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ABSTRACT

Monotonicity constraints are powerful regularizers in statistical modelling. They
can support fairness in computer-aided decision making and increase plausibility
in data-driven scientific models. The seminal min-max (MM) neural network archi-
tecture ensures monotonicity, but often gets stuck in undesired local optima during
training because of partial derivatives being zero when computing extrema. We
propose a simple modification of the MM network using strictly-increasing smooth
minimum and maximum functions that alleviates this problem. The resulting
smooth min-max (SMM) network module inherits the asymptotic approximation
properties from the MM architecture. It can be used within larger deep learning
systems trained end-to-end. The SMM module is conceptually simple and com-
putationally less demanding than state-of-the-art neural networks for monotonic
modelling. Our experiments show that this does not come with a loss in generaliza-
tion performance compared to alternative neural and non-neural approaches.

1 INTRODUCTION
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Figure 1: Learning an allometric equation from
data with XGBoost (XG) and a smooth min-max
network (SMM), here estimating wood dry mass
(and thereby stored carbon) from tree crown area
(Hiernaux et al., 2023; Tucker et al., 2023).

In many data-driven modelling tasks we have a
priori knowledge that the output is monotonic,
that is, non-increasing or non-decreasing, in
some of the input variables. This knowledge
can act as a regularizer, and often monotonicity
is a strict constraint for ensuring the plausibility
and therefore acceptance of the resulting model.
We are particularly interested in monotonicity
constraints when learning bio- and geophysi-
cal models from noisy observations, see Fig-
ure 1. Examples from finance, medicine and
engineering are given, for instance, by Daniels
& Velikova, 2010, see also the review by Cano
et al. (2019). Monotonicity constraints can incor-
porate ethical principles into data-driven mod-
els and improve their fairness (e.g., see Cole &
Williamson, 2019; Wang & Gupta, 2020).

Work on monotonic neural networks was pio-
neered by the min-max (MM) architecture pro-
posed by Sill (1997), which is simple, elegant,
and able to asymptotically approximate any
monotone target function by a piecewise linear neural network model. However, learning an MM
network, which can be done by unconstrained gradient-based optimization, often does not lead to
satisfactory results. Thus, a variety of alternative approaches were proposed, which are much more
complex than an MM network module (for recent examples see Milani Fard et al., 2016; You et al.,
2017; Gupta et al., 2019; Yanagisawa et al., 2022; Sivaraman et al., 2020; Liu et al., 2020, and Nolte
et al., 2022). We argue that the main problem when training an MM network are partial derivatives
being zero because of the maximum and minimum computations. This leads to large parts of the
MM network being silent, that is, most parameters of the network do not contribute to computing
the model output at all, and therefore the MM network underfits the training data with a very coarse
piecewise linear approximation. We alleviate this issue by replacing the maximum and minimum by
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smooth and monotone counterparts. The resulting neural network module is referred to as smooth
min-max (SMM) and exhibits the following properties:

• The SMM network inherits the asymptotic approximation properties of the min-max architecture,
but does not suffer from large parts of the network not being used after training.

• The SMM module can be used within a larger deep learning system and be trained end-to-end
using unconstrained gradient-based optimization in contrast to standard isotonic regression and
(boosted) decision trees.

• The SMM module is simple and does not suffer from the curse of dimensionality when the number
of constrained inputs increases, in contrast to lattice based approaches.

• The function learned by SMM networks is smooth in contrast to isotonic regression, linearly
interpolating lattices, and boosted decision trees.

• Our experiments show that the advantages of SMM do not come with a loss in performance. In
experiments on elementary target functions, SMM compared favorably with min-max networks,
isotonic regression, XGBoost, expressive Lipschitz monotonic networks, and hierarchical lattice
layers; and SMM also worked well on partial monotone real-world benchmark problems.

We would like to stress that the smoothness property is not just a technical detail. It influences how
training data are inter- and extrapolated, and smoothness can be important for scientific plausibility.
Figure 1 shows an example where an allometric equation is learned from noisy observations using the
powerful XGBoost (Chen & Guestrin, 2016) and a simple SMM layer. In this example, the output
(wood dry mass) should be continuously increasing with the input (tree crown area). While both
machine learning models give good fits in terms of mean squared error, neither the staircase shape
nor the constant extrapolation of the tree-based model are scientifically plausible.

The next section will present basic theoretical results on neural networks with positive weights and
the MM architecture as well as a brief overview of interesting alternative neural and non-neural
approaches to monotonic modelling. After that, Section 3 will introduce the SMM module and show
that it inherits the asymptotic approximation properties from MM networks. Section 4 will present an
empirical evaluation of the SMM module with a clear focus on the monotonic modelling capabilities
in comparison to alternative neural and non-neural approaches before we conclude in Section 5.

2 BACKGROUND

A function f(x) depending on x = (x1, . . . , xd)
T ∈ Rd is non-decreasing in variable xi if

x′
i ≥ xi implies f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xd) ≥ f(x1, . . . , xi−1, xi, xi+1, . . . , xd); being non-

increasing is defined accordingly. A function is called monotonic if it is non-increasing or non-
decreasing in all d variables. Without loss of generality, we assume that monotonic functions are
non-decreasing in all d variables (if the function is supposed to be non-increasing in a variable xi we
simply negate the variable and consider −xi). We address the task of inferring a monotonous model
from noisy measurements. For regression we are given samples Dtrain = {(x1, y1), . . . , (xn, yn)}
where yi = f(xi) + εi with f being monotonic and εi being a realization of a random variable with
zero mean. Because of the random noise, Dtrain is not necessarily a monotonic data set, which implies
that interpolation does in general not solve the task.

2.1 NEURAL NETWORKS WITH POSITIVE WEIGHTS

Basic theoretical results. A common way to enforce monotonicity of canonical neural networks is
to restrict the weights to be non-negative. If the activation functions are monotonic, then a network
with non-negative weights is also monotonic (Sill, 1997; Daniels & Velikova, 2010). However, this
does not ensure that the resulting network class can approximate any monotonous function arbitrarily
well. If the activation functions of the hidden neurons are standard sigmoids (logistic/Fermi functions)
and the output neuron is linear (e.g., the activation function is the identity), then a neural network
with positive weights and at most d layers can approximate any continuous function mapping from
a compact subset of Rd to R arbitrarily well (Daniels & Velikova, 2010, Theorem 3.1). Interesting
recent theoretical work by Mikulincer & Reichman (2022) shows that with Heaviside step activation
functions the above result can be achieved with four layers for non-negative inputs. However, if the
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activation functions in the hidden layers are convex, such as the popular (leaky) ReLU and ELU
(Nair & Hinton, 2010; Maas et al., 2013; Clevert et al., 2016) activation functions, then a canonical
neural network with positive weights is a combination of convex functions and as such convex, and
accordingly one can find a non-convex monotonic function that cannot be approximated within an a
priori fixed additive error (Mikulincer & Reichman, 2022, Lemma 1). However, their interpolation
results assume monotone data and are therefore not applicable to the general case of noisy data.

max max max

mi n

Figure 2: Schema of a min-max module.

Min-max networks. Min-max (MM) networks as pro-
posed by Sill (1997) are a concave combination – taking
the minimum – of convex combinations – taking the max-
imum – of monotone linear functions, where the mono-
tonicity is ensured by positive weights, see Figure 2. The
architecture comprises K groups of linear neurons, where,
following the original notation, the number of neurons in
group k is denoted by hk. Given an input x ∈ Rd, neuron
j in group k computes

a(k,j)(x) = w(k,j) · x− b(k,j) (1)

with weights w(k,j) ∈ (R+
0 )

d and bias b(k,j) ∈ R. Then
all hk outputs within a group k are combined via

g(k)(x) = max
1≤j≤hk

a(k,j)(x) (2)

and the output of the network is given by

y(x) = min
1≤k≤K

g(k)(x) . (3)

For classification tasks, y can be interpreted as the logit. To ensure positivity of weights during
unconstrained optimization, we encode each weight w(k,j)

i by an unconstrained parameter z(k,j)i ,
where w

(k,j)
i = exp

(
z
(k,j)
i

)
(Sill, 1997) or w(k,j)

i results from squaring (Daniels & Velikova, 2010)
or applying the exponential linear function (Cole & Williamson, 2019) to z

(k,j)
i . The order of the

minimum and maximum computations can be reversed (Daniels & Velikova, 2010). The convex
combination of concave functions gives the following asymptotic approximation capability:
Theorem 1 (Sill, 1997; Daniels & Velikova, 2010). Let f(x) be any continuous, bounded monotonic
function with bounded partial derivatives, mapping [0, 1]D to R. Then there exists a function fnet(x)
which can be implemented by a monotonic network such that |f(x)− fnet(x)| < ϵ for any ϵ > 0 and
any x ∈ [0, 1]d.

2.2 RELATED WORK

Lattice layers. Neural networks with lattice layers constitute a state-of-the-art approach for in-
corporating monotonicity constraints (Milani Fard et al., 2016; You et al., 2017; Gupta et al., 2019;
Yanagisawa et al., 2022). A lattice layer defines a hypercube with Ld vertices. The integer hyper-
parameter L > 1 defines the granularity of the hypercube and d is the input dimensionality, which
is replaced by the number of input features with monotonicity constraints in hierarchical lattice
layers (HLLs, Yanagisawa et al., 2022). In contast to the original lattice approaches, a HLL can be
trained by unconstrained gradient-based-optimization. The Ld scaling of the number of parameters is
a limiting factor. For larger d, the task has to be broken down using an ensemble of several lattice
layers, each handling fewer constraints Milani Fard et al. (2016)

Certified monotonic neural networks. A computationally very expensive approach to monotonic
modelling is to train standard piece-wise linear (ReLU) networks and to ensure monotonicity af-
terwards. Liu et al. (2020) propose to train with heuristic regularization that favours monotonicity.
After training, it is checked by solving a MILP (mixed integer linear program) if the network fulfills
all constraints. If not, the training is repeated with stronger regularization. Sivaraman et al. (2020)
suggest to adjust the output of the trained network to ensure monotonicity. This requires solving an
SMT (satisfiability modulo theories, a generalization of SAT) problem for each prediction.
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Lipschitz monotonic networks. The approach closest to our work are Lipschitz monotonic net-
works (LMNs) recently proposed by Nolte et al. (2022). The idea of LMNs is to ensure that a
base model is λ-Lipschitz with respect to the L1-norm and then to add λxi to the model for each
constrained input i. LMNs are smooth and can be trained end-to-end. The LMN approach requires
choosing the Lipschitz constant λ. To enforce the Lipschitz property of neural models, normalization
of the weight matrices is added. However, to ensure that the networks can approximate any mono-
tonic Lipschitz bounded function, one has to additionally use special activation functions to prevent
“gradient attenuation” (in the experiments by Nolte et al. the GroupSort activation function was used),
see also Anil et al. (2019). This approximation result is slightly weaker than Theorem 1 in the sense
that the choice of λ constrains the class of functions the LMN can approximate.

Non-neural approaches. There are many approaches to monotonic prediction not based on neural
networks, we refer to Cano et al. (2019) for a survey. We would like to highlight isotonic regression
(Iso), which is often used for classifier calibration (e.g., see Niculescu-Mizil & Caruana, 2005). In
its canonical form (e.g., see Best & Chakravarti, 1990 and De Leeuw et al., 2009), Iso fits a piece-
wise constant function to the data and is restricted to univariate problems. The popular XGBoost
gradient boosting library (Chen & Guestrin, 2016) also supports monotonicity constraints. XGBoost
incrementally learns an ensemble of decision trees; accordingly, the resulting regression function is
piece-wise constant.

3 SMOOTH MONOTONIC NETWORKS

We now introduce the smooth min-max (SMM) network module, which addresses problems of the
original MM architecture. The latter often performs worse than alternative approaches both in terms
of training and test error, and the outcome of the training process strongly depends on the initialization.
Even if an MM architecture has enough neurons to be able to approximate the underlying target
functions well (see Theorem 1), the neural network parameters realizing this approximation may
not be found by the (gradient-based) learning process. When using MM modules in practice, they
often underfit the training data and seem to approximate the data using a piecewise linear model
with very few pieces –– much less than the number of neurons. This observation is empirically
studied in Section 4.1. We say that neuron j∗ in group k∗ in an MM unit is active for an input x, if
k∗ = argmin1≤k≤K g(k)(x) and j∗ = max1≤j≤hk

a(k,j)(x). A neuron is silent over a set of inputs
X ⊂ Rd if it is not active for any x ∈ X . If neuron j in group k is silent over all inputs from some
training set Dtrain, we have ∂y/∂a(k,j)(x) = 0 for all x ∈ X . Once a neuron is silent over the training
data, which can easily be the case directly after initialization or happen during training, there is a
high chance that gradient-based training will not lead to the neuron becoming active. Indeed, our
experiments in Section 4.1 show that only a small fraction of the neurons in an MM module are active
when the trained model is evaluated on test data.

The problem of silent neurons and the lack of smoothness can be addressed by replacing the mini-
mum and maximum operation in the MM architecture by smooth counterparts. Not every smooth
approximation to the maximum/minimum function is suitable, it has to preserve monotonicity. A
strictly increasing approximation to the maximum is the LogSumExp function. Let x1, . . . , xn ∈ R.
We define the scaled LogSumExp function with scaling parameter β > 0 as

LSEβ(x1, . . . , xn) =
1

β
log

n∑
i=1

exp(βxi) =
1

β

(
c+ log

n∑
i=1

exp(βxi − c)

)
, (4)

where the constant c can be freely chosen to increase numerical stability, in particular as c =
max1≤i≤n xi. The functions LSEβ(X ) and LSE−β(X ) are smooth and monotone increasing in
x1, . . . , xn. It holds:

max
1≤i≤n

xi < LSEβ(x1, . . . , xn) ≤ max
1≤i≤n

xi +
1

β
ln(n) (5)

min
1≤i≤n

xi −
1

β
ln(n) ≤ LSE−β(x1, . . . , xn) < min

1≤i≤n
xi (6)
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The proposed SMM module is identical to an MM module, except that eqs. 2 and 3 are replaced by

g
(k)
SMM(x) = LSEβ

(
a(k,1)(x), . . . , a(k,hk)(x)

)
and (7)

ySMM(x) = LSE−β

(
g
(1)
SMM(x), . . . , g

(K)
SMM(x)

)
. (8)

We treat β, properly encoded to ensure positvity, as an additional learnable parameter. Each scaled
LogSumExp operation could have its own learnable β parameter, however, we did not find this
necessary in our experiments. Thus, the number of parameters of an SMM module is 1 + (d +

1)
∑K

k=1 hk. If the target function is known to be (strictly) concave, we can set K = 1 and h1 > 1;
if it is known to be convex, we set K > 1 and can set hk = 1 for all k. The default choice is
K = h1 = h2 = · · · = hK .

Approximation properties. The SMM inherits the approximation properties from the MM, e.g.:
Corollary 1. Let f(x) be any continuous, bounded monotonic function with bounded partial
derivatives, mapping [0, 1]D to R. Then there exists a function fsmooth(x) which can be implemented
by a smooth monotonic network such that |f(x)− fsmooth(x)| < ϵ for any ϵ > 0 and any x ∈ [0, 1]D.

Proof. Let ϵ = γ + δ with γ > 0 and δ > 0. From Theorem 1 we know that there ex-
ists an MM network fnet with |f(x) − fnet(x)| < γ. Let fsmooth be the smooth monotonic
neural network with the same weights and bias parameters as fnet, in which the maximum
and minimum operation have been replaced by LSEβ and LSE−β , respectively. Let H =

maxKh=1 hk. For all x and groups k we have g
(k)
SMM(x) = LSEβ

(
a(k,1)(x), . . . , a(k,hk)(x)

)
≤

max1≤j≤hk
a(k,j)(x)+ 1

β ln(hk) ≤ g(k)(x)+ 1
β ln(H). Thus, also ySMM(x) ≤ y(x)+ 1

β ln(H). Sim-

ilarly, we have ySMM(x) = LSE−β

(
g
(1)
SMM(x), . . . , g

(K)
SMM(x)

)
≥ LSE−β

(
g(1)(x), . . . , g(K)(x)

)
≥

min1≤k≤K g(k)(x) − 1
β ln(K) = y(x) − 1

β ln(K). Thus, setting β = δ−1 lnmax(K,H) ensures
for all x that |fnet(x)− fsmooth(x)| ≤ δ and therefore |f(x)− fsmooth(x)| < γ + δ = ϵ.

Partial monotonic SMM. Let X be a subset of variables from {x1, . . . , xd}. Then a function is
partial monotonic in X if it is monotonic in all xi ∈ X . The min-max and smooth-mini-max modules
are partial monotonic in X if the positivity constraint is imposed for weights connecting to xi ∈ X
(Daniels & Velikova, 2010); the other weights can vary freely. However, more general module
architectures are possible. Let us split the input vector into (xc,xu), where xc comprises all X and
xu the remaining xi ̸∈ X . Let Ψ(k,j) : Rd−|X| → [0, 1]|X | and Φ(k,j) : Rd−|X| → Rl(k,j)

for some
integer l(k,j) denote neural subnetworks for each neuron i = 1, . . . , hk in each group k = 1, . . . ,K
(which may share weights). Then replacing equation 1 by a(k,j)(x) = w(k,j) ·x+Ψ(k,j)(xu) ·xc +

w
(k,j)
u · Φ(xu)− b(k,j) with w

(k,j)
u ∈ Rl(k,j)

and ∀m ∈ X : w
(k,j)
m ≥ 0 preserves the constraints.

4 EXPERIMENTS

We empirically compared different monotonic modelling approaches on well-understood benchmark
functions. We also present results for various partial monotonic real-world data sets. As in related
studies, the results on the partial monotonic real-world data reflect the general inductive bias of the
overall system architecture, not only the performance of the network modules handling monotonicity
constraints; this bears the risk that the processing of the unconstrained features occludes the monotonic
modelling performance.

In our experiments, we assumed that we do not have any prior knowledge about the shape of the
target function and set K = h1 = h2,= · · · = hK . We set K = 6 and use a single β parameter. To
avoid hyperparameter overfitting, we used the these hyperparameters for the SMM modules in all
experiments. We use the exponential encoding to ensure positive weights. The weight parameters
z
(k,j)
i and the bias parameters were randomly initialized by samples from a Gaussian distribution

with zero mean and unit variance truncated to [−2, 2]. We also used exponential encoding of β and
initialize lnβ with −1.

We compared against isotonic regression (Iso) as implemented in the Scikit-learn library (Pedregosa
et al., 2011) and XGBoost (XG, Chen & Guestrin, 2016). As initial experiments showed a tendency
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of XG to overfit, we evaluated XG with and without early-stopping. We considered hierarchical
lattice layers (HLL) as a state-of-the-art representative of lattice-based approaches using the well-
documented implementation made available by the authors1. For a comparison of HLL with other
lattice models we refer to Yanagisawa et al. (2022)). Furthermore, we applied LMNs using the
implementation by Nolte et al..2 For our new experiments, we adopted the basic architecture used in
the ChestXRay experiments by Nolte et al. (2022) with two hidden layers and Lipschitz parameter one.
The number of neurons in the hidden layers is determined by a width parameter. In each experiment,
we considered two model sizes. The width parameter should be even, and we picked the width such
that the model size (in degrees of freedom) of the small LMNs is smaller or equal to the size of
the corresponding SMM. The larger LMNl used a width parameter increased by two compared to
LMNs. The resulting model sizes embrace the corresponding SMM model size, see next section
and Table B.4 and Table C.9 in the appendix. In our experiments, the neural network models SMM,
MM, HLL, and LMN were trained by the same unconstrained iterative gradient-based optimization
procedure.

4.1 UNIVARIATE MODELLING

We considered three simple basic univariate functions on [0, 1], the convex fsq(x) = x2 , the concave
fsqrt(x) =

√
x, and the scaled and shifted logistic function fsig = (1 + exp(−10(x − 1/2))−1;

see also Yanagisawa et al. (2022) for experiments on fsq and fsqrt. For each experimental setting,
T = 21 independent trials were conducted. For each trial, the Ntrain = 100 training data points
Dtrain were generated by randomly sampling inputs from the domain. Mean-free Gaussian noise with
standard deviation σ = 0.01 was added to target outputs (i.e., the training data sets were typically
not monotone as considered by Mikulincer & Reichman, 2022). The test data Dtest were noise-free
evaluations of Ntest = 1000 evenly spaced inputs covering the input domain.

We compared SMM, MM, HLL, LMN as well as isotonic regression (Iso) and XGBoost (XG) with
and without early-stopping. For K = 6, the MM and SMM modules have 72 and 73 trainable
parameters, respectively. We matched the degrees of freedom and set the number of vertices in
the HLM to 73; LMNs and LMNl had width parameters 6 and 8 resulting in 61 and 97 trainable
parameters, respectively. We set the number of estimators in XGBoost to ntrees = 73 and ntrees = 35
(as the behavior was similar, we report only the results for ntrees = 73 in the following); for all other
hyperparameters the default values were used. When using XGBoost with early-stopping, referred to
as XGval, we used 25 % of the training data for validation and set the number of early-stopping rounds
to ⌊ntrees/10⌋. The isotonic regression baseline requires specifying the range of the target functions,
and also HLL presumes a codomain of [0, 1]. This is useful prior information not available to the
the other methods, in particular as some of the training labels may lie outside this range because
of the added noise. We evaluated the methods by their mean-squared error (MSE). Details of the
gradient-based optimization are given in Appendix A.

The test and training results of the experiments on the univariate functions are summarized in
Table 1 and Table C.5, respectively. The distribution of the results is visualized in Figure C.3. In all
experiments SMM gave the smallest median test error, and all differences between SMM and the
other methods were statistically significant (paired two-sided Wilcoxon test, p < 0.001). The lower
training errors of XG and Iso indicate overfitting. However, in our experimental setup, early-stopping
in XGval did not improve the overall performance. The lattice layer performed better than XGBoost.
SMM was statistically significantly better than HLL and both LMN variants;‘ the latter did not
perform well in this experimental setup. Figure C.4 depicts the results of a random trial, showing the
different ways the models extra- and interpolate.

Overall, SMM clearly outperformed MM. The variance of the MM learning processes was signifi-
cantly higher, see Figure C.3. This can be attributed to the problem of silent neurons; the MM training
got stuck in undesired local minima. When looking at the 3 · 21 = 63 trials on the univariate test
functions, after training the maximum number of MM neurons at least once active over the test data
set was as low as 5 out of 36; the mean number of active neurons was 2.8. On average 3.7 neurons in
a network were active directly after initialization, that is, the training typically decreased the number

1https://ibm.github.io/pmlayer
2https://github.com/niklasnolte/MonotonicNetworks
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of active neurons.3 For SMM, we inspected the sum of the test predictions
∑

(x,y)∈Dtest
ySMM(x) after

training. We counted for how many neurons both partial derivatives of this sum w.r.t. the neuron’s
parameters were zero, which could happen for numerical reasons. This was rarely the case, on
average 35 neurons were active after training using this notion of activity. Detailed results for MM
and SMM are given in Table C.6 in the appendix.

After these experiments, we evaluated the robustness of the SMM results for different hyperparameters
lnβ ∈ {−3,−2,−1, 0, 1} and K = hk ∈ {2, 4, 6, 8}. The results are shown in Table C.7 in the
appendix. Our default choice of β = −1 with K = 6 was suboptimal in all cases, although
lnβ ∈ {−1, 0} gave overall good results. Decreasing β further decreased the overall performance.

Table 1: Test errors on univariate (top) and mutivariate (bottom) tasks. A star indicates that the
difference on the test data in comparison to SMM is statistically significant (paired two-sided
Wilcoxon test, p < 0.001). The mean-squared error (MSE) values are multiplied by 103.

MM SMM XG XGval Iso HLL LMNs LMNl

fsq 0.10∗ 0.01 0.14∗ 0.18∗ 0.04∗ 0.04∗ 0.37∗ 0.09∗

fsqrt 0.32∗ 0.02 0.14∗ 0.20∗ 0.06∗ 0.06∗ 0.28∗ 0.27∗

fsig 0.22∗ 0.01 0.13∗ 0.17∗ 0.04∗ 0.04∗ 0.25∗ 0.26∗

SMM XGs XGs
val XGl XGl

val HLLs HLLl LMNs LMNl

d = 2 0.00 0.23∗ 0.26∗ 0.23∗ 0.26∗ 0.03∗ 0.03∗ 0.07∗ 0.03∗
d = 4 0.01 0.66∗ 0.76∗ 0.66∗ 0.76∗ 0.03∗ 0.08∗ 0.29∗ 0.06∗
d = 6 0.02 0.74∗ 0.82∗ 0.74∗ 0.82∗ 0.10 0.13∗ 0.07 0.07∗

4.2 MULTIVARIATE FUNCTIONS

We evaluated SMM, XG, HLL and LMN on multivariate monotone target functions. The original
MM was dropped because of the previous results, Iso because the considered algorithm does not
extend to multiple dimensions in a canonical way (the Scikit-learn implementation only supports
univariate tasks). We considered three input dimensionalities d ∈ {2, 4, 6}. In each trial, we randomly
constructed a function. Each function mapped a [0, 1]d input to its polynomial features up to degree 2
and computed a weighted sum of these features, where for each function the weights were drawn
independently uniformly from [0, 1] and then normalized by the sum of the weights. For example,

for d = 2 we had (x1, x2)
T 7→ (w1 + w2x1 + w3x2 + w4x

2
1 + w5x

2
2 + w6x1x2) ·

(∑6
i=1 wi

)−1

with w1, . . . , w6 ∼ U(0, 1). We uniformly sampled Ntrain = 500 and Ntest = 1000 training and test
inputs from [0, 1]d, and noise was added as above.

For K = 6, the dimensionalities result in 109, 181, and 253 learnable parameters for the SMM. The
number of learnable parameters for HLL is given by the Ld vertices in the lattice. In each trial, we
considered two lattice sizes. For HLLs, we set L to 10, 3, and 2 for d equal to 2, 4, and 6, respectively;
for HLLl we increased L to 11, 4, and 3, respectively. We also considered two LMN architectures.
For both LMN and HLL the smaller network had fewer and the larger had more degrees of freedom
than the corresponding SMM, see Table C.9 in the appendix. We ran XGBoost with ntrees = 100
(XGs) and ntrees = 200 (XGl), with and without early-stopping.

The test error results of T = 21 trials are summarized in Table 1. The corresponding training errors
are shown in Table C.8 in the appendix. The boxplot of Figure C.5 in the appendix visualizes the
results. The newly proposed SMM statistically significantly outperformed all other algorithms in
all settings, except HLLs and LMNs for d = 6 where the lower errors reached by SMM are not
significant. Using early stopping did not improve the XGBoost results in our setting, and doubling
the number of trees did not have a considerable effect on training and test errors. We also measured
the neural network training times for 1000 iterations, see Table C.9 in the Appendix C. HLLs was
more than an order of magnitude slower than LMNs and the fastest method SMM.

3Before developing the SMM, we tried to solve the problem of silent neurons by improving the initialization,
however, without success.
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4.3 UCI PARTIAL MONOTONE FUNCTIONS

As a proof of concept, we considered modelling partial monotone functions on real-world data sets
from the UCI benchmark repository (Dua & Graff, 2017). Details about the experiments are provided
in Appendix B. We took all regression tasks and constraints from the first group of benchmark
functions considered by Yanagisawa et al. (2022). The input dimensionality d and number of
constraints |X | were d = 8 and |X | = 3 for the Energy Efficiency data (Tsanas & Xifara, 2012) (with
two regression targets Y1 and Y2), d = 6 and |X | = 2 for the QSAR data (Cassotti et al., 2015), and
d = 8 and |X | = 1 for Concrete (Yeh, 1998). We performed 5-fold cross-validation. From each
fold available for training, 25 % were used as a validation data set for early-stopping and final model
selection, giving a 60:20:20 split in accordance with Yanagisawa et al. (2022). In the partial monotone
setting, HLL internally uses an auxiliary neural network. We used a network with a single hidden
layer with 64 neurons, which gave better results than the larger default network. We considered
SMM with unrestricted weights for the unconstrained inputs. We also added an auxiliary network.
The SMM64 model computes a(k,j)(x) = w(k,j) · x+Φ(xu)− b(k,j), where Φ : Rd−|X| → R is a
neural network with 64 hidden units processing the unconstrained inputs, see Appendix B for details.
Similar to HLL, we incorporate the knowledge about the targets being in [0, 1] by applying a standard
sigmoid to the activation of the output neuron.

The mean cross-validation test error is shown in Table 2. SMM64 performed best for one task, XG in
the others. SMM64 had the lowest CV test error of the neural network approaches on the two Energy
tasks, and the larger LMN on QSAR and on Concrete.

4.4 COMPARISON WITH RECENTLY PUBLISHED RESULTS

The question arises how our approach compares to the results on larger real-world data sets presented
by Nolte et al. (2022). Thanks to Nolte et al. who make their code for their experiments available,4
we could evaluate SMM exactly as in their work. We employed the SMM64 model already used in
Section 4.3. As done by Nolte et al. (2022), we conducted only three trials, not enough to establish that
the observed differences are statistically significant. Note that the evaluation procedure implemented
by Nolte et al. (2022) assumes an oracle identifying the network with the lowest test error during
training (i.e., the results in Table 3 are not unbiased estimates of generalization performance). It has
to be stressed that the LMN results presented by Nolte et al. (2022) were produced using different
network architectures and different hyperparameters of the learning algorithm for the different tasks.
In contrast, we achieved our results using a single architecture which was not tuned for the tasks. We
also used exactly the same number of training steps, we only adjusted the learning rates. For the
Heart Disease task, we also provide the results when adding an additional sigmoid to the output and
a slightly longer training time.

We added our experimental results to the values given in the Table 1 by Nolte et al. (2022), see our
Table 3, which also contains results for certified monotonic neural networks (Liu et al., 2020) and
counterexample-guided learning of monotonic neural networks (COMET, Sivaraman et al., 2020).
SMM models gave better results in all of the benchmarks. For BlogFeedback we profited from the
feature selection used by Nolte et al.. For Heart Disease, the architecture with the additional output
sigmoid gave the best results (if we use the same number of training iterations the average result
equals the 89.6 reported for LMN).

5 CONCLUSIONS

The smooth min-max (SMM) architecture, although only slightly different, improves on its ancestor
MM both conceptually and in terms of accuracy in our empirical evaluation. An SMM module is a
simple – and we would argue very elegant – way to ensure monotonicity. In light of our experimental
results, many neural network approaches for modelling monotonic functions appear overly complex,
both in terms of algorithmic description length and especially computational complexity. For example,
lattice-based approaches suffer from the exponential increase in the number of trainable parameters
with increasing dimensionality, and other approaches rely on solving SMT and MILP problems,
which are typically NP-hard. The SMM is designed to be a module usable in a larger learning system

4https://github.com/niklasnolte/MonotonicNetworks
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Table 2: Results on partial monotone UCI tasks, cross-validation error averaged over the MSE of 5
folds. The MSE is multiplied by 100. The dof columns give the numbers of trainable parameters,
ntrees the maximum number of estimators in XGBoost.

SMM64 SMM XG HLL LMNs LMNl

Dtest dof Dtest dof Dtest ntrees Dtest dof Dtest dof Dtest dof

Energy Y1 0.14 774 0.25 325 0.22 100 0.45 2139 0.27 727 0.22 841
Energy Y2 0.24 774 0.61 325 0.11 100 0.29 2139 0.44 727 0.34 841
QSAR 1.03 638 1.02 253 0.98 100 0.99 905 1.01 581 0.99 683
Concrete 1.78 902 1.79 325 1.71 100 4.59 707 2.20 841 1.71 963

Table 3: Comparison with results from Nolte et al. (2022) using the code from the authors and exactly
the same setup (three trials, etc.), see caption of their Table 1. Accuracies and corresponding standard
deviations are given in percent.

COMPAS BlogFeedback LoanDefaulter ChestXRay
Method ↑↑ Test Acc ↓↓ RMSE ↑↑ Test Acc ↑↑ Test Acc ↑↑ Test Acc

pretrained end-to-end

Certified 68.8± 0.2 0.158± 0.001 65.2± 0.1 2.3± 0.2 66.3± 1.0
LMN 69.3± 0.1 0.160± 0.001 65.44± 0.03 67.6± 0.6 70.0± 1.4
LMN mini 0.155± 0.001 65.28± 0.01
SMM64 69.5± 0.1 0.192± 0.002 65.41± 0.03 67.9± 0.4 70.1± 1.2
SMM64 mini 0.154± 0.0004 65.47± 0.003

Heart Disease Auto MPG
Method ↑↑ Test Acc ↓↓ MSE

COMET 86± 3 8.81± 1.81
LMN 89.6± 1.9 7.58± 1.2
SMM64 88.5± 1.0 [w/ sigmoid: 91.3± 1.89] 7.51± 1.6

that is trained end-to-end. From the methods considered in this study, MM, HLL, and LMN have this
property, and we regard SMM as a drop-in replacement for those.

Which of the monotonic regression methods considered in this study results in a better generalization
performance is of course task dependent. The different models have different inductive biases. All
artificial benchmark functions considered in our experiments were smooth, matching the – rather
general and highly relevant – application domain the SMM module was developed for. On a staircase
function XGBoost would most likely outperform the neural networks. The monotonicity constraints
of SMM act as a strong regularizer, and overfitting was no problem in our experiments. All SMM
experiments were performed with a single hyperparameter setting for the architecture, indicating the
robustness of the method. We regard the way SMM networks inter- and extrapolate (see Figure 1
and Figure C.4) as a big advantage over XG, HLL, and Iso for the type of scientific modelling tasks
that motivated our work. LMNs share many of the desirable properties of SMMs. Imposing an
upper bound on the Lipschitz constant, which is required for LMNs and can be optionally added to
SMMs, can act as a regularizer and supports theoretical analysis of the neural network. However, a
wrongly chosen bound can limit the approximation capabilities. Our experiments show that there
are no reasons to prefer LMNs over SMMs because of generalization performance and efficiency.
Because of the high accuracies obtained without architecture tuning, the more general asymptotic
approximation results, and the simplicity of the min-max approach, we prefer SMMs over LMNs.
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REPRODUCIBILITY STATEMENT

All experiments, plots, tables, and statistics can be reproduced using the submitted source code in
the supplmentary material. The code for HLL and LMN models is kindly made available by the
original authors from https://ibm.github.io/pmlayer and https://github.com/
niklasnolte/MonotonicNetworks. The experiments by Nolte et al. (2022) use the code
from https://github.com/niklasnolte/monotonic_tests.
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A GRADIENT-BASED OPTIMIZATION

The neural network models SMM, MM, and HLL were fitted by unconstrained iterative gradient-based
optimization of the mean-squared error (MSE) on the training data. We used the Rprop optimization
algorithm (Riedmiller & Braun, 1993). On the fully monotone benchmark functions, we did not have
a validation data set for stopping the training. Instead, we monitored the training progress over a

training strip of length k defined by Prechelt (2012) as Pk(t) = 103 ·
( ∑t

t′=t−k+1
Etrain(t

′)

k·mint
t′=t−k+1

Etrain(t′)

)
for

t ≥ k. Here t denotes the current iteration (epoch) and Etrain(t
′) the MSE on training data at iteration

t′. Training is stopped as soon the progress falls below a certain threshold τ . We used k = 5 and
τ = 10−3. This is a very conservative setting which worked well for HLL and was then adopted for
all algorithms.

B DETAILS ON UCI EXPERIMENTS

The experiments on partial monotone functions were inspired by Yanagisawa et al. (2022). As briefly
discussed in Section 4, a fair comparison on complex partial monotone real-world tasks is challenging.
There is the risk that the performance on the unconstrained features overshadows the processing of
the constraint features. Therefore, we did not consider the second group of UCI tasks from the study
by Yanagisawa et al. (2022), because the fraction of constrained features in these problems is too low
– and we would argue that the low number of constrained features already is an issue for the problems
in the first group when evaluating monotone modelling. We selected all regression tasks from the first
group, see the overview in Table 2. We used the same constraints, see Table 2, and normalization to
[0, 1] of inputs and targets as Yanagisawa et al. (2022).

Furthermore, architecture and hyperparameter choices become more important in the UCI experiments
compared to the experiments on the comparatively simple benchmark functions. For partial monotone
tasks, the HLL requires an auxiliary neural network. The default network did not give good results in
initial experiments, so we replaced it by a network with a single hidden layer with 64 neurons, which
performed considerably better. The lattice sizes of the constrained input features were set to k = 3.

For a fair comparison, we also added an auxiliary network with 64 neurons to the SMM module.
For complex real-world tasks, an isolated SMM module with a single layer of adaptive weights –
despite the asymptotic approximation results – is not likely to be the right architecture. Thus, we
considered SMM modules with a single neural network Φ : Rd−|X| → Rd with one hidden layer and
compute a(k,j)(x) = w(k,j) · x + Φ(xu) − b(k,j), where d is the input dimensionality, xu are the
unconstrained inputs, |X | is the number of constrained variables, and ∀m ∈ X : w

(k,j)
m ≥ 0, see end

of Section 3. We set the number of hidden neurons of Φ to 64, so that degrees of freedom are similar
to the HLL employed in our experiments. Also similar to HLL, we incorporate the knowledge about
the targets being in [0, 1] by applying a standard sigmoid σ to the activation of the output neuron.
The resulting architecture, which we refer to as SMM64, can alternatively be written as as a residual
block computing σ(y(x) + Φ(xu)), where y(x) is the standard SMM. This may be the simplest way
to augment the SMM.

Table B.4: UCI regression data sets and constraints as considered by Yanagisawa et al. (2022). The
input dimensionality is denoted by d, the number of data points by n. The last five columns give the
number of trainable parameters of the models used in the experiments; SMM and SMM64 denote the
smooth min-max network without and with Φ.

d n monotone features no. parameters
SMM SMM64 HLL LMNs LMNl

Energy 8 768 X3, X5, X7 325 744 2139 727 841
QSAR 6 908 MLOGP, SM1_Dz(Z) 253 638 905 581 683
Concrete 8 1030 Water 325 902 707 841 963

We performed 5-fold cross-validation to evaluate the methods. Each data fold available for training
was again split to get a validation data set, giving a 60:20:20 spit into training, validation, and test

12



data as considered by Yanagisawa et al. (2022). We monitored the MSE on the validation data during
training and stored the model with the smallest validation loss. If the validation error did not decrease
for 100 epochs, the training was stopped.

C ADDITIONAL RESULTS

Table C.5: Training errors on univariate tasks. The mean-squared error (MSE) values are multiplied
by 103.

MM SMM XG XGval Iso HLL LMNs LMNl

fsq 0.17 0.10 0.05 0.11 0.03 0.03 0.42 0.14
fsqrt 0.35 0.09 0.04 0.10 0.03 0.03 0.31 0.25
fsig 0.27 0.10 0.05 0.11 0.04 0.04 0.36 0.43
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Figure C.3: Results on univariate functions based on T = 21 trials. Depicted are the median, first and
third quartile of the MSE (without clipping the outputs to the target function codomain); the whiskers
extend the box by 11/2 the inter-quartile range, dots are outliers. Training errors are shown in the top,
test errors in the bottom row.
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Figure C.4: Function approximation results of a single trial (outputs not clipped) for each of the three
univariate functions. The top row shows the non-neural, the bottom row the neural methods.

Table C.6: Active neurons on univariate tasks when evaluated on the test sets. For MM, a neuron was
not active in a trial if it never contributed to an output when the network was evaluated on the test
data. For SMM, a neuron was regarded as not active in a trial if the partial derivatives of the sum of
the predictions on the test set w.r.t the parameters of the neuron were all zero. For MM, we report the
number of active neurons before and after training.

MM SMM
initial final

min mean max min mean max min mean max
fsq 1 3.4 6 2 3.4 5 34 35.7 36
fsqrt 2 3.9 7 1 2.1 4 29 33.8 36
fsig 1 3.7 7 2 3.0 5 34 35.6 36
overall 1 3.7 7 1 2.8 5 29 35.0 36
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Table C.7: Test errors on univariate tasks for SMM different choices of K and initial β. Shown are
medians over 11 trails. The mean-squared error (MSE) values are multiplied by 103.

lnβ
-3 -2 -1 0 1

K fsq

2 0.0114 0.0055 0.0111 0.0121 0.0087
4 0.0069 0.0068 0.0064 0.0077 0.0077
6 0.0064 0.0062 0.0072 0.0065 0.0062
8 0.0070 0.0079 0.0080 0.0068 0.0073

fsqrt

2 0.1030 0.0752 0.0756 0.0712 0.0700
4 2.2955 2.2624 0.0157 0.0156 0.0184
6 2.2960 2.2882 0.0220 0.0164 0.0180
8 2.2976 0.0297 0.0177 0.0123 0.0191

fsig

2 7.8617 0.0154 0.0058 0.0056 0.0055
4 7.8544 0.0096 0.0051 0.0076 0.0123
6 0.1012 0.0062 0.0052 0.0084 0.0113
8 7.8559 0.0058 0.0054 0.0080 0.0119

Table C.8: Multivariate tasks, training error. The mean-squared error (MSE) values are multiplied by
103.

SMM XGs XGs
val XGl XGl

val HLLs HLLl LMNs LMNl

d = 2 0.10 0.14 0.19 0.14 0.19 0.08 0.07 0.16 0.12
d = 4 0.10 0.19 0.33 0.19 0.33 0.09 0.06 0.27 0.15
d = 6 0.09 0.13 0.30 0.13 0.30 0.14 0.03 0.15 0.14

Table C.9: Multivariate tasks, degrees of freedom of the neural networks and accumulated training
times (on a Apple M1 Pro) in seconds for conducting 21 trials with 1000 training steps each.

SMM HLLs HLLl LMNs LMNl

time (s) dof time (s) dof time (s) dof

d = 2 11.54 109 403.87 100 498.71 121 12.01 105 12.48 151
d = 4 11.47 181 358.83 81 1351.90 256 12.50 171 12.75 229
d = 6 11.43 253 301.45 64 8215.19 729 12.81 253 13.27 323
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Figure C.5: Results on multivariate functions based on T = 21 trials. Depicted are the median, first
and third quartile of the MSE; the whiskers extend the box by 11/2 the inter-quartile range, dots are
outliers. Early-stopping reduced the XGBoost training accuracy, but did not lead to an improvement
on the test data.
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