edge attributes
between nodes encode Φc) and ultimately outputs a sequence (u1, ..., um).

Our approach can be considered to be a graph autoencoder in the sense that the objective
function used during training rewards the reconstruction of the exact embeddings of the
nodes and (implicitly, through the relationship consistency loss) their edge attribute. Our

12

Under review as a conference paper at ICLR 2020

graph encoder/decoder produces one latent vector per node, which are rewarded for close
to i.i.d. Gaussian random variables with mean zero and variance one.

To train pψ, we construct a training example (cx, (u1, ..., um)) for each training example
x = (w1, ..., wm), where u1, ..., um are obtained by the encoder network qθ̃(u | w)—i.e.,
ui ∼ qθ̃(· | wi). Then, we train pψ using the objective

J(ψ) =
∑
(c,~u)

DKL(N (µψ(c),Σψ(c)) ‖ N (0, I)) +

m∑
i=1

‖ui − µψ(c)i‖22 + Jrel(µψ(c); c).

The first term enforces that the distribution of the latent vectors u should be Gaussian,
and the second term enforces that each latent vector u should be close to its original value
according to the VAE encoder qθ̃(u | w). The third term is designed to enforce the sat-
isfaction of the constraints Φc. In particular, we train a kind of “semantic discriminator”
pα(u, u′; r), that predicts whether w ∼ pθ(· | u) and w′ ∼ pθ(· | u′) satisfies relation r—
i.e., f(w,w′, r) = 1. The network pα is trained on data generated from the given training
examples x. Then, given pα, we want (u1, ..., um) = µψ(c) to satisfy

pα(ui, ũ, r) ≈
{

1 if (w̃, i, R) ∈ Φc ∧ r ∈ R
0 otherwise

where ũ ∼ qθ̃(· | w̃).

In other words, we want to generate an example x that satisfies the relations in c according
to pα. In particular, we use the loss

Jrel(~u; c) =

m∑
i=1

∑
r∈R

CE
(
pα(ui, ũ, r),1

(
(w̃, i, R) ∈ Φc ∧ r ∈ R

))
where ũ ∼ qθ̃(· | w̃),

and where CE denotes the cross-entropy loss. Once we have trained pψ, we generate se-
quences by sampling ~u ∼ pψ(· | c) and wi ∼ pθ(· | ui), and constructing x = (w1, ..., wm).

For the music domain, we use embeddings from a pretrained Magenta MusicVAE; unlike the
MusicVAE used for evaluation, we finetuned it to decode only 1-2 measures of music from
a 256-dimensional vector. Then,w e use the decoder portion of this model to convert the
embeddings u1, ..., um ∼ pψ(u1, ..., um | c) sampled from the GCN-VAE pψ into measures.
The graphs in the training set vary in size depending on the number of prototype measures.

A.3 Approach 3: Combinatorial Optimization

Given sampled program c, this approach attempts to generate values x = (w0, . . . , wm) such
that x |= Φc by solving a system of constraint solving problem. However, the relational
constraints φ ∈ Φc are not always consistent with one another, so we relax the constraint
x |= Φc as an objective—i.e.,

x = arg max
x∈X

m∑
i=1

∑
r∈R

1(R(w̃, wi, n)⇔ (w̃, i, n) ∈ Φc).

Encoding this optimization problem as one Z3 can solve depends on the domain and rela-
tions. For this approach to work, we need to include additional, handcrafted terms in the
objective that encourage the generated example x is realistic.

For the music domain, the optimization variables are the optimal sequence of pitches and
their durations. The objective function is a linear combination of the degree to which x
satisfies c, along with domain-specific heuristics—e.g., minimizing large jumps in pitch values
(i.e., |pitchi+1−pitchi| ≥ 4), not having any intervals of length 6 (i.e., |pitchi+1−pitchi| = 6)
due to the unpleasant harmonic nature of that interval, and not having two consecutive
jumps in pitch (i.e., |pitchi+2 − pitchi+1| ≥ 5) ∧ |pitchi+1 − pitchi| ≥ 5). These heuristics
are based on standard concepts from music theory (Horton & Ritchey, 2000).

13

Under review as a conference paper at ICLR 2020

B Evaluation Details

B.1 Experimental Setup

Generating c. To generate c, we use an LSTM-VAE with 2 LSTM layers and a latent size
of 200 in the music domain and 50 in the poetry domain. This model is trained to reproduce
a given sequence of (si, ri) pairs which are given as input, with an additional requirement
that the distribution of their encodings should be roughly equivalent to a Gaussian normal
distribution. Each (si, ri) pair is represented as a (S + |R|)-dimensional vector, where S
is the maximum distance between objects with the same prototype and R is the set of
relations.

Evaluating low-level structure. We evaluate low-level structure by using negative log
likelihood according to a deep generative model. In the music domain, we use both Mu-
sicAutoBot, a transformer based on the transformer-XL architecture (Dai et al., 2019), as
well as the MusicVAE from Magenta, which is a hierarchical VAE that learns embeddings
for each measure and then learns an LSTM-VAE on top of these embeddings. In the po-
etry domain, we use BERT and GPT2, both finetuned on our dataset and solely pretrained
on a non-poetry dataset. For the evaluation metrics that explicitly captured structure, we
computed the optimal program A(x) for every example x in the held-out validation human
dataset as well as all of the generated examples.

High-level structure. We evaluate high-level structure by using our algorithm to synthe-
size the relational constraints in every generated example—i.e., Cgen = {A(x) | x ∈ Xgen},
where Xgen is the set of examples generated using a model. Similarly, we can construct
Chuman = {A(x) | x ∈ Xhuman}, where Xhuman is the set of human-created examples held-
out from the training dataset. Then, we evaluate high-level structure by training a model
to try and discriminate Cgen from Chuman; if the model achieves lower performance, then
the quality of high-level structure is higher. A general approach is to train a graph neural
network (e.g., a graph convolutional network) to do so; this model takes as input the graph
structure of relational constraints c, along with vector embeddings of the prototype subcom-
ponents, and outputs whether c ∈ Cgen or c ∈ Chuman. We balance the data so it consists
of 50% human data and 50% generated data. We report the cross-entropy (CE) loss; higher
values correspond to better generative models. In the music domain, we additionally used
a random forest (RF) trained on a manual featurization of c. We report the accuracy of the
RF; lower values (i.e., closer to 50%) correspond to better generative models.

B.2 Musical Relations Used

The following are the relations r ∈ R used in the music domain:

1. Measures i and j have the same pitch classes.

2. Measures i and j have the same pitch class prefix.

3. Measures i and j have the same pitch class suffix.

4. Measures i and j’s pitches have an edit distance of 1.

5. Measures i and j have approximately the same interval structure.

6. Measures i and j have the same interval prefix.

7. Measures i and j have the same interval suffix.

8. Measures i and j have the same note (pitch + duration) prefix.

9. Measures i and j have the same note (pitch + duration) suffix.

10. Measures i and j have the same rhythm.

11. Measures i and j’s rhythm has an edit distance of ≤ 2.

12. Either measure i’s onsets are a subset of measure j’s onsets, or measure j’s onsets
are a subset of measure i’s onsets.

13. Measures i and j have the same rhythmic and melodic contour.

14

Under review as a conference paper at ICLR 2020

14. Measures i and j have the same rhythmic and melodic contour prefix.

15. Measures i and j have the same rhythmic and melodic contour suffix.

16. Either the first or second half of measures i and j are identical.

17. Either both or neither of measures i and j have leaps.

18. Measures i and j fit within the same diatonic scale.

19. Either both or neither of measures i and j have syncopation.

20. Either both or neither of measures i and j have consecutive notes shorter than an
eighth note.

B.3 Poetry Relations Used

The following are the relations r ∈ R used in the poetry domain:

1. Lines i and j have the same end rhyme.

2. Lines i and j have the same meter.

B.4 Random Forest Features

The following are the manually constructed features used in the random forest discriminator
for the music domain:

1. Mean number of relations between prototype and sequence measures.

2. Variance of number of relations between prototype and sequence. measures

3. Variance in histogram of prototype measure mappings.

4. Longest sequence i . . . j such that wi . . . wj all have the same prototype measure.

5. Number of pairs (i, j) such that w̃i = w̃j and w̃i+1 = w̃j+1.

6. Mean distance between two measures with the same prototype.

7. Variance in distance between two measures with the same prototype.

B.5 Comparison to Constraint Solving

We also considered a comparison to a constraint-based implementation called Motifate,
with explicit attention to development of musical material (Muhammad Faisal, 2017). This
approach was designed with heuristics for 3-beat measures, while our evaluation models
anticipated 4-beat measures, so we could not obtain NLL scores. Nevertheless, we found
that even the structure was insufficient—our RF discriminator had accuracy 0.91, and our
GCN discriminator had cross entropy loss 0.43, both of which are significantly worse than
the other approaches.

B.6 Qualitative Results

Music domain. In addition to quantitative measurements, we evaluated the strengths
and weaknesses of our approach using A2 (which was the best according to quantitative
metrics). According to our observations, the strengths of A2 include clearer phrases with
obvious resolutions, likely and plausibly repetitive rhythms, intervals between notes which
seemed plausible but not overly repetitive, and less variance in quality. However, the results
were not very rhythmically diverse, and certain idiomatic patterns of resolutions of intervals
between notes and at the end of phrases were not followed. Furthermore, AttentionRNN
does better in terms of creating realistic chord progressions (we did not explicitly consider
chord progressions in our model; doing so is a promising direction for future work). Finally,
while global structure is much better than the baselines, examples still relatively infrequently
had the full four-bar repetitions characteristic of much folk music.

15

Under review as a conference paper at ICLR 2020

Figure 3: A song generated using our approach A3 (top), and a nearly identical song
generated where part of the sampled relational constraints c were manually modified. These
pieces were generated using A3, and the same reference measures w̃ were used, but Φc was
slightly perturbed (the similarity relations were changed).

Examples. Here we show how user modifications can occur in the music setting. By
explicitly modifying c, we are able to generate two pieces with similar internal patterns but
with different structural characteristics.

We show an example of generated songs using our approach with each A1, A2, and A3 in
Figure 4, Figure 5, and Figure 6, respectively, and show an example generated using each of
the baselines MusicVAE16, AttentionRNN, MusicAutoBot, and Structurenet in Figures 7,
8, 9, and 10, respectively. Qualitatively, the generated music and poetry appears plausible,
exhibiting realistic high-level structure without sacrificing low-level structure.

Figure 4: An example of a song generated using our approach (A1). Measures that have
the same prototype are shown in the same color. Note the existence of repeating four-bar
phrases, found commonly in folk songs.

We also give examples of poetry generated using our baselines—in particular, GPT2 fine-
tuned and optimized for rhyme and meter in Figure 12, BERT finetuned as a language
generation model in Figure 14, RichLyrics, and our ablation (i.e., use BERT in conjunction
with a uniformly randomly sampled Φc) in Figure 15.

16

Under review as a conference paper at ICLR 2020

Figure 5: An example of a song generated using our approach (A2). Measures that have
the same prototype are shown in the same color. Note the existence of clear phrase endings
marked by long notes or rests, particularly the recurring pattern of fast notes resolving into
long notes.

Figure 6: An example of a song generated using our approach (A3). Measures that have
the same prototype are shown in the same color. The existence of two-bar and three-bar
phrases is apparent, but the close note and rhythm similarities among different prototypes
weaken the overall clarity of the song’s melody.

Figure 7: An example of a song generated using Magenta’s hierarchical MusicVAE model
finetuned on our dataset. While the local structure is extremely coherent, it does not seem
to possess the expected internal repetition/development.

17

Under review as a conference paper at ICLR 2020

Figure 8: An example of a song generated using AttentionRNN trained on our dataset.
Note the existence of erratic rhythms and unclear structure, which are common traits of
custom-trained AttentionRNN models.

Figure 9: An example of a song generated using MusicAutoBot. Note the repetitive nature
and stark contrast between the first half and second half of the song, which are common
problems with transformer models.

Figure 10: An example of a song generated using StructureNet. While some degree of inter-
nal structure is apparent, and the local coherence is high, the pattern of internal repetition
seems fairly arbitrary.

18

Under review as a conference paper at ICLR 2020

I know many things, and therefore I forgot,
Though I needed time to look ahead,
To understand something, time to let it fade away
As though it was yesterday as they
Were common things, free, rather—free, to go like the tide;
But another is to make no one, as it does.
Perhaps you know it. A queen, her beautiful son,
And another woman who has to go without one.
The voices like their cries of war,
They let us believe in a good restore!

Figure 11: An example of poetry generated using our approach. Lines that have the same
prototype are shown in the same color.

Figure 12: A poem generated using GPT2-Opt. It is more plausible than BERT in terms
of of global structure, which may be due to the fact that GPT2 is a better text generation
tool than BERT, but it is still somewhat repetitive and its structure is not very human-like.

Figure 13: A poem generated using BERT. It is clearly overly repetitive and not very
semantically coherent, and lacks high-level structure.

19

Under review as a conference paper at ICLR 2020

Figure 14: A poem generated using RichLyrics. While it is less repetitive than non-
conditioned BERT, it is still not very semantically coherent, and lacks high-level structure.

Figure 15: A poem generated using our ablation. While it is much more coherent, it lacks
the idiomatic rhyme and meter structure of our approach.

20

