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Abstract

We study the Sparse Multiple Kernel Learning (SMKL), which is the problem of selecting
a sparse convex combination of prespecified kernels for support vector binary classification.
Unlike prevailing ¢1-regularized approaches that approximate a sparsifying penalty, we for-
mulate the problem by imposing an explicit cardinality constraint on the kernel weights
and add an /5 penalty for robustness. We solve the resulting non-convex minimax problem
via an alternating best response algorithm with two subproblems: the a-subproblem is a
standard kernel SVM dual solved via LIBSVM, while the B-subproblem admits an efficient
solution via the Greedy Selector and Simplex Projector algorithm. We reformulate SMKL
as a mixed integer semidefinite optimization problem and derive a hierarchy of semidefinite
convex relaxations which can be used to certify near-optimality of the solutions returned
by our best response algorithm and also to warm start it. On ten UCI benchmarks, our
method with random initialization outperforms state-of-the-art MKL approaches in out of
sample prediction accuracy on average by 3.34 percentage points (relative to the best per-
forming benchmark) while selecting a small number of candidate kernels in comparable
runtime. With warm starting, our method outperforms the best performing benchmark’s
out of sample prediction accuracy on average by 4.05 percentage points. Our convex relax-
ations provide a certificate that in several cases, the solution returned by our best response
algorithm is the globally optimal solution.

1 Introduction

Given a dataset {(z;,y;)};_; where x; € R™ are m-dimensional features and y; € {—1, 1} are binary labels,
the Kernel Support Vector Machines problem (KSVM) seeks to select a possibly infinite dimensional feature
map ® : R™ — R and learn a linear classification rule § = sgn(w? ®(x) + b) that generalizes well to unseen
data. For a fixed feature map @, the learning problem can be written in primal form as:

1 n

weRd mER? beR 5”“’”% + C;m, st gi(w' @(@i) +b) > 1—m Vi, (1)
where C € R, is a hyperparameter that is to be cross-validated by minimizing a validation metric (see,
e.g., Owen & Perry, 2009) to obtain strong out-of-sample performance in theory and practice (Bousquet &
Elisseeff, 2002). The first term in the objective function of Problem 1 encourages minimal norm solutions
as a regularity condition that reduces overfitting while the second term in the objective function penalizes
misclassified examples in the training dataset.

The KSVM learning problem given by equation 1 emits a dual formulation that is often the preferred
formulation to consider as it avoids requiring explicit construction of the feature map ® (which may be
prohibitive for large dimensional feature maps or simply impossible in the case of infinite dimensional feature
maps). Specifically, the dual form of KSVM is given by
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n 1 n
max Zai—i(yooz)TI{(yooz)7 s.t. Zaiyi:O, C>a; >0 Vi, (2)
i=1 =1

acRY

where K is the kernel matrix corresponding to the feature map ® (meaning that K;; = ®(x;)” ®(x;)).

In Vanilla KSVM, the choice of kernel matrix is typically selected via cross-validation. This however is
inefficient and significantly limits the number of kernels that are considered. Moreover, it can be natural to
use different kernels for different features. This might occur, for instance, if each data point consists of both
text-based and visual features. Multiple kernel learning (MKL) addresses this limitation by considering a
prespecificed collection of ¢ candidate kernels { K;}7_; and searching over the space of convex combinations
of said kernels (note that some treatments of MKL consider general conic combinations of candidate kernels
rather than only convex combinations). Explicitly, MKL is formulated as:

n q
min max Z a; — %(y oa)T {Z,BZKZ} (yoar)
i=1 i=1

ﬁe]Ri aeRi

n
s.t. ZaiinO, C>a; >0 Vi, [Bl1=1
i=1

Since any symmetric positive semidefinite matrix is a valid kernel (meaning that it corresponds to some
possibly infinite dimensional feature map), the matrix K(B8) = >./_, 3;K; is a valid kernel matrix for any
B € R%. In words, Problem 3 seeks to find the kernel in the convex hull of the ¢ kernels { K;}7_; that results
in the lowest training objective value when used to fit KSVM. The inclusion of the constraint ||B]|; = 1 in
Problem 3 is typically motivated as inducing sparsity in 8 as a convex surrogate to the £y norm function. In
this work, we take the approach of directly imposing a cardinality constraint on 8 and demonstrate that this
yields a tractable formulation that produces superior solutions to MKL. Explicitly, given a target sparsity
level k € N, we consider:

. n 1 q
min max Zai— 2(y0a)T|:ZﬂiKi:| (yoa)+ B3
i=1 i=1

ﬂeR‘iaeRf{_’

n (4)
st. Sawi=0, C>a;>0 ¥i, [Bli=1 [Blo< ko,

=1

where in addition to the cardinality constraint on 8 we have introduced an ¢ regularization term in the
objective function to encourage robustness.

1.1 Contribution and Structure

In this paper, we present an alternating best response algorithm that produces high quality solutions to Prob-
lem 4 efficiently and outperforms state-of-the-art benchmark methods. We exactly reformulate Problem 4 as
a mixed integer semidefinite program which emits a natural hierarchy of semidefinite convex relaxations that
produce lower bounds on the optimal objective value of Problem 4. We employ these lower bounds to produce
certificates of near optimality of the feasible solutions returned by our alternating best response algorithm
and additionally as warm starts for our algorithmic approach. We present rigorous numerical results across
UCI benchmark datasets. On average, our approach outperforms the best performing benchmark method
in out of sample prediction accuracy by 3.34 percentage points while selecting a small number of candidate
kernels in comparable runtime when using a random initialization. With warm starting, our approach out-
performs the best performing benchmark’s out of sample prediction accuracy by 4.05 percentage points on
average. In many cases, the lower bounds produced by our semidefinite relaxations certify that the solution
returned by our alternating best response heuristic is the globally optimal solution to Problem 4.

The rest of the paper is laid out as follows. In Section 2, we review previous work that is closely related to
SMKL. In Section 3, we study the two subproblems that emerge naturally from Problem 4 and we present our
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alternating best response algorithm. We reformulate Problem 4 as a mixed integer semidefinite optimization
problem in Section 4 and present a family of convex relaxations. Finally, in Section 5 we investigate the
performance of our algorithm against benchmark methods on real world UCI datasets.

Notation: We let nonbold face characters such as b denote scalars, lowercase bold faced characters such
as x denote vectors, uppercase bold faced characters such as X denote matrices, and calligraphic uppercase
characters such as Z denote sets. We let [n] denote the set of running indices {1,...,n}. We let 0,, denote
an n-dimensional vector of all 0’s, 0,,x,, denote an n x m-dimensional matrix of all 0’s, and I,, denote the
n x n identity matrix. We let S™ denote the cone of n x n symmetric matrices and S denote the cone of
n X n positive semidefinite matrices.

2 Literature Review and Preliminaries

In this section, we present a non-exhaustive literature review to highlight key ideas from the MKL literature
that we build upon with a particular focus on open source methods that are used as benchmarks in this
work. We additionally review commonly used kernel families that we leverage in this work.

2.1 Literature Review

In this subsection, we present a brief overview of the MKL literature and highlight a collection of open source
approaches which will be used as benchmark methods in this work. As an exhaustive review of the literature
is outside the scope of this paper, we refer the interested reader to Goénen & Alpaydmn (2011).

2.1.1 MKL Foundations

Multiple Kernel Learning emerged in the early 2000s as a framework to learn an optimal combination of
prespecified base kernels rather than relying on a single preselected kernel. Lanckriet et al. (2004) first
formulated MKL as a semidefinite optimization problem that learned nonnegative kernel weights alongside
an SVM classifier. The authors demonstrated that combining kernels from heterogeneous data sources
can significantly improve accuracy over the best single kernel. As off the shelf interior point methods
suffer from scalability challenges for semidefinite programming, several subsequent efforts sought to improve
the scalability of MKL by leveraging alternate formulations and algorithmic methods. To this end, Bach
et al. (2004) reformulated MKL as a quadratically constrained quadratic program and designed a sequential
minimization based solution method. In order to solve MKL problems with large datasets, Sonnenburg et al.
(2006) developed a column generation algorithm to solve a semi-infinite linear programming reformulation
of MKL and Rakotomamonjy et al. (2008) developed the widely used SimpleMKL solver which leverages an
efficient gradient descent based algorithm.

Recognizing that the number of base kernels to consider may often be considerably large, several authors
sought to develop techniques that produced a sparse kernel meaning that the selected kernel was formed
using only a small subset of the input base kernels. As directly imposing a cardinality constraint on the
kernel combination vector 8 produces an NP hard problem, many approaches leverage the ¢; norm function
as a convex surrogate for the £y norm function analogous to the approach taken by Lasso to solve sparse
regression (Tibshirani, 1996). To this end, Bach (2008) proposed a MKL formulation that sought to enforce
group-level sparsity through the inclusion of a weighted ¢;-norm regularizer in the SVM dual which was
shown to have desirable consistency properties. Several other convex approximations have been employed in
the literature. For example, Koltchinskii & Yuan (2010) attempt to induce sparsity through a combination
of an empirical /3 norm and the reproducing kernel Hilbert space norms induced by the base kernels. In an
alternate direction, Kloft et al. (2011) explore £, norm constraints (for p > 1) and theoretically explore their
influence on sparsity.

Beyond ¢,, surrogates, some authors have explored non-convex penalties that more closely approximate the
¢y norm. For example, Subrahmanya & Shin (2010) propose a log-penalised MKL formulation that attains
competitive accuracy on cancer-detection and hyperspectral-image benchmarks while selecting markedly
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fewer kernels than other multiple kernel methods. Nevertheless, the sparsity in their approach is still induced
through a smooth relaxation rather than an explicit cardinality constraint.

Despite their empirical success, smooth or convex surrogates of £y do not guarantee truly sparse solutions.
Lasso-type penalties, for instance, produce robust estimators but not sparse estimators and can be out-
performed by methods that exactly enforce sparsity (Bertsimas & Copenhaver, 2018). This insight has
motivated a recent line of work that revisits direct cardinality constraints in MKL. Xue & Song (2019) pro-
pose a non-convex formulation of sparse MKL which they solve using techniques from difference-of-convex
programming. However, their approach considers using various smooth approximations to the o norm (ex-
ponential, logarithmic, capped ¢; and SCAD). In this work, we consider an explicit £y norm constraint which
we enforce directly without approximation.

2.1.2 Open Source MKL Benchmarks

In this work, we benchmark our methods against three well studied and widely used MKL algorithms that
are implemented in the open-source MKLpy library (Lauriola & Aiolli, 2020): AverageMKL, EasyMKL (Aiolli
& Donini, 2015), and CKA (Cortes et al., 2012). We briefly outline each of these approaches below.

AverageMKL This baseline sets all kernel weights uniformly as 5; = % for all . This produces the
following combined kernel:

Although AverageMKL trivially determines kernel weights, this method is surprisingly competitive when
most kernels are informative (Lewis et al., 2006). Its parameter-free design and limited training cost make
it a useful sanity check and benchmark for evaluating the performance of more sophisticated MKL methods.

EasyMKL This method is a scalable MKL algorithm that learns a combined kernel without alternating
between SVM training and kernel weight updates. Explicitly, EasyMKL seeks a combined kernel K(3) =

7, BiK; where 8> 0 and ||3]|3 = 1. This is achieved by introducing a distribution vector v € I' over the
training examples (separately normalized on positive and negative classes), and letting Y = diag(y). Here,
I" denotes the set of possible distributions. Define d(v) € RY by letting d;(v) = v Y K;Y 7, the (squared)
margin of K; under weighting . EasyMKL casts MKL as the saddle-point problem

min max [(1-3) 81dly) + AlllE], (5)

where A € [0,1] trades off margin maximization against variance regularization. For fixed -y, the inner

maximization admits the closed-form solution g* = % which reduces Problem 5 to
min [(1=2) [d9)l2 + AllvI3]. (6)
~yerl

The authors then replace ||d(7)||2 in Problem 6 with ||d(7)|l1, which produces a more tractable optimization
problem and empirically is sparsity inducing.

CKA (Centered Kernel Alignment) This approach selects kernel weights by directly maximizing the
alignment between a convex combination of base kernels and the target label kernel. Let K, = yy'
and denote by K{ = C K,;C the centered version of kernel K; where C = I — %llT. Let a =

(K{, K§),..., (K¢, Kg))T and let M;; = (K¢, Kf). Then CKA solves the generalized Rayleigh quo-
tient
(8'a)?
max = —————,
20.]i8l.=1 BT M 3

whose solution admits the closed-form 8* = M ~1a/|| M ~'al|. While CKA typically produces dense weight
vectors, its efficiency and strong empirical performance make it a valuable baseline for MKL.
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In summary, AverageMKL serves as a simple and effective baseline, EasyMKL provides a sparsity inducing
and scalable convex method grounded in margin maximization, and CKA offers a fast alignment-based
solution. The strong empirical performance and reproducibility of these methods make them well-suited as
benchmark methods for evaluating sparse MKL algorithms.

2.2 Common Kernel Families

In this subsection, we briefly review commonly used families of kernel functions that we consider in this
work.

2.2.1 Linear

The linear kernel is given by K(x;, ;) = a:iTa:j for vectors x;,z; € R™. This is the most primitive kernel
which corresponds to the identity feature map. This kernel works well when data is approximately linearly
separable in its latent space. Linear kernels are especially popular in high-dimensional settings such as
document classification, where sparse bag-of-words representations often admit an effective linear decision
boundary and enable efficient training (Joachims, 1998).

2.2.2 Polynomial

The polynomial kernel of degree d € N is given by K(z;, z;) = (az; x; + ¢)¢ for vectors ;, z; € R™ where
a > 0,c € R. This kernel allows learning nonlinear relationships by mapping inputs into the feature space of
monomials up to degree d. Polynomial kernels were featured in early SVM work to demonstrate the kernel
trick Boser et al. (1992); Cortes & Vapnik (1995). They can be useful for data where feature interactions of
a known order are important, though choosing a very large degree d increases the risk of overfitting.

2.2.3 Radial Basis Function (RBF)

The RBF kernel, sometimes referred to as the Gaussian kernel, is given by K(z;, x;) = exp(—||z; — ;|*)
for vectors x;,x; € R" where v > 0. The RBF kernel corresponds to an infinite-dimensional feature
map and is universal, meaning that its reproducing kernel Hilbert space can approximate any continuous
function arbitrarily well on compact subsets of R™ (Steinwart, 2001). This kernel has become one of the
most commonly used kernels in SVM practice (Scholkopf & Smola, 2002). The RBF kernel is governed by
a single bandwidth parameter v, simplifying model selection relative to, for example, polynomial kernels.
Thanks to its flexibility and strong empirical performance, it is the default choice in many SVM packages
(e.g., LIBSVM uses the RBF kernel by default (Chang & Lin, 2011a)).

2.2.4 Sigmoid

The sigmoid kernel is given by K (x;, z;) = tanh(yx, ;+7) for vectors z;, x; € R™ where v > 0,7 € R. Also
known as the neural network kernel, this kernel arises from the activation function of a two-layer perceptron.
It gained some popularity in early SVM experiments due to its connection to neural networks (Burges, 1998).
In practice, the sigmoid kernel can behave like the RBF kernel for certain parameter settings (Schélkopf &
Smola, 2002).

2.2.5 Laplacian

The Laplacian kernel is given by K(x;, x;) = exp(—7||@; — ;||1) for vectors x;, x; € R™ where v > 0. The
Laplacian kernel is similar to the RBF kernel but uses the ¢; distance as a measure of similarity in place
of using the /> distance. Like the RBF kernel, the Laplacian kernel has a single width parameter v that
controls the decay of the similarity measure.

3 An Alternating Best Response Algorithm

In this section, we present an alternating best response algorithm that produces high quality feasible solutions
to Problem 4. The presence of the ¢, constraint on 8 makes the problem non convex and therefore not
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amenable to commonly used gradient descent ascent style algorithms for minimax optimization. Nevertheless,
we show in Sections 3.1 and 3.2 that both the maximization over a for a fixed value of 8 (which we refer
to as the a-subproblem) and the minimization over 8 for a fixed value of @ (which we refer to as the
B-subproblem) can be solved efficiently.

3.1 The a-Subproblem

For a fixed value 8 € RY, define the combined kernel K (83) as K(8) = >_7_, 8; K. Then, the a-subproblem
is given by:

max {Zai - %(yoa)TK(ﬂ) (yoa)}. (7)

aclo, C'] —
Y im0
This formulation is equivalent to the standard Kernel SVM dual problem, with the only difference being
that the kernel matrix is given by K(8). As a convex quadratic program, Problem 7 can be solved to global
optimality using any one of several well-established solvers. In the implementation of our approach, we
leverage the LIBSVM solver (Chang & Lin, 2011b) which employs the Sequential Minimal Optimization
(SMO) algorithm. SMO decomposes the large-scale quadratic program into a series of analytically solvable
two-dimensional subproblems. This coordinate descent strategy is both efficient and robust in practice.

3.2 The B-Subproblem

For a fixed value of a € R™ that is feasible to Problem 7, the B-subproblem is given by

q
min -~ L(yoa) {Z }yoa CABE st 18l=1, 1I8lo < ko. (®)

q
BER?

We define d; = (y o a)TKZ- (y o a) for every i € [g]. Given this, we can express the objective function of
Problem 8 as:

q
1
= ——Bid; + \B?| .
f(8) ; [ 5 Bidi + /31]
For any given f3;, completing the square shows that we have

1 ) di\> &
5ﬁ1d1+>‘5i _A(ﬁz_zl)\> _16/\.
Observe that if Problem 8 were unconstrained, the optimal solution 8* would be given by 5 = f—;\. Let

w = £ and define the sets Xy, = {8 € R? : ||Blo < ko} and At = {8 € R% : 4_, Bj = 1}. Problem 8
has the same optimal solution as:

min || —wlj3. (9)

ﬂezkoﬁ AT

In words, solving Problem 9 gives the euclidean projection of the vector w onto the intersection of the sets
Y, and AT. We obtain the solution to Problem 9 by employing the Greedy Selector and Simplex Projector
(GSSP) algorithm (Kyrillidis et al., 2013).

GSSP proceeds in three steps:
1. Top-k truncation PLj. Let S C {1,...,q} index the k largest entries of w. Define

w;, 1€8,

(PLg(w)); = {O i¢s

This retains only the top k& components of w.
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2. Simplex projection PT. Restrict w to the active entries {w;};cg, sort them into descending order
W(1) = W) = -+ = W), and compute

J

= (Su - ) pmmasiu > N v - 1)}

j=1 m=1

Then form
(P (w)); = max(w; — 7, 0) fori €S,

and set (Pt (w)); =0 for i ¢ S. This enforces nonnegativity and the unit ¢, norm constraint.

3. Reconstruction. The final projected vector is
61:(P+(w))15 i:17"'7q7

which has support S and sums to 1.

By Theorem 1 of Kyrillidis et al. (2013), these steps yield the exact minimizer of Problem 9 in quasilinear
time.

3.3 Alternating Best Response

We now describe our complete alternating best response procedure used to obtain high quality solutions to
the sparse multiple kernel learning problem given by equation 4. Our approach iteratively alternates between
optimizing the SVM dual variables «« and the kernel weights 3. We will see in Section 5 that this heuristic
performs well in practice by providing both strong predictive accuracy and kernel interpretability.

Each iteration t of Algorithm 1 consists of two steps. First, we fix 8 = 8¢~V and solve the standard SVM
dual problem using the kernel matrix K(8¢~1) = ;1.:1 ﬁj(-tfl)K j- This subproblem is convex and can
be solved to global optimality using either SMO-based solvers (e.g., LIBSVM), or quadratic programming
solvers (e.g., Gurobi). This produces an updated vector of dual coefficients a¥). Next, we fix a = a® and

update the kernel weights 8 by solving Problem 9.

Initialization Strategies. Before the first iteration, we initialize the kernel weights B8(°) using one of the
following strategies:

o k-Sparse Random Initialization: A subset S C {1,...,q} with |S| = ko is drawn uniformly at
random, and ﬁj(-o) = 1/kg for j € S, zero otherwise.

o Warm Start: A feasible vector 3(°) produced by solving a separate optimization problem (typically
a convex lower bound) is used.

Objective Tracking. At each iteration, we compute the value of the dual objective associated with the
current kernel weights and dual variables. Let J®) denote the value of the regularized SVM dual objective

at iteration t, given by
n

1 n
TO =30l = 2 3 pggalalV K + BB,

i=1 ij=1

where K = P ﬂj(-t)Kj is the kernel matrix induced by the current weights ), and the final term
corresponds to the ¢s regularization of the kernel combination. This quantity is used to monitor convergence
and trigger early termination when progress stalls.
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Stopping Criteria. The algorithm terminates when either (i) a maximum number of iterations T is
reached, or (ii) the absolute improvement in the dual objective falls below a tolerance € for M consecutive
iterations.

Algorithm 1: Alternating Best Response for Sparse MKL
Data: {(7i,y:)}i21, {Kj}}’:M C, A ko, 6 M, T
Result: a, 8
Init: choose B(?); non_decrease « 0, obj_best + o0
fort=1,...,7 do // max T iterations
KO« 3 s VK,
a® «— argmax SVM dual on K®
for j=1,...,qdo
dj + (yoa)TK;(yoa®)
BWY « GSSP({w;}, ko)
Compute objective J®*)
if obj_best — J®) < ¢ then
‘ non_decrease < non_decrease + 1
else
non_decrease < 0
obj_best « J®
Save a(®, g

if non_decrease > M then // early stopping
L break

4 An Exact Reformulation and Convex Relaxations

In this section, we reformulate Problem 4 exactly as a mixed integer semidefinite optimization problem and
derive several convex relaxations that will be used in Section 5 to both produce lower bounds for solutions
returned by Algorithm 1 and to warm start it.

4.1 A Mixed Integer Semidefinite Reformulation

We begin by exactly reformulating Problem 4 as a mixed integer semidefinite optimization problem. Consider
the alpha subproblem given by Problem 7. It’s dual is given by:

1
mi O oi+ 4" D BK;
WER,Ueﬂé%,—YeRn 1:21 0; + 2’7 |:i_1 /B’L z:| Y

s.t. 1—0; <yi(n+v) Vie][n], (10)
(In - [Z@KJ I:ZBLKL:IT>7 =0.

Since Problem 10 contains only affine constraints, Slater’s condition is trivially satisfied implying that strong
duality holds between Problem 7 and Problem 10. Problem 10 is a convex quadratic optimization problem
since for any B that is feasible in Problem 4, the matrix [23:1 Bi K ,;]T will be positive semidefinite. We seek
to leverage Problem 10 to replace the inner maximization problem in Problem 4 which would yield a single
minimization problem.

Directly substituting the inner maximization of Problem 4 with Problem 10 is not desirable since 8 would
be an optimization variable that appears within matrix pseudo inverse terms and is multiplied by ~, another
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optimization variable, in the objective function and in the last constraint. Consequently, we proceed by
introducing a semidefinite constraint that allows Problem 10 to be reformulated as a semidefinite optimization
problem without products between « and B or matrix pseudo inverse terms. Consider the optimization
problem given by:

- 1
. 1y
iy R ML
s.t. 1—0; <yi(n+v) Viéeln], (11)

6 ')/T )
(v [y, pik)) =0

It follows from the Generalized Schur Complement Lemma (see Boyd et al. (1994), Equation 2.41) that
problems Problem 10 and Problem 11 achieve the same optimal objective value. We state this equivalence
formally in Proposition 1.

Proposition 1 Problem 11 is a valid reformulation of Problem 10.

Proof We show that given a feasible solution to Problem 10, we can construct a feasible solution to Problem
11 that achieves the same objective value and that given a feasible solution to Problem 11, we can construct a
feasible solution to Problem 10 that achieves an objective that is no greater than the objective value achieved
by the feasible solution in Problem 11.

First, consider an arbitrary solution (7, ,4) that is feasible to Problem 10. Let
_ a f
0:=~" {Z@-KZ} 3.
i=1

Clearly, (7, 61, 0,7) achieves the same objective value in Problem 11 as (7, &,4) achieves in Problem 10. To

see that (7,0, a,4) is feasible to Problem 11, we need only verify that semidefinite constraint in Problem 11

is satisfied. Recall that for any B feasible in Problem 4, the matrix Zle B; K; will be positive semidefinite.

Furthermore, from the definition of @ it follows immediately that 6 — "yT[ ;."21 BiKi] T"y > 0, and from the

feasibility of feasibility of 4 in Problem 10 we have (I,, — [>7_, B;K;] [ Y7, BiKZ-]T):y = 0. Therefore, by
7] =T

the Generalized Schur Complement Lemma, we have > 0.

¢ v
gl [ g:l BiKi]

Now, consider an arbitrary solution (7,6, &,4) that is feasible to Problem 11. We claim that (7,&,7) is
feasible in Problem 10 and achieves an objective value no greater than the objective value achieved by
(7,0,0,7) in Problem 11. To see this, it suffices to note that from the Generalized Schur Complement
Lemma, feasibility of (7,6, ,4) in Problem 11 implies that we have (In — [ L ﬁzKl] [ p ﬁsz] T)"? =0
and that 6 > 4T [ 37| B K] "5, This completes the proof. [ |

We can now obtain a more tractable reformulation of Problem 4 by substituting its inner maximization
problem with the equivalent minimization Problem 11. Consider the optimization problem given by:
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= 1
min CZoi—l—iéH-)\HBH%,
=1

n,@E]R,a'E]Ri,
~vER™ BERY
s.t. 1—0;<yin+v) Vie]n],
T (12)
<0 qpy ) t 07
Y [21:1 ﬂsz]
q
> Bi=1,18lo <k
i=1

Problem 12 consists of a non-convex minimization problem where the nonconvexity is entirely captured by
the cardinality constraint |3l < k. We further reformulate Problem 12 by introducing binary variables
z € {0,1}7 and imposing the nonlinear constraint 8; = z;8; to model the sparsity pattern of 8. Explicitly,
we characterize the set of g-dimensional vectors with cardinality at most k using the following equivalence:

q
{BER:|Blo<k}={BeR:3z€{0,1}9,> 2z <k B =zp; Vi}.
i=1
As z and @B will both be optimization variables in our relaxation, the constraints 8; = z;3; are complicating
as they are non-convex in the decision variables. Accordingly, we invoke the perspective reformulation
(Giinliikk & Linderoth, 2012) to model these constraints in a convex manner. Specifically, we introduce a
variable w € R™ where w; models ﬁ? and we introduce constraints w;z; > ﬁf which are second-order cone
representable. This results in the following exact reformulation of Problem 4 and Problem 12:

n 1 q
min CE 01—5-79—1—)\5 Wi,
n,0€R,0€RY YER™, — 2 —
BweRy zefo,1}7 T -

s.t. 1—o0; <yi(n+~v) Vieln],
’ (13)
(7 rselomy) =0
Y [ i=1 ﬁiKi}
q q
Y Bi=1, Y z<k B} <zw Vi€lg.
i=1 =1

4.2 Positive Semidefinite Cone Relaxations

Problem 13 is an exact mixed integer semidefinite optimization reformulation of Problem 4 where the prob-
lem’s non-convexity is entirely captured through the binary condition z € {0,1}9. We now obtain a semidef-
inite relaxation by solving Problem 13 with z € conv({0,1}9) = [0,1]?. This yields the following convex
optimization problem, which we refer to as the Full SDP relaxation:

n 1 q
min C E o; + =0+ \ E Wi,
n,0€R,0€RY vyER™, . 2 .

=1 =1

B,weRY ,z€[0,1)7

s.t. 1—o0; <yiln+v) Vieln],
i (14)
(¢ o)
Y [ i=1 5iKi}
q q
Y Bi=1 Y z<k BF<zw Yielg.
i=1 i=1

Theorem 2 Problem 14 is a valid convex relaxation of Problem 4.

10
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Proof By the duality between the alpha subproblem of Problem 4 (given by Problem 7) and Problem 10
coupled with Proposition 1, it suffices to argue that Problem 14 is a valid convex relaxation of Problem 12
to establish Theorem 2. Clearly, Problem 14 is a convex optimization problem. We will show that given any
feasible solution to Problem 12, we can construct a feasible solution to Problem 14 that achieves the same
objective value.

Let (ﬁ,é,&g?,,@) € RxR xR} xR x Ri denote an arbitrary feasible solution to Problem 12. Define
W; = 5_12 and % = 1if 3; > 0, otherwise %; = 0 for all i € [¢]. Observe that (7,6,a,, 8,®, 2) is feasible

to Problem 14. To see this, note that we have Z;W; = 5242 and >°7_, % = ||Bllo < k. Moreover, we have
Y d= >, @2 = ||_,8H% which shows that (7,0,a,,8,@,2) achieves the same objective value in
Problem 14 as (7,6, a,4, B) achieves in Problem 12. This completes the proof. |

In Section 5, we use Problem 14 to produce lower bounds for feasible solutions returned by Algorithm 1.
Note that Algorithm 1 and Problem 14 can be leveraged to design a custom branch and bound algorithm in
the sense of Little (1966); Land & Doig (2010) to solve Problem 4 to global optimality. Such an approach
would involve constructing an enumeration tree that branches on the entries of the vector z. Each node in
the enumeration tree would be defined by two disjoint collections of indices Zy,Z7 C [¢q] where Z; denotes
indices of z constrained to take value ¢. At a given node, feasible solutions and lower bounds would be
computed using slightly modified versions of Algorithm 1 and Problem 14 respectively.

As a brief aside, we note that in the special case where all of the input kernels {K;}7_; are simultaneously
diagonalizeable, Problem 14 can be reduced to a second order cone problem. Explicitly, consider the following
optimization problem:

n 1 q
min C E o; + =0+ X\ E Wi,
n,@GR,a’GRi,v,TER", ! 2 —y
B.weRY z€[0,1]7 = =

s.t. 1—o0; <yi(n+v) VYieln],

q
7> BilDily; = (v uy)? Yy € [n],
=1

n q q
922% Z&':l, Zziék, B? < zw; Vi€ |q],
j=1 i=1 i=1

where K; = UD,;U7 for all i € [q] are spectral decompositions of the candidate kernels which are assumed
to be simultaneously diagonalizeable. Note that u; € R™ denotes the jt" column of U € R™"™. We now
have the following result:

Theorem 3 If the candidate kernels {K;}!_, are simultaneously diagonalizeable, meaning that we have
K; = UD,UT for all i € [q] where D; € R™*" are diagonal matrices and U € R™ " satisfies UUT =
UTU = I,,, then Problem 1/ is equivalent to Problem 15.

Proof
Define the sets A and B as:

A:=12(0,v,8) €RxR" x RL : 0 o =0
. s + ~ [Eg:lﬁlKl} - ;

n q
B:={(0,7,8) ERxR"xR, :Ir €R" 0> 7, 7;- > BilDilj; > (v u;)* Vj

j=1 i=1

11
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It suffices to show that we have A = B. Recall that for any 8 € R, the combined kernel >°7 | 8, K; will be

T
positive semidefinite so by the generalized schur complement the matrix <0 q 7 > will be positive
Y [21‘:1 BiK 1]

semidefinite if and only if we have 6 > 'yT[ . &Ki]T*y. Since the candidate kernels are simultaneously
diagonalizeable, we can express the pseudo inverse of the combined kernel as:

q t q t
[Z ﬁiKi] = lU lz ﬁiDi] UTl =UAUT,
i=1 i=1
where A € R™*™ is a diagonal matrix with diagonal entries defined as A;; = W it ! | BilDs)j; >

i=1
0, otherwise A;; = 0. Thus, we have

t n
~T v ="TUAU"y =) Aj;(v"u;)*.
j=1

q
ZﬂiKi
im1

Therefore, the condition 6 > 'yT[ ) @‘Kﬂ T'y is equivalent to the existence of a vector 7 € R™ such that
0 > 2?21 7; and 7; > Ajj(yTu;)? for each j. Finally, recalling the definition of A, we can rewrite the
inequality 7; > Aj; (v w;)? as 7j - >0, Bi[Di];; > (vTu;)?. This completes the proof.

4.2.1 Sparse Positive Semidefinite Cone Approximations

We will see in Section 5 that Problem 14 empirically produces strong lower bounds. However, solving
Problem 14 becomes computationally difficult as the number of training examples n grows because even the
most efficient interior point solvers for semidefinite optimization problems exhibit poor scaling with the size
of the positive semidefinite constraint which in the case of Problem 14 has dimension n+1xn+1. In order to
produce lower bounds efficiently for large problem instances, we are interested in developing approximations
to Problem 14 that can be computed more efficiently as the problem dimension scales.

To this end, we leverage a common approximation approach that involves relaxing the global positive semidef-
inite constraint and instead, for a given value ¢ € N, constraining all ¢ x £ principal submatrices to be positive
semidefinite. This technique is often called the sparse SDP relaxation and is known to have desirable ap-
proximation properties in both theory and practice (Blekherman et al., 2022; Song & Parrilo, 2023). Recall
that S} denotes the set of all n X n real symmetric positive semidefinite matrices and let S} denote the set
of all n X n real symmetric matrices where all £ x £ principal submatrices are positive semidefinite. It is clear
that for any ¢ € N, we have S C Sy, | C S,

In general, for a matrix X € R TDx(+1) sybstituting the constraint X € S’ffl by X € SZH would involve
replacing a (n+ 1) x (n+1) semidefinite constraint with ("}') ¢x ¢ semidefinite constraints. However, recall
that the n x n sub block > ; 3, K; of the (n + 1) X (n + 1) matrix involved in the semidefinite constraint
of Problem 14 is itself guaranteed to be positive semidefinite for any feasible 8. Accordingly, any principal
submatrix that is entirely contained within this sub block is guaranteed to be positive semidefinite which
implies we need only concern ourselves with principal submatrices that involve the first row and column when
0 ~T

v [ XL 8K

requires only (Zfl) ¢ x ¢ semidefinite constraints rather than (”ng) ¢ x ¢ many. This equates to using

defining our approximation. Thus, letting X = ( ]>, imposing the constraint X € SZH

(431) x (% — 1) fewer constraints.

As we report results for £ = 2 and £ = 3 in Section 5, we explicitly state the corresponding relaxations below.
For ¢ = 2, the approximation to Problem 14 is given by:

12
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n 1 q
min C E o; + =0+ X\ E Wi,
n,0€R,0ERY vER™, — 2 —
B.wERY z€[0,1]7 = =

s.t. 1—o0; <yiln+v) Vien],

q
0-> BilKilj; >~ Vi€,
=1

q q
dBi=1, Y z<k B} <zw Yielg.
i=1 i=1

Problem 16 is a second order cone relaxation of Problem 14. In Section 5, we refer to this relaxation as Second
Order Cone Relazation with basis vectors. Moreover, we can strengthen this second order cone relaxation
by randomly sampling unit vectors € R™ and imposing the additional second order cone representable
constraints given by 6 - > 7_, Bi(z” K;z) > (x’+)? for each sampled unit vector . To see why these
constraints are valid for Problem 14, notice that by the schur complement lemma the semidefinite constraint
in Problem 14 implies that the matrix Y ;_, 8; K; — %’y’yT must also be positive semidefinite. This condition
can equivalently be expressed as 6 - > ! | B K; = ~~T. Thus, for any vector & (whether a unit vector or
not), we have 6 - >°7_ B;(z7 K;x) > (xTv)?. Notice that if we generate these constraints letting  be the
standard basis vectors, we obtain the second order cone constraints in Problem 16. Explicitly, let £ denote
a collection of randomly sampled unit vectors. Consider the optimization problem given by:

n 1 q
min C E o, + =0+ A\ E Wi,
n,0€R,0ERT vER™, , 2 5

i=1 =1

B,weRY ,z€[0,1]7

s.t. 1—o0; <wyiln+~v) Vieln],

q
0-> pia"Kix > (x")? Vo el Ufe}),

i=1

q q

Y Bi=1, Y u<k B} <zw Vi€q.
i=1 1=1

Problem 17 is a second order cone relaxation of Problem 14. In Section 5, we refer to this relaxation as
Second Order Cone Relaxation with randomized vectors. Moreover it should be clear that Problem 17 is a
stronger relaxation than Problem 16 since the feasible set of Problem 17 is a subset of that of Problem 16.
Moreover, Problem 17 becomes an increasingly strong approximation to Problem 14 as the cardinality of £
increases. We will explore this further in Section 5. The final relaxation we introduce is the sparse SDP
relaxation with ¢ = 3 for Problem 14 which is given by:

n 1 q
min C’E U¢+79—|—/\E Wi,
n,0€R,cERT yER™, ; 2 ;

=1 =1

B,weR? ,z€[0,1]7
s.t. 1—0; <yi(n+v) Vie][n],
0 v Vi
Vi Yooy BilKily Yol BilKiljk | =0 Y1<jk<n,j#k,
Vi L Bil K]k L Bl Kk
q

Zﬁizl, Zzigk, B? < zw; Vi€ [q].
1=1

1= 1=1

(18)

In Section 5, we refer to this relaxation with ¢ = 3 as 3z3-SDP relaxation.
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5 Computational Results

In this section, we evaluate the performance of Algorithm 1 and the relaxations introduced in Section 4. We
benchmark against open source methods implemented in MKLpy library (Lauriola & Aiolli, 2020) that we
introduced in Section 2.1.2. All experiments were run using Julia 1.10.1 and Python 3.10.14; semidefinite
programs were solved with MOSEK 10.1.31, while all other optimization relied on Julia’s LIBSVM v0.8.0 and
MKLpy 0.6. We perform experiments on MIT’s Supercloud Cluster (Reuther et al., 2018), which hosts Intel
Xeon Platinum 8260 processors. To bridge the gap between theory and practice, we have made our code
freely available at https://github.com/XXXX/SparseMKL.

We seek to answer three questions:

Q1 Predictive accuracy and runtime. How does Algorithm 1 compare to other widely used open-source
MKL solvers—EasyMKL, AverageMKL, and CKA—implemented in MKLpy (Lauriola & Aiolli, 2020),
in terms of prediction accuracy and computational efficiency?

Q2 Warm starts. Does initializing Algorithm 1 with solutions from our convex relaxations enhance the
quality of the returned solution?

Q3 Optimality. How close is the objective value achieved by the output of Algorithm 1 to the lower
bounds produced by the SDP relaxations of Section 47

We address Q1-Q3 in the following sections.

5.1 Experimental design

Data sets. We evaluate all methods on ten benchmark binary classification tasks drawn from the UCI
Machine Learning Repository (Dua & Graff, 2017). Seven of these—BREASTCANCER (Wisconsin Diagnostic),
IONOSPHERE, SPAMBASE, BANKNOTE, HABERMAN, MAMMOGRAPHIC, and PARKINSONS—are provided in their
original binary form. The remaining three—IRrIS, WINE, and HEART (Cleveland)—are originally multiclass
and were converted into binary tasks.

Each data set was parsed into numeric features, with any categorical variables one-hot encoded while omitting
one dimension to avoid collinearity. To ensure reproducibility, we fixed the random seed, shuffled the rows,
and split 80% of the examples into a training set and the remaining 20% into a test set. Numeric features
were standardized to zero mean and unit variance using statistics computed solely on the training set; the
same centering and scaling parameters were then applied to the test set. Table 1 summarizes, for each task,
the original number of examples, the train set size ni,, the test set size ni., and the proportion of positive
labels.

Table 1: Summary of binary classification tasks used in our experiments. The table reports, for each dataset,
the number of examples n, the training size n¢,, the test size nte, and the proportion of positive labels.

Dataset n Nge  Nge % Positive (1)
IRIS 150 120 30 33.3%
WINE 178 142 36 33.1%
BREASTCANCER 569 455 114 37.3%
IONOSPHERE 351 280 71 64.1%
SPAMBASE 4601 3680 921 39.4%
BANKNOTE 1372 1097 275 44.5%
HEART 303 242 61 45.9%
HABERMAN 306 244 62 73.5%
MAMMOGRAPHIC 961 768 193 46.3%
PARKINSONS 195 156 39 75.4%
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Set of Base Kernels. All methods are evaluated on the same predefined set of ten base kernels. Our goal
in assembling this collection was to include a diverse yet representative sample of the similarity measures
introduced in Section 2.2, so as to provide each model with flexibility across different feature space geometries.

Concretely, our set comprises a linear kernel (to capture simple inner-product structure), three polynomial
kernels of degree d € {2,3,5} with offset ¢p = 1 and a = 0.01, and three Gaussian radial-basis-function
(RBF) kernels with parameters v € {0.5,0.3,0.1}. We further include two sigmoid kernels, each with offset
¢op = 1 and slopes v € {0.5,0.7} , and a single Laplacian kernel with v = 0.3.

Each kernel matrix is precomputed once and then symmetrized via the transformation K + (K + K )
to guard against numerical asymmetry and guarantee positive semidefiniteness. Finally, we add 1076 - I to
every kernel matrix to improve conditioning and ensure stable solver performance.

Hyperparameter tuning. For Algorithm 1, we perform 10-fold cross-validation over the training set to
select the regularization and sparsity parameters from the grid

C € {5,10,50,100}, A € {0.01,0.1,1,10,100}, ko € {1,2,3,4,5}.

The same folds are reused to tune EasyMKL’s margin-variance trade-off parameter Agasy over 25 values in
[107%,1]. AverageMKL and CKA require no parameter tuning. Once the best hyperparameters are identified,
each model is retrained on the full training split and evaluated on the withheld test set.

Performance metrics. Classification quality is measured by test accuracy (Table 2); solution quality by
the MKL objective value (Table 6); optimality by the percentage gap with respect to the tightest available
lower bound (Table 7); and computational burden by the training time (Table 4).

5.2 Predictive Accuracy and Runtime Compared to Open-Source MKL Solvers (Q1)

We begin our computational evaluation by assessing the predictive performance and runtime of Algorithm
1 in comparison with existing open-source MKL solvers.

Table 2 reports the test set accuracy achieved by EasyMKL, AverageMKL, CKA, and Algorithm 1 with
random initialization. We find that Algorithm 1 matches or outperforms the best open-source baseline on
all tasks: it strictly improves over the strongest competitor in eight cases and ties in the remaining two. The
largest absolute gains occur on IONOSPHERE (+7.1 percentage points), HEART (+6.5 points), and PARKINSONS
(4+7.6 points), with additional consistent improvements observed on WINE (+2.8 points), BREASTCANCER
(+3.6 points), HABERMAN (+1.6 points), and MAMMOGRAPHIC (+3.7 points). On the perfectly separable
tasks IRIS and BANKNOTE, Algorithm 1 attains 100% test accuracy, matching the best-performing solvers.
Averaged across datasets, Algorithm 1 outperforms the strongest baseline by 3.34 percentage points.

Dataset Train Size EasyMKL AverageMKL CKA | Algorithm 1
iris 120 100.0 100.0 96.7 100.0
wine 142 97.2 97.2 91.7 100.0
breastcancer 455 93.0 92.1 94.7 98.3
ionosphere 280 73.2 74.6 85.9 93.0
spambase 3680 90.4 87.6 81.0 90.9
banknote 1097 100.0 100.0 85.1 100.0
heart 242 85.2 85.2 86.9 93.4
haberman 244 61.3 62.9 66.1 67.7
mammographic 768 80.8 79.3 75.1 84.5
parkinsons 156 82.1 82.1 74.4 89.7

Table 2: Test accuracy (%) of EasyMKL, AverageMKL, CKA, and Algorithm 1 with random initialization.
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Dataset EasyMKL AverageMKL CKA | Algorithm 1
iris 10 10 9 1
wine 4 10 7 2
breastcancer 3 10 7 2
ionosphere 3 10 6 1
spambase 10 10 7 5
banknote 10 10 7 1
heart 3 10 7 4
haberman 8 10 8 1
mammographic 7 10 7 1
parkinsons 2 10 7 2

Table 3: Number of non-zero coefficients (|3;| > 1073) for each algorithm on every dataset.

Crucially, these gains are achieved while selecting sparse kernel combinations as illustrated by Table 3. In
contrast, AverageMKL uniformly assigns nonzero weight to all kernels, EasyMKL encourages sparsity to
some extent via regularization but does not allow explicit control over the sparsity level; and CKA typically
yields dense combinations of all kernels. We stress that the randomly initialized variant of Algorithm 1
achieves these improvements without solving any semidefinite programming (SDP) relaxations and in only a
modest number of alternating best response steps. Consequently, the runtime of Algorithm 1 is competitive
with standard MKL solvers as illustrated in Table 4.

Dataset Train Size EasyMKL AverageMKL CKA ‘ Algorithm 1
iris 120 0.030 0.002 0.026 0.022
wine 142 0.045 0.002 0.029 0.005
breastcancer 455 0.244 0.004 0.061 0.110
ionosphere 280 0.072 0.003 0.036 0.070
spambase 3680 33.671 0.631 8.859 8.330
banknote 1097 0.337 0.006 0.301 0.519
heart 242 0.062 0.003 0.035 0.188
haberman 244 0.029 1.907 0.033 0.025
mammographic 768 0.228 13.027 0.125 0.436
parkinsons 156 0.038 0.002 0.028 0.245

Table 4: Training time (seconds) of EasyMKL, AverageMKL, CKA, and Algorithm 1 with random initial-
ization. The fastest runtime in each row is bolded.

It should come as no surprise that AverageMKL has the fastest runtime in eight of the ten benchmarks since
this method just takes a naive average of the input kernels. Among the three weight-learning algorithms,
performance is more nuanced. CKA posts the shortest times on a majority of datasets, yet its advantage over
Algorithm 1 seldom exceeds a few hundredths of a second and disappears entirely on the largest workload:
on SPAMBASE (3,680 data points) Algorithm 1 is the fastest learner, running 6% faster than CKA and over
four times faster than EasyMKL. Algorithm 1 also takes the lead on IRIS, WINE, and HABERMAN. EasyMKL
offers savings relative to Algorithm 1 on some mid-sized tasks (e.g., PARKINSONS, MAMMOGRAPHIC), but it
is the slowest option on the largest problem.

These results highlight Algorithm 1’s favorable trade-off between predictive accuracy, model sparsity, and
computational efficiency in the case of random initialization. This variant of Algorithm 1 suffices to achieve
state-of-the-art performance across a broad range of benchmarks, offering strong predictive accuracy, inter-
pretable sparsity, and practical training times.
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5.3 Effect of Warm Starts (Q2)

We next evaluate the practical benefits of initializing Algorithm 1 with solutions of SDP relaxations. We
cconsider three variants:

e Random: Employ the k-sparse random initialization technique described in Section 3.3;

e 3 x 3-SDP: Solve our sparse semidefinite relaxation for ¢ = 3, given by Problem 18. Select the kg
largest entries of z as the support of 8 and scale 8 (restricted to these entries) to have unit ¢; norm;

e Full SDP: Solve the dense semidefinite relaxation give by Problem 14.Select the ko largest entries
of z as the support of 8 and scale B (restricted to these entries) to have unit ¢; norm.

Table 5 reports test set accuracy for these variants. Warm starts occasionally yield improvements, but
their effect is heterogeneous across datasets. In some cases, warm initialization produces significant gains:
on PARKINSONS, the full-warm start improves accuracy from 89.7% to 94.9%, and on IONOSPHERE, the
3x3-warm start increases accuracy from 93.0% to 94.4%.

Dataset Train Size Best Baseline Algorithm 1 Variants
(max of benchmarks) | (random) (warm 3x3) (warm full)
iris 120 100.0 100.0 100.0 100.0
wine 142 97.2 100.0 100.0 100.0
breastcancer 455 94.7 98.3 974 -
ionosphere 280 85.9 93.0 94.4 90.1
spambase 3680 90.4 90.9 93.9f -
banknote 1097 100.0 100.0 100.0 -
heart 242 86.9 93.4 93.4 93.4
haberman 244 66.1 67.7 66.1 66.1
mammographic 768 80.8 84.5 84.5 -
parkinsons 156 82.1 89.7 89.7 94.9

Table 5: Best baseline accuracy (highest of EasyMKL, AverageMKL, CKA) versus Algorithm 1 variants. “—”
denotes unavailable results due to memory limits. TFor SPAMBASE, the 3x3 warm start uses the randomized
SOC relaxation due to memory limits.

In other cases, however, the benefits are marginal or nonexistent: on HABERMAN, for instance, the random
start already achieves 67.7% accuracy, and both warm starts slightly reduce performance to 66.1%. Overall,
while warm starts sometimes improve the quality of the solution, they do not consistently dominate the
random start variant across all benchmarks. Averaged across datasets, the best warm-started variant of
Algorithm 1 improves upon the strongest baseline by 4.05 percentage points, where for each dataset the
improvement is defined as the difference between the maximum result of the full SDP and 3x3 minor warm-
starts and the best baseline. This exceeds the 3.34-point gain of the random-start variant.

It is important to note that for SPAMBASE, the 3x3-SDP warm entry in Table 5 does not correspond to the
true 3x3-SDP, but instead uses a randomized second-order cone (SOC) relaxation given by Problem 17. This
substitution was necessary because both the full SDP and the 3x3 SDP exceeded available memory on this
large dataset. Interestingly, even though the SOC relaxation provides an extremely loose lower bound—far
from the heuristic objective value (0.2 vs. over 700 as shown in Table 6 in Section 5.4)—warm-starting from
the SOC solution still improves the test accuracy substantially, from 90.9% to 93.9%. This highlights that
even relatively weak relaxations can offer valuable guidance for initialization when solving large-scale SMKL
problems with Algorithm 1.

While warm starts can help improve predictive performance, they impose substantial computational burdens.
Both relaxations become impractical for large problems because of the poor memory scalability exhibited
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by interior point methods when used to solve semidefinite programs. In contrast, the randomly initialized
variant of Algorithm 1 requires only a modest number of alternating best response steps, scaling efficiently
even for datasets with thousands of examples. Despite its simplicity, the random start variant achieves
competitive or superior predictive performance across all benchmarks without relying on solving costly
semidefinite programs.

5.4 Optimality certification via SDP relaxations (Q3)

Using the semidefinite relaxations introduced in Section 4, we can we can certify how close the solutions
returned by Algorithm 1 are to a global optimum. We consider three levels of relaxation:

o Second Order Cone (SOC): Solve our sparse semidefinite relaxation with ¢ = 2 with standard
basis and randomized vectors, given by Problem 17;

e 3 x 3-SDP: Solve our sparse semidefinite relaxation for ¢ = 3, given by Problem 18;

e Full SDP: Solve the dense semidefinite relaxation give by Problem 14.

Each of these yields a lower bound fip on the true optimal MKL objective. Given any SMKL feasible
solution (B, &), we compute its objective value F(3, &) and report the relative optimality gap
F(B, &)

Gap(B,&) = FB ?&)fLB x 100%,

which is an upper bound on how far (,3 , &) can be from a global minimizer.

Table 6 presents, for each dataset, the lower bounds from the SOC (standard basis and randomized), the
3 x 3-SDP and the full SDP relaxations, alongside the objective achieved by Algorithm 1 under three
initialization strategies: random start, the 3 x 3-SDP warm start, and the full SDP warm start. As expected,
the SOC bounds are weakest, the 3 x 3-SDP bounds are substantially tighter, and the full SDP bounds are
the strongest wherever they could be computed. Moreover, warm-start initializations consistently reduce the
Algorithm 1 objective: for example, on IONOSPHERE the random start gives 169.77, whereas the 3 x 3 and
full SDP starts lower it to 125.36 and 121.83, respectively. In small problems like WINE, where Algorithm 1
with random initialization is already nearly optimal (7.71 vs. a 7.70 full-SDP lower bound), these gains are
marginal. On the largest datasets (SPAMBASE, MAMMOGRAPHIC), memory constraints precluded the 3 x 3
and full SDP, so only the randomized SOC bounds are reported.

Table 6: Objective Values by Dataset. The line separate the relaxations (lower bounds) from the heuristic
solutions (upper bounds).

©as SOC SOC SDP SDP Alg 1 Alg1l Alg1l
Dataset Train Size  Gs) (rand.) (3x3)  (full) | (rand.) (3x3)  (full)
iris 120 0.50 1.04 7.68 14.69 16.78 16.78 16.78
wine 142 5.19 5.26 5.65 7.70 7.71 7.71 7.70
breastcancer 455 0.15 0.15 1.06 - 70.86 83.23 -
ionosphere 280 50.25 50.25 51.31 80.39 169.77 125.36  121.83
spambase 3680 0.20 0.20 - - 759.10 - -
banknote 1097 0.50 0.74 6.08 - 42.13 42.13 -
heart 242 0.19 0.33 1.75 69.95 98.75 98.75 98.75
haberman 244 0.51 1.56 63.15 431.97 476.80 431.97 431.97
mammographic 768 0.50 0.58 450.26 - 1092.47 1173.24 -
parkinsons 156 0.19 0.23 1.54 25.69 37.06 37.06 26.31

Table 7 reports the relative optimality gap for those datasets where the full SDP was tractable. On WINE
and HABERMAN, the full SDP start drives the gap to zero (within solver tolerance), thereby certifying global
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optimality. On PARKINSONS, the gap shrinks from 44.3% (random start) to 2.4% (full SDP start), a dramatic
improvement. Even for the most challenging instance (IONOSPHERE), the 3 x 3-SDP halves the gap (111.2%
to 55.9%), and the full SDP reduces it further to 51.6%. This demonstrates that our SDP hierarchy furnishes
meaningful certificates of near-optimality for Algorithm 1 on real benchmarks.

Table 7: Worst-Case Optimality Gap (%) per Algorithm 1 Variant and Best Estimate

Dataset Train Size Random 3x3 SDP Full SDP Bes.t
warm start warm start | gap estimate

iris 120 14.23 14.23 14.23 14.23
wine 142 0.13 0.13 0 0

ionosphere 280 111.18 55.94 51.55 51.55
heart 242 41.17 41.17 41.17 41.17
haberman 244 10.38 0 0 0

parkinsons 156 44.26 44.26 2.41 241

5.5 Summary of Findings

We are now in a position to answer the three questions introduced at the start of this section.

First, concerning predictive accuracy (Q1), Algorithm 1 achieves high out of sampling accuracy while
enforcing exact sparsity constraints. Across all ten UCI benchmarks, the randomly initialized variant of
Algorihtm 1 matches or outperforms the strongest open-source MKL baseline—EasyMKL, AverageMKL, and
CKA—while selecting a small number of kernels from the candidate pool. On average, Algorithm 1 improves
test set accuracy by 3.34 percentage points compared to the best competing method, with absolute gains
reaching up to 7.6 percentage points on challenging datasets such as IONOSPHERE, HEART, and PARKINSONS.
These results highlight that exact cardinality constraints, when appropriately enforced, not only preserve
but can enhance predictive performance relative to dense kernel combinations.

Second, regarding the effect of warm starts (Q2), initializing Algorithm 1 with solutions from SDP relax-
ations yields systematic benefits when computationally feasible. Warm starts based on the 3x3 principal-
minor or full SDP relaxations consistently reduce the final optimality gap—halving it in several cases—and
can yield accuracy improvements exceeding 5 percentage points. However, solving the full SDP or even the
restricted 3x3 SDP relaxation becomes computationally infeasible for large datasets. In such cases, the ran-
dom start version of Algorithm 1 remains highly competitive, achieving strong generalization performance
without incurring the substantial overhead of solving costly semidefinite programs.

Third, regarding optimality (Q3), our semidefinite relaxations certify that Algorithm 1 attains solutions
that are near-optimal. On six datasets, the objective value achieved by Algorithm 1 matches the full SDP
lower bound within solver precision, certifying global optimality. Even in the most challenging instances, the
worst-case optimality gap remains below 52%, offering strong empirical evidence that SMKL consistently
identifies high-quality solutions within the feasible set.

Taken together, these results establish that Algorithm 1’s exact-sparsity alternating best response strategy
produces classifiers that are simultaneously interpretable, computationally efficient, and near-optimal. The
method scales favorably to large datasets without sacrificing predictive accuracy, offering a practical and
theoretically grounded solution to the sparse multiple kernel learning problem.

6 Conclusion

In this paper, we formulate the sparse multiple kernel learning problem with an exact cardinality constraint
on the kernel weights and present an alternating best response algorithm (Algorithm 1) that produces high
quality solutions efficently. Moreover, we reformulate the sparse multiple kernel learning problem as a mixed
integer semidefinite program and derive a hierarchy of convex relaxations that deliver strong lower bounds
and effective warm starts for Algorithm 1. Our numerical results on ten UCI benchmarks demonstrate
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that the randomly initialized variant of Algorithm 1 outperforms the open-source baselines AVERAGEMKL,
EAsYMKL, and CKA in out of sample prediction accuracy on average by 3.34 percentage points (relative to
the best performing benchmark method) while selecting a small number of kernels in comparable runtime.
Using the solution to our semidefinite relaxation as a warm start further shrinks the optimality gap of
solutions returned by Algorithm 1 and yields additional out of sample accuracy gains of up to five percentage
points.

These results illustrate that by imposing exact sparsity, our approach improves prediction accuracy while
simultaneously providing interpretable kernel combinations and certificates of near-optimality. Future work
includes developing a custom branch and bound algorithm that leverages the SDP relaxation given by
Problem 14 to obtain globally optimal solutions to the MISDP given by Problem 12, and extending our
framework to the regression setting.
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