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Abstract

Molecular modeling, a central topic in quantum
mechanics, aims to accurately calculate the prop-
erties and simulate the behaviors of molecular sys-
tems. The molecular model is governed by phys-
ical laws, which impose geometric constraints
such as invariance and equivariance to coordinate
rotation and translation. While numerous deep
learning approaches have been developed to learn
molecular representations under these constraints,
most of them are built upon heuristic and costly
modules. We argue that there is a strong need
for a general and flexible framework for learning
both invariant and equivariant features. In this
work, we introduce a novel Transformer-based
molecular model called GeoMFormer to achieve
this goal. Using the standard Transformer mod-
ules, two separate streams are developed to main-
tain and learn invariant and equivariant representa-
tions. Carefully designed cross-attention modules
bridge the two streams, allowing information fu-
sion and enhancing geometric modeling in each
stream. As a general and flexible architecture,
we show that many previous architectures can be
viewed as special instantiations of GeoMFormer.
Extensive experiments are conducted to demon-
strate the power of GeoMFormer. All empirical
results show that GeoMFormer achieves strong
performance on both invariant and equivariant
tasks of different types and scales. Code and mod-
els will be made publicly available at https:
//github.com/c-tl/GeoMFormer.
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1. Introduction
Deep learning approaches have emerged as a powerful tool
for a wide range of tasks (He et al., 2016; Devlin et al., 2019;
Brown et al., 2020). Recently, researchers have started in-
vestigating whether the power of neural networks could help
solve problems in physics and chemistry, such as predicting
the property of molecules with 3D coordinates and simu-
lating how each atom moves in Euclidean space (Schütt
et al., 2018; Gasteiger et al., 2020b; Satorras et al., 2021).
These molecular modeling tasks require the learned model
to satisfy general physical laws, such as the invariance and
equivariance conditions: The model’s prediction should
react physically when the input coordinates change accord-
ing to the transformation of the coordinate system, such as
rotation and translation.

A variety of methods have been proposed to design neural
architectures that intrinsically satisfy the invariance or
equivariance conditions (Thomas et al., 2018; Schütt et al.,
2021; Batzner et al., 2022). To satisfy the invariant condi-
tion, several approaches incorporate invariant features, such
as the relative distance between each atom pair, into classic
neural networks (Schütt et al., 2018; Shi et al., 2022). How-
ever, this may hinder the model from effectively extracting
the molecular structural information (Pozdnyakov et al.,
2020; Joshi et al., 2023). For example, computing dihedral
angles from coordinates is straightforward but requires
much more operations using relative distances (Schütt
et al., 2021). To satisfy the equivariant condition, several
works design neural networks with equivariant operation
only, such as tensor product between irreducible representa-
tions (Thomas et al., 2018; Fuchs et al., 2020; Batzner et al.,
2022) and vector operations (Satorras et al., 2021; Schütt
et al., 2021; Thölke & De Fabritiis, 2022). However, the
number of such operations are limited due to the equivariant
constraints, which are either costly to scale or lead to
fairly complex network architecture designs to guarantee
sufficient expressive power. More importantly, many
real-world applications require a model that can effectively
perform both invariant and equivariant prediction with
strong performance at the same time. While some recent
works study this direction (Schütt et al., 2021; Thölke &
De Fabritiis, 2022), most proposed networks are designed
heuristically and lack general design principles.
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We argue that developing a general and flexible architec-
ture that can effectively learn both invariant and equiv-
ariant representations of high quality and simultaneously
achieve strong performance on both tasks is essential. In
this work, we introduce GeoMFormer to achieve this goal.
GeoMFormer uses a standard Transformer-based architec-
ture (Vaswani et al., 2017) but with two streams. An invari-
ant stream learns invariant representations, and an equivari-
ant stream learns equivariant representations. Each stream
is composed of invariant/equivariant self-attention and feed-
forward layers. The key design in GeoMFormer is to use
cross-attention mechanisms between the two streams, let-
ting each stream incorporate the information from the other
and enhance itself. In each layer of the invariant stream,
we develop an invariant-to-equivariant cross-attention mod-
ule, where the invariant representations are used to query
key-value pairs in the equivariant stream. An equivariant-
to-invariant cross-attention module is designed similarly in
the equivariant stream. We show that the design of all self-
attention and cross-attention modules is flexible and how to
satisfy the invariant/equivariant conditions effectively.

Our proposed architecture has several advantages com-
pared to previous works. GeoMFormer decomposes the
invariant/equivariant representation learning through self-
attention and cross-attention modules. By interacting the
two streams using cross-attention modules, the invariant
stream receives more structural signals (from the equivariant
stream), and the equivariant stream obtains more non-linear
transformation (from the invariant stream), which allows
simultaneously and completely modeling interatomic inter-
actions within/across feature spaces in a unified manner.
Furthermore, we demonstrate that the proposed decomposi-
tion is general by showing that many existing methods can
be regarded as special cases in our framework. For example,
PaiNN(Schütt et al., 2021) and TorchMD-NET(Thölke &
De Fabritiis, 2022) can be formulated as a special instanti-
ation by following the design philosophy of GeoMFormer
and using proper instantiations of key building components.
From this perspective, we believe our model can offer many
different options in diverse scenarios in real applications.

We conduct experiments covering diverse data modalities,
scales and tasks with both invariant and equivariant targets.
On the Open Catalyst 2020 (OC20) dataset (Chanussot et al.,
2021), which contains large atomic systems composed of
adsorbate-catalyst pairs, our model is able to predict the sys-
tem’s energy (invariant) and relaxed structure (equivariant)
with high accuracy. Additionally, our architecture achieves
state-of-the-art performance for predicting homo-lumo en-
ergy gap (invariant) of a molecule on PCQM4Mv2 (Hu et al.,
2021) and Molecule3D (Xu et al., 2021) datasets, both of
which consist of molecules collected from the chemical
database (Maho, 2015; Nakata & Shimazaki, 2017). More-
over, we conduct an N-body simulation experiment where

our architecture can precisely forecast the positions (equiv-
ariant) for a set of particles controlled by physical rules.
Ablation study further shows benefits brought by each de-
sign choice of our framework. All the empirical results
highlight the generality and effectiveness of GeoMFormer.

2. Related Works

Invariant Representation Learning. In recent years, in-
variance has been recognized as one of the fundamental prin-
ciples guiding the development of molecular models. To de-
scribe the properties of a molecular system, the model’s pre-
diction should remain unchanged if we conduct any rotation
or translation actions on the coordinates of the whole system.
Previous works usually rely on relative structural signals
from the coordinates, which intrinsically preserve the in-
variance. In SchNet (Schütt et al., 2018), the interatomic
distances are encoded via radial basis functions, which serve
as the weights of the developed continuous-filter convolu-
tional layers. PhysNet (Unke & Meuwly, 2019) similarly
incorporated both atomic features and interatomic distances
in its interaction blocks. Graphormer-3D (Shi et al., 2022)
developed a Transformer-based model by encoding the rela-
tive distance as attention bias terms, which perform well on
large-scale datasets (Chanussot et al., 2021).

Beyond the interatomic distance, other works further in-
corporate high-order invariant signals. Based on PhysNet,
DimeNet/DimeNet++ (Gasteiger et al., 2020b;a) addition-
ally encode the bond angle information using Fourier-Bessel
basis functions. Moreover, GemNet/GemNet-OC (Gasteiger
et al., 2021; 2022) carefully studied the connections between
spherical representations and directional information, which
inspired to leverage the dihedral angles, i.e., angles between
planes formed by bonds. SphereNet (Liu et al., 2022b)
and ComENet (Wang et al., 2022) consider the torsional
information to augment the molecular models. During the
development in the literature, more complex features are
incorporated due to the lossy structural information when
purely learning invariant representations, while largely in-
creasing the costs. Besides, these invariant models are gener-
ally unable to directly perform equivariant prediction tasks.

Equivariant Representation Learning. Instead of build-
ing invariant blocks only, there are various works that aim to
learn equivariant representations. In real-world applications,
there are also many molecular tasks that require the model
to perform equivariant predictions, e.g., predicting the force,
position, velocity, and other tensorized properties in dy-
namic simulation tasks. If a rotation action is performed
on each position, then these properties should also corre-
spondingly rotate. One classical approach (Thomas et al.,
2018; Fuchs et al., 2020; Batzner et al., 2022; Musaelian
et al., 2023) to encoding the equivariant constraints is using
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irreducible representations (irreps) via spherical harmon-
ics (Goodman & Wallach, 2000). With equivariant convolu-
tions based on tensor products between irreps, each block
of the model preserves the equivariance. However, their
operations are in general costly (Schütt et al., 2021; Satorras
et al., 2021; Frank et al., 2022; Luo et al., 2024), which
largely hinders the model from deploying on large-scale
molecular systems. Besides, these models also do not al-
ways significantly outperform invariant models on invariant
tasks (Liu et al., 2022b).

On the other hand, several recent works maintain both
invariant and equivariant representations. The invariant
representations in EGNN (Satorras et al., 2021) encode type
information and relative distance, and are further used in vec-
tor scaling functions to transform the equivariant representa-
tions. PaiNN (Schütt et al., 2021) extended this framework
to include the Hardamard product operation to transform
the equivariant representations. Based on the operations of
PaiNN, TorchMD-Net (Thölke & De Fabritiis, 2022) further
proposed a modified version of the self-attention modules
to update invariant representations and achieved better
performance on invariant tasks. Allegro (Musaelian et al.,
2023) instead uses tensor product operations to update
equivariant features and interacts equivariant and invariant
features by using weight-generation modules. In contrast,
our GeoMFormer aims to achieve strong performance
on both invariant and equivariant tasks at the same time,
which motivates a general design philosophy to learn both
invariant and equivariant representations of high quality, en-
abling simultaneously and completely modeling interatomic
interactions within/across feature spaces in a unified manner
(Sec 4.1). We refer interested readers to Appendix C.3 for
more discussions and Appendix D for more related works.

3. Preliminary
3.1. Notations & Geometric Constraints

We denote a molecular system as M, which is made up of a
collection of atoms held together by attractive forces. Let
X ∈ Rn×d denote the atoms with features, where n is the
number of atoms, and d is the feature dimension. Given
atom i, we use ri ∈ R3 to denote its cartesian coordinate
in the three-dimensional Euclidean space. We define M =
(X, R), where R = {r1, ..., rn}.

In nature, molecular systems are subject to physical laws
that impose geometric constraints on their properties and
behaviors. For instance, if the position of each atom in
a molecular system is translated by a constant vector in
Euclidean space, the total energy of the system remains
unchanged. If a rotation is applied to each position, the
direction of the force on each atom will also rotate. Math-
ematically, these geometric constraints are directly related
to the concepts of invariance and equivariance in group

theory (Cotton, 1991; Cornwell, 1997; Scott, 2012).

Formally, let ϕ : X → Y denote a function mapping be-
tween vector spaces. Given a groupG, let ρX and ρY denote
its group representations. A function ϕ : X → Y is said to
be equivariant/invariant if it satisfies the following condi-
tions respectively:

Equivariance: ρY(g)[ϕ(x)] = ϕ
(
ρX (g)[x]

)
, for all g ∈ G, x ∈ X

Invariance: ϕ(x) = ϕ
(
ρX (g)[x]

)
, for all g ∈ G, x ∈ X

(1)
Intuitively, an equivariant function mapping transforms the
output predictably in response to transformations on the
input, whereas an invariant function mapping produces an
output that remains unchanged by transformations applied
to the input. For further details on the background of group
theory, we refer readers to the appendix of (Thomas et al.,
2018; Anderson et al., 2019; Fuchs et al., 2020).

Molecular systems are naturally located in the three-
dimensional Euclidean space, and the group related to trans-
lations and rotations is known as SE(3). For each element
g in the SE(3) group, its representation on R3 can be pa-
rameterized by pairs of translation vectors t ∈ R3 and or-
thogonal transformation matrices R ∈ R3×3,det(R) = 1,
i.e., g = (t,R). Given a vector x ∈ R3, we have
ρR

3

(g)[x] := Rx + t. For molecular modeling, it is es-
sential to learn molecular representations that encode the
rotation equivariance and translation invariance constraints.
Formally, let VM denote the space of molecular systems, for
each atom i, we define equivariant representation ϕE and
invariant representation ϕI if ∀ g = (t,R) ∈ SE(3),M =
(X, R) ∈ VM, the following conditions are satisfied:

ϕE : VM → R3×d,

RϕE(X, {r1, ..., rn}) = ϕE(X, {Rr1, ...,Rrn})

ϕE : VM → R3×d,

ϕE(X, {r1, ..., rn}) = ϕE(X, {r1 + t, ..., rn + t})

ϕI : VM → Rd,

ϕI(X, {r1, ..., rn}) = ϕI(X, {Rr1 + t, ...,Rrn + t})

(2)

3.2. Attention module

The attention module lies at the core of the Transformer
architecture (Vaswani et al., 2017), and it is formu-
lated as querying a dictionary with key-value pairs, e.g.,
Attention(Q,K, V ) = softmax(QKT

√
d
)V , where d is the

hidden dimension, and Q (Query), K (Key), V (Value) are
specified as the hidden features of the previous layer. The
multi-head variant of the attention module is widely used,
as it allows the model to jointly attend to information from
different representation subspaces. It is defined as follows:

Multi-head(Q,K, V ) = Concat(head1, · · · , headH)WO

headk = Attention(QWQ
k ,KW

K
k , V WV

k ),
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where WQ
k ∈ Rd×dH ,WK

k ∈ Rd×dH ,WV
k ∈ Rd×dH , and

WO ∈ RHdH×d are learnable matrices, H is the number of
heads. dH is the dimension of each attention head.

Serving as a generic building block, the attention module
can be used in various ways. On the one hand, the self-
attention module specifies Query, Key, and Value as the
same hidden representation, thereby extracting contextual
information for the input. It has been one of the key com-
ponents in Transformer-based foundation models across
various domains (Devlin et al., 2019; Brown et al., 2020;
Dosovitskiy et al., 2021; Liu et al., 2021; Ying et al., 2021a;
Jumper et al., 2021; Ji et al., 2023). On the other hand,
the cross-attention module specifies the hidden representa-
tion from one space as Query, and the representation from
the other space as Key-Value pairs, e.g. encoder-decoder
attention for sequence-to-sequence learning. As the cross-
attention module bridges two spaces, it has been also widely
used beyond Transformer for information fusion and improv-
ing representations (Lee et al., 2018; Huang et al., 2019;
Jaegle et al., 2021; 2022).

4. GeoMFormer
In this section, we introduce GeoMFormer, a novel
Transformer-based molecular model for learning invariant
and equivariant representations of high quality. We begin by
elaborating on the key designs of GeoMFormer, which form
a general framework to guide the development of geometric
molecular models (Sec 4.1), Next we thoroughly discuss the
implementation details of GeoMFormer (Sec 4.2).

4.1. A General Design Philosophy

As previously stated, several existing works learned invari-
ant representations using invariant features, e.g., distance in-
formation, which may have difficulty in extracting other use-
ful structural signals and cannot directly perform equivariant
tasks. Some other works developed equivariant models via
equivariant operations, which are either heuristic or costly
and do not guarantee better performance on invariant tasks
compared to invariant models. Instead, we aim to develop a
general design principle, which guides the development of
a model that addresses the disadvantages aforementioned in
both invariant and equivariant representation learning.

We call our model GeoMFormer, which is a two-stream
Transformer model to encode invariant and equivariant infor-
mation. Each stream is built up using stacked Transformer
blocks, each of which consists of a self-attention module
and a cross-attention module, followed by a feed-forward
network. For each atom k ∈ [n], we use zIk ∈ Rd and
zEk ∈ R3×d to denote its invariant and equivariant repre-
sentations respectively. Let ZI = [zI1

⊤
; ...; zIn

⊤
] ∈ Rn×d

and ZE = [zE1 ; ...; z
E
n ] ∈ Rn×3×d, the invariant (colored in

red) and equivariant (colored in blue) representations are
updated in the following manner:

Z′I,l = ZI,l + Inv-Self-Attn(QI,l,KI,l,VI,l)

Z′′I,l = Z′I,l + Inv-Cross-Attn(QI,l,KI_E,l,VI_E,l)

ZI,l+1 = Z′′I,l + Inv-FFN(Z′′I,l), Invariant Stream
Z′E,l = ZE,l + Equ-Self-Attn(QE,l,KE,l,VE,l)

Z′′E,l = Z′E,l + Equ-Cross-Attn(QE,l,KE_I,l,VE_I,l)

ZE,l+1 = Z′′E,l + Equ-FFN(Z′′E,l), Equivariant Stream

(3)

where l denotes the layer index. In this framework, the self-
attention modules and feed-forward networks are used to
iteratively update representations in each stream. The cross-
attention modules use representations from one stream to
query Key-Value pairs from the other stream. By using this
mechanism, a bidirectional bridge is established between
invariant and equivariant streams. Besides the contextual
information from the invariant stream itself, the invariant
representations can freely attend to more geometrical sig-
nals from the equivariant stream. Similarly, the equivari-
ant representations can benefit from using more non-linear
transformations in the invariant representations. With the
cross-attention modules, the expressiveness of both invariant
and equivariant representation learning is largely improved,
which allows simultaneously and completely modeling in-
teratomic interactions within/across feature spaces in a uni-
fied manner. In this regard, as highlighted by different
colors, the Query, Key, and Value in the self-attention mod-
ules (Inv-Self-Attn,Equ-Self-Attn) and the cross-attention
modules (Inv-Cross-Attn,Equ-Cross-Attn) are differ-
ently specified, which should carefully encode the geometric
constraints mentioned in Section 3.1, as introduced below.

Desiderata for Invariant Self-Attention. Given the in-
variant representation ZI , the Query, Key and Value
in Inv-Self-Attn are calculated via a function mapping
ψI : Rn×d → Rn×d, i.e., QI = ψI

Q(Z
I),KI =

ψI
K(ZI),VI = ψI

V (Z
I). Essentially, the attention module

linearly transforms the Value VI , with the weights being
calculated from the dot product between the Query and Key
(i.e., attention scores). In this regard, if both VI and the
attention scores preserve the invariance, then the output
satisfies the invariant constraint, i.e., ψI is required to be
invariant. Under this condition, it is easy to check the output
representation of this module keeps the invariance, which is
proved in Appendix B.1.

Desiderata for Equivariant Self-Attention. Similarly,
given the equivariant input ZE , the Query, Key and Value
in Equ-Self-Attn are calculated via a function mapping
ψE : Rn×3×d → Rn×3×d, i.e., QE = ψE

Q(Z
E),KE =

ψE
K(ZE),VE = ψE

V (Z
E). Similarly, ψE is required to be

equivariant. However, this still cannot guarantee the module
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to be equivariant if standard attention is used. We modified
αij =

∑d
k=1 Q

E
[i,:,k]K

E
[j,:,k]

⊤, where QE
[i,:,k] ∈ R3 de-

notes the k-th dimension of the atom i’s Query. It is straight-
forward to check the equivariance is preserved, which is
proved in Appendix B.1.

Desiderata for Cross-attentions between the two Streams.
In each stream, the cross-attention module is used to
leverage information from the other stream. We call
the cross attention in the invariant stream invariant-cross-
equivariant attention, and call the cross attention in the
equivariant stream equivariant-cross-invariant attention,
i.e., Inv-Cross-Attn and Equ-Cross-Attn. The difference
between the two cross attention lies in how the Query, Key,
Value are specified:

Invariant-cross-Equivariant Attention (Inv-Cross-Attn)

QI_E = ψI
Q(ZI),KI_E = ψI_E

K (ZI ,ZE),VI_E = ψI_E
V (ZI ,ZE)

Equivariant-cross-Invariant Attention (Equ-Cross-Attn)

QE_I = ψE
Q(ZE),KE_I = ψE_I

K (ZE ,ZI),VE_I = ψE_I
V (ZE ,ZI)

(4)
First, for Query QI_E and QE_I , the requirement to ψI

and ψE remains the same as previously stated. Moreover,
as distinguished by different colors, the Key-Value pairs
and the Query are calculated in different ways, for which
the requirement should be separately considered. Note that
both VI_E and VE_I are still linearly transformed by the
cross-attention modules. If VI_E preserves the invariance
and VE_I preserves the equivariance, then the remaining
condition is to keep the invariance of the attention score
calculation. That is to say, for the Inv-Cross-Attn, both ψI

and ψI_E are required to be invariant. It is similar to the
Equ-Cross-Attn that both ψE and ψE_I are required to be
equivariant. In this way, the outputs of both cross-attention
modules are under the corresponding geometric constraints,
which is proved in Appendix B.1.

Discussion. The carefully designed blocks outlined above
provide a general design philosophy for encoding the ge-
ometric constraints and bridging the invariant and equiv-
ariant molecular representations, which lie at the core of
our framework. Note that the translation invariance can be
easily preserved by encoding relative structure signals of the
input. It is also worth pointing out that we do not restrict the
specific instantiation of each component, and various design
choices can be adopted as long as they meet the require-
ments mentioned above. Moreover, we prove that our frame-
work can include many previous models as an instantiation,
e.g., PaiNN (Schütt et al., 2021) and TorchMD-Net (Thölke
& De Fabritiis, 2022), can be extended to encode additional
geometric constraints (Cornwell, 1997), which are presented
in Appendix B.1. In this work, we present a simple yet effec-
tive model instance that implements this design philosophy,
which we will thoroughly introduce in the next subsection.

4.2. Implementation Details of GeoMFormer

Following the design guidance in Section 4.1, we pro-
pose Geometric Molecular Transformer (GeoMFormer).
The overall architecture of GeoMFormer is shown in Fig-
ure 1, which is composed of stacked GeoMFormer blocks
(Eqn.(4)). We introduce the instantiations of the self-
attention, cross-attention and FFN modules below and prove
the properties they satisfy in Appendix B.2. We also incor-
porate widely used modules like Layer Normalization (Ba
et al., 2016) and Structural Encodings (Shi et al., 2022) for
better empirical performance. Due to the space limits, we
refer readers to Appendix A for further details.

Instantiation of Self-Attention. In GeoMFormer, the lin-
ear function is used to implement both ψI : Rn×d → Rn×d

and ψE : Rn×3×d → Rn×3×d:

QI = ψI
Q(ZI) = ZIW I

Q, QE = ψE
Q(ZE) = ZEWE

Q ,

KI = ψI
K(ZI) = ZIW I

K , KE = ψE
K(ZE) = ZEWE

K ,

VI = ψI
V (ZI) = ZIW I

V VE = ψE
V (ZE) = ZEWE

V

(5)

where W {I,E}
{Q,K,V } are learnable parameters.

Instantiation of Cross-Attention. As previously stated,
both ψI_E and ψE_I in the cross-attention modules fuse
representations from different spaces (invariant & equivari-
ant) into target spaces. In the Invariant-cross-Equivariant
attention module (Inv-Cross-Attn), to obtain the Key-
Value pairs, the equivariant representations are mapped to
the invariant space. For the sake of simplicity, we use
the dot-product operation < ·, · > to instantiate ψI_E .
Given X,Y ∈ Rn×3×d, Z =< X,Y >∈ Rn×d, where
Z[i,k] = X[i,:,k]

⊤Y[i,:,k]. Then the Key-Value pairs in
Inv-Cross-Attn are calculated as:

KI_E = ψI_E
K (ZI ,ZE) =< ZEW I_E

K,1 ,Z
EW I_E

K,2 >,

VI_E = ψI_E
V (ZI ,ZE) =< ZEW I_E

V,1 ,Z
EW I_E

V,2 >
(6)

where W I_E
K,1 ,W

I_E
K,2 ,W

I_E
V,1 ,W

I_E
V,2 ∈ Rd×dH for Key and

Value are learnable parameters. On the other hand, the
invariant representations are mapped to the equivariant
space in the Equivariant-cross-Invariant attention mod-
ule (Equ-Cross-Attn). To achieve this goal, we use
the scalar product ⊙ to instantiate ψE_I . Given X ∈
Rn×3×d, Y ∈ Rn×d, Z = X ⊙ Y ∈ Rn×3×d, where
Z[i,j,k] = X[i,j,k] · Y[i,k]. Using this operation, the Key-
Value pairs in Equ-Cross-Attn are calculated as:

KE_I = ψE_I
K (ZE ,ZI) = ZEWE_I

K,1 ⊙ ZIWE_I
K,2 ,

VE_I = ψE_I
V (ZE ,ZI) = ZEWE_I

V,1 ⊙ ZIWE_I
V,2

(7)

where WE_I
K,1 ,W

E_I
K,2 ,W

E_I
V,1 ,W

E_I
V,2 ∈ Rd×dH are learnable.

Instantiation of Feed-Forward Networks. Besides the
attention modules, the feed-forward networks also play
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Figure 1. An illustration of our GeoMFormer model architecture.

important roles in refining contextual representations. In
the invariant stream, the feed-forward network is kept
unchanged from the standard Transformer model, i.e.,
Inv-FFN(Z′′I) = GELU(Z′′IW I

1 )W
I
2 , where W I

1 ∈
Rd×r,W I

2 ∈ Rr×d and r denotes the hidden dimension
of the FFN layer. In the equivariant stream, it is worth
noting that commonly used non-linear activation functions
break the equivariant constraints. In our GeoMFormer, we
use the invariant representations as a gating function to
non-linearly activate the equivariant representations, i.e.,
Equ-FFN(Z′′E) = (Z′′EWE

1 ⊙ GELU(Z′′IW I
2 ))W

E
3 ,

where WE
1 ,W

I
1 ∈ Rd×r,WE

2 ∈ Rr×d.

Input Layer. Given a molecular system M = (X, R),
we set the invariant representation at the input as ZI,0 =
X, where Xi ∈ Rd is a learnable embedding vector in-
dexed by the atom i’s type. For the equivariant repre-
sentation, we set ZE,0

i = r̂′ig(||r′i||)
⊤ ∈ R3×d, where

we consider both the direction r̂′i ∈ R3 and the scale
g(||r′i||) ∈ Rd of the each atom’s mean-centered posi-
tion r′i. g : R → Rd is instantiated by the Gaussian
Basis Kernel, i.e., g(||r′i||) = ψiW , ψi = [ψ1

i ; ...;ψ
d
i ]

⊤,

ψk
i = − 1√

2π|σk| exp

(
− 1

2

(
γi∥r′i∥+βi−µk

|σk|

)2)
, k =

1, ..., d, where W ∈ Rd×d is learnable, γi, βi are learnable
scalars indexed by the atom type, and µk, σk are learnable
kernel center and scaling factor of the k-th Kernel. Note that
our GeoMFormer is not restricted to these choices, which
can encode additional features if the constraints are satisfied,
as discussed in Appendix B.2.

5. Experiments
In this section, we empirically investigate our GeoMFormer
on extensive tasks. In particular, we carefully design several
experiments covering different types of tasks (invariant &
equivariant), data (simple molecules & adsorbate-catalyst
complexes & particle systems), and scales, as shown in
Table 1. We also conduct an ablation study to thoroughly
verify the effectiveness of each design choice of our Ge-
oMFormer. Due to space limits, we present more results
(MD17, Ablation Study) in Appendix E.

5.1. OC20 Performance (Invariant & Equivariant)

The Open Catalyst 2020 (OC20) dataset (Chanussot et al.,
2021) was created for catalyst discovery and optimization,
which is one of the largest molecular modeling benchmarks
and has great significance to advance renewable energy
processes for crucial social and energy challenges. Each
data is in the form of the adsorbate-catalyst complex.
Given the initial structure of a complex, Density Functional
Theory (DFT) tools are used to accurately simulate the
relaxation process until achieving equilibrium. In practical
scenarios, the relaxed energy and structure of the complex
are of great interest for catalyst discovery. In this regard,
we focus on two significant tasks: Initial Structure to
Relaxed Energy (IS2RE) and Initial Structure to Relaxed
Structure (IS2RS), which require a model to directly
predict the relaxed energy and structure given the initial
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Table 1. Summarization of empirical evaluation setup.
Dataset Task Description Task Type Data Type Training set size
OC20, IS2RE (Chanussot et al., 2021) Equilibrium Energy Prediction (Sec 5.1.1) Invariant Adsorbate-Catalyst complex 460,328
OC20, IS2RS (Chanussot et al., 2021) Equilibrium Structure Prediction (Sec 5.1.2) Equivariant Adsorbate-Catalyst complex 460,328
PCQM4Mv2 (Hu et al., 2021) HOMO-LUMO Gap Prediction (Sec 5.2) Invariant Simple molecule 3,378,606
Molecule3D (Wang et al., 2022) HOMO-LUMO Gap Prediction (Sec 5.3) Invariant Simple molecule 2,339,788
N-Body Simulation (Satorras et al., 2021) Position Prediction (Sec 5.4) Equivariant Particle System 3,000
MD17 (Chmiela et al., 2017) Force Field Modeling (Sec E.6) Inv & Equ Simple molecule 950
Ablation Study Energy/Force/Position Prediction (Sec E.7) Inv & Equ - -

Table 2. Results on OC20 IS2RE val set. We report the official results of baselines from the original paper. Bold values denote the best.

Energy MAE (eV) ↓ EwT (%) ↑
Model ID OOD Ads. OOD Cat. OOD Both Average ID OOD Ads. OOD Cat. OOD Both Average
CGCNN (Xie & Grossman, 2018) 0.6203 0.7426 0.6001 0.6708 0.6585 3.36 2.11 3.53 2.29 2.82
SchNet (Schütt et al., 2018) 0.6465 0.7074 0.6475 0.6626 0.6660 2.96 2.22 3.03 2.38 2.65
DimeNet++ (Gasteiger et al., 2020a) 0.5636 0.7127 0.5612 0.6492 0.6217 4.25 2.48 4.4 2.56 3.42
GemNet-T (Gasteiger et al., 2021) 0.5561 0.7342 0.5659 0.6964 0.6382 4.51 2.24 4.37 2.38 3.38
SphereNet (Liu et al., 2022b) 0.5632 0.6682 0.5590 0.6190 0.6024 4.56 2.70 4.59 2.70 3.64
Graphormer-3D (Shi et al., 2022) 0.4329 0.5850 0.4441 0.5299 0.4980 - - - - -
GNS (Pfaff et al., 2020) 0.47 0.51 0.48 0.46 0.4800 - - - - -
Equiformer (Liao & Smidt, 2023) 0.4156 0.4976 0.4165 0.4344 0.4410 7.47 4.64 7.19 4.84 6.04
GeoMFormer (ours) 0.3883 0.4562 0.4037 0.4083 0.4141 11.26 6.70 9.97 6.42 8.59

structure as input respectively1. The training set for both
tasks is composed of over 460,328 catalyst-adsorbate
complexes. To better evaluate the model’s performance, the
validation and test sets consider the in-distribution (ID) and
out-of-distribution settings which uses unseen adsorbates
(OOD-Ads), catalysts (OOD-Cat) or both (OOD-Both),
containing approximately 200,000 complexes in total.

5.1.1. IS2RE PERFORMANCE (INVARIANT)

As an energy prediction task, the IS2RE task evaluates
how well the model learns invariant representations. We
follow the experimental setup of Graphormer-3D (Shi et al.,
2022). The metric of the IS2RE task is the Mean Absolute
Error (MAE) and the percentage of data instances in which
the predicted energy is within a 0.02 eV threshold (EwT).
We choose several strong baselines covering geometric
molecular models using different approaches. Due to
space limits, the detailed description of training settings
and baselines is presented in Appendix E.1. The results
are shown in Table 2. Our GeoMFormer outperforms the
compared baselines significantly, achieving impressive
performance especially on the out-of-distribution validation
sets, e.g., 42.2% relative EwT improvement on average
compared to the best baseline. In particular, the improve-
ment on the Energy within Threshold (EwT) metric is also

1Instead of using the iterative relaxation setting that requires
massive single-point structure-to-energy-force data to training a
force-field model (Chanussot et al., 2021), we focus on the direct
prediction setting that only uses initial-relaxed structure pairs data
as the input and label, which is efficient while more challenging.

Table 3. Results on OC20 IS2RS validation set. All models are
trained and evaluated under the direct prediction setting. Bold
values indicate the best.

ADwT (%) ↑
Model ID OOD Ads OOD Cat OOD Both Average
PaiNN (Schütt et al., 2021) 3.29 2.37 3.10 2.33 2.77
TorchMD-Net (Thölke & De Fabritiis, 2022) 3.32 3.35 2.94 2.89 3.13
Spinconv (Shuaibi et al., 2021) 5.81 4.88 5.63 4.84 5.29
GemNet-dT (Gasteiger et al., 2021) 6.87 7.10 6.03 7.08 6.77
GemNet-OC (Gasteiger et al., 2022) 11.31 12.20 4.40 5.55 8.36
GeoMFormer (ours) 11.45 10.52 9.94 10.78 10.67

significant considering the challenging task. The results
indeed demonstrate the effectiveness of our GeoMFormer
framework on learning invariant representations.

5.1.2. IS2RS PERFORMANCE (EQUIVARIANT)

Furthermore, we use the IS2RS task to evaluate the model’s
ability to perform the equivariant prediction task. The
metric of the IS2RS task is the Average Distance within
Threshold (ADwT) across different thresholds. The Dis-
tance within Threshold is computed as the percentage of
structures with the atom position MAE below the threshold.
We re-implement several competitive baselines under the
direct prediction setting for comparison. We refer the read-
ers to Appendix E.2 for more details on the settings. From
Table 3, we can see that the IS2RS task under the direct
prediction setting is rather difficult. The compared baseline
models consistently achieve low ADwT. Our GeoMFormer
achieves the best (e.g., 27.6% relative ADwT improvement
on average compared to the best baseline), which indeed
verifies the superior ability of our GeoMFormer framework
to perform equivariant molecular tasks.
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Table 4. Results on PCQM4Mv2. The evaluation metric is the
Mean Absolute Error (MAE). We report the official results of
baselines. ∗ indicates the best performance achieved by models
with the same complexity (n denotes the number of atoms).

Model Complexity Valid MAE ↓
MLP-Fingerprint (Hu et al., 2021)

O(n)

0.1735
GINE-VN (Brossard et al., 2020; Gilmer et al., 2017) 0.1167
GCN-VN (Kipf & Welling, 2017; Gilmer et al., 2017) 0.1153
GIN-VN (Xu et al., 2019; Gilmer et al., 2017) 0.1083
DeeperGCN-VN (Li et al., 2020; Gilmer et al., 2017) 0.1021*
TokenGT (Kim et al., 2022)

O(n2)

0.0910
EGT (Hussain et al., 2022) 0.0869
GRPE (Park et al., 2022) 0.0867
Graphormer (Ying et al., 2021a; Shi et al., 2022) 0.0864
GraphGPS (Rampášek et al., 2022) 0.0858
GPS++ (Masters et al., 2022) 0.0778
Transformer-M (Luo et al., 2023) 0.0787
GEM-2 (Liu et al., 2022a) O(n3)

0.0793
Uni-Mol+ (Lu et al., 2023) 0.0708*
GeoMFormer (ours) O(n2) 0.0734*

Table 5. Results on Molecule3D for both random and scaffold
splits. We report the official results of baselines. Bold values
denote the best.

MAE ↓
Model Random Scaffold
GIN-Virtual (Hu et al., 2021) 0.1036 0.2371
SchNet (Schütt et al., 2018) 0.0428 0.1511
DimeNet++ (Gasteiger et al., 2020a) 0.0306 0.1214
SphereNet (Liu et al., 2022b) 0.0301 0.1182
ComENet (Wang et al., 2022) 0.0326 0.1273
PaiNN (Schütt et al., 2021) 0.0311 0.1208
TorchMD-Net (Thölke & De Fabritiis, 2022) 0.0303 0.1196
GeoMFormer (ours) 0.0252 0.1045

5.2. PCQM4Mv2 Performance (Invariant)

PCQM4Mv2 is one of the largest quantum chemical prop-
erty datasets from the OGB Large-Scale Challenge (Hu
et al., 2021). Given a molecule, its HOMO-LUMO energy
gap of the equilibrium structure is required to predict, evalu-
ating the model’s ability of invariant prediction. This prop-
erty is highly related to reactivity, photoexcitation, charge
transport, and other real applications. DFT tools are used
to calculate the HOMO-LUMO gap for ground-truth labels.
The total number of training samples is around 3.37 million.

In a practical setting, the DFT-calculated equilibrium geo-
metric structure of each training sample is provided, while
only initial structures can be generated by efficient but inac-
curate tools (e.g., RDKit (Landrum, 2016)) for each valida-
tion sample. In this regard, we adopt one recent approach
(Uni-Mol+ (Lu et al., 2023)) to handle this task. During
training, the model receives RDKit-generated initial struc-
tures as the input, and predicts both the HOMO-LUMO
energy gap and the equilibrium structure by using both in-
variant and equivariant representations. After training, the
model can be used to predict the HOMO-LUMO gap target
by only using the initial structure, which meets the require-
ment of the settings. We compare various baselines in the
leaderboard for comparison. More details of the settings are
presented in Appendix E.3.

Table 6. Results on N-body System Simulation. We report the
official results of baselines. Bold values indicate the best.

Model MSE ↓
SE(3) Transformer (Fuchs et al., 2020) 0.0244
Tensor Field Network (Thomas et al., 2018) 0.0155
Graph Neural Network (Gilmer et al., 2017) 0.0107
Radial Field (Köhler et al., 2019) 0.0104
EGNN (Satorras et al., 2021) 0.0071
GeoMFormer (ours) 0.0047

From Table 4. Our GeoMFormer achieves the lowest MAE
among the quadratic models, e.g., 6.7% relative MAE re-
duction compared to the previous best model. Besides,
compared to the best model Uni-Mol+ (Lu et al., 2023),
our GeoMFormer achieves competitive performance while
keeping the efficiency (O(n2) complexity), which can be
more broadly applied to large molecular systems. Overall,
the results further verify the effectiveness of GeoMFormer
on invariant representation learning.

5.3. Molecule3D Performance (Invariant)

Molecule3D (Xu et al., 2021) is a newly proposed large-
scale dataset curated from the PubChemQC project (Maho,
2015; Nakata & Shimazaki, 2017). Each molecule has the
DFT-calculated equilibrium geometric structure. The task is
to predict the HOMO-LUMO energy gap, which is the same
as PCQM4Mv2. The dataset contains 3,899,647 molecules
in total and is split into training, validation, and test sets
with the splitting ratio 6 : 2 : 2. In particular, both random
and scaffold splitting methods are adopted to thoroughly
evaluate the in-distribution and out-of-distribution perfor-
mance of geometric molecular models. Following (Wang
et al., 2022), we compare our GeoMFormer with several
competitive baselines. Detailed descriptions of the train-
ing settings and baselines are presented in Appendix E.4.
It can be easily seen from Table 5 that our GeoMFormer
consistently outperforms all baselines on both random and
scaffold split settings, e.g., 16.3% and 11.6% relative MAE
reduction compared to the previous best model respectively.

5.4. N-Body Simulation Performance (Equivariant)

Simulating dynamical systems consisting of a set of geo-
metric objects interacting under physical laws is crucial in
many applications, e.g. molecular dynamic simulation. Fol-
lowing Fuchs et al. (2020); Satorras et al. (2021), we use a
synthetic n-body system simulation task as an extension of
molecular modeling tasks. This task requires the model to
forecast the positions of a set of particles, which are mod-
eled by simple interaction rules, yet can exhibit complex
dynamics. Thus, the model’s ability to perform equivariant
prediction tasks is carefully evaluated. In this dataset, the
simulated system consists of 5 particles, each of which car-
ries a positive or negative charge and has an initial position
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and velocity in the three-dimensional Euclidean space. The
system is controlled by physical rules involving attractive
and repulsive forces. The dataset contains 3.000 trajectories
for training, 2.000 trajectories for validation, and 2.000 tra-
jectories for testing. We compare several strong baselines
following Satorras et al. (2021). Due to space limits, the
details of the data generation, training settings and baselines
are presented in Appendix E.5. The results are shown in Ta-
ble 6. Our GeoMFormer achieves the best performance com-
pared to all baselines. In particular, the significant 33.8%
MSE reduction indeed demonstrates the GeoMFormer’s
superior ability on learning equivariant representations.

6. Conclusion
In this paper, we propose a general and flexible architec-
ture, called GeoMFormer, for learning geometric molecular
representations. Using the standard Transformer backbone,
two streams are developed for learning invariant and equiv-
ariant representations respectively. In particular, the cross-
attention mechanism is used to bridge these two streams,
letting each stream leverage contextual information from the
other stream and enhance its representations. This simple
yet effective design significantly boosts both invariant and
equivariant modeling. Within the newly proposed frame-
work, many existing methods can be regarded as special
instances, showing the generality of our method. All the
empirical results show that our GeoMFormer can achieve
strong performance in different scenarios. The potential of
our GeoMFormer can be further explored in a broad range
of applications in molecular modeling.
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A. Implementation Details of GeoMFormer
Layer Normalizations. Being a Transformer-based model, GeoMFormer also adopts the layer normalization (LN) (Ba
et al., 2016) module for training stability. In the invariant stream, the LN module remains unchanged from the standard
design (Ba et al., 2016; Xiong et al., 2020). In particular, we specialized the LN module as Equ-LN in the equivariant
stream to satisfy the geometric constraints. Formally, given the equivariant representation zEi ∈ R3×d of the atom i,
Equ-LN(zEi ) = U(zEi −µ1⊤)⊙γ, where µ = 1

d

∑d
k=1 Z

E
[i,:,k] ∈ R3, γ ∈ Rd is a learnable vector, and U ∈ R3×3 denotes

the inverse square root of the covariance matrix, i.e., U−2 =
(zE

i −µ1⊤)(zE
i −µ1⊤)⊤

d .

Structural Encodings. We follow (Shi et al., 2022) to incorporate the 3D structural encoding, which serves as the bias
term in the softmax attention module. In particular, we consider the Euclidean distance ||ri − rj || between atom i and
j. The Gaussian Basis Kernel function (Scholkopf et al., 1997) is used to encode the interatomic distance, i.e., bk(i,j) =

− 1√
2π|σk| exp(−

1
2 (

γ(i,j)||ri−rj ||+β(i,j)−µk

|σk| )2), k = 1, ...,K, where K is the number of Gaussian Basis kernels. The 3D

structural encoding is obtained by Bij = GELU(b(i,j)W
1
D)W 2

D, where b(i,j) = [b1(i,j); ...; b
K
(i,j)]

⊤, W 1
D ∈ RK×K ,W 2

D ∈
RK×1 are learnable parameters. γ(i,j), β(i,j) are learnable scalars indexed by the pair of atom types, and µk, σk are learnable
kernel center and learnable scaling factor of the k-th Gaussian Basis Kernel. Denote B as the matrix form of the 3D distance
encoding, whose shape is n× n. Then the attention probability is calculated by softmax(QK⊤

√
d

+B), where Q and K are
the query and key introduced in Section 3.

B. Proof of Geometric Constraints
In this section, we provide thorough proof of the aforementioned conditions in Section 4 that satisfy the geometric
constraints. For the sake of convenience, we restate the notations and geometric constraints here. Formally, let VM denote
the space of molecular systems, for each atom i, we define equivariant representation ϕE and invariant representation ϕI if
∀ g = (t,R) ∈ SE(3),M = (X, R) ∈ VM, the following conditions are satisfied:

ϕE : VM → R3×d, RϕE(X, {r1, ..., rn}) = ϕE(X, {Rr1, ...,Rrn}) (8a)

ϕE : VM → R3×d, ϕE(X, {r1, ..., rn}) = ϕE(X, {r1 + t, ..., rn + t}) (8b)

ϕI : VM → Rd, ϕI(X, {r1, ..., rn}) = ϕI(X, {Rr1 + t, ...,Rrn + t}) (8c)

where t ∈ R3,R ∈ R3×3,det(R) = 1 and X ∈ Rn×d denotes the atoms with features, R = {r1, ..., rn}, ri ∈ R3

denotes the cartesian coordinate of atom i. We present the proof of the General Design Philosophy (Section B.1) and our
GeoMFormer model (Section B.2) respectively.

B.1. Proof of the General Design Philosophy.

Given invariant and equivariant representations ZI,0 ∈ Rn×d,ZE,0 ∈ Rn×3×d at the input, we prove that the update rules
shown in Eqn.(3) satisfy the above constraints in proper conditions. In particular, we first separately study each component
of the block, i.e., Inv-Self-Attn, Equ-Self-Attn, Inv-Cross-Attn, Equ-Cross-Attn, and then check the properties of the
whole framework.

Invariant Self-Attention. Given invariant representation ZI,l ∈ Rn×d, QI,l = ψI,l
Q (ZI,l),KI,l = ψI,l

K (ZI,l),VI,l =

ψI,l
V (ZI,l), as stated in Section 4.1, where ψI,l : Rn×d → Rn×d is invariant. In this regard, ∀g = (t,R) ∈ SE(3),

QI,l,KI,l,VI,l remain unchanged, which means that Inv-Self-Attn(QI,l,KI,l,VI,l) also remains unchanged. Then the
invariance of the output representations is preserved.

Equivariant Self-Attention. Given equivariant representation ZE,l ∈ Rn×3×d, QE,l = ψE,l
Q (ZE,l),KE,l =

ψE,l
K (ZE,l),VE,l = ψE,l

V (ZE,l), as stated in Section 4.1, where ψE,l : Rn×3×d → Rn×3×d is equivariant. Be-
sides, the attention score is modified as αij =

∑d
k=1 Q

E
[i,:,k]K

E
[j,:,k]

⊤, where QE
[i,:,k] ∈ R3 denotes the k-

th dimension of the atom i’s Query. First, we check the rotation equivariance of the Equ-Self-Attn. Given
any orthogonal transformation matrix R ∈ R3×3,det(R) = 1, we have

∑d
k=1 Q

E
[i,:,k]R(KE

[j,:,k]R)⊤ =∑d
k=1 Q

E
[i,:,k]RR⊤KE

[j,:,k]
⊤
=
∑d

k=1 Q
E
[i,:,k]K

E
[j,:,k]

⊤
= αij , which preserves the invariance. AsψE,l is equivariant,
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we have ψE,l([RZE,l
1 ; , ..., ;RZE,l

n ]) = [RψE,l(ZE,l)1; , ..., ;Rψ
E,l(ZE,l)n]. Since the output equivariant representation

of atom i preserves the equivariance, i.e.,
∑n

j=1
exp(αij)∑n

j′=1
exp(αij′ )

RVE,l
j = R(

∑n
j=1

exp(αij)∑n
j′=1

exp(αij′ )
VE,l

j ), the rotation

equivariance is satisfied. Moreover, since the equivariant representation ZE,l preserves the translation invariance (Eqn.(8b)),
the output equivariant representation of Equ-Self-Attn naturally satisfies this constraint.

Cross-Attention modules. As stated in Section 4.1, the Query, Key, and Value of Inv-Cross-Attn are specified
as QI_E,l = ψI,l

Q (ZI,l),KI_E,l = ψI_E,l
K (ZI,l,ZE,l),VI_E,l = ψI_E,l

V (ZI,l,ZE,l), where ψI,l, ψI_E,l are invari-
ant. That is to say, ∀g = (t,R) ∈ SE(3), QI_E,l,KI_E,l,VI_E,l remain unchanged. Then the invariance
of its output representations is preserved as in Inv-Self-Attn. On the other hand, the Query, Key, and Value of
Equ-Cross-Attn are specified as QE_I,l = ψE,l

Q (ZE,l),KE_I,l = ψE_I,l
K (ZE,l,ZI,l),VE_I,l = ψE_I,l

V (ZE,l,ZI,l), where
ψE,l, ψE_I,l are equivariant, i.e., ψE_I,l([RZE,l

1 ; , ..., ;RZE,l
n ],ZI,l) = [RψE_I,l(ZE,l,ZI,l)1; , ..., ;Rψ

E,l(ZE,l,ZI,l)n]

and ψE,l([RZE,l
1 ; , ..., ;RZE,l

n ]) = [RψE,l(ZE,l)1; , ..., ;Rψ
E,l(ZE,l)n]. As stated in Equ-Self-Attn, the output equivari-

ant representations of Equ-Cross-Attn preserve the rotation equivariance. Similarly, the translation invariance property is
also naturally satisfied.

Feed-Forward Networks. As Inv-FFN and Equ-FFN satisfy the invariance and equivariance constraints re-
spectively, we can directly obtain that ∀g = (t,R) ∈ SE(3), the output of Inv-FFN remains un-
changed, and the output of Equ-FFN preserves the rotation equivariance, i.e., Equ-FFN([RZE,l

1 ; , ..., ;RZE,l
n ]) =

[REqu-FFN(ZE,l)1; , ..., ;REqu-FFN(ZE,l)n]. The translation invariance is also naturally preserved by Equ-FFN.

With the above analysis, the update rules stated in Eqn.(3) satisfy the geometric constraints (Eqn.(8a), Eqn.(8b) and Eqn.(8c)).
As our model is composed of stacked blocks, the invariant and equivariant output representations of the whole model also
preserve the constraints.

B.2. Proof of the GeoMFormer

Next, we provide proof of the instantiation of our GeoMFormer in Section 4.2 that satisfies the geometric constraints.
Similarly, we separately check the properties of each component as our GeoMFormer is composed of stacked GeoMFormer
blocks. Once the constraints are satisfied by each component, the output invariant and equivariant representations of the
whole model naturally satisfy the geometric constraints (Eqn.(8a), Eqn.(8b) and Eqn.(8c)).

Input layer. As stated in Section 4.2, the invariant representation at the input is set as ZI,0 = X, where Xi ∈ Rd

is a learnable embedding vector indexed by the atom i’s type. Since ZI,0 does not contain any information from R =
{r1, ..., rn}, it naturally satisifies the invariance constraint (Eqn.(8c)). The equivariant representation at the input is set
as ZE,0

i = r̂′ig(||r′i||)
⊤ ∈ R3×d, where r′i denotes the mean-centered position of atom i, i.e., r′i = ri − 1

n

∑n
k=1 rk,

r̂′i =
r′i

||r′i||
, and g : R → Rd is instantiated by the Gaussian Basis Kernel function. First, the translation invariance constraint

(Eqn.(8b)) is satisfied. Given any translation vector t ∈ R3, ri + t − 1
n

∑n
k=1(rk + t) = ri − 1

n

∑n
k=1 rk, and ZE,0

i

remains unchanged. Second, the rotation equivariance (Eqn.(8a)) is also preserved. Given any orthogonal transformation
matrix R ∈ R3×3,det(R) = 1, we have ||Rr′i|| = ||r′i||. With Rri as the input, we have Rri − 1

n

∑n
k=1 Rrk =

R(ri − 1
n

∑n
k=1 rk) = Rr′i and g(||Rr′i||) = g(||r′i||), which means that the rotation equivariance constraint is satisfied.

Self-Attention modules. For Inv-Self-Attn and Equ-Self-Attn, we use the linear function to implement both ψI and ψE ,
i.e., QI = ψI

Q(Z
I) = ZIW I

Q,K
I = ψI

K(ZI) = ZIW I
K ,V

I = ψI
V (Z

I) = ZIW I
V and QE = ψE

Q(Z
E) = ZEWE

Q ,K
E =

ψE
K(ZE) = ZEWE

K ,V
E = ψE

V (Z
E) = ZEWE

V . It is straightforward that the conditions mentioned in Section B.1 are
satisfied. The linear function keeps the invariance of ZI (Eqn.(8c)) and the rotation equivariance of ZE (Eqn.(8a)), e.g.,
∀R ∈ R3×3,det(R) = 1, (RZE

i )W
E
Q = R(ZE

i W
E
Q ) = RZE

i . Note that the translation invariance of ZE (Eqn.(8b)) is not
changed by the linear function.

Cross-Attention modules. For Inv-Cross-Attn, we use the linear function to implement ψI
Q, which satisfies

the constraints as previously stated. Besides, we instantiate KI_E and VI_E as KI_E = ψI_E
K (ZI ,ZE) =<

ZEW I_E
K,1 ,Z

EW I_E
K,2 >,VI_E = ψI_E

V (ZI ,ZE) =< ZEW I_E
V,1 ,Z

EW I_E
V,2 >. Here we prove that such instantia-

tion preserve the invariance. First, given any orthogonal transformation matrix R ∈ R3×3,det(R) = 1, we have
< ([RZE

1 ; ...;RZE
n ])W

I_E
K,1 , ([RZE

1 ; ...;RZE
n ])W

I_E
K,2 >=< ZEW I_E

K,1 ,Z
EW I_E

K,2 >. The reason is that given X,Y ∈
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Rn×3×d, Z =< X,Y >∈ Rn×d, where Z[i,k] = X[i,:,k]
⊤Y[i,:,k] = X[i,:,k]

⊤R⊤RY[i,:,k] = (RX[i,:,k])
⊤(RY[i,:,k]). The

translation invariance of ZE is also preserved.

For Equ-Cross-Attn, we also use the linear function to implement ψE
Q , which satisfies the constraints as previously stated.

Besides, we instantiate KE_I and VE_I as KE_I = ψE_I
K (ZE ,ZI) = ZEWE_I

K,1 ⊙ ZIWE_I
K,2 ,V

E_I = ψE_I
V (ZE ,ZI) =

ZEWE_I
V,1 ⊙ ZIWE_I

V,2 . First, given any orthogonal transformation matrix R ∈ R3×3, we have ([RZE
1 ; ...;RZE

n ])W
E_I
K,1 ⊙

ZIWE_I
K,2 = [R(ZEWE_I

K,1 ⊙ ZIWE_I
K,2 )1; ...;R(ZEWE_I

K,1 ⊙ ZIWE_I
K,2 )n], which preserves the rotation equivariance. The

reason lies in that given X ∈ Rn×3×d, Y ∈ Rn×d, Zi = RXi ⊙ Yi ∈ R3×d, where Z[i,:,k] = (RX[i,:,k]) · Y[i,k] =
R(X[i,:,k] · Y[i,k]). Additionally, the translation invariance of both KE_I and VE_I is preserved because of the translation
invariance of ZE and ZI . In this way, the instantiations of cross-attention modules satisfy the geometric constraints.

Feed-Forward Networks. For Inv-FFN(Z′′I) = GELU(Z′′IW I
1 )W

I
2 , the invariance constraint (Eqn. 8c) is naturally

preserved. For Equ-FFN(Z′′E) = (Z′′EWE
1 ⊙GELU(Z′′IW I

2 ))W
E
3 , the rotation equivariance constraint is also similarly

preserved as in Equ-Cross-Attn. Besides, the translation invariance of Equ-FFN(Z′′E) is also preserved with the property
of Z′′E and Z′′I .

Layer Normalizations. As introduced in Section A, we use the layer normalization modules for both invariant and
equivariant streams. For the invariant stream, the layer normalization remains unchanged, and the invariance con-
straint is naturally preserved. For the equivariant stream, given the equivariant representation zEi ∈ R3×d of the
atom i, Equ-LN(zEi ) = U(zEi − µ1⊤) ⊙ γ, where µ = 1

d

∑d
k=1 Z

E
[i,:,k] ∈ R3, γ ∈ Rd is a learnable vector, and

U ∈ R3×3 denotes the inverse square root of the covariance matrix, i.e., U−2 =
(zE

i −µ1⊤)(zE
i −µ1⊤)⊤

d . First, given any

orthogonal transformation matrix R ∈ R3×3,det(R) = 1, (RzE
i −Rµ1⊤)(RzE

i −Rµ1⊤)⊤

d =
(RzE

i −Rµ1⊤)(RzE
i −Rµ1⊤)⊤

d =

R
(zE

i −µ1⊤)(zE
i −µ1⊤)⊤

d R⊤ = RU−2R⊤ = RU−1R⊤RU−1R⊤ = (RUR⊤)−2, then we have Equ-LN(RzEi ) =
RUR⊤(RzEi −Rµ1⊤)⊙γ = R(U(zEi −µ1⊤)) = REqu-LN(zEi ), which preserves the rotation equivariance (Eqn.(8a)).
The translation invariance of ZE is also preserved.

Structural Encodings. As introduced in Section A, the structural encodings serve as the bias term in the softmax attention
module. Since only the relative distance ||ri − rj ||,∀i, j ∈ [n] is used, the invariance constraint is preserved, i.e., given
∀g = (t,R) ∈ SE(3), ||Rri + t−Rrj + t|| = ||ri − rj ||.

C. Discussions
C.1. Connections to Previous Approaches

In this section, we present a detailed discussion of how previous models (PaiNN (Schütt et al., 2021) and TorchMD-
Net (Thölke & De Fabritiis, 2022)) can be viewed as special instantiations by extending the design philosophy described
in Section 4.1. Without loss of generality, we omit the cutoff conditions used in these works for readability, which can be
naturally included in our framework.

PaiNN (Schütt et al., 2021). Both invariant representations ZI = [zI1
⊤
; ...; zIn

⊤
] ∈ Rn×d and equivariant representations

ZE = [zE1 ; ...; z
E
n ] ∈ Rn×3×d are maintained in PaiNN, where zIi ∈ Rd and zEi ∈ R3×d are the invariant and equivariant

representations for atom i, respectively. In each layer, the representations are updated as follows:

Z′I,l = ZI,l +Message-Block-Inv(ZI,l)

Z′E,l
= ZE,l +Message-Block-Equ(ZI,l,ZE,l)

ZI,l+1 = Z′I,l +Update-Block-Inv(Z′I,l,Z′E,l
)

ZE,l+1 = Z′E,l
+Update-Block-Equ(Z′I,l,Z′E,l

)

(9)
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In the message block, the invariant and equivariant representations are updated in the following manner. For brevity, we
omit the layer index l.

Message-Block-Inv(zIi ) =
∑
j

ϕs(z
I
j ) ◦Ws(||ri − rj ||)

Message-Block-Equ(zIi , z
E
i ) =

∑
j

zEj ⊙
(
ϕvv(z

I
j ) ◦Wvv(||ri − rj ||)

)
+

ri − rj
||ri − rj ||

(
ϕvs(z

I
j ) ◦W

′
vs(||ri − rj ||)

)⊤
(10)

The scalar product ⊙ is defined the same way as in Section 4.2, i.e., given x ∈ R3×d, y ∈ Rd, z = x⊙ y ∈ R3×d, where
z[i,j] = x[i,k] · y[k]. ◦ denotes the element-wise product, ϕs, ϕvv, ϕvs : Rd → Rd are all 2-layer MLP with the SiLU
activation, Ws,Wvv,W ′

vs : R → Rd are instantiated by learnable radial basis functions. ri−rj
||ri−rj || ∈ R3 denotes the relative

direction between atom i’s and j’s positions.

In the update block, the invariant and equivariant representations are updated in the following manner:

Update-Block-Inv(zIi , z
E
i ) = ass(z

I
i , ||zEi V||) + asv(z

I
i , ||zEi V||) ◦ < zEi U, z

E
i V >

Update-Block-Equ(zIi , z
E
i ) = avv(z

I
i , ||zEi V||)⊙ (zEi U)

V,U ∈ Rd×d are learnable parameters. < ·, · > is defined the same way as in Section 4.2, i.e., given x, y ∈ R3×d, z =<
x, y >∈ Rd, where z[k] = x[:,k]

⊤y[:,k]. Norm || · || : R3×d → Rd is calculated along the spatial dimension, i.e.,
|| · || =< ·, · >. ◦ denotes the element-wise product. ⊙ is also defined the same as in Section 4.2. a(·, ·) : Rd × Rd → Rd

first concatenates the two inputs along the feature dimension and then apply a 2-layer MLP with SiLU activation.

We prove that both the invariant and equivariant message blocks can be viewed as special instances by extending the invariant
self-attention module and the equivariant cross-attention module of our framework respectively. In particular, we extend
ψI
V , ψ

E_I
V introduced in the Section 4.1 to be query-dependent, i.e., ψI,i

V , ψE_I,i
V that depends on the atom i’s representations.

Concretely, in the invariant self-attention module, we set ψI, i
V (zIj ) = ϕs(z

I
j )⊙Ws(||ri − rj ||). Similarly, in the equivariant

cross-attention module, we set ψE_I, i
V (zIj , z

E
j ) = zEj ⊙ ϕvv(z

I
j ) · Wvv(||ri − rj ||) + ϕvs(z

I
j ) · W

′

vs
ri−rj

||ri−rj || . In such way,
the invariant self-attention module and the equivariant cross-attention module can express the invariant and equivariant
message blocks respectively, e.g., the parameters to transform Query and Key are trained/initialized to zero, and the number
of atoms can be equipped by initialization, which is necessary to express the sum operator by using the attention as shown
in (Ying et al., 2021a).

Moreover, we prove that the update blocks can also be viewed as special instances by extending the FFN blocks in
our framework. In particular, we set Inv-FFN(zIi ) = ass(z

I
i , ||zEi V||) + asv(z

I
i , ||zEi V||) < zEi U, z

E
i V > and

Equ-FFN(zEi ) = avv(z
I
i , ||zEi V||)

(
zEi U

)
, then both Inv-FFN and Equ-FFN can express the update blocks. Note

that the parameters of the remaining blocks (Inv-Cross-Attn,Equ-Self-Attn) can be trained/initialized to be zero. In such
way, the PaiNN model can be instantiated through our design philosophy introduced in Section 4.1.

TorchMD-Net (Thölke & De Fabritiis, 2022). Similarly to PaiNN, both invariant representations ZI = [zI1
⊤
; ...; zIn

⊤
] ∈

Rn×d and equivariant representations ZE = [zE1 ; ...; z
E
n ] ∈ Rn×3×d are maintained in TorchMD-Net, where zIi ∈ Rd and

zEi ∈ R3×d are the invariant and equivariant representations for atom i, respectively. In each layer, the representations are
updated as follows:

Z′I,l = ZI,l +TorchMD-Inv-Block-1(ZI,l)

ZI,l+1 = Z′I,l +TorchMD-Inv-Block-2(Z′I,l,ZE,l)

ZE,l+1 = ZE,l +TorchMD-Equ-Block(ZI,l,ZE,l)

(11)
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The invariant representations in TorchMD-Inv-Block-1 and TorchMD-Inv-Block-2 are updated as follows. For brevity,
we omit the layer index l.

Qi =WQzIi ,Kj =WKzIj ,V
(1)
j =WV (1)zIj

αij = SiLU
(
Q⊤

i

(
Kj ◦DK

ij

))
TorchMD-Inv-Block-1(zIi ) = O1

(∑
j

αij ·V(1)
j ◦DV (1)

ij

)

TorchMD-Inv-Block-2(zIi , z
E
i ) = O2

(∑
j

αij ·V(1)
j ◦DV (1)

ij

)
◦ < zEi U1, z

E
i U2 >

(12)

WQ,WK ,WV (1),U1,U2 ∈ Rd×d are learnable parameters. ◦ denotes the element-wise product. DK
ij ,D

V (1)
ij : R → Rd

takes ||ri−rj || as input and uses radial basis functions followed by a non-linear activation to transform it. O1, O2 : Rd → Rd

are learnable linear transformations. < ·, · > is defined the same way as in Section 4.2, i.e., given x, y ∈ R3×d, z =<
x, y >∈ Rd, where z[k] = x[:,k]

⊤y[:,k]. On the other hand, the equivariant representations are updated as follows:

V
(2)
j = WV (2)zIj ,V

(3)
j = WV (3)zIj

TorchMD-Equ-Block(zIi , z
E
i ) =

∑
j

(
(V

(2)
j ◦DV (2)

ij )⊙ zEj +
ri − rj

||ri − rj ||
(V

(3)
j ◦DV (3)

ij )⊤
)

+O3

(∑
j

αij ·V(1)
j ◦DV (1)

ij

)
⊙ zEi U3

(13)

WV (2),WV (3),U3 ∈ Rd×d are learnable parameters. ◦ denotes the element-wise product. ⊙ is defined the same way as in
Section 4.2, i.e., given x ∈ R3×d, y ∈ Rd, z = x ⊙ y ∈ R3×d, where z[i,j] = x[i,k] · y[k]. DV (2)

ij ,DV (3)

ij : R → Rd takes
||ri − rj || as input and use radial basis functions followed by a non-linear activation to transform it. O3 : Rd → Rd is a
learnable linear transformation. ri−rj

||ri−rj || ∈ R3 denotes the relative direction between atom i’s and j’s positions.

We prove that the TorchMD-Inv-Block-1 and TorchMD-Inv-Block-2 can be viewed as special instances by extending
the invariant self-attention module and invariant cross-attention module of our framework respectively. Concretely, in the
invariant self-attention module, we set ψI

Q(z
I
i ) =WQzIi , ψ

I, i
K (zIj ) =WKzIj ◦DK

ij , ψ
I, i
V (zIj ) = O1

(
WV (1)

zIj ◦DV (1)

ij

)
and use SiLU instead of Softmax for calculating attention probability. By rewriting TorchMD-Inv-Block-1 in the equivalent
form TorchMD-Inv-Block-1(zIi ) =

∑
j αij · O1

(
V

(1)
j ◦DV (1)

ij

)
, the invariant self-attention module can express it by

equipping the number of atoms for expressing the sum operation using the attention.

In the invariant cross-attention module, we set ψI
Q(z

I
i ) = WQzIi , ψ

I_E, i
K (zIj , z

E
j ) = WKzIj ◦ DK

ij , ψ
I_E, i
V (zIj , z

E
j ) =

O2

(
WV (1)

zIj ◦DV (1)

ij

)
◦ < U1z

E
i , U2z

E
i >, and use SiLU instead of Softmax for calculating attention probability.

By using the equivalent form TorchMD-Inv-Block-2(zIi , z
E
i ) =

∑
j αij · O2

(
V

(1)
j ◦DV (1)

ij

)
◦ < U1z

E
i , U2z

E
i >, the

invariant cross-attention module can express it by equipping the number of atoms.

Moreover, we prove that the TorchMD-Equ-Block can be viewed as a special instance by extending the equivari-
ant cross-attention module of our framework. In particular, we set ψE_I, i

V (zIj , z
E
j ) = (WV (2)

zIj ◦ DV (2)

ij ) ⊙ zEj +
ri−rj

||ri−rj || (W
V (3)

zIj ◦ DV (3)

ij )⊤ + αij · O3

(
WV (1)

zIj ◦DV (1)

ij

)
⊙ U3z

E
i . By rewriting TorchMD-Equ-Block in the

equivalent form TorchMD-Equ-Block(zIi , z
E
i ) =

∑
j

(
(V

(2)
j ◦DV (2)

ij )⊙ zEj +
ri−rj

||ri−rj || (V
(3)
j ◦DV (3)

ij )⊤
)
+
∑

j αij ·

O3

(
V

(1)
j ◦DV (1)

ij

)
⊙U3z

E
i =

∑
j

(
(V

(2)
j ◦DV (2)

ij )⊙zEj +
ri−rj

||ri−rj || (V
(3)
j ◦DV (3)

ij )⊤+αij ·O3

(
V

(1)
j ◦DV (1)

ij

)
⊙U3z

E
i

)
,

it is straightforward that the equivariant cross-attention module can express the TorchMD-Equ-Block, e.g., the parameters
to transform Query and Key are trained/initialized to zero, and the number of atoms can be equipped by initialization. Note
that the parameters of the remaining blocks (Equ-Self-Attn, Inv-FFN,Equ-FFN) can be trained/initialized to be zero. In
such ways, the TorchMD-Net model can be instantiated through our design philosophy introduced in Section 4.1.
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C.2. Extension to Other Geometric Constraints

In this subsection, we showcase how to extend our framework to encode other geometric constraints. In particular, we
consider the E(3) group, which comprises translation, rotation and reflection. Formally, let VM denote the space of
molecular systems, for each atom i, we define equivariant representation ϕE and invariant representation ϕI if ∀ g =
(t,R) ∈ E(3),M = (X, R) ∈ VM, the following conditions are satisfied:

ϕE : VM → R3×d, RϕE(X, {r1, ..., rn}) + t1⊤ = ϕE(X, {Rr1 + t, ...,Rrn + t}) (14a)

ϕI : VM → Rd, ϕI(X, {r1, ..., rn}) = ϕI(X, {Rr1 + t, ...,Rrn + t}) (14b)

where t ∈ R3 is a translation vector, R ∈ R3×3,det(R) = ±1 is an orthogonal transformation matrix and X ∈ Rn×d

denotes the atoms with features, R = {r1, ..., rn}, ri ∈ R3 denotes the cartesian coordinate of atom i. In particular, the
additional requirement is to encode the translation and reflection equivariance of the equivariant representations, which can
be achieved by modifying the conditions of our framework (Eqn.(3)).

With the invariant representation ZI and the equivariant representation ZE that satisfy the constraints (Eqn.(14a) and
Eqn.(14b)), we separately redefine the conditions of each component. It is worth noting that the reflection invariance
is directly satisfied (RR⊤ = R⊤R = I) from the analysis in Section B.1 and Section B.2, which is required in (1) the
calculation of attention probability in Equ-Self-Attn,Equ-Cross-Attn; (2) the calculation of KI_E and VI_E . Thus, we
only need to encode the translation equivariance constraint. Given the update rules (Eqn.(3)), it can be achieved by simply
setting each component (Inv-Self-Attn, Inv-Cross-Attn,Equ-Self-Attn,Equ-Cross-Attn, Inv-FFN,Equ-FFN) to be
translation-invariant. In this way, the output equivariant representation can preserve the equivariance to the E(3) group.
We extend our framework to achieve this goal, which is introduced below:

Self-Attention modules. For Inv-Self-Attn, the condition remains unchanged. For Equ-Self-Attn, the additional condition
is that ψE should keep the translation invariance. Here we give a simple instantiation: QE = ψE

Q(Z
E) = (ZE −

µZE )WE
Q ,K

E = ψE
K(ZE) = (ZE −µZE )WE

K ,V
E = ψE

V (Z
E) = (ZE −µZE )WE

V , where µZE ,i =
1
d

∑n
k=1 Z

E
[i,:,k]1

⊤.

Cross-Attention modules. For Inv-Cross-Attn, the condition for ψI remains unchanged, while ψI_E should keep the
translation invariance. For Equ-Cross-Attn, both ψE and ψE_I are required to be translation-invariant. Here we give an
instantiation: QE = ψE

Q(Z
E) = (ZE − µZE )WE

Q , and

KI_E =< (ZE − µZE )W I_E
K,1 , (Z

E − µZE )W I_E
K,2 >, VI_E =< (ZE − µZE )W I_E

V,1 , (Z
E − µZE )W I_E

V,2 >

KE_I = (ZE − µZE )WE_I
K,1 ⊙ ZIWE_I

K,2 , VE_I = (ZE − µZE )WE_I
V,1 ⊙ ZIWE_I

V,2

(15)

Feed-Forward Networks. Similarly, the condition for Inv-FFN remains unchanged. For Equ-FFN, it also should keep
the translation invariance, e.g., Equ-FFN(Z′′E) = ((Z′′E − µZE )WE

1 ⊙GELU(Z′′IW I
2 ))W

E
3 .

Remark. With the above additional conditions, our framework can additionally be extended to encode geometric constraints
towards E(3) group. Note that the design of the input layer should also encode the constraints (Eqn.(14a) and Eqn.(14b)).
For example, the invariant representation remains unchanged as ZI,0 = X. while the equivariant representation can be
directly set as ZE,0

i = ri. In this way, the geometric constraints are well satisfied.

C.3. Further Discussion on the Design Philosophy of the Cross-Attention Module

In this subsection, we further elucidate the disparity between invariant and equivariant representations in terms of the
information they encapsulate, substantiated by additional supporting evidence. Specifically, the advantages of invariant
and equivariant representations complement each other, prompting us to bridge them and combine their strengths through
cross-attention modules.

From the perspective of neural network design, equivariant representations preserve more complete structural information
in a straightforward way, but the equivariant constraints restrict the choice of operations that can be used. On the other
hand, invariant representations offer more flexibility for non-linear operations, but introduce potential risks of structural
information loss or inefficient utilization.

First, we provide more explanations and supporting evidence on why equivariant representations preserve more complete
structural information in a straightforward way. In the literature, existing invariant models commonly use invariant features
of molecules (e.g., interatomic distances, bond angles, dihedral/torsion angles, improper angles, and so on) which are
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extracted from the raw 3D geometric structures of molecules (the position of each atom in the molecule). Although these
invariant features are important to describe the properties of molecules, the mapping from raw geometric structures to
invariant features may introduce information loss or inefficiency:

• In a recent study on the expressive power of geometric graph neural networks (Joshi et al., 2023), the authors provided
a thorough theoretical analysis of the expressive power of invariant layers and equivariant layers commonly used in
geometric graph neural networks by leveraging the Geometric Weisfeiler-Lehman test. Each invariant layer in geometric
graph neural networks corresponds to the proposed Invariant Geometric Weisfeiler-Lehman test (IGWL). In their
framework, previously mentioned invariant features can be categorized into different classes in terms of the least number
of nodes (atoms in the context of molecular modeling) that are involved in computing it. For example, interatomic
distances involve two atoms, while bond angles involve three atoms. These features are then called k-body scalars.
Based on this framework, the authors carefully characterized the expressive power of invariant layers and proved that
"any number of iterations of IGWL cannot distinguish any 1-hop identical geometric graphs G1 and G2 and where the un-
derlying attributed graphs are isomorphic" and "GWL (corresponds to equivariant layer) can distinguish by propagating
information from the geometric structure", which indeed indicates the information loss from raw geometric structures
to invariant features (e.g., using interatomic distances or bond angles). Although adding more complex features like
dihedral angles could mitigate this issue, it also brings inefficiency due to the high complexity of such features.

• In PaiNN (Schütt et al., 2021), the authors also provided intuition on the point that there exist limits of invariant
representations. Firstly, the authors demonstrated that to express enough information (like bond angles of all neighbors
of an atom), using invariant representations would require computations with higher complexity than using equivariant
representations (see the analysis of Table 1 in (Schütt et al., 2021)). Moreover, the authors also showed that equivariant
representations allow the propagation of crucial geometrical information beyond the neighborhood, which is not
possible in the invariant case (see the analysis of Figure 1 in (Schütt et al., 2021)). This evidence motivated the authors
to develop models based on equivariant representations.

Second, we also demonstrate that invariant representations allow more flexibility for non-linear operations while the
equivariant constraints restrict the choice of equivariant operations that can be used. For invariant representations, there
exist no constraints on the operations that can be used. The invariant constraints are naturally satisfied once the invariant
features are extracted. Hence, we can freely choose different operation designs with arbitrary non-linearity to increase the
model capacity and incorporate priors for targeted tasks. However, it is not the same for equivariant representations. To
satisfy the equivariant constraints, operation classes that are qualified to correctly process equivariant representations are
restricted, and non-linear transformations commonly used in neural networks would break the constraints on equivariant
representations. That is to say, although equivariant representations contain more complete information, it is restricted for
models to well process and transform this information:

• Most existing works use (1) vector operations; and (2) tensor products of irreducible representations to develop
equivariant operations. For the former one, the non-linearity is constrained. For the latter one, the computational
complexity is high which impedes the deployment to large 3D systems.

• Empirically, previous equivariant models cannot consistently achieve superior performance on invariant tasks compared
to invariant models, due to the restricted non-linearity or computational complexity. For example, previous invariant
models are still dominant in invariant prediction tasks on PCQM4Mv2 and Molecule3D (Table 4 and 5). Moreover, the
model capacity of existing equivariant models is thus limited, and the ability to scale the model size up is also restricted.
In our preliminary experiments on previous models like PaiNN/TorchMD-Net, it is hard to train these models with
larger model sizes, on which we observed the training instability issues.

Based on the above explanations and evidence, we can see that invariant and equivariant representations play indeed
different roles. Compared to invariant representations, equivariant representations contain more complete information on the
geometrical structures. Compared to equivariant representations, the information contained by invariant representations
can be better transformed and processed with more flexible design choices of operations. From these perspectives, the
advantages of invariant and equivariant representations complement each other, which motivates us to bridge them and
combine their power via the cross-attention modules, bringing the unified framework of our GeoMFormer.
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D. More Related Works
Instead of sticking to the standard tensor product operation, SCN (Zitnick et al., 2022) used a rotation trick to encode the
atomic environment by using the irreps. Note that SCN does not strictly obey the equivariance constraint. eSCN (Passaro &
Zitnick, 2023) presented an interesting observation that the spherical harmonics filters have specific sparsity patterns if a
proper rotation acts on the input spherical coordinates. Combined with patterns of the Clebsch-Gordan coefficients, eSCN
proposed an efficient equivariant convolution to reduce SO(3) tensor products to SO(2) linear operations, achieving efficient
computation. Built upon the eSCN convolution, EquiformerV2 (Liao et al., 2024) developed a scalable Transformer-based
model that can be applied to the domain of 3D atomistic systems.

EGNN (Satorras et al., 2021) proposed a simple yet effective equivariant graph neural network framework. Based on EGNN,
GMN (Huang et al., 2022) further develops multi-channel equivariant modeling using forward kinematics information in
physical system. SEGNN (Brandstetter et al., 2022) generalizes the node and edge features to include vectors or tensors,
and incorporates geometric and physical information by using the tensor product operations. SAKE (Wang & Chodera,
2023) proposed spatial attention mechanism that uses neurally parametrized linear combinations of edge vectors to achieve
equivariance, which is less computationally intensive than traditional spherical harmonics-based methods. Using GMN as
its backbone, SEGNO (Liu et al., 2024) integrated Neural ODE to approximate continuous trajectories between states and
incorporated second-order motion equations to update the position and velocity in physical simulation.

E. Experimental Details
E.1. OC20 IS2RE

Baselines. We compare our GeoMFormer with several competitive baselines for learning geometric molecular representa-
tions. Crystal Graph Convolutional Neural Network (CGCNN) (Xie & Grossman, 2018) developed novel approaches to
modeling periodic crystal systems with diverse features as node embeddings. SchNet (Schütt et al., 2018) leveraged the
interatomic distances encoded via radial basis functions, which serve as the weights of continuous-filter convolutional layers.
DimeNet++ (Gasteiger et al., 2020a) introduced the directional message passing that encodes both distance and angular
information between triplets of atoms.

GemNet (Gasteiger et al., 2021) embedded all atom pairs within a given cutoff distance based on interatomic directions,
and proposed three forms of interaction to update the directional embeddings: Two-hop geometric message passing (Q-MP),
one-hop geometric message passing (T-MP), and atom self-interactions. An efficient variant named GemNet-T is proposed
to use cheaper forms of interaction.

SphereNet (Liu et al., 2022b) used the spherical coordinate system to represent the relative location of each atom in the
3D space and proposed the spherical message passing. GNS (Pfaff et al., 2020) is a framework for learning mesh-based
simulations using graph neural networks and can handle complex physical systems. Graphormer-3D (Shi et al., 2022)
extended Graphormer(Ying et al., 2021a) to learn geometric molecular representations, which encodes the interatomic
distance as attention bias terms and performed well on large-scale datasets. Equiformer (Liao & Smidt, 2023) uses the
tensor product operations to build a new scalable equivariant Transformer architecture and outperforms strong baselines on
the large-scale OC20 dataset (Chanussot et al., 2021).

Settings. As introduced in Section 5.1.1, we follow the experimental setup of Graphormer-3D (Shi et al., 2022) for a
fair comparison. Our GeoMFormer model consists of 12 layers. The dimension of hidden layers and feed-forward layers
is set to 768. The number of attention heads is set to 48. The number of Gaussian Basis kernels is set to 128. We use
AdamW as the optimizer and set the hyper-parameter ϵ to 1e-6 and (β1, β2) to (0.9,0.98). The gradient clip norm is set to
5.0. The peak learning rate is set to 2e-4. The batch size is set to 128. The dropout ratios for the input embeddings, attention
matrices, and hidden representations are set to 0.0, 0.1, and 0.0 respectively. The weight decay is set to 0.0. The model is
trained for 1 million steps with a 60k-step warm-up stage. After the warm-up stage, the learning rate decays linearly to zero.
Following Liao & Smidt (2023), we also use the noisy node data augmentation strategy (Godwin et al., 2022) to improve the
performance. The model is trained on 16 NVIDIA Tesla V100 GPUs.

E.2. OC20 IS2RS

Baselines. In this experiment, we choose several competitive baselines that perform well on equivariant prediction tasks
for molecules. PaiNN (Schütt et al., 2021) built upon the framework of EGNN (Satorras et al., 2021) to maintain both
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invariant and equivariant representations and further used the Hardamard product operation to transform the equivariant
representations. Specialized tensor prediction blocks were also developed for different molecular properties. TorchMD-
Net (Thölke & De Fabritiis, 2022) developed an equivariant Transformer architecture by using similar Hardamard product
operations and achieved strong performance on various tasks.

SpinConv (Shuaibi et al., 2021) encoded angular information with a local reference frame defined by two atoms and used
a spin convolution on the spherical representation to capture rich angular information while maintaining rotation invariance.
An additional prediction head is used to perform the equivariant prediction task, GemNet-dT (Gasteiger et al., 2021) is
a variant of GemNet-T that can directly perform force prediction and other equivariant tasks, e.g., the relaxed positions
in this experiment. GemNet-OC (Gasteiger et al., 2022) is an extension of GemNet by using more efficient components
and achieved better performance on OC20 tasks.

Settings. As introduced in Section 5.1.2, we adopt the direct prediction setting for comparing the ability to perform
equivariant prediction tasks on OC20 IS2RS. In particular, we re-implemented the baselines and carefully trained these
models for a fair comparison. Our GeoMFormer model consists of 12 layers. The dimension of hidden layers and feed-
forward layers is set to 768. The number of attention heads is set to 48. The number of Gaussian Basis kernels is set to 128.
We use AdamW as the optimizer and set the hyper-parameter ϵ to 1e-6 and (β1, β2) to (0.9,0.98). The gradient clip norm is
set to 5.0. The peak learning rate is set to 2e-4. The batch size is set to 64. The dropout ratios for the input embeddings,
attention matrices, and hidden representations are set to 0.0, 0.1, and 0.0 respectively. The weight decay is set to 0.0. The
model is trained for 1 million steps with a 60k-step warm-up stage. After the warm-up stage, the learning rate decays
linearly to zero. The model is trained on 16 NVIDIA Tesla V100 GPUs.

E.3. PCQM4Mv2

Baselines. We compare our GeoMFormer with several competitive baselines from the leaderboard of OGB Large-Scale
Challenge (Hu et al., 2021). First, we compare several message-passing neural network (MPNN) variants. Two widely used
models, GCN (Kipf & Welling, 2017) and GIN (Xu et al., 2019) are compared along with their variants with virtual node
(VN) (Gilmer et al., 2017; Hu et al., 2020). Besides, we compare GINE-VN (Brossard et al., 2020) and DeeperGCN-VN (Li
et al., 2020). GINE is the multi-hop version of GIN. DeeperGCN is a 12-layer GNN model with carefully designed
aggregators. The result of MLP-Fingerprint (Hu et al., 2021) is also reported. The complexity of these models is generally
O(n), where n denotes the number of atoms.

Additionally, we compare with a family of strong architectures, Graph Transformer (Ying et al., 2021a; Luo et al., 2022;
2023; Zhang et al., 2023), whose computational complexity is O(n2). TokenGT (Kim et al., 2022) purely used node and
edge representations as the input and adopted the standard Transformer architecture without graph-specific modifications.
EGT (Hussain et al., 2022) used global self-attention as an aggregation mechanism and utilized edge channels to capture
structural information. GRPE (Park et al., 2022) considered both node-spatial and node-edge relations and proposed a graph-
specific relative positional encoding. Graphormer (Ying et al., 2021a) developed graph structural encodings and integrated
them into a standard Transformer model, which achieved impressive performance across several world competitions (Ying
et al., 2021b; Shi et al., 2022). GraphGPS (Rampášek et al., 2022) proposed a framework to integrate the positional and
structural encodings, local message-passing mechanism, and global attention mechanism into the Transformer model. All
these models are designed to learn 2D molecular representations.

There also exist several models capable of utilizing the 3D geometric structure information in the training set of PCQM4Mv2.
Transformer-M (Luo et al., 2023) is a Transformer-based Molecular model that can take molecular data of 2D or 3D formats as
input and learn molecular representations, which was widely adopted by the winners of the 2nd OGB Large-Scale Challenge.
GPS++ (Masters et al., 2022) is a hybrid MPNN and Transformer model built on the GraphGPS framework (Rampášek et al.,
2022). It follows Transformer-M to utilize 3D atom positions and auxiliary tasks to win first place in the large-scale challenge.

Last, we include two complex models with O(n3) complexity. GEM-2 (Liu et al., 2022a) used multiple branches to encode
the full-range interactions between many-body objects and designed an axial attention mechanism to efficiently approximate
the interaction with low computational cost. Uni-Mol+ (Lu et al., 2023) proposed an iterative prediction framework to
achieve accurate quantum property prediction. It first generated 3D geometric structures from the 2D molecular graph using
fast yet inaccurate methods, e.g., RDKit (Landrum, 2016). Given the inaccurate 3D structure as the input, the model is
required to predict the equilibrium structure in an iterative manner. The predicted equilibrium structure is used to predict the
quantum property. Uni-Mol+ simultaneously maintain both atom representations and pair representations, which induce the
triplet complexity when updating the pair representations. With the carefully designed training strategy, Uni-Mol+ achieves
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state-of-the-art performance on PCQM4Mv2 while yielding high computational costs.

Settings. As previously stated, DFT-calculated equilibrium geometric structures are provided for molecules in the training
set. The molecules in the validation set do not have such information. We follow Uni-Mol+ (Lu et al., 2023) to train our
GeoMFormer. In particular, our model takes the RDKit-generated geometric structures as the input and is required to predict
both the HOMO-LUMO energy gap and the equilibrium structure by leveraging invariant and equivariant representations
respectively. After training, the model is able to predict the HOMO-LUMO gap using the RDKit-generated geometric
structures. We refer the readers to Uni-Mol+ (Lu et al., 2023) for more details on the training strategies.

Our GeoMFormer model consists of 8 layers. The dimension of hidden layers and feed-forward layers is set to 512. The
number of attention heads is set to 32. The number of Gaussian Basis kernels is set to 128. We use AdamW as the optimizer,
and set the hyper-parameter ϵ to 1e-8 and (β1, β2) to (0.9,0.999). The gradient clip norm is set to 5.0. The peak learning
rate is set to 2e-4. The batch size is set to 1024. The dropout ratios for the input embeddings, attention matrices, and hidden
representations are set to 0.0, 0.1, and 0.1 respectively. The weight decay is set to 0.0. The model is trained for 1.5 million
steps with a 150k-step warm-up stage. After the warm-up stage, the learning rate decays linearly to zero. Other hyper-
parameters are kept the same as the Uni-Mol+ for a fair comparison. The model is trained on 16 NVIDIA Tesla V100 GPUs.

E.4. Molecule3D

Baselines. We follow (Wang et al., 2022) to use several competitive baselines for comparison including GIN-Virtual (Hu
et al., 2021), SchNet (Schütt et al., 2018), DimeNet++ (Gasteiger et al., 2020a), SphereNet (Liu et al., 2022b) which have
already been introduced in previous sections. ComENet (Wang et al., 2022) proposed a message-passing layer that operates
within the 1-hop neighborhood of atoms and encoded the rotation angles to fulfill global completeness. We also implement
both PaiNN (Schütt et al., 2021) and TorchMD-Net (Thölke & De Fabritiis, 2022) for comparisons.

Settings. Following (Wang et al., 2022), we evaluate our GeoMFormer model on both random and scaffold splits. Our
GeoMFormer model consists of 12 layers. The dimension of hidden layers and feed-forward layers is set to 768. The
number of attention heads is set to 48. The number of Gaussian Basis kernels is set to 128. We use AdamW as the optimizer,
and set the hyper-parameter ϵ to 1e-8 and (β1, β2) to (0.9,0.999). The gradient clip norm is set to 5.0. The peak learning rate
is set to 3e-4. The batch size is set to 1024. The dropout ratios for the input embeddings, attention matrices, and hidden
representations are set to 0.0, 0.1, and 0.1 respectively. The weight decay is set to 0.0. The model is trained for 1 million
steps with a 60k-step warm-up stage. After the warm-up stage, the learning rate decays linearly to zero. The model is trained
on 16 NVIDIA V100 GPUs.

E.5. N-Body Simulation

Baselines. Following (Satorras et al., 2021), we choose several competitive baselines for comparison. Radial Field (Köhler
et al., 2019) developed theoretical tools for constructing equivariant flows and can be used to perform equivariant prediction
tasks. Tensor Field Network (Thomas et al., 2018) embedded the position of an object in the Cartesian space into higher-order
representations via products between learnable radial functions and spherical harmonics. In SE(3)-Transformer (Fuchs et al.,
2020), the standard attention mechanism was adapted to equivariant features using operations in the Tensor Field Network
model. EGNN (Satorras et al., 2021) proposed a simple framework. Its invariant representations encode type information
and relative distance, and are further used in vector scaling functions to transform the equivariant representations.

Settings. The input of the model includes initial positions p0 = {p0
1, . . . ,p

0
5} ∈ R5×3 of five objects, and their initial

velocities v0 = {v0
1, . . . ,v

0
5} ∈ R5×3 and respective charges c = {c1, . . . , c5} ∈ { − 1, 1}5. We encode positions and

velocities via separate equivariant streams, and updated them with separate invariant representations via cross-attention
modules. The equivariant prediction is based on both equivariant representations.

We follow the settings in (Satorras et al., 2021) for a fair comparison. Our GeoMFormer model consists of 4 layers. The
dimension of hidden layers and feed-forward layers is set to 80. The number of attention heads is set to 8. The number of
Gaussian Basis kernels is set to 64. We use Adam as the optimizer, and set the hyper-parameter ϵ to 1e-8 and (β1, β2) to
(0.9,0.999). The learning rate is fixed to 3e-4. The batch size is set to 100. The dropout ratios for the input embeddings,
attention matrices, activation functions, and hidden representations are all set to 0.4, and the drop path probability is set to
0.4. The model is trained for 10,000 epochs. The number of training samples is set to 3.000. The model is trained on 1
NVIDIA V100 GPUs.
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Table 7. Results on MD trajectories from the MD17 dataset. Scores are given by the MAE of energy predictions (kcal/mol) and forces
(kcal/mol/Å). NequIP does not provide errors on energy, for PaiNN we include the results with lower force error out of training only on
forces versus on forces and energy. Benzene corresponds to the dataset originally released in Chmiela et al. (2017), which is sometimes
left out from the literature. Our results are averaged over three random splits.

Molecule SchNet PhysNet DimeNet PaiNN NequIP TorchMD-Net GeoMFormer

Aspirin energy 0.37 0.230 0.204 0.167 - 0.123 0.118
forces 1.35 0.605 0.499 0.338 0.348 0.253 0.171

Benzene energy 0.08 - 0.078 - - 0.058 0.052
forces 0.31 - 0.187 - 0.187 0.196 0.146

Ethanol energy 0.08 0.059 0.064 0.064 - 0.052 0.047
forces 0.39 0.160 0.230 0.224 0.208 0.109 0.062

Malondialdehyde energy 0.13 0.094 0.104 0.091 - 0.077 0.071
forces 0.66 0.319 0.383 0.319 0.337 0.169 0.133

Naphthalene energy 0.16 0.142 0.122 0.116 - 0.085 0.081
forces 0.58 0.310 0.215 0.077 0.097 0.061 0.040

Salicylic Acid energy 0.20 0.126 0.134 0.116 - 0.093 0.099
forces 0.85 0.337 0.374 0.195 0.238 0.129 0.098

Toluene energy 0.12 0.100 0.102 0.095 - 0.074 0.078
forces 0.57 0.191 0.216 0.094 0.101 0.067 0.041

Uracil energy 0.14 0.108 0.115 0.106 - 0.095 0.095
forces 0.56 0.218 0.301 0.139 0.173 0.095 0.068

E.6. MD17

MD17 (Xu et al., 2021) consists of molecular dynamics trajectories of several small organic molecules. Each molecule has
its geometric structure along with the corresponding energy and force. The task is to predict both the energy and force of
the molecule’s geometric structure in the current state. To evaluate the performance of models in a limited data setting, all
models are trained on only 1,000 samples from which 50 are used for validation. The remaining data is used for evaluation.
For each molecule, we train a separate model on data samples of this molecule only. We set the model parameter budget the
same as Thölke & De Fabritiis (2022). Following (Thölke & De Fabritiis, 2022), we compare our GeoMFormer with several
competitive baselines: (1) SchNet (Schütt et al., 2018); (2) PhysNet (Unke & Meuwly, 2019); (3) DimeNet (Gasteiger et al.,
2020b); (4) PaiNN (Schütt et al., 2021); (5) NequIP (Batzner et al., 2022); (6) TorchMD-Net (Thölke & De Fabritiis, 2022).
The results are presented in Table 7. It can be easily seen that our GeoMFormer achieves competitive performance on the
energy prediction task (5 best and 1 tie out of 8 molecules) and consistently outperforms the best baselines by a significantly
large margin on the force prediction task, i.e., 30.6% relative force MAE reduction in average.

E.7. Ablation Study

Table 8. Impact of the attention modules on MD17 energy prediction task. All other hyperparameters are the same for a fair comparison.
Inv-Self-Attn Inv-Cross-Attn Equ-Self-Attn Equ-Cross-Attn Aspirin Benzene Ethanol Malondialdehyde Naphthalene Salicylic Acid Toluene Uracil

✓ ✓ ✓ ✓ 0.118 0.052 0.047 0.071 0.081 0.099 0.078 0.095
× ✓ ✓ ✓ 0.156 0.063 0.058 0.085 0.092 0.115 0.090 0.102
✓ × ✓ ✓ 0.161 0.062 0.060 0.086 0.111 0.113 0.094 0.101
✓ ✓ × ✓ 0.131 0.059 0.052 0.081 0.084 0.104 0.085 0.097
✓ ✓ ✓ × 0.143 0.056 0.051 0.078 0.097 0.106 0.081 0.099
✓ × × ✓ 0.169 0.062 0.061 0.087 0.113 0.115 0.094 0.103
✓ × ✓ × 0.172 0.064 0.061 0.086 0.112 0.116 0.095 0.103
× ✓ × ✓ 0.184 0.069 0.064 0.094 0.121 0.124 0.102 0.107
× ✓ ✓ × 0.181 0.071 0.067 0.093 0.118 0.121 0.101 0.109
✓ × × × 0.193 0.076 0.071 0.097 0.126 0.129 0.105 0.113

In this subsection, we conduct comprehensive experiments for ablation study on each building component of
our GeoMFormer model, including self-attention modules (Inv-Self-Attn,Equ-Self-Attn), cross-attention modules
(Inv-Cross-Attn,Equ-Cross-Attn), feed-forward networks (Inv-FFN,Equ-FFN), layer normalizations (Inv-LN,Equ-LN)
and the structural encoding. All the results show that each design choice consistently contribute to the overall performance
of GeoMFormer, strongly supporting the motivation of our design philosophy.

Impact of the Attention Modules. As stated in Section 4, our GeoMFormer model consists of four attention modules.
Without loss of generality, we conduct the experiments on the MD17 task and the N-body Simulation task to evaluate
the contribution of these attention modules to the overall performance. In particular, we consider all possible ablation
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Table 9. Impact of the attention modules on MD17 forces prediction task. All other hyperparameters are the same for a fair comparison.
Inv-Self-Attn Inv-Cross-Attn Equ-Self-Attn Equ-Cross-Attn Aspirin Benzene Ethanol Malondialdehyde Naphthalene Salicylic Acid Toluene Uracil

✓ ✓ ✓ ✓ 0.171 0.146 0.062 0.133 0.040 0.098 0.041 0.068
× ✓ ✓ ✓ 0.223 0.152 0.086 0.162 0.051 0.117 0.062 0.079
✓ × ✓ ✓ 0.257 0.159 0.104 0.178 0.063 0.126 0.076 0.091
✓ ✓ × ✓ 0.292 0.167 0.143 0.311 0.079 0.203 0.096 0.134
✓ ✓ ✓ × 0.281 0.160 0.167 0.272 0.094 0.185 0.081 0.113
× ✓ ✓ × 0.313 0.164 0.196 0.319 0.134 0.191 0.105 0.195
✓ × ✓ × 0.366 0.187 0.212 0.352 0.159 0.264 0.161 0.237
× ✓ × ✓ 0.324 0.173 0.189 0.331 0.129 0.237 0.127 0.167
✓ × × ✓ 0.358 0.182 0.219 0.337 0.172 0.272 0.134 0.241
× × ✓ × 0.411 0.194 0.227 0.361 0.188 0.289 0.173 0.258

Table 10. Impact of the attention modules on the N-body Simulation task. All other hyperparameters are the same for a fair comparison.
Inv-Self-Attn Inv-Cross-Attn Equ-Self-Attn Equ-Cross-Attn Performance Drop

✗ ✓ ✓ ✓ -8.5%
✓ ✗ ✓ ✓ -8.5%
✓ ✓ ✗ ✓ -19.1%
✓ ✓ ✓ ✗ -14.9%
✗ ✓ ✓ ✗ -14.9%
✓ ✗ ✓ ✗ -21.3%
✗ ✓ ✗ ✓ -17.0%
✓ ✗ ✗ ✓ -21.3%
✗ ✗ ✓ ✗ -25.5%

configurations that involve ablating one or more of the four modules. Note that for an equivariant prediction task (N-
body simulation task and MD17 forces prediction task), the preservation of at least one equivariant attention module is
necessary. Similarly, for an invariant prediction task (MD17 energy prediction task), at least one invariant attention module
should be preserved. The results are presented in Table 8 , Table 9 and Table 10. All the results consistently indicate
that all four attention modules significantly contribute to boosting the model’s performance. Specifically, the inclusion
of the cross-attn modules (Inv-Cross-Attn, Equ-Cross-Attn) consistently yields notably significant improvements on
both invariant and equivariant prediction tasks. In the MD17 energy prediction task (invariant), there is an 18.7% relative
improvement for Inv-Cross-Attn, a 9.8% relative improvement for Equ-Cross-Attn, and a 20.8% relative improvement
when both Inv-Cross-Attn and Equ-Cross-Attn are utilized. For the MD17 force prediction task (equivariant), the relative
improvements are 28.0% for Inv-Cross-Attn, 43.9% for Equ-Cross-Attn, and an impressive 60.8% for the combined use
of Inv-Cross-Attn and Equ-Cross-Attn. In the N-body simulation task (equivariant), the relative improvements are 7.8%
for Inv-Cross-Attn, 13.0% for Equ-Cross-Attn, and 17.5% for both Inv-Cross-Attn and Equ-Cross-Attn.

Table 11. Impact of the FFN modules on Ge-
oMFormer. All other hyperparameters are kept
the same for a fair comparison.

Inv-FFN Equ-FFN Performance Drop
✗ ✓ -4.26%
✓ ✗ -17.0%
✗ ✗ -21.3%

Table 12. Impact of the LN modules on GeoM-
Former. All other hyperparameters are kept the
same for a fair comparison.

Inv-LN Equ-LN Performance Drop
✗ ✓ -8.51%
✓ ✗ -63.8%
✗ ✗ -55.3%

Table 13. Impact of structural encod-
ing on GeoMFormer. All other hy-
perparameters are kept the same for
a fair comparison.

Structural Encoding Performance Drop
✗ -53.2%

Impact of the FFN. We perform ablation study on the N-body Simulation task to ascertain the contribution of both
invariant and equivariant FFN modules to the model’s performance. Specifically, we examine all possible settings involving
the ablation of one or both of the FFN modules. The results are presented in Table 11, which demonstrates that both FFN
modules positively contribute to enhancing performance.

Impact of the LN. We employ invariant and equivariant LN to stabilize training. To investigate whether the invariant and
equivariant LN modules improve performance, we conduct ablation study on the N-body Simulation task that encompass all
possible settings of ablating one or both LN modules. The results are displayed in Table 12, demonstrating that both LN
modules consistently help to enhance performance.

Impact of the Structural Encoding. We incorporate the structural encoding as a bias term when calculating attention
probability in our GeoMFormer, as described in Section A. We conduct ablation study on the N-body Simulation task to see
if it helps boost performance. Results are shown in Table 13. It can be seen that the introduction of structural encoding leads
to improved performance.
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