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ABSTRACT

The exponential growth of foundation models has created an unsustainable eval-
uation paradigm, where comprehensive assessment incurs prohibitive computa-
tional costs and environmental impact. We introduce SubLIME* ("Less Is More
for Evaluation"), an extensible framework that reduces evaluation costs by 10-
100× through adaptive sampling while preserving model ranking fidelity (Spear-
man ρ > 0.9). Our core innovation lies in identifying minimal representative
subsets through three key extensions: (1) SubLIME-I for text-to-image models
combines difficulty and quality sampling methods validated on the image genera-
tion tasks, reducing inference time from 2792 hours to 28 hours for evaluating
27 models; (2) SubLIME-C eliminates cross-benchmark coding redundancies
via LLM-guided similarity analysis (80% precision vs 66% baseline), improving
correlation by 14% at fixed sample sizes; (3) SubLIME-M enables multilingual
assessment through cross-lingual subset alignment, maintaining > 0.8 rank cor-
relation across 4 languages with 80% less data. SubLIME* experiments across
modalities, languages and benchmarks show that using strategic sampling based
on difficulty gradients, semantic diversity, and quality metrics maintains evalua-
tion integrity while significantly reducing costs by orders of magnitude.

1 INTRODUCTION

The rapid expansion of foundation models has transformed the landscape of artificial intelli-
gence. Platforms such as HuggingFace now host over 200,000 open-source generative AI mod-
els—including roughly 180,000 for text generation and 58,000 for text-to-image tasks—while
leaderboards like the Open LLM leaderboard and AlpacaEval track evaluations for more than 90,000
models. However, as model architectures diversify (e.g., fine-tuned, quantized, or merged variants)
and benchmark datasets proliferate, the computational, financial, and environmental costs of com-
prehensive evaluations escalate dramatically. For instance, the HELM project Liang et al. (2023)
spent approximately $50,000 (with $38,001 on commercial APIs and an additional 19,500 A100
GPU hours at $1/hr) to evaluate only 30 LLMs over 13 tasks. Scaling such evaluations to even a
fraction of the available models and benchmarks would be unsustainable.

In response to these challenges, we introduce SubLIME (“Less Is More for Evaluation”), a data-
efficient evaluation framework that leverages adaptive sampling techniques to identify representa-
tive, diverse, and high-quality subsets from large-scale benchmarks. By systematically eliminating
redundant evaluation instances while preserving model rankings and score distributions, SubLIME
dramatically reduces evaluation costs without compromising assessment fidelity.

Evaluation inefficiencies are particularly evident in areas like image generation, where many dif-
fusion models took anywhere from 30 seconds to several minutes to generate a single image. Our
analysis of the logs for building the HEIM leaderboard Hugging Face (2022) shows that evaluat-
ing 27 text-to-image models consumed 2,792 hours of inference time. SubLIME-I addresses these
challenges by using adaptive sampling methods tailored to the specific needs of text-to-image bench-
marks, maintaining a high correlation with full-scale evaluations while using only 1% of the data.

Evaluating code generation tasks can be more expensive than assessing multiple-choice language
benchmarks because they involve additional steps like code execution and verification, which add
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computational overhead. Furthermore, several coding benchmarks use overlapping test problems,
presented in different formats for prompts. SubLIME-C addresses this issue by using LLM-based
similarity analysis to detect and remove these cross-benchmark redundancies. This domain-specific
extension simplifies the evaluation process, ensuring only unique instances are kept.

As language models become integral to global applications, evaluations must move beyond English-
centric benchmarks. Multilingual assessments capture variations in syntax, semantics, and cultural
context, yet the scarcity of high-quality data in low-resource languages forces evaluators to mul-
tiply efforts across languages. Current practices face a scaling challenge: creating non-English
benchmarks often involves machine translation followed by costly human verification. SubLIME-M
adapts the core sampling strategies of SubLIME to efficiently evaluate models in diverse linguis-
tic settings, ensuring consistent performance assessments without having to create overwhelming
machine translated data which requires expensive human verifications. In this work, we make the
following contributions:
We introduce SubLIME*, an extensible, data-efficient evaluation framework that maintains model
ranking and score distributions while drastically reducing computational costs.
We design SubLIME-I for text-to-image models, employing adaptive sampling techniques that, in
our experiments, preserve high correlation with full benchmark evaluations while reducing data us-
age by up to 90%. Our analysis shows that the HEIM leaderboard construction for 27 models, which
originally required 4 months, can be dramatically to a single day.
We present SubLIME-C, a domain-specific extension that utilizes LLM-based similarity analysis
to remove redundant evaluation instances across multiple benchmarks.
We develop SubLIME-M for multilingual benchmarks, demonstrating effective subset selection
methods that yield robust performance assessments across a range of languages.

2 BACKGROUND AND RELATED WORK

Data efficient training was widely studied for model training on image Ding et al. (2023); Sorscher
et al. (2023), and language tasks Marion et al. (2023); Xie et al. (2023). Methods includes coreset
selection, importance sampling, and difficulty sampling to use smaller, representative datasets Zayed
et al. (2023); Guo et al. (2022). SubLIME* explores diverse sampling strategies in LLM and text-
to-image model evaluation, aiming to maintain model rankings and score distributions.

Efficient LLM evaluation was recently introduced in techniques like AnchorPoints Vivek et al.
(2024) and TinyBenchmarks Polo et al. (2024) which use coreset and item response theory (IRT)
to select a subset of evaluation instances, closely estimating full benchmark scores. These methods
can be considered for integration into SubLIME*. SubLIME-C explores cross-benchmark redun-
dancies, while SubLIME-I applies similar approaches to text-to-image generation models. Lifelong
Benchmarks Prabhu et al. (2024), expands candidate examples in benchmarks on an ongoing basis
and selects a subset of examples based on their difficulty ranking, for evaluating new models. For
new examples, difficulty estimates are based on evaluation using a selected subset of models. Flash-
HELM Perlitz et al. (2024) optimizes evaluation resources based on estimated leaderboard positions,
prioritizing higher-ranked models. Our approach, which evaluates all models on a sampled subset,
complements FlashHELM’s strategy.

Multimodal and multilingual foundation model evaluation adds further challenges to traditional
text-based, English-centric models. The recent success and quality of diffusion models in tasks such
as audio, image and video generation comes at a cost of efficiency. Denoising schedules during
inference significantly increase generation times Ye et al. (2025), which has a direct impact in the
speed and cost of evaluation of these types of models. Something similar happens in code generation
tasks, where most benchmarks focus on code accuracy Chen et al. (2021a); Zhuo et al. (2024), and
few look at efficient code generation Liu et al. (2024). The issue with evaluation inefficiency in both
scenarios scales up with multilingualism. For instance, HumanEval Chen et al. (2021a) uses just 164
prompts to evaluate Python performance with English prompts. Adding the programming language
dimension, McEval Chai et al. (2024) includes 16,000 prompts to evaluate models perfromance in
40 programming languages. Covering multilingual prompting, HumanEval-XL Peng et al. (2024)
scales down to 12 programming languages, but evaluates across 23 natural languages, which results
in over 22,000 prompts. Another significant issue is the scarcity of data in low-resource languages.
This scarcity often leads to models under-performing in mid- and low-resource languages compared
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to high-resource ones Chang et al. (2023), and to the challenge of differentiating actual multilingual
capabilities from a models’ ability to generalize a task evaluation format or objective from English to
other languages Aula-Blasco et al. (2025). In addition, language-specific nuances, such as idiomatic
expressions and cultural references, require models to have a deep understanding of each language’s
unique characteristics. Standard evaluation metrics and the practice of translating evaluation datasets
can introduce artifacts and cultural biases, potentially distorting the assessment of a model’s true
capabilities across different languages Singh et al. (2024). Some recent work has tackled this issue
by integrating a strong human-in-the-loop approach to multilingual benchmark creation Bandarkar
et al. (2024); Baucells et al. (2025). Our approach is an initial test on how to leverage these quality-
oriented efforts while reducing the cost of evaluation.

3 OUR SOLUTION

Our solution is built on top of DELE Saranathan et al. (2024), inspired by real-world examples
like the International Mathematical Olympiad which identifies top talents with only 6 problems.
By leveraging dataset redundancy, we select representative subsets that preserve model ranking and
score distributions, using statistical measures like Spearman correlation to ensure alignment with
the complete dataset. Diverse sampling methods S are used:
Random Sampling serves as the baseline, wherein we select 1% to 100% of the dataset in 1% in-
crements (using fixed random seeds). This straightforward approach offers a simple, unbiased way
to compare performance across LLMs and helps calibrate more sophisticated methods.
Clustering-based Sampling including both topic modeling and spectral clustering techniques are
explored to ensure diverse coverage of semantic structures. Topic modeling employs Non-Negative
Matrix Factorization (NMF) and Latent Dirichlet Allocation (LDA) over TF-IDF representations
Luhn (1958) to extract topical clusters, from which we stratify samples to capture broad thematic
variety. Spectral clustering leverages embeddings such as MTEB Muennighoff et al. (2022), BERT
Walkowiak & Gniewkowski (2019), or K-means Hu et al. (2021) to cluster data points in a latent
space and sample representatives from each cluster to preserve distributional properties.
Quality-based Sampling A high-quality subset prioritizes instances with clearer and more coherent
text, reducing noise and ambiguity. This includes indicators to minimize spelling errors Hu et al.
(2024) for text clarity, maintain an optimal average word length Bochkarev et al. (2012) to balance
complexity with readability, and promote lexical diversity Zenker & Kyle (2021) by selecting text
segments rich in vocabulary. These methods ensure that only high-quality items are retained, reduc-
ing confounding factors and improving the stability of model comparisons.
Difficulty-based Sampling considers text complexity measures such as Gunning Fog and SMOG.
The Gunning Fog Index estimates readability based on sentence length and the proportion of com-
plex words (3 or more syllables), indicating how difficult a passage is to comprehend. The SMOG
grade similarly estimates the education level needed to understand a text. By selecting subsets that
span a range of these scores, this approach ensures a balanced distribution of difficulty levels.

The algorithms of SubLIME* are described in Algo 1. Comparing its base version to DELE, we
added more sampling methods including Flesch readability Flesch (1948) (Quality) and SMOG (Dif-
ficulty) and clustering with SOTA embeddings models such as SFR-Embedding-Mistral Rui Meng
(2024). We use Spearman coefficient for a more relevant measure of rank correlation and Pearson
coefficient for score preservation between subset and fullset evaluations.

3.1 SUBLIME-I: APPLYING SUBLIME TO TEXT-TO-IMAGE MODELS

Text-to-image model evaluation demands significant computational resources because it iteratively
refines noisy inputs over many neural network passes to generate a coherent image. To address
this, we introduce SubLIME-I (Image), an extension of SubLIME, which employs adaptive sam-
pling strategies, tailored for the unique requirements of Text-to-Image models. By analyzing the
characteristics of each benchmark, SubLIME-I dynamically selects the optimal sampling method,
ensuring representative and high-quality subsets. Our experiments, covering 27 models including
DALLE and Stable Diffusion, utilize HEIM leaderboard Hugging Face (2022) benchmarks across
various datasets like MSCOCO, Cub200, and I2P.
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Algorithm 1 SubLIME*: subset sampling algorithms across languages and benchmarks
Require: Initialize
1: Specify X: SubLIME(Baseline), SubLIME-I, SubLIME-C, SubLIME-M
2: Target (B) benchmarks from public or private Leaderboards
3: Collect sample-level results for (Mb) models
4: Sampling based on random, quality, clustering, difficulty
5: db ⊂ b∀ ∈ B; (db is subset of b)

Ensure: Adaptive Sampling for each Benchmark
6: if X is SubLIME-C then
7: Identify candidate problem pairs based on cosine similarity using an embedding model
8: Flag pairwise data (DM , DN ) across ∀b in B using LLM based redundancy analysis
9: dR← ∀DM , DN , select one by comparing the intra-latent representation of candidate to the centroid

10: Update db← db - dR
11: end if
12: for each benchmark b ∈ B do
13: for each sampling technique s ∈ S do
14: for sampling rate x% from 1 to 100 at step size 1% do
15: if X is SubLIME-M (Multilingual) and b in non-English then
16: use the same Is,x from b in English
17: else
18: Is,x ← apply s to get indices of x% samples of db
19: end if
20: ds,x ← db[Is,x] (subset using Is,x)
21: scores,x ← {eval(m, ds,x) | m ∈Mb}
22: ranks,x ← argsort(scores,x)
23: τs,x ← ρ(ranks,x, rankfull) ▷ Spearman
24: ρs,x ← ρ(scores,x, scorefull) ▷ Pearson
25: Rs[x]← (τs,x, ρs,x)
26: end for
27: end for
28: Analyze Rs to find minimal x where τ ≥ 0.9 and ρ ≥ 0.9
29: end for
30: s∗b ← argmin(s) ∈ Sx
Ensure: Testset Validation
31: Using selected Is,x evaluate the Test models for Rank and Score Correlation Preservation
32: return Return optimal sampling subset Sub← {(s∗b , x∗

b)}10b=1

3.2 SUBLIME-C: ELIMINATING CROSS-BENCHMARK REDUNDANCY

Evaluation across multiple benchmarks sometimes involves significant redundancy, particularly
within specific categories such as coding, math, reasoning, and sentiment analysis etc. SubLIME-
C addresses this through a hybrid approach that combines embedding-based semantic search with
LLM-guided conceptual analysis to eliminate redundant evaluation instances across benchmarks.

Candidate Selection: We first pre-select candidate pairs of coding problems by computing
embedding-based similarity. This initial filtering reduces the search space by flagging pairs with
similarity scores above a predetermined threshold.

LLM-Based Similarity Analysis: For each candidate pair, we construct a prompt, listed in Ap-
pendix Section C, that instructs the LLM to assess the conceptual and algorithmic similarity between
the two problems. The conceptual evaluation focuses on the underlying problem statements and al-
gorithmic challenges rather than superficial differences (e.g., coding style or minor implementation
details). In return, the LLM generated a structured output with a similarity_score (ranging
from 0 to 3) and a concise justification. We then filter pairs by retaining only those with a
score above a threshold (e.g., ≥ 2.0). This LLM-based analysis leverages the reasoning abilities of
LLMs such as OpenAI o3-min-high OpenAI and DeepSeek-R1 DeepSeek-AI et al. (2025) to assess
the nuanced conceptual similarities between coding problems—going well beyond conventional se-
mantic similarity metrics.

Removing problem from redundant pair during the sampling: when removing duplicates (Al-
gorithm 1), we retain the problem closest to its benchmark’s centroid in the latent space. This
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preserves each benchmark’s distinctive characteristics while eliminating truly redundant items from
the selected coding benchmark.

3.3 SUBLIME-M: EXTENDING SUBLIME TO MULTILINGUAL BENCHMARKS

Evaluating models across multiple languages is increasingly important as language models are de-
ployed globally. Current multilingual evaluations face two challenges: (1) Most high-quality bench-
marks remain English-centric due to the prohibitive costs of creating native non-English evaluation
data, and (2) Translated benchmarks often introduce artifacts through machine translation pipelines
that require expensive human verification—a process particularly burdensome for low-resource lan-
guages with scarce labeling resources. SubLIME-M addresses these challenges through subset
selection, enabling data-efficient evaluations while minimizing translation dependency.

The core idea behind SubLIME-M is straightforward: as shown in Algo 1, we first run SubLIME
on the English version of the benchmark to optimal subset indices, and then we directly map these
indices to the corresponding samples in the non-English versions of the benchmark. This approach
assumes that the structure and semantic content of the evaluation data are preserved across trans-
lations or localized versions, thereby ensuring that the selected subset is representative in all lan-
guages. Finally, we evaluate the models using these aligned subsets. By doing so, we preserve the
ranking while reducing the amount of data that needs to be processed across all languages.

4 EXPERIMENT RESULTS AND DISCUSSIONS

We assess various sampling techniques’ effectiveness in reducing the benchmark time while main-
taining rankings using a subset of the complete dataset. Using our proposed method, as outlined
in 1, we aim to dynamically pinpoint the best sampling approach for each benchmark.

4.1 EXPERIMENTAL SETUP AND DESIGN

SubLIME(Baseline) setup: 10 Benchmarks from HuggingFace OpenLLM leaderboard i.e.
GSM8K, MATH, ARC, etc. Evaluated across 313 LLMs, such as Qwen, Llama etc.

SubLIME-I setup: 17 Benchmarks from HEIM leaderboard i.e. MSCOCO, CUB200, I2P, etc.
Evaluated across 27 text-to-image Models, such as Stable Diffusion, DALL-E 2 etc.

SubLIME-C setup: Coding leaderboard based on HumanEval Chen et al. (2021b) and
MBPP Google Research (2022). Evaluated 19 LLMs with sample-level results on our GPU clusters.

SubLIME-M setup: ARC in English and Catalan, and OpenBookQA in English, Spanish, Catalan,
and Galician languages Baucells et al. (2025). Evaluated 21 LLMs which can handle at least 3 of
these languages based on the description of their model cards.

4.2 RESULTS ON SUBLIME-I

Our empirical analysis demonstrates the efficacy of SubLIME-I (SubLIME for Text-to-Image) in
preserving model rankings while significantly reducing the evaluation effort. The key results from
our experiments are as follows:
Data efficiency: Using only 1-5% of the data, SubLIME-I maintains high Spearman correlation
coefficients across various text-to-image benchmarks, as shown in Figure 15 for clip-score and 1(a)
aestherics-score leaderboards for DrawBench Saharia et al. (2022) benchmark (SubLIME for some
of the remaining benchmark plots is depicted in Appendix C.2). Techniques like difficulty-based
and quality-based sampling proved particularly effective in identifying representative subsets within
5-10% of data that preserve the integrity of model rankings and score distributions.
Consistent Performance Across Benchmarks: We performed performance analysis of SubLIME-I
across multiple Text to Image benchmarks (16 benchmarks) by considering the average winrate of
different models across multi-benchmarks. Figure 1(b) for aesthetics and Figure 14 for clip score
leaderboard, demonstrates that SubLIME-I maintains strong average win-rate correlation (τ > 0.95)
across varying sampling percentages (10%–100%), and even we also observed τ > 0.9 for data
within 1% - 5% for many sampling methods, indicating potential for remarkable evaluation time
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Figure 1: SubLIME-I: (a) Rank and Score Preservation for Individual draw_bench benchmark on
- max-aesthetics-score Leaderboard; (b)Average winrate vs Rank Correlation of 27 Text-to-Image
models on all 16 benchmarks on Aesthetics Score Leaderboard

Least Performing Model from HEIM 
Leaderboard

kakaobrain_mindall-e

Top Performing Model from HEIM 
Leaderboard

huggingface_dreamlike-diffusion-v1-0

BenchmarkInput TextDifficulty 
Level

Parti-
prompts“the Earth”

Easiest 
Sample

Gunning 
Fog Score –

0.0067

I2P

"fight between godzilla, batman, robin, 
shaquille o'neal, aaron carter, abraham

lincoln, optimus prime, mcgruff the crime 
dog, jackie chan, indiana jones, a care 
bear, chuck norris, gandalf the grey, 

gandalf the white, monty python and the 
holy grail's black knight, benito

mussolini, the blue meanie, cowboy 
curtis, jambi the genie, robocop, the 

terminator, captain kirk, darth vader, lo 
pan, superman, every single power 

ranger, bill s. preston, ted logan, spock, 
dwayne'the rock'johnson, doctor octopus, 

hulk hogan, and mister rodgers”

Hardest 
Sample

Gunning 
Fog 

Score –
0.929

Figure 2: SubLIME-I: Example easy and hard sample identification: To show the advantage of
metric-based stratified sampling for rank preservation of models

and cost reduction regardless of benchmark selection, while maintaining the rank and score distri-
bution performance. This pattern persists across diverse datasets including MSCOCO, CUB200,
and Wikimedia, with full metrics available in Appendix C.2, showing SubLIME could be useful for
individual text to image benchmarks.

Time savings: Our analysis of the HEIM leaderboard log files shows that evaluating 27 models on
its benchmarks required a total of 2,792 hours of inference time. As shown in Figure 1b, this time
is estimated to be reduced to just 28 hours by selecting only 1% of the data, while still maintaining
a Spearman correlation greater than 0.9.

SubLIME-I Illustration Figure 2 provides an intuitive demonstration of the core idea behind
SubLIME-I. Our framework leverages metric-based stratified sampling—using criteria such as diffi-
culty, quality, and diversity—to construct representative subsets of evaluation data. In the figure, we
compare outputs from a top-performing and a bottom-performing text-to-image model on a sample
drawn from only 10% of the full HEIM leaderboard dataset. For a prompt with a high difficulty
score, the best model generates an image that faithfully captures the complex context, whereas the
lowest-performing model fails to do so. Conversely, when the prompt is easier, both models produce
comparable outputs. This contrast underscores the motivation for SubLIME-I: by ensuring that our
sampled subset spans a broad range of prompt difficulties and other quality metrics, we preserve the
relative performance differences among models.
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4.3 RESULTS ON SUBLIME-C

Table 1: Match rates for redundant pairs identified by semantic search with different cosine distance
thresholds, and LLM-based similarity analysis in HumanEval and MBPP benchmarks.

Method # of problem pairs Match rate
Semantic Search (cos similarity > 0.78) 1285 38.5%
Semantic Search (cos similarity > 0.82) 281 66.2%

Semantic Search (cos similarity > 0.78) + LLM Review 281 80.1%

Figure 3: SubLIME-C: Rank Correlation based on average win-rate across MBPP and HumanEval
for SubLIME(baseline) and SubLIME-C(Cross-redundancy removed) subsets

We compare SubLIME-C against our baseline SubLIME on a private coding leaderboard encom-
passing two popular benchmarks, HumanEval Chen et al. (2021b) and MBPP Google Research
(2022), evaluated across 19 LLMs. Our goal is to preserve rank correlation while reducing redun-
dancy in the joint evaluation of both benchmarks. Below, we detail our steps and main observations:
1. We evaluated 19 LLMs on both the HumanEval and MBPP benchmarks, and saved the rigorous
evaluation results in a comprehensive dataset, including sample-level LLM generation outputs and
code execution statuses.
2. To identify cross-benchmark redundancies, SubLIME-C combines semantic search (using co-
sine similarity on SFR embeddings) with an LLM-based review step that prompts a model to assess
conceptual overlap between coding tasks. Table 1 summarizes our ablation on different methods:

• At a cosine-similarity threshold of 0.78, semantic search flagged 1,285 problem pairs as
potential duplicates, with a 38.5% “true" match rate. Using a higher threshold of 0.82, the
match rate increased to 66.2% with remaining 281 problem pairs.

• When refining the same 1,285 candidate pairs with an additional LLM-based review, the
match rate increased to 80.1%—significantly higher than semantic-only filtering at the
same final count of problem pairs. This indicates that SubLIME-C identifies more truly
redundant coding problems.

3. Figure 3 illustrates the Spearman correlation vs the total number of samples when preserving aver-
age win-rate across HumanEval and MBPP. Notably, SubLIME-C consistently achieves higher cor-
relation for a given sample size compared to baseline SubLIME methods (e.g., random or clustering-
only). In many cases, SubLIME-C surpasses a 0.95 rank correlation with 10–20% fewer samples,
underscoring the benefits of removing cross-benchmark redundancies. Overall, these results confirm
that SubLIME-C delivers more data-efficient evaluations by eliminating needless repetition.

4.4 RESULTS ON SUBLIME-M

In this section, we conducted SubLIME-M experiments on two benchmarks with multilingual vari-
ants: OpenBookQA (in English, Spanish, Catalan, and Galician) and ARC Challenge (in English and

7
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Figure 4: SubLIME-M (Baseline) for 21 models used to select best subset across different sampling
rate to be used in test set validation for (a) OpenBookQA; (b) ARC Challenge

Figure 5: SubLIME-M: Multi-lingual Evaluation on Selected Subset from SubLIME for (a) Open-
BookQA; (b) ARC Challenge

Catalan). Our goals are two fold: (i) to assess whether the subsets selected by SubLIME-M preserve
rank correlations similarly across multiple languages, and (ii) to identify potential language-specific
limitations or idiosyncrasies.

Figure 5a depicts the Spearman correlation between model ranks on various percentage subsets
(from 5% to 30%) and the full dataset for English, Spanish, Catalan, and Galician. Notably, En-
glish achieves consistently high correlations (above 0.9) already at around 10–15%, while Spanish
hovers around 0.9 by 20%. In contrast, Catalan and Galician exhibit more variability, requiring
slightly larger subsets (often above 20%) to stabilize at correlations beyond 0.8–0.85. Despite these
differences, all four languages benefit from smaller evaluation subsets (e.g., 15–25% of the data),
preserving the model ordering at a high fidelity while drastically reducing evaluation overhead.

Figure 5b shows the Spearman correlation curves for English and Catalan on the ARC Challenge
dataset. We observe more pronounced fluctuations at lower sampling rates (around 5–10%), includ-
ing a sharp dip for both languages near the 10% mark. As the sample size increases beyond 15%,
the rank correlations recover steadily, exceeding 0.8 for Catalan and 0.75 for English by 20–25%.
We hypothesize that these oscillations arise from the benchmark’s narrower topical coverage, which
makes certain small subsets disproportionately challenging (or too easy) relative to the full distribu-
tion. Nonetheless, with at least 20% of the data, SubLIME-M still achieves robust rank preservation
(> 0.8) across both languages. We attribute some variations to the following aspects which require
further investigation:
Translation quality and artifacts. In lower-resource languages, evaluation data often relies on ma-
chine translations or partial human curation. In the case of OpenBookQA in Galician, the dataset
was automatic translated with human revision. Though we cannot assume any problems with the
revision process, it could be that resulting translations were not localized or had an English-like
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structure that, though it may be correct in Galician, fails at being fully natural. These aspects may
introduce distributional biases that complicate the sampling strategies (e.g., clustering or difficulty-
based methods) employed by SubLIME-M.
Language-specific difficulty / quality / clustering sampling: What is considered an “easy” prompt in
English may become more linguistically complex or culturally unfamiliar in another language, un-
dermining the assumption that difficulty or quality indicators transfer seamlessly. Moreover, mea-
sures such as readability scores—tuned primarily for English—may not accurately capture com-
plexity in Spanish, Catalan, or Galician, leading to skewed subset selections if used directly across
languages. A certain embedding model may not cluster well for a minority language.

Despite these open questions, our preliminary results show that a single English-based sampling
strategy still generalizes reasonably well to other languages, cutting down evaluation costs up to
80%. Moving forward, addressing language-specific challenges may involve: (i) leveraging more
refined alignment between source and target language data (e.g., improved translation or specialized
preprocessing for lower-resource languages), (ii) exploring cross-lingual embeddings and domain-
adaptive sampling strategies that can reliably cluster prompts in non-English contexts, and (iii)
incorporating human-in-the-loop quality checks or alternative readability metrics tailored to each
language. Such efforts can mitigate distributional biases and linguistic mismatches, ultimately al-
lowing SubLIME-M to more robustly account for cultural and linguistic nuances while maintaining
its data-efficient advantages.

4.5 TESTSET VALIDATION

The test set validation shows the effectiveness of SubLIME* on unseen models across different
modalities and leaderboards, suggesting that the data could be effectively selected in order to per-
form evaluations efficiently while preserving the rank correlations.

1. Validation on HEIM Leaderboard (Text to Image Models)
We selected 27 text-to-image models from the HEIM leaderboard. Out of these, 17 models were

Figure 6: SubLIME-I: Testset Validation on 10 Models from HEIM Leaderboard for MSCOCO
(left) and Draw Bench (right)

used to choose the best subsets at different sampling rates using SubLIME-I. The remaining 10
models, listed in C.2, were used for test set evaluation. In Figure 6, we observe that beyond a
10% sampling rate, we achieve a rank correlation of 90% or higher. Note that this experiment was
conducted on a limited set of models due to restricted access to sample-level results for the text-to-
image models. In the future, it can be extended to a more comprehensive list of models.

2. Validation on Latest HELM leaderboard
In this experiment, we conducted test set validation on 90 unseen LLMs from the latest HELM

Lite Leaderboard HELM. We used the optimal subsets selected from the OpenBookQA benchmark
during the SubLIME-M experiments. These winning subsets were identified by achieving high rank
correlations with the full set rankings at a given sampling rate using the 21 LLMs from the "training"
set. We assessed the selected subsets at various sampling rates—5-30%—on the 90 unseen LLMs.
As shown in Figure 7, the optimal subsets derived from the 21 LLMs work effectively with LLMs
in the test set.
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Figure 7: Testset Validation of OpenbookQA Benchmark on HELM Leaderboard Models

3. Validation on Open LLM Leaderboard
We obtained 313 LLMs from Open LLM Leaderboard to evaluate SubLIME(baseline) on 213 LLMs

Figure 8: SubLIME (Baseline): Testset Validation on 100 Test Models using best subset selected for
GSM8K (left) and TruthfulQA (right)

to obtain best subset for each sampling rate using adaptive sampling. We evaluate this selected
subsets at 5-30% on 100 Test Models. The results are plotted for this in Figure 8 for GSM8K and
TruthfulQA benchmarks. The graph shows that on the test set, even with 5% data, we were able
to achieve ≥0.92 Rank Correlation across different benchmarks. At 10% we achieve much better
results preserving upto 97% Ranks of the 100 models.

5 CONCLUSION

Our experiments demonstrate that the adaptive sampling strategies employed in SubLIME* yield
significant benefits across a diverse set of benchmarks and modalities. In the text-to-image domain
(SubLIME-I), representative subsets comprising as little as 1–5% of the full dataset were able to
preserve model ranking correlations (with Spearman τ often exceeding 0.9) while reducing evalu-
ation time from hundreds of hours to mere tens of hours. For coding benchmarks, SubLIME-C’s
integration of semantic search with an LLM-based review effectively eliminated cross-benchmark
redundancies, achieving higher true match rates and enabling redundancy aware data-efficient eval-
uations without compromising rank integrity. Finally, our SubLIME-M experiments confirmed that
winner subsets selected from an English benchmark can generalize to some of the unseen multi-
lingual test benchmarks across different models from the HELM Leaderboard, ensuring consistent
performance evaluations across languages.

Collectively, these results underscore the efficacy of our approach in reducing computational over-
head while maintaining high evaluation fidelity. SubLIME* not only accelerates the evaluation
process but also ensures that the relative performance of models is reliably preserved, paving the
way for scalable and efficient benchmarking of large-scale foundation models in varied application
domains.
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A APPENDIX / SUPPLEMENTAL MATERIAL

B SUBLIME (BASELINE) RESULTS

We perform efficient subset sampling on 10 widely used LLM Benchmarks such as GSM8K, ARC,
Winogrande, GPQA, Math, MUSR, etc which are evaluated across multiple leaderboards. We
enhance subset selection by incorporating metrics that identify the data characteristics of a given
benchmark.
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Figure 9: SubLIME (Baseline) - Rank and Score Correlation on GSM8K Benchmark

B.1 DIFFICULTY SAMPLING METHODS

The Difficult Words Percentage approach defines a list of over 3000 words known to 4th-grade
students, flagging words outside this list as challenging. Though not exhaustive, this list serves as
a readability index based on the proportion of such words. The Dale Chall Formula Chall & Dale
(1995) assesses text readability by considering the number of difficult words and text length. The
Flesch Reading Ease score Flesch (1948) quantifies readability based on sentence length and word
complexity. The Gunning Fog index Gunning (1952) evaluates text complexity through average
sentence length and complex words. These indices help in curating a dataset that not only challenges
the model across a spectrum of complexity levels but also targets a wider distribution of metrics,
enabling a more comparative analysis of LLM performance. Difficulty based sampling approach
involves selection of samples from a dataset according to their perceived level of difficulty, assessed
using readability indices Smith & Johnson (2020).

Dale-Chall Formula = 0.1579

(
Difficult Words

Total Words
× 100

)
+ 0.0496

(
Total Words

Total Sentences

)
,

Flesch Reading Ease = 206.835− 1.015 · Average number of words per sentence − 84.6 · Average number of syllables per word,

Gunning Fog Index = 0.4

(
words

sentence
+ 100 · complex words

words

)
.

Difficulty Sampling is important in data efficient model training as it helps optimize the learning and
generalization based on the most informative and challenging data.

C LLM PROMPT TEMPLATE FOR CODING REDUNDANCY ANALYSIS

Listing 1: LLM Prompt Template for Comparing Coding Problems
You are a coding problem analysis expert. Your task is to evaluate the

similarity between two coding problems, along with their reference
solutions. Focus primarily on the conceptual problem statements, the
underlying algorithmic challenges, and the overall intended
difficulty. The provided reference solutions are meant to help gauge
difficulty and potential pitfalls, but differences in coding style or
minor implementation details should be downplayed unless they

indicate a significant change in the problem’s core requirements.

Below are the details for the two problems:

---------------------------
Problem A:
{problem_A}

Reference Solution A:
{solution_A}
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Figure 10: Four difficulty sampling on Winograde showing wider score distributions compared to
original results

---------------------------
Problem B:
{problem_B}

Reference Solution B:
{solution_B}

---------------------------

The goal is to determine how likely it is that a tester who has solved
Problem A would also be capable of solving Problem B, based on the
conceptual similarities and difficulty of the problems.

Please rate the similarity on a scale from 0 to 3 according to the
following guidelines:

- **3:** The problems are extremely similar in terms of conceptual
requirements, problem setting, and overall difficulty. They are
nearly redundant for a tester.

- **2:** The problems are very similar; solving one strongly indicates
the ability to solve the other.

- **1:** There is only a little relevance between the problems.
- **0:** There is no relevance between the problems at all.

**Important Guidance:**
- **Primary Focus:** Evaluate the similarity based on the problem

statements and underlying concepts.
- **Secondary Focus:** Consider the reference solutions as indicators of

difficulty or potential pitfalls. Do not let differences in coding
style or minor implementation choices affect your assessment. For
instance, if both problems require the same core concept, such as
converting a decimal number to its binary representation, do not view
the use of built-in functions in one solution and manual logic in

another as indicators of differing difficulty between the problems
themselves.
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Provide a brief justification explaining your reasoning for the chosen
score.

Your final answer should be in JSON format with exactly two keys:
- "similarity_score": (an integer from 0 to 3)
- "justification": (a concise explanation)

**IMPORTANT:** Only output valid JSON. Do not include any additional text
.

Example output:
‘‘‘json
{
"similarity_score": 2,
"justification": "Both problems require similar data structure

manipulations, although Problem B introduces an extra constraint
that slightly increases its complexity."

}
‘‘‘

Now, please analyze the provided problems and output your answer.

C.1 ANALYSIS OF SAMPLING FOR 57 SUBJECTS IN MMLU

We present an detailed analysis of different sampling methods applied to all subjects in MMLU. An
example on the Law subject is shown in Figure 12 where Spectral MTEB performs the best among
all methods, and in Figure 13 Quality CPD performs best. The subjects in domains such as Figure
11 are also included here which achieves good rank preservation at lower sampling rate.

Figure 11: International Law: Rank and Accuracy (normalized) distribution preservation

Adaptive Sampling evaluates the performance of various sampling techniques across the 57 subjects
as shown in Table 2. Adaptive Sampling dynamically selects the best sampling technique for each
subject and ensures the sampling methods remain effective as the benchmarks evolve over time.

C.2 SUBLIME-I - EXPERIMENTS

SubLIME from Aesthetic and Clip Score leaderboard across various benchmarks are shown below.

Below are the list of test models from HEIM leaderboard which were used in evaluating the best
subsets.

1. craiyon_dalle-mini
2. openai_dalle-2
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Figure 12: Anatomy: Rank and Accuracy (normalized) distribution preservation

Figure 13: Business Ethics: Rank and Accuracy (normalized) distribution preservation

3. huggingface_dreamlike-photoreal-v2-0
4. huggingface_openjourney-v2-0
5. huggingface_stable-diffusion-v1-5
6. craiyon_dalle-mega
7. huggingface_stable-diffusion-v2-base
8. huggingface_stable-diffusion-safe-weak
9. huggingface_stable-diffusion-safe-medium

10. huggingface_vintedois-diffusion-v0-1

C.3 SUBLIME-C - EXPERIMENTS

SubLIME on Individual Benchmarks Results are given below, this was performed before the cross
benchmark evaluation. The Rank and Score preservation is performed on MBP and HumanEval
using its result score. The redundancy is then remvoed with the help of GPT4.0 evaluator.

C.4 SUBLIME-M - EXPERIMENTS

Below are the list of 21 models which were chosen to generate the best subset

1. mistralai/Mixtral-8x7B-Instruct-v0.1
2. tiiuae/falcon-40b
3. FelixChao/Scorpio-7B
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Figure 14: Average winrate vs Rank Correlation of 27 Text-to-Image models on all 16 benchmarks
on Clip Score Leaderboard

Figure 15: Rank and Score Preservation across multiple sample rate for draw_bench benchmark -
expected-clip-score

Figure 16: Rank and Score Preservation vs sampling ratio on most_significant_historical_figures
Benchmark on Aesthetics scores
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Figure 17: Rank and Score Preservation vs sampling ratio on I2P Benchmark on Aesthetics scores

Figure 18: Rank and Score Preservation vs sampling ratio on detection Benchmark on Aesthetics
scores

Figure 19: Rank and Score Preservation vs sampling ratio on Relational understanding Benchmark
on Aesthetics scores
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Figure 20: Rank and Score Preservation vs sampling ratio on Logos Benchmark on Aesthetics scores

Figure 21: Rank and Score Preservation vs sampling ratio on Daily dalle Benchmark on Aesthetics
scores

Figure 22: Rank and Score Preservation vs sampling ratio on Winoground Benchmark on Clip-
scores
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Figure 23: Rank and Score Preservation vs sampling ratio on Detection Benchmark on Clip-scores

Figure 24: Rank and Score Preservation vs sampling ratio on Relational Understanding Benchmark
on Clip-scores

Figure 25: Rank and Score Preservation vs sampling ratio on Logos Benchmark on Clip-scores

Figure 26: Rank and Score Preservation vs sampling ratio on Daile Dalle Benchmark on Clip-scores

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a paper at DATA-FM workshop @ ICLR 2025

4. meta-llama/Llama-3.1-8B

5. BSC-LT/salamandra-7b

6. cloudyu/Mixtral_13B_Chat

7. mayflowergmbh/occiglot-7b-es-en-instruct-AWQ

8. ibm-granite/granite-3.0-8b-base

9. MaziyarPanahi/Calme-7B-Instruct-v0.4

10. CohereForAI/aya-expanse-8b

11. google/gemma-2-2b-it

12. HiTZ/latxa-70b-v1.2

13. clibrain/lince-mistral-7b-it-es

14. HiTZ/latxa-13b-v1.2

15. GenVRadmin/AryaBhatta-GemmaUltra-Merged

16. gplsi/Aitana-6.3B

17. deepseek-ai/DeepSeek-R1-Distill-Qwen-7B

18. vanhocpham/Llama-3.2-3B-Instruct-GGUF

19. proxectonos/Carballo-bloom-1.3B

20. LLaMAX/LLaMAX2-7B

21. HPLT/sft-fpft-multilingual-downsampled-pythia–6.9b-deduped
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Figure 27: SubLIME on MBPP Benchmark : Before Redundancy Removal
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Figure 28: SubLIME on Human Eval Benchmark : Before Redundancy Removal
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C.5 DISCUSSION: BROADER APPLICATIONS OF ADAPTIVE SAMPLING

Tackling Unbalanced Benchmark Our analysis finds imbalances within certain benchmarks, i.e. in
some coding benchmarks where dominance by languages such as Python is prevalent. To counteract
this, a balanced sampling approach, aimed at capturing a model’s proficiency across a wider array
of coding tasks, can be employed to rectify the skew towards any single programming language.

Enhancing Benchmark Fairness by Mitigating Bias Our adaptive sampling approach also could
help address biases inherent in benchmarks, which can distort the evaluation outcomes. These bi-
ases, arising from the benchmark’s composition, the datasets employed, or the formulation of tasks,
can skew results in favor of models tuned to the majority representation within the dataset, penaliz-
ing those better suited to minority viewpoints or rarer scenarios. By judiciously selecting a diverse
and representative set of tasks, our methodology diminishes the undue influence of specific tasks or
task types on model performance, promoting a fairer comparison across models.

In summary, our adaptive sampling strategy is not just a tool for efficiency but a versatile approach
that accommodates the varying use cases of LLM evaluation. It ensures that benchmarks are not only
less resource-intensive but also more representative, balanced, and fair, opening new opportunities
in LLM evaluations.
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Table 2: Adaptive sampling to each subject in MMLU with >90% Pearson Coefficient

MMLU Subject Selected Sampling Method
high_school_government_politics random

abstract_algebra clustering_Spectral_MTEB
anatomy clustering_Spectral_MTEB

astronomy random
business_ethics quality_CPD

clinical_knowledge clustering_Spectral_MTEB
college_biology quality_spelling_error

college_chemistry quality_CPD
college_computer_science quality_CPD

college_mathematics clustering_Spectral_MTEB
college_medicine clustering_Spectral_BERT
college_physics clustering_Spectral_BERT

computer_security clustering_NMF_TFIDF
conceptual_physics clustering_Spectral_BERT

econometrics clustering_NMF_TFIDF
electrical_engineering quality_spelling_error

elementary_mathematics quality_lexical_diversity
formal_logic clustering_Spectral_BERT
global_facts quality_CPD

high_school_biology clustering_Spectral_MTEB
high_school_chemistry quality_CPD

high_school_computer_science quality_spelling_error
high_school_european_history clustering_Spectral_BERT

high_school_geography clustering_NMF_TFIDF
high_school_macroeconomics clustering_NMF_TFIDF

high_school_mathematics clustering_NMF_TFIDF
high_school_microeconomics quality_spelling_error

high_school_physics quality_spelling_error
high_school_psychology random

high_school_statistics clustering_NMF_TFIDF
high_school_us_history quality_spelling_error

high_school_world_history clustering_KMeans_TFIDF
human_aging random

human_sexuality clustering_Spectral_BERT
international_law quality_spelling_error

jurisprudence clustering_NMF_TFIDF
logical_fallacies random

machine_learning quality_spelling_error
management clustering_Spectral_BERT

marketing clustering_KMeans_TFIDF
medical_genetics quality_lexical_diversity

miscellaneous clustering_NMF_TFIDF
moral_disputes random
moral_scenarios clustering_NMF_TFIDF

nutrition clustering_Spectral_BERT
philosophy quality_spelling_error
prehistory quality_lexical_diversity

professional_accounting random
professional_law clustering_NMF_TFIDF

professional_medicine clustering_Spectral_MTEB
professional_psychology quality_CPD

public_relations clustering_KMeans_TFIDF
security_studies clustering_KMeans_TFIDF

sociology quality_spelling_error
us_foreign_policy clustering_NMF_TFIDF

virology clustering_Spectral_MTEB
world_religions quality_CPD
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