
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPARSESKELETON: DYNAMIC PREFILL SPARSE AT-
TENTION BY ONLINE DECOMPOSITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-head attention (MHA) and grouped query head attention (GQA) consti-
tute essential architectural components of modern large language models (LLMs).
Even though attention computations remain relatively inexpensive for small-scale
inputs, the computational cost increases quadratically as the input size expands.
In long-context scenarios, including tasks such as book-level summarization or
code repos analysis, time-to-first-token (TTFT) performance can deteriorate sig-
nificantly. Although various studies have improved prefill stage performance by
exploiting sparsity structure, sparsity can still be further increased with structure
refinements.
In this work, we propose an approximate on-line decomposition of the attention
matrix which is able to dynamically identify additional sparsity. The attention
matrix is decomposed into three components: a slash component, a vertical com-
ponent, and a horizontal component. Each component requires only linear space,
thereby enabling more efficient processing compared to the full attention matrix.
The decomposition is computed from query and key tokens using a linear-time
algorithm. The statistical properties of the decomposition allow generation of the
mask by merely selecting elements that exceed a threshold. The threshold itself
can be chosen to limit the difference with regular dense attention or to respect a
certain time-budget.
We demonstrate that this technique can be directly applied – without requiring
retraining – to networks employing standard dense attention mechanisms (MHA,
GQA) and RoPE. We show that precision is maintained across the ∞Bench and
PG-19 benchmarks for LLAMA-3-8B-INSTRUCT-1048K. Furthermore, we ob-
serve substantial increases in sparsity and corresponding speedup compared to
previous methods. We halve the number of FLOP relative to State-of-the-Art on
one million tokens.

1 INTRODUCTION

Transformer-based large language models (LLMs) have seen spectacular adoption in all kinds of
natural language processing tasks. Some particular tasks, such as book summarization, require the
LLM to process a long text, split into a large number of tokens, in a phase known as prefill, before
it can even start to respond. Transformer LLMs build an attention map between all possible pairs of
tokens. Prevalent attention mechanisms, multi-head attention (MHA) and grouped-query attention
(GQA), do this explicitly and thus require quadratic number of operations to complete the map. For
long texts this time adds up and becomes a major bottleneck that impedes further adoption.

This problem has been identified and addressed by many works before. One particular strategy,
employed by Xiao et al. (2024b); Jiang et al. (2024); Xiao et al. (2025); Lai et al. (2025); Sahni et al.
(2025); Gao et al. (2024); Zhang et al.; Peng et al. (2025), is to predict a pattern in the attention map
before building it. They exploit the fact that the attention map, effectively a matrix A ∈ RN×N , is
often very sparse. Many of its elements are so close to zero, that their contribution to the attention
computation is negligible. By predicting the pattern, one can construct an attention mask that masks
the zero elements in the computation, and thus save considerable time.

However, pattern prediction and mask construction introduce computational overhead. Unfortu-
nately, offline recognition of static patterns applicable to any input is not possible as inputs influence

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) A (b) As (c) Av (d) Ah (e)As⊙Av⊙Ah (f) Mask (g) Vert./Slash

Figure 1: An attention matrix (a) from layer 21, head 8 in LLAMA-3-8B-INSTRUCT-1048K together
with its decomposition (b-d), the recomposition (e), our final mask (f), and the mask from a verti-
cal/slash method (g). The prompt was a concatenation of several short books from the PG-19 (Rae
et al., 2020). This creates the distinct staircase pattern in the attention matrix which is reproduced
by our method.

patterns. Hence, this has to be done online and previous methods restrict themselves to a small
number of categories, such as Λ-shape, vertical-slash, block-sparse, and query-aware.

In this paper, we propose to generalize these patterns. In particular, we show a new dynamic (on-line)
method to approximate the attention matrix A. To the best of our knowledge, this is the first attempt
to decompose the attention matrix. As illustrated in Figure 1, this matrix can be decomposed into
three components: a slash component As with constant diagonals, i.e. Toeplitz, a vertical compo-
nent Av with constant columns, and a horizontal component Ah with constant rows. Equivalently,
these components are compactly represented by vectors s,v,h ∈ RN which provide an efficient
data-structure for constructing the attention mask. This decomposition captures most relevant emer-
gent sparsity patterns in A. The decomposition algorithm has linear time complexity which makes
it suitable to be used on-line, so that it can dynamically adapt to the sparsity pattern in each prefill
phase. Moreover, the distribution of values in s,v, and h is well behaved and allows the mask to be
generated with only element- or block-wise operations.

Using the LLAMA-3-8B-INSTRUCT-1048K model from Grattafiori et al. (2024), we observe more
than 99.5% sparsity on average for inputs of one million tokens. In smaller context, 128K tokens,
we obtain 97% sparsity ; and 89% sparsity for 10K tokens. Moreover, through the∞ bench (Zhang
et al., 2024), and the PG-19 (Rae et al., 2020) benchmarks we observe that model accuracy is main-
tained.

2 ATTENTION

Transformer-based LLMs have an attention mechanism that builds and applies an attention map
between all possible token pairs in the input. The attention map is in essence a matrix A ∈ RN×N ,
where N is the number of tokens in the input, i.e. the context length. Concretely, each transformer
layer in the model first projects its input X ∈ RN×D, D being the embedding size, to a query,
key, and value matrix Q,K,V ∈ RN×d using learnt weight matrices Wq,Wk,Wv ∈ RD×d,
respectively, for each of the H different heads with dimension d. Afterwards, the query and key
matrices also receive a position encoding. In this work, we assume RoPE (Su et al., 2023) which
right-multiplies each query and key i with rope matrix Ri. Hence, each row i in Q,K,V is defined
as qi = xiWqRi, ki = xiWkRi, and vi = xiWv , respectively. Finally, it computes the attention
as the matrix product

AV , where A = softmax
(
QKt −∞M√

d

)
.

In prevalent text generating LLMs, which only consists of decoders, M ∈ {0, 1}N×N is an upper-
triangular matrix with only 1’s in the upper triangle. Effectively, each element Ai,j in A is defined
as

Ai,j =
exp (qik

t
j/
√
d)∑i

ℓ=1 exp (qik
t
ℓ/
√
d)

if j ≤ i and 0 otherwise.

The attention matrix A has a tendency to be sparse, which means that many elements in A are
sufficiently close to zero that they don’t matter in the attention output O = AV . Concretely, let the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

10 4 10 3 10 2 10 1

Density

0

5

10

15

20

Fr
eq

ue
nc

y
(%

)

(a) Exact

10 2 10 1 100

Density

0

5

10

15

20

Fr
eq

ue
nc

y
(%

)

(b) Threshold

10 3 10 2 10 1 100

Density

0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y
(%

)

(c) Block threshold

Figure 2: Distribution of attention matrix sparsity among all heads in LLAMA-3-8B-INSTRUCT-
1048K on a prompt of 124k tokens using different criterion. The exact sparsity (a) is compared
with the sparsity found the threshold criterion (b) and to threshold criterion when it is applied to the
maximum value over 64× 64 blocks (c).

attention mask M mark all negligible elements in A, i.e.
∑

k:Mi,k=1 |Ai,k| < ε for some ε > 0,
and approximate O by O′ as O′

i,j =
∑

k:Mi,k=0 Ai,kVk,j , then

|Oi,j −O′
i,j | <

∑
k:Mi,k=1

|Ai,k| max
1≤ℓ≤N

|Vℓ,j | ≤ ε||V ||∞ (1)

Hence, the estimate can be made arbitrarily accurate by taking ε small enough.

Figure 2a shows the sparsity distribution among all heads in LLAMA-3-8B-INSTRUCT-1048K. A
more practical method of measuring sparsity is counting or estimating the number of elements in
A that are below the threshold ε/N , because with only those elements left out, the same attention
output error bound applies. This threshold condition, however, is less tight, which causes a large
proportion of sparsity to go unnoticed, as illustrated by Figure 2b.

3 SPARSE PATTERN DECOMPOSITION

The sparsity of A is not random. Indeed, several patterns emerge in A, which can be used to infer
where the non-zeros are. Earlier work observed the Λ-shape (Han et al., 2024), vertical-slash (Jiang
et al., 2024), block-sparse, and query-aware (Tang et al., 2024) patterns. We believe that the most
relevant patterns can be captured by a decomposition of A in three matrices As,Av,Ah ∈ RN×N

such that A ≈ As ⊙Av ⊙Ah, where

• As is Toeplitz, meaning that it has constant diagonals and thus exhibits a slash-pattern,
• Av has constant columns and thus exhibits a vertical pattern, and
• Ah has constant rows and thus exhibits a horizontal pattern.

We use the decomposition to find the non-zeros in A by merely comparing their element-wise prod-
uct with a threshold value, i.e. we set Mi,j = 1 for the elements for which A

(s)
i,jA

(v)
i,j A

(h)
i,j < ε/N , as

is illustrated in Figure 3.

3.1 FINDING VERTICAL AND SLASH COMPONENTS

Jiang et al. (2024) observed that the majority of attention matrices have a vertical-slash pattern.
Specifically, most attention matrices contain only a small number of columns that have many more
non-zero elements than the other columns, causing a distinct vertical pattern in the visualisation
of the matrix. The key tokens involved get high attention regardless of the query-token or the
relative distance to it. Similarly, those matrices with a slash pattern show distinct diagonals in their
visualization. Since all elements on the same diagonal have the same relative position while query

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

𝐴𝑠 𝐴𝑣 𝐴ℎ

⊙ ⊙ =

Approximation Mask: 1 − 𝑀

⇒

Figure 3: From decomposition to mask. The mask is computed from the element-wise product.

and key tokens are different every time, mainly the position encoding, i.e. RoPE, can be responsible
for this. Our main idea is to predict such attention patterns with a linear model.

The key idea is to use a linear least-squares approximation of

logAij = qik
t
j/
√
d− log

i∑
ℓ=1

exp (qik
t
l/
√
d). (2)

As linear model, we could use rj−iα + xjWkκ with model parameters α,κ ∈ Rd and our final
decomposition would become A

(s)
i,j = exp (rj−iα), A(v)

i,j = exp (xjWkκ), and A
(h)
i,j = 1. The

rj−i row-vector contains the RoPE coefficients

rj−i = (cos ((j − i)Θ) sin ((j − i)Θ)) where Θ =
(
θ

0
d/2 . . . θ

d/2−1
d/2

)
.

However, directly computing log
∑i

ℓ=1 exp (qik
t
ℓ/
√
d) takes too much time, while ignoring this

term degrades the quality of the approximation. Indeed, the row-average of qikt
j over all j ≤ i varies

significantly between rows i, which effectively causes many outliers in the least-squares regression
problem. Furthermore, elements rj−iα and xjWkκ may be far way from zero, which degrades the
approximation quality of A(s)

ij and A
(v)
ij even more.

In particular, consider an arbitrary matrix A and its least-squares approximation B, i.e. ||A −
B||F < ε for some ε. Then if we write eA and eB as the element-wise application of A and B to
the exponential function, respectively, then we can bound ||eA − eB||F by the use of a first-order
Taylor expansion as

||eA − eB||F = ||(A−B)(1 +
1

2
(A+B)⊙mXi)||F ≤ ε||1 + 1

2
(A+B)⊙mXi||F

for some matrix Ξ with elements |Ξi,j | < max(|Ai,j |, |Bi,j |). Hence, the smaller the elements of
A and B are, the better the resemblance of eA and eB will be.

To tackle these issues, we center the linear model around zero by subtracting averages from each
coefficient. Concretely, for each row i we subtract the average RoPE value ri = 1

i

∑i
j=1 rj−i

from rj−i, the average unroped K value XWki = 1
i

∑i
j=1 xjWk from xjWk, and the average

µi =
1
i

∑i
j=1 qik

t
j/
√
d from qik

t
j/
√
d. The final linear model becomes

(rj−i − ri)α+
(
xjWk −XWki

)
κ ≈ qik

t
j/
√
d− µi (3)

To find α and κ, we compute a small number of the coefficients and solve it as a linear least-squares
problem. Unfortunately, the problem is rank-deficient regardless of the number of coefficients we
sample. An SVD-based algorithm can handle rank-deficiency and would only require a sample size
that is a small multiple of 2d, i.e. the combined dimensions of α ad κ, to get a solution that is
still able to generalize over all positions in the context. However, it much faster to take about ten
times more samples and to apply ridge-regression through addition of a regularisation term, because
it allows the use of the the highly efficient normal-equations algorithm. Nevertheless, the averages
ri,XWki, and µi have to be computed over all N(N + 1)/2 possible values. Fortunately, these
can be computed for all rows simultaneously in O(Nd) time.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

5 0 5
QK/sqrt(d) value

0

1

2

3

4

5

Fr
eq

ue
nc

y
(%

)

L0 - H14

(a)

40 30 20 10 0
QK/sqrt(d) value

0.0

0.5

1.0

1.5

2.0

2.5

Fr
eq

ue
nc

y
(%

)

L29 - H26

(b)

30 20 10 0
QK/sqrt(d) value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fr
eq

ue
nc

y
(%

)

L5 - H4

(c)

30 20 10 0
QK/sqrt(d) value

0

1

2

3

4

Fr
eq

ue
nc

y
(%

)

L11 - H19

(d)

20 10 0
QK/sqrt(d) value

0

1

2

3

4

Fr
eq

ue
nc

y
(%

)

L31 - H0

(e)

Figure 4: QKt/
√
d distributions from five randomly chosen heads from LLAMA-3-8B-INSTRUCT-

1048K. Blue bars show the histogram of the values while the orange solid line shows the probability
density function of the normal distribution with same mean and variance.

At this point, we have enough to identify the slash pattern As and the vertical pattern Av . Define
vectors s ∈ R2N−1 and v, δ ∈ RN as

si−j = (rj−i − rN)α for j ≤ i and −∞ otherwise (4)
δi = (ri − rN)α (5)

vj =
(
xjWk −XWki

)
κ (6)

and let elements from As be A
(s)
i,j = esi−j and elements from Av be A

(v)
i,j = evj , then we have

A
(s)
i,jA

(v)
i,j ≈ exp (qik

t
j/
√
d+ δi − µi) for j ≤ i and 0 otherwise (7)

3.2 FINDING THE HORIZONTAL COMPONENT

Recall that our final goal is to approximate A, but As ⊙ Av falls short by the term
exp

(
−δi + µi − log

∑i
ℓ=1 exp (qik

t
ℓ/
√
d)
)

. What remains to be found is

νi ≈ log

i∑
ℓ=1

exp (qik
t
ℓ/
√
d− µi), (8)

so that si−j + vj − δi− νi ≈ logAi,j . To estimate νi, we rely on the statistical distribution of qikt
j ,

which is observed to be almost normal as illustrated in Figure 4, except for the first few j < S,
so-called sink tokens (Xiao et al., 2024b), and the last few tokens j > i− T , i.e. the Λ-shape (Han
et al., 2024). Therefore, exp (qikt

j) will be log-normally distributed for most j s.t. S < j < i − T

and therefore has expected value E(qiKt) = exp (µi + σ2
i /2). To make sure that the distribution is

matched exactly for at least the last row of QKt/
√
d, we apply a correction factor ζ.

ζ = µN + σ2
N/2− log

N−T∑
j=S+1

exp (qik
t
j/
√
d). (9)

The definition of νi becomes

νi = log
(
Λi + (i− S − T) exp (σ2

i /2− ζ)
)
, (10)

where Λi =
∑S

j=1 exp (qik
t
j/
√
d− µi) +

∑i
j=i−T+1 exp (qik

t
j/
√
d− µi) are the sums over the

Λ-shape.

The horizontal pattern Ah can, thus, be described with a vector h ∈ RN as

hi = −δi − νi. (11)

Let the elements of Ah be A(h)
i,j = ehi , we now have As⊙Av⊙Ah ≈ A for the interior elements of

A. That is, A without the Λ-shape. After all, we don’t need to approximate the elements QKt/
√
d

in Λ, because those have been computed exactly already and their distribution is so different from
the values in the interior, that it degrades the quality of the linear least-squares fit.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

As illustrated in Figure 5, the procedure is run for each attention head individually with its respective
inputs Q and K. From this input the QKt/

√
d sample is taken, the row-wise mean and variance

µ and σ2 is computed, and the sink, main-diagonal, and last row are computed. The RoPE term
(rj−i − ri) can even be computed before any prefill takes place. The unRoPEd xjWk can be
computed by undoing RoPE on K or, to save computation, it can be taken from an earlier stage.
The linear least-squares produces the slash and vertical pattern. The horizontal pattern is directly
computed from the Λ-shape, µ and σ2. The detailed algorithm can be found in the appendix as
algorithm 1.

𝑄

𝐾𝑡RoPE

?

+

argmin𝜶,𝜿∈ℝ𝑑 −𝐿 + 𝑅𝐽−𝐼 − 𝑅𝐽 𝜶 + (𝑋𝐽𝑊𝑘 − 𝑋𝐽𝑊𝑘𝐼
)𝜿 + 𝜇

2

= log+

Sample 𝐿 = 𝑄𝐾𝑡
Compute sink, last row,
and main diagonals

𝜇𝑖 , 𝜎𝑖
2

Compute row-wise
mean and variance

Figure 5: Overview of the steps in the decomposition algorithm

3.3 MASKING BY BLOCK-WISE COMPARISONS

To speed-up attention computation, the number of elements that are masked out from the attention
matrix A, must be maximized. However, masking out elements will introduce a numerical error, as
is evident from equation (1), and only sufficiently many elements can be masked out if the error is
allowed to be large enough. Unfortunately, it is unclear what the relation is between this error and
the accuracy on an NLP task. The feed-forward layer in the transformer is capable of correcting
numerical errors but this is not easy to model. Nevertheless, it is notationally convenient to use a
threshold-based criterion Ai,j < eτ = ε/N to distinguish zeros from non-zeros, because it relates
to equation (1) which makes clear that ε = 0 selects all attention elements for computation while
ε ≥ 1 selects none.

The downside of using a threshold is that computational cost still grows super linearly because we
observe that sparsity in most heads does not increase fast enough when the context length increases,
as has been predicted mathematically by Deng et al. (2024). Alternatively, one can also fix the
computational budget to something that increases linearly with the context length, while using the
threshold to determine the budget at an intersect point. Since almost all attention matrices have
log-normally distributed elements with parameters µ and σ2, it is easy to convert between the two.
Indeed, sparsity p ∈ [0, 1], as the ratio of zero over non-zero elements, can statistically also be
defined as a the probability that an element is below the threshold τ

p = 2
|{Ai,j < eτ}|
N(N + 1)

≈ Φ((τ − µ)/σ),

where Φ is the cumulative density function of the standard normal distribution.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The decomposition provides an efficient way to estimate µ and σ in quasi-linear time, because

µ =
2

N(N + 1)

N∑
i=1

(isi + (N − i+ 1)vi + ihi) (12)

σ2 + µ2 =
2

N(N + 1)

(N∑
i=1

i∑
j=1

(si−j+1 + vh + hj)
2
)
, (13)

where the two convolutions required to compute σ2 + µ2 have the dominant time complexity.

Although the decomposition approximates each individual element of the attention matrix, we will
use the block-sparse attention kernel by Jiang et al. (2024) which requires that the mask is per
B × B block with B = 64 and not element-wise. This changes the relation between τ and sparsity
p somewhat, because now each block will contain only B independent random variables. Indeed,
viewing the decomposition s,v,h as three random vectors, their composition si−j + vj + vi on a
grid element (i, j) is only independent from the other elements on its anti-diagonal. Considering
this, we obtain

pB ≈ (Φ((τB − µ)/σ))B . (14)
Note that τB = τ + logB is also different. In fact, it should coincide with the maximal error
for each individual block of which there are only N/B. Finally, the decomposition is converted
to the block structure by defining v

(B)
i = max0≤j<B{viB+j}, h(B)

i = max0≤j<B{hiB+j}, and
s
(B)
i = 1

2 (mi +mi+1), where mi = max0≤j<B{siB+j}. Blocking is a two-edged sword. One the
hand, efficiency is gained by decreasing the mask size by B2, while, on the other hand, sparsity is
lost, as is show-cased by Figure 2c.

Another complication caused by blocking is that it changes the distribution of the attention and its
decomposition differently. This distorts the threshold computation. We, therefore, compute B full
rows of A at a reference point N0 and extrapolate the density to the entire matrix. This density is
then converted to threshold τB using Equation 14.

In our experiments, with contexts going up to one million tokens, the quadratic-time algorithm that
directly sets M ∈ {0, 1}N/B×N/B as

Mi,j =

{
1 if s(B)

j−i + v
(B)
j + h

(B)
i < τB

0 otherwise,

is still faster than an alternative linear-time algorithm that selects elements by iterating over the
dominant diagonals, columns, and rows. The linear-time algorithm is detailed by Algorithm 2 in the
appendix.

4 EXPERIMENTS

In this section, we present an extensive overview of our experiments in order to evaluate SPARSE-
SKELETON in terms of accuracy and speed-ups. We use an NVIDIA A100 GPU-equipped machine
in order to run our experiments.

Implementation details. The method is integrated in vLLM (Kwon et al., 2023) and is executed
during the prefill phase of inference. Moreover, we implemented custom CUDA kernels to handle
the critical part of the decomposition method. Non-crucial parts are computed directly relying on
PyTorch library. The final sparse attention is computed with a custom Triton kernel (Tillet et al.,
2019) which computes the attention at a block granularity. Finally, for the decode part, Flashatten-
tion (Dao, 2024) is used with a dense KV cache.

Models. We tested our solution with the long context capable LLAMA-3-8B-INSTRUCT-1048K.

Benchmarks. We use two benchmarks to evaluate our method: ∞ Bench (Zhang et al., 2024) and
PG-19 (Rae et al., 2020).

Baselines. We compared SPARSESKELETON against three others techniques: dense attention com-
putation with FlashAttention (Dao, 2024) ; MInference (Jiang et al., 2024) ; and FlexPrefill (Lai

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000 100000
context length

9.5

10.0

10.5

11.0

11.5

12.0

lo
g

pe
rp

le
xi

ty

Flexprefill
MInference
Ours

(a) PG-19

0.0 0.2 0.4 0.6 0.8 1.0
context length 1e6

0

2

4

6

8

10

12

14

PF
LO

P

Flash Attention
Flexprefill
MInference
Ours

(b) PFLOP cost

Figure 6: (a) PG-19 log perplexity result and (b) Sparse attention cost in PFLOP comparison be-
tween each prefill method

et al., 2025). For those three methods, we use the same dense decoding method in order to highlight
only the impact of modified prefill phase.

We recorded perplexity on the PG-19 dataset, ranging from contexts of 1K to 100K tokens. As
Figure 6a shows, the perplexity remains low, while we significantly reduce the number of FLOP
computed during attention, as show in Figure 6b.

Subsequently, we record accuracy results on∞bench without applying a time-budget limit but with
a fixed threshold τB = log εB/N where B = 64 is the block size and ε = 0.8 the error tolerance.
The results are listed in Table 1. Results with the time-budget limited mask are listed in Table 2 in
the Appendix.

Table 1: Accuracy comparison on tested models and methods for different task of Infinite Bench
(Nlimit = 262K)

METHOD En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find Retr.PassKey Retr.Number Retr.KV
LLama3-8B-1024k 18.86 12.55 62.44 0.5 9.50 24.11 17.71 100 100 7.20
MInference 19.21 12.29 63.70 4.00 9.47 22.59 23.14 100 100 10.20
FlexPrefill 18.40 11.66 56.77 1.00 9.95 21.07 12.57 100 100 8.60
Ours (ϵ = 0.8) 19.99 12.21 60.70 4.50 12.44 28.93 20.00 100 99.15 1.40

5 RELATED WORK

Sun et al. (2025a) and Sun et al. (2025b) provide an excellent introduction and overview of sparse
attention in their survey studies. In summary, the relevant works can be systematically categorized
into three principal directions: (i) training-free methods employing plug-and-play mask predictor,
(ii) post-training methods based on additional sparse mask learning, such as Gao et al. (2025b;a);
Xiao et al. (2024a), and (iii) architectural approaches that incorporate native masked sparse attention
mechanisms, an example solution is Yuan et al. (2025).

In brief, sparse attention concerns both training and inference, but the method is roughly the same,
namely to avoid computing all elements in the attention matrix. Our method is training-free, it only
concerns the prefill stage of inference, it dynamically adapts to the input, and it uses block-sparse
accelerated kernels. Similarly categorized are Jiang et al. (2024); Lai et al. (2025); Sahni et al.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(2025); Zhang et al.; Peng et al. (2025). Yet, all solutions except ours and Sahni et al. (2025) need
an extensive offline phase to find optimal pattern configurations.

Prior work relies on various patterns to approximate the prefill attention computation as effectively as
possible. Early methods propose to compute attention in smaller localized attention windows while
retaining the computation of the first sink tokens exploiting the Λ-shape pattern (Xiao et al., 2024b).
Later methods introduce the vertical-slash pattern (Jiang et al., 2024). Lai et al. (2025) propose a
fine-grained mask prediction method based on the divergence between the predicted distribution of
attention scores and the true attention score distribution for sampled queries. The core idea is to
support irregular masks through the block sparse pattern rather than relying solely on vertical-slash
pattern, thereby further reducing computational cost while maintaining performance. More recent
method tends to rely on a block sparse patterns, being more accelerator friendly. Sahni et al. (2025)
propose to find attention blocks by estimating attention on the anti-diagonal which intersects both
slashes and verticals. Alternatively, Ji et al. (2025) utilize quantisation as estimation method for
blocks of attention.

6 DISCUSSION

Although we demonstrated that our method could significantly reduce the number of floating-point
operations during the sparse attention computation, further implementation efforts are still needed to
achieve end-to-end speedups. Especially, we need to develop high-efficiency parallel computation
kernels for all the steps of the sparse pattern decomposition depicted in Section 3. Fortunately,
there remains quite a bit of potential speed-up, which future work could address, possibly by also
exploiting NPU technology like ASCEND coupled with VLLM-MINDSPORE (MindSpore (2025)).

7 CONCLUSION

This work decomposes an approximate attention matrix A in three matrices: one with constant
diagonals, one with constant columns, and one with constant rows. This decomposition captures
most relevant emergent sparsity patterns in A, while it also readily provides a selection method that
only relies on element or block-wise operations.

Using the LLAMA-3-8B-INSTRUCT-1048K model from Grattafiori et al. (2024), we observe more
than 99.5% sparsity on average for inputs of one million tokens. In smaller context, 128K tokens, we
obtain 97% sparsity ; and 89% sparsity for 10K tokens. Although, frontier LLMs seem to move away
from MHA or GQA by using linear-attention methods (Qwen Team, 2025), our method provides an
easy on-line way to accelerate the majority of LLMs that still use quadratic attention methods.

This exploratory work allows better sparsity. Even though, the number of FLOP used to compute the
decomposition is dwarfed by the number of FLOP in the final block-sparse attention. Despite having
developed GPU kernels for most time-critical parts, the time required by the decomposition is still
considerable. Future work can exploit the absence of any input in the RoPE term in Equation 3. This
absence suggests that the slash pattern is independent from the input. Future work could therefore
attempt to extend the slash and vertical components during the inference’s decode stage by using the
α and κ obtained during prefill.

REFERENCES

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
mZn2Xyh9Ec.

Yichuan Deng, Zhao Song, Jing Xiong, and Chiwun Yang. How sparse attention approximates exact
attention? your attention is naturally nc-sparse. arXiv preprint arXiv:2404.02690, 2024.

Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Hayden Kwok-Hay So, Ting Cao, Fan Yang, and
Mao Yang. Seerattention: Learning intrinsic sparse attention in your llms. CoRR, abs/2410.13276,
2024. doi: 10.48550/ARXIV.2410.13276. URL https://doi.org/10.48550/arXiv.
2410.13276.

9

https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://doi.org/10.48550/arXiv.2410.13276
https://doi.org/10.48550/arXiv.2410.13276

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Yizhao Gao, Shuming Guo, Shijie Cao, Yuqing Xia, Yu Cheng, Lei Wang, Lingxiao Ma, Yutao
Sun, Tianzhu Ye, Li Dong, Hayden Kwok-Hay So, Yu Hua, Ting Cao, Fan Yang, and Mao Yang.
Seerattention-r: Sparse attention adaptation for long reasoning, 2025a. URL https://arxiv.
org/abs/2506.08889.

Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Peiyuan Zhou, Jiaxing Qi, Junjie Lai, Hayden
Kwok-Hay So, Ting Cao, Fan Yang, and Mao Yang. Seerattention: Learning intrinsic sparse
attention in your llms, 2025b. URL https://arxiv.org/abs/2410.13276.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide

10

https://arxiv.org/abs/2506.08889
https://arxiv.org/abs/2506.08889
https://arxiv.org/abs/2410.13276

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite:
Zero-shot extreme length generalization for large language models. In Kevin Duh, Helena Gómez-
Adorno, and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies (Vol-
ume 1: Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024, pp. 3991–4008.
Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.NAACL-LONG.222.
URL https://doi.org/10.18653/v1/2024.naacl-long.222.

Xiaodong Ji, Hailin Zhang, Fangcheng Fu, and Bin Cui. Sale : Low-bit estimation for effi-
cient sparse attention in long-context llm prefilling, 2025. URL https://arxiv.org/abs/
2505.24179.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Minference 1.0:
Accelerating pre-filling for long-context llms via dynamic sparse attention. In Amir Globersons,
Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng

11

https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/2024.naacl-long.222
https://arxiv.org/abs/2505.24179
https://arxiv.org/abs/2505.24179

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference on
Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/
hash/5dfbe6f5671e82c76841ba687a8a9ecb-Abstract-Conference.html.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention, 2023. URL https://arxiv.org/abs/2309.06180.

Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. Flexprefill: A context-aware sparse
attention mechanism for efficient long-sequence inference. In The Thirteenth International Con-
ference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net,
2025. URL https://openreview.net/forum?id=OfjIlbelrT.

MindSpore. vllm-mindspore plugin, 2025. URL https://www.mindspore.cn/vllm_
mindspore/docs/en/master/index.html.

Dan Peng, Zhihui Fu, Zewen Ye, Zhuoran Song, and Jun Wang. Accelerating prefilling for long-
context llms via sparse pattern sharing. CoRR, abs/2505.19578, 2025. doi: 10.48550/ARXIV.
2505.19578. URL https://doi.org/10.48550/arXiv.2505.19578.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, Chloe Hillier, and Timothy P. Lilli-
crap. Compressive transformers for long-range sequence modelling. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
SylKikSYDH.

Sarita Sahni, Sweta Jain, and Sri Khetwat Saritha. Xattentionhar ensemble: Leveraging cross-
modal attention for enhanced activity recognition. Int. J. Pattern Recognit. Artif. Intell., 39(1):
2450026:1–2450026:27, 2025. doi: 10.1142/S0218001424500265. URL https://doi.org/
10.1142/S0218001424500265.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Weigao Sun, Jiaxi Hu, Yucheng Zhou, Jusen Du, Disen Lan, Kexin Wang, Tong Zhu, Xiaoye Qu,
Yu Zhang, Xiaoyu Mo, Daizong Liu, Yuxuan Liang, Wenliang Chen, Guoqi Li, and Yu Cheng.
Speed always wins: A survey on efficient architectures for large language models. CoRR,
abs/2508.09834, 2025a. doi: 10.48550/ARXIV.2508.09834. URL https://doi.org/10.
48550/arXiv.2508.09834.

Yutao Sun, Zhenyu Li, Yike Zhang, Tengyu Pan, Bowen Dong, Yuyi Guo, and Jianyong Wang.
Efficient attention mechanisms for large language models: A survey. CoRR, abs/2507.19595,
2025b. doi: 10.48550/ARXIV.2507.19595. URL https://doi.org/10.48550/arXiv.
2507.19595.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. QUEST:
query-aware sparsity for efficient long-context LLM inference. In Forty-first International Con-
ference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?id=KzACYw0MTV.

Philippe Tillet, H. T. Kung, and David Cox. Triton: an intermediate language and compiler for
tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, MAPL 2019, pp. 10–19, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367196. doi:
10.1145/3315508.3329973. URL https://doi.org/10.1145/3315508.3329973.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming
heads, 2024a. URL https://arxiv.org/abs/2410.10819.

12

http://papers.nips.cc/paper_files/paper/2024/hash/5dfbe6f5671e82c76841ba687a8a9ecb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/5dfbe6f5671e82c76841ba687a8a9ecb-Abstract-Conference.html
https://arxiv.org/abs/2309.06180
https://openreview.net/forum?id=OfjIlbelrT
https://www.mindspore.cn/vllm_mindspore/docs/en/master/index.html
https://www.mindspore.cn/vllm_mindspore/docs/en/master/index.html
https://doi.org/10.48550/arXiv.2505.19578
https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://doi.org/10.1142/S0218001424500265
https://doi.org/10.1142/S0218001424500265
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://doi.org/10.48550/arXiv.2508.09834
https://doi.org/10.48550/arXiv.2508.09834
https://doi.org/10.48550/arXiv.2507.19595
https://doi.org/10.48550/arXiv.2507.19595
https://openreview.net/forum?id=KzACYw0MTV
https://doi.org/10.1145/3315508.3329973
https://arxiv.org/abs/2410.10819

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024b. URL
https://openreview.net/forum?id=NG7sS51zVF.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context LLM inference with retrieval and streaming
heads. In The Thirteenth International Conference on Learning Representations, ICLR 2025,
Singapore, April 24-28, 2025. OpenReview.net, 2025. URL https://openreview.net/
forum?id=cFu7ze7xUm.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
Y. X. Wei, Lean Wang, Zhiping Xiao, Yuqing Wang, Chong Ruan, Ming Zhang, Wenfeng Liang,
and Wangding Zeng. Native sparse attention: Hardware-aligned and natively trainable sparse
attention, 2025. URL https://arxiv.org/abs/2502.11089.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Haocheng Xi, Jun Zhu, Jianfei Chen, et al.
Spargeattention: Accurate and training-free sparse attention accelerating any model inference.
In Forty-second International Conference on Machine Learning.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Hao, Xu Han, Zhen
Thai, Shuo Wang, Zhiyuan Liu, et al. bench: Extending long context evaluation beyond 100k
tokens. In Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 15262–15277, 2024.

A APPENDIX

A.1 ABLATION STUDY

Table 2: Accuracy comparison on tested models and methods for different task of Infinite Bench

MODEL METHOD En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find Retr.PassKey Retr.Number Retr.KV
LLama3-8B-1024k Ours (ϵ = 0.8) 19.99 12.21 60.70 4.50 12.44 28.93 20.00 100 99.15 1.40

Ours (Budget limit) 21.20 10.03 52.84 3.00 11.04 27.16 19.43 96.78 98.64 1.00

13

https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=cFu7ze7xUm
https://openreview.net/forum?id=cFu7ze7xUm
https://arxiv.org/abs/2502.11089

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1: Find decomposition
Data: The (RoPEd) query and key states Q and K
Result: The decomposition s, v, h ∈ RN and Λ-shape sink, diags
/* Uniform random sample of the interior of QKt

*/
1 Sample I = {(I1, J1), . . . , (I80d, J80d)} where Ii = S + T +max(Xi, Yi) and

Ji = S +min(Xi, Yi) with Xi, Yi uniformly randomly sampled from [1..N − S − T]
// Undo position encoding of K

2 xjWk ← kjRj for all S < j ≤ N − T
// QK row statistics

3 µi ← 1√
di
qi
∑i

j=1 k
t
j for all 1 ≤ i ≤ N

4 σ2
i ← 1

diqi

(∑i
j=1 k

t
jkj

)
qti − µ2

i

// Λ-shape and last row of QK

5 sinki,j ← qik
t
j/
√
d for all i, j s.t. S + T < i ≤ N and 1 ≤ j ≤ S

6 lastrowj ← qNktj/
√
d for all j s.t. S < j ≤ N − T

7 diagsi,j ← qik
t
j+i−S−T /

√
d for all i, j s.t. S + T < i ≤ N and 1 ≤ j ≤ T

8 lambdai ←
∑S

j=1 exp (sinki,j − µi) +
∑T

j=1 exp (diagsi,j − µi)

// Vertical and slash patterns

9 ri ← 1
i−S−T

∑i−T
j=S+1 rj−i for all i s.t. S + T < i ≤ N

10 XWki ← 1
i−S−T

∑i−T
j=S+1 xjWk for all i s.t. S + T < i ≤ N

11 A←
(
(rJ−I − rI)

(
xJWk −XWkI

))
12 bi ← qik

t
j/
√
d− µi for all (i, j) ∈ I

13 Apply normal-equations to solve argminα,κ∈Rd ||
(

A
λI

)
(ακ)− (b

0) ||2 for λ = ε||A||F /2
14 sj ← (rj−N − rN)α

15 vj ←
(
xjWk −XWkN

)
κ

// Horizontal pattern

16 ζ ← µN + σ2
N/2− log

∑N−T
j=S+1 exp (lastrowj)

17 νi ← log (lambdai + (i− S − T) exp (σ2
i /2− ζ)

18 δi ← 1
i−S−T

∑i−T
j=S sN−j+1

19 hi ← −δi − νi
20 return s, v, h,sink,diags

Algorithm 2: Find mask

Data: The decomposition s, v, h ∈ RN and threshold value τ
Result: An index list I = {(i1, j1), . . . , (in, jn)}

1 I ← {};
2 foreach j in order of decreasing argsort(vj) do
3 S← {(i, j) | vj + sj−i + hi > τ};
4 if 3|S| < N − S − T − j + 1 then break;
5 I ← I ∪ S;
6 end
7 foreach j in order of decreasing argsort(sj) do
8 S← {(i, j) | vj + sj−i + hi > τ};
9 if 3|S| < j then break;

10 I ← I ∪ S;
11 end
12 foreach i in order of decreasing argsort(hi) do
13 S← {(i, j) | vj + sj−i + hi > τ};
14 if 3|S| < i then break;
15 I ← I ∪ S;
16 end

14

	Introduction
	Attention
	Sparse pattern decomposition
	Finding vertical and slash components
	Finding the horizontal component
	Masking by block-wise comparisons

	Experiments
	Related Work
	Discussion
	Conclusion
	Appendix
	Ablation study

