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ABSTRACT

Multi-head attention (MHA) and grouped query head attention (GQA) consti-
tute essential architectural components of modern large language models (LLMs).
Even though attention computations remain relatively inexpensive for small-scale
inputs, the computational cost increases quadratically as the input size expands.
In long-context scenarios, including tasks such as book-level summarization or
code repos analysis, time-to-first-token (TTFT) performance can deteriorate sig-
nificantly. Although various studies have improved prefill stage performance by
exploiting sparsity structure, sparsity can still be further increased with structure
refinements.
In this work, we propose an approximate on-line decomposition of the attention
matrix which is able to dynamically identify additional sparsity. The attention
matrix is decomposed into three components: a slash component, a vertical com-
ponent, and a horizontal component. Each component requires only linear space,
thereby enabling more efficient processing compared to the full attention matrix.
The decomposition is computed from query and key tokens using a linear-time
algorithm. The statistical properties of the decomposition allow generation of the
mask by merely selecting elements that exceed a threshold. The threshold itself
can be chosen to limit the difference with regular dense attention or to respect a
certain time-budget.
We demonstrate that this technique can be directly applied – without requiring
retraining – to networks employing standard dense attention mechanisms (MHA,
GQA) and RoPE. We show that precision is maintained across the ∞Bench and
PG-19 benchmarks for LLAMA-3-8B-INSTRUCT-1048K. Furthermore, we ob-
serve substantial increases in sparsity and corresponding speedup compared to
previous methods. We halve the number of FLOP relative to State-of-the-Art on
one million tokens.

1 INTRODUCTION

Transformer-based large language models (LLMs) have seen spectacular adoption in all kinds of
natural language processing tasks. Some particular tasks, such as book summarization, require the
LLM to process a long text, split into a large number of tokens, in a phase known as prefill, before
it can even start to respond. Transformer LLMs build an attention map between all possible pairs of
tokens. Prevalent attention mechanisms, multi-head attention (MHA) and grouped-query attention
(GQA), do this explicitly and thus require quadratic number of operations to complete the map. For
long texts this time adds up and becomes a major bottleneck that impedes further adoption.

This problem has been identified and addressed by many works before. One particular strategy,
employed by Xiao et al. (2024b); Jiang et al. (2024); Xiao et al. (2025); Lai et al. (2025); Sahni et al.
(2025); Gao et al. (2024); Zhang et al.; Peng et al. (2025), is to predict a pattern in the attention map
before building it. They exploit the fact that the attention map, effectively a matrix A ∈ RN×N , is
often very sparse. Many of its elements are so close to zero, that their contribution to the attention
computation is negligible. By predicting the pattern, one can construct an attention mask that masks
the zero elements in the computation, and thus save considerable time.

However, pattern prediction and mask construction introduce computational overhead. Unfortu-
nately, offline recognition of static patterns applicable to any input is not possible as inputs influence
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(a) A (b) As (c) Av (d) Ah (e)As⊙Av⊙Ah (f) Mask (g) Vert./Slash

Figure 1: An attention matrix (a) from layer 21, head 8 in LLAMA-3-8B-INSTRUCT-1048K together
with its decomposition (b-d), the recomposition (e), our final mask (f), and the mask from a verti-
cal/slash method (g). The prompt was a concatenation of several short books from the PG-19 (Rae
et al., 2020). This creates the distinct staircase pattern in the attention matrix which is reproduced
by our method.

patterns. Hence, this has to be done online and previous methods restrict themselves to a small
number of categories, such as Λ-shape, vertical-slash, block-sparse, and query-aware.

In this paper, we propose to generalize these patterns. In particular, we show a new dynamic (on-line)
method to approximate the attention matrix A. To the best of our knowledge, this is the first attempt
to decompose the attention matrix. As illustrated in Figure 1, this matrix can be decomposed into
three components: a slash component As with constant diagonals, i.e. Toeplitz, a vertical compo-
nent Av with constant columns, and a horizontal component Ah with constant rows. Equivalently,
these components are compactly represented by vectors s,v,h ∈ RN which provide an efficient
data-structure for constructing the attention mask. This decomposition captures most relevant emer-
gent sparsity patterns in A. The decomposition algorithm has linear time complexity which makes
it suitable to be used on-line, so that it can dynamically adapt to the sparsity pattern in each prefill
phase. Moreover, the distribution of values in s,v, and h is well behaved and allows the mask to be
generated with only element- or block-wise operations.

Using the LLAMA-3-8B-INSTRUCT-1048K model from Grattafiori et al. (2024), we observe more
than 99.5% sparsity on average for inputs of one million tokens. In smaller context, 128K tokens,
we obtain 97% sparsity ; and 89% sparsity for 10K tokens. Moreover, through the∞ bench (Zhang
et al., 2024), and the PG-19 (Rae et al., 2020) benchmarks we observe that model accuracy is main-
tained.

2 ATTENTION

Transformer-based LLMs have an attention mechanism that builds and applies an attention map
between all possible token pairs in the input. The attention map is in essence a matrix A ∈ RN×N ,
where N is the number of tokens in the input, i.e. the context length. Concretely, each transformer
layer in the model first projects its input X ∈ RN×D, D being the embedding size, to a query,
key, and value matrix Q,K,V ∈ RN×d using learnt weight matrices Wq,Wk,Wv ∈ RD×d,
respectively, for each of the H different heads with dimension d. Afterwards, the query and key
matrices also receive a position encoding. In this work, we assume RoPE (Su et al., 2023) which
right-multiplies each query and key i with rope matrix Ri. Hence, each row i in Q,K,V is defined
as qi = xiWqRi, ki = xiWkRi, and vi = xiWv , respectively. Finally, it computes the attention
as the matrix product

AV , where A = softmax
(
QKt −∞M√

d

)
.

In prevalent text generating LLMs, which only consists of decoders, M ∈ {0, 1}N×N is an upper-
triangular matrix with only 1’s in the upper triangle. Effectively, each element Ai,j in A is defined
as

Ai,j =
exp (qik

t
j/
√
d)∑i

ℓ=1 exp (qik
t
ℓ/
√
d)

if j ≤ i and 0 otherwise.

The attention matrix A has a tendency to be sparse, which means that many elements in A are
sufficiently close to zero that they don’t matter in the attention output O = AV . Concretely, let the
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Figure 2: Distribution of attention matrix sparsity among all heads in LLAMA-3-8B-INSTRUCT-
1048K on a prompt of 124k tokens using different criterion. The exact sparsity (a) is compared
with the sparsity found the threshold criterion (b) and to threshold criterion when it is applied to the
maximum value over 64× 64 blocks (c).

attention mask M mark all negligible elements in A, i.e.
∑

k:Mi,k=1 |Ai,k| < ε for some ε > 0,
and approximate O by O′ as O′

i,j =
∑

k:Mi,k=0 Ai,kVk,j , then

|Oi,j −O′
i,j | <

∑
k:Mi,k=1

|Ai,k| max
1≤ℓ≤N

|Vℓ,j | ≤ ε||V ||∞ (1)

Hence, the estimate can be made arbitrarily accurate by taking ε small enough.

Figure 2a shows the sparsity distribution among all heads in LLAMA-3-8B-INSTRUCT-1048K. A
more practical method of measuring sparsity is counting or estimating the number of elements in
A that are below the threshold ε/N , because with only those elements left out, the same attention
output error bound applies. This threshold condition, however, is less tight, which causes a large
proportion of sparsity to go unnoticed, as illustrated by Figure 2b.

3 SPARSE PATTERN DECOMPOSITION

The sparsity of A is not random. Indeed, several patterns emerge in A, which can be used to infer
where the non-zeros are. Earlier work observed the Λ-shape (Han et al., 2024), vertical-slash (Jiang
et al., 2024), block-sparse, and query-aware (Tang et al., 2024) patterns. We believe that the most
relevant patterns can be captured by a decomposition of A in three matrices As,Av,Ah ∈ RN×N

such that A ≈ As ⊙Av ⊙Ah, where

• As is Toeplitz, meaning that it has constant diagonals and thus exhibits a slash-pattern,
• Av has constant columns and thus exhibits a vertical pattern, and
• Ah has constant rows and thus exhibits a horizontal pattern.

We use the decomposition to find the non-zeros in A by merely comparing their element-wise prod-
uct with a threshold value, i.e. we set Mi,j = 1 for the elements for which A

(s)
i,jA

(v)
i,j A

(h)
i,j < ε/N , as

is illustrated in Figure 3.

3.1 FINDING VERTICAL AND SLASH COMPONENTS

Jiang et al. (2024) observed that the majority of attention matrices have a vertical-slash pattern.
Specifically, most attention matrices contain only a small number of columns that have many more
non-zero elements than the other columns, causing a distinct vertical pattern in the visualisation
of the matrix. The key tokens involved get high attention regardless of the query-token or the
relative distance to it. Similarly, those matrices with a slash pattern show distinct diagonals in their
visualization. Since all elements on the same diagonal have the same relative position while query

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

𝐴𝑠 𝐴𝑣 𝐴ℎ
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Approximation Mask: 1 − 𝑀

⇒

Figure 3: From decomposition to mask. The mask is computed from the element-wise product.

and key tokens are different every time, mainly the position encoding, i.e. RoPE, can be responsible
for this. Our main idea is to predict such attention patterns with a linear model.

The key idea is to use a linear least-squares approximation of

logAij = qik
t
j/
√
d− log

i∑
ℓ=1

exp (qik
t
l/
√
d). (2)

As linear model, we could use rj−iα + xjWkκ with model parameters α,κ ∈ Rd and our final
decomposition would become A

(s)
i,j = exp (rj−iα), A(v)

i,j = exp (xjWkκ), and A
(h)
i,j = 1. The

rj−i row-vector contains the RoPE coefficients

rj−i = (cos ((j − i)Θ) sin ((j − i)Θ)) where Θ =
(
θ

0
d/2 . . . θ

d/2−1
d/2

)
.

However, directly computing log
∑i

ℓ=1 exp (qik
t
ℓ/
√
d) takes too much time, while ignoring this

term degrades the quality of the approximation. Indeed, the row-average of qikt
j over all j ≤ i varies

significantly between rows i, which effectively causes many outliers in the least-squares regression
problem. Furthermore, elements rj−iα and xjWkκ may be far way from zero, which degrades the
approximation quality of A(s)

ij and A
(v)
ij even more.

In particular, consider an arbitrary matrix A and its least-squares approximation B, i.e. ||A −
B||F < ε for some ε. Then if we write eA and eB as the element-wise application of A and B to
the exponential function, respectively, then we can bound ||eA − eB||F by the use of a first-order
Taylor expansion as

||eA − eB||F = ||(A−B)(1 +
1

2
(A+B)⊙mXi)||F ≤ ε||1 + 1

2
(A+B)⊙mXi||F

for some matrix Ξ with elements |Ξi,j | < max(|Ai,j |, |Bi,j |). Hence, the smaller the elements of
A and B are, the better the resemblance of eA and eB will be.

To tackle these issues, we center the linear model around zero by subtracting averages from each
coefficient. Concretely, for each row i we subtract the average RoPE value ri = 1

i

∑i
j=1 rj−i

from rj−i, the average unroped K value XWki = 1
i

∑i
j=1 xjWk from xjWk, and the average

µi =
1
i

∑i
j=1 qik

t
j/
√
d from qik

t
j/
√
d. The final linear model becomes

(rj−i − ri)α+
(
xjWk −XWki

)
κ ≈ qik

t
j/
√
d− µi (3)

To find α and κ, we compute a small number of the coefficients and solve it as a linear least-squares
problem. Unfortunately, the problem is rank-deficient regardless of the number of coefficients we
sample. An SVD-based algorithm can handle rank-deficiency and would only require a sample size
that is a small multiple of 2d, i.e. the combined dimensions of α ad κ, to get a solution that is
still able to generalize over all positions in the context. However, it much faster to take about ten
times more samples and to apply ridge-regression through addition of a regularisation term, because
it allows the use of the the highly efficient normal-equations algorithm. Nevertheless, the averages
ri,XWki, and µi have to be computed over all N(N + 1)/2 possible values. Fortunately, these
can be computed for all rows simultaneously in O(Nd) time.
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Figure 4: QKt/
√
d distributions from five randomly chosen heads from LLAMA-3-8B-INSTRUCT-

1048K. Blue bars show the histogram of the values while the orange solid line shows the probability
density function of the normal distribution with same mean and variance.

At this point, we have enough to identify the slash pattern As and the vertical pattern Av . Define
vectors s ∈ R2N−1 and v, δ ∈ RN as

si−j = (rj−i − rN )α for j ≤ i and −∞ otherwise (4)
δi = (ri − rN )α (5)

vj =
(
xjWk −XWki

)
κ (6)

and let elements from As be A
(s)
i,j = esi−j and elements from Av be A

(v)
i,j = evj , then we have

A
(s)
i,jA

(v)
i,j ≈ exp (qik

t
j/
√
d+ δi − µi) for j ≤ i and 0 otherwise (7)

3.2 FINDING THE HORIZONTAL COMPONENT

Recall that our final goal is to approximate A, but As ⊙ Av falls short by the term
exp

(
−δi + µi − log

∑i
ℓ=1 exp (qik

t
ℓ/
√
d)
)

. What remains to be found is

νi ≈ log

i∑
ℓ=1

exp (qik
t
ℓ/
√
d− µi), (8)

so that si−j + vj − δi− νi ≈ logAi,j . To estimate νi, we rely on the statistical distribution of qikt
j ,

which is observed to be almost normal as illustrated in Figure 4, except for the first few j < S,
so-called sink tokens (Xiao et al., 2024b), and the last few tokens j > i− T , i.e. the Λ-shape (Han
et al., 2024). Therefore, exp (qikt

j) will be log-normally distributed for most j s.t. S < j < i − T

and therefore has expected value E(qiKt) = exp (µi + σ2
i /2). To make sure that the distribution is

matched exactly for at least the last row of QKt/
√
d, we apply a correction factor ζ.

ζ = µN + σ2
N/2− log

N−T∑
j=S+1

exp (qik
t
j/
√
d). (9)

The definition of νi becomes

νi = log
(
Λi + (i− S − T ) exp (σ2

i /2− ζ)
)
, (10)

where Λi =
∑S

j=1 exp (qik
t
j/
√
d− µi) +

∑i
j=i−T+1 exp (qik

t
j/
√
d− µi) are the sums over the

Λ-shape.

The horizontal pattern Ah can, thus, be described with a vector h ∈ RN as

hi = −δi − νi. (11)

Let the elements of Ah be A(h)
i,j = ehi , we now have As⊙Av⊙Ah ≈ A for the interior elements of

A. That is, A without the Λ-shape. After all, we don’t need to approximate the elements QKt/
√
d

in Λ, because those have been computed exactly already and their distribution is so different from
the values in the interior, that it degrades the quality of the linear least-squares fit.
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As illustrated in Figure 5, the procedure is run for each attention head individually with its respective
inputs Q and K. From this input the QKt/

√
d sample is taken, the row-wise mean and variance

µ and σ2 is computed, and the sink, main-diagonal, and last row are computed. The RoPE term
(rj−i − ri) can even be computed before any prefill takes place. The unRoPEd xjWk can be
computed by undoing RoPE on K or, to save computation, it can be taken from an earlier stage.
The linear least-squares produces the slash and vertical pattern. The horizontal pattern is directly
computed from the Λ-shape, µ and σ2. The detailed algorithm can be found in the appendix as
algorithm 1.

𝑄

𝐾𝑡RoPE

?

+

argmin𝜶,𝜿∈ℝ𝑑 −𝐿 + 𝑅𝐽−𝐼 − 𝑅𝐽 𝜶 + (𝑋𝐽𝑊𝑘 − 𝑋𝐽𝑊𝑘𝐼
)𝜿 + 𝜇

2

= log+

Sample 𝐿 = 𝑄𝐾𝑡
Compute sink, last row, 
and main diagonals

𝜇𝑖 , 𝜎𝑖
2

Compute row-wise 
mean and variance

Figure 5: Overview of the steps in the decomposition algorithm

3.3 MASKING BY BLOCK-WISE COMPARISONS

To speed-up attention computation, the number of elements that are masked out from the attention
matrix A, must be maximized. However, masking out elements will introduce a numerical error, as
is evident from equation (1), and only sufficiently many elements can be masked out if the error is
allowed to be large enough. Unfortunately, it is unclear what the relation is between this error and
the accuracy on an NLP task. The feed-forward layer in the transformer is capable of correcting
numerical errors but this is not easy to model. Nevertheless, it is notationally convenient to use a
threshold-based criterion Ai,j < eτ = ε/N to distinguish zeros from non-zeros, because it relates
to equation (1) which makes clear that ε = 0 selects all attention elements for computation while
ε ≥ 1 selects none.

The downside of using a threshold is that computational cost still grows super linearly because we
observe that sparsity in most heads does not increase fast enough when the context length increases,
as has been predicted mathematically by Deng et al. (2024). Alternatively, one can also fix the
computational budget to something that increases linearly with the context length, while using the
threshold to determine the budget at an intersect point. Since almost all attention matrices have
log-normally distributed elements with parameters µ and σ2, it is easy to convert between the two.
Indeed, sparsity p ∈ [0, 1], as the ratio of zero over non-zero elements, can statistically also be
defined as a the probability that an element is below the threshold τ

p = 2
|{Ai,j < eτ}|
N(N + 1)

≈ Φ((τ − µ)/σ),

where Φ is the cumulative density function of the standard normal distribution.

6
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The decomposition provides an efficient way to estimate µ and σ in quasi-linear time, because

µ =
2

N(N + 1)

N∑
i=1

(isi + (N − i+ 1)vi + ihi) (12)

σ2 + µ2 =
2

N(N + 1)

( N∑
i=1

i∑
j=1

(si−j+1 + vh + hj)
2
)
, (13)

where the two convolutions required to compute σ2 + µ2 have the dominant time complexity.

Although the decomposition approximates each individual element of the attention matrix, we will
use the block-sparse attention kernel by Jiang et al. (2024) which requires that the mask is per
B × B block with B = 64 and not element-wise. This changes the relation between τ and sparsity
p somewhat, because now each block will contain only B independent random variables. Indeed,
viewing the decomposition s,v,h as three random vectors, their composition si−j + vj + vi on a
grid element (i, j) is only independent from the other elements on its anti-diagonal. Considering
this, we obtain

pB ≈ (Φ((τB − µ)/σ))B . (14)
Note that τB = τ + logB is also different. In fact, it should coincide with the maximal error
for each individual block of which there are only N/B. Finally, the decomposition is converted
to the block structure by defining v

(B)
i = max0≤j<B{viB+j}, h(B)

i = max0≤j<B{hiB+j}, and
s
(B)
i = 1

2 (mi +mi+1), where mi = max0≤j<B{siB+j}. Blocking is a two-edged sword. One the
hand, efficiency is gained by decreasing the mask size by B2, while, on the other hand, sparsity is
lost, as is show-cased by Figure 2c.

Another complication caused by blocking is that it changes the distribution of the attention and its
decomposition differently. This distorts the threshold computation. We, therefore, compute B full
rows of A at a reference point N0 and extrapolate the density to the entire matrix. This density is
then converted to threshold τB using Equation 14.

In our experiments, with contexts going up to one million tokens, the quadratic-time algorithm that
directly sets M ∈ {0, 1}N/B×N/B as

Mi,j =

{
1 if s(B)

j−i + v
(B)
j + h

(B)
i < τB

0 otherwise,

is still faster than an alternative linear-time algorithm that selects elements by iterating over the
dominant diagonals, columns, and rows. The linear-time algorithm is detailed by Algorithm 2 in the
appendix.

4 EXPERIMENTS

In this section, we present an extensive overview of our experiments in order to evaluate SPARSE-
SKELETON in terms of accuracy and speed-ups. We use an NVIDIA A100 GPU-equipped machine
in order to run our experiments.

Implementation details. The method is integrated in vLLM (Kwon et al., 2023) and is executed
during the prefill phase of inference. Moreover, we implemented custom CUDA kernels to handle
the critical part of the decomposition method. Non-crucial parts are computed directly relying on
PyTorch library. The final sparse attention is computed with a custom Triton kernel (Tillet et al.,
2019) which computes the attention at a block granularity. Finally, for the decode part, Flashatten-
tion (Dao, 2024) is used with a dense KV cache.

Models. We tested our solution with the long context capable LLAMA-3-8B-INSTRUCT-1048K.

Benchmarks. We use two benchmarks to evaluate our method: ∞ Bench (Zhang et al., 2024) and
PG-19 (Rae et al., 2020).

Baselines. We compared SPARSESKELETON against three others techniques: dense attention com-
putation with FlashAttention (Dao, 2024) ; MInference (Jiang et al., 2024) ; and FlexPrefill (Lai

7
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Figure 6: (a) PG-19 log perplexity result and (b) Sparse attention cost in PFLOP comparison be-
tween each prefill method

et al., 2025). For those three methods, we use the same dense decoding method in order to highlight
only the impact of modified prefill phase.

We recorded perplexity on the PG-19 dataset, ranging from contexts of 1K to 100K tokens. As
Figure 6a shows, the perplexity remains low, while we significantly reduce the number of FLOP
computed during attention, as show in Figure 6b.

Subsequently, we record accuracy results on∞bench without applying a time-budget limit but with
a fixed threshold τB = log εB/N where B = 64 is the block size and ε = 0.8 the error tolerance.
The results are listed in Table 1. Results with the time-budget limited mask are listed in Table 2 in
the Appendix.

Table 1: Accuracy comparison on tested models and methods for different task of Infinite Bench
(Nlimit = 262K)

METHOD En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find Retr.PassKey Retr.Number Retr.KV
LLama3-8B-1024k 18.86 12.55 62.44 0.5 9.50 24.11 17.71 100 100 7.20
MInference 19.21 12.29 63.70 4.00 9.47 22.59 23.14 100 100 10.20
FlexPrefill 18.40 11.66 56.77 1.00 9.95 21.07 12.57 100 100 8.60
Ours (ϵ = 0.8) 19.99 12.21 60.70 4.50 12.44 28.93 20.00 100 99.15 1.40

5 RELATED WORK

Sun et al. (2025a) and Sun et al. (2025b) provide an excellent introduction and overview of sparse
attention in their survey studies. In summary, the relevant works can be systematically categorized
into three principal directions: (i) training-free methods employing plug-and-play mask predictor,
(ii) post-training methods based on additional sparse mask learning, such as Gao et al. (2025b;a);
Xiao et al. (2024a), and (iii) architectural approaches that incorporate native masked sparse attention
mechanisms, an example solution is Yuan et al. (2025).

In brief, sparse attention concerns both training and inference, but the method is roughly the same,
namely to avoid computing all elements in the attention matrix. Our method is training-free, it only
concerns the prefill stage of inference, it dynamically adapts to the input, and it uses block-sparse
accelerated kernels. Similarly categorized are Jiang et al. (2024); Lai et al. (2025); Sahni et al.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(2025); Zhang et al.; Peng et al. (2025). Yet, all solutions except ours and Sahni et al. (2025) need
an extensive offline phase to find optimal pattern configurations.

Prior work relies on various patterns to approximate the prefill attention computation as effectively as
possible. Early methods propose to compute attention in smaller localized attention windows while
retaining the computation of the first sink tokens exploiting the Λ-shape pattern (Xiao et al., 2024b).
Later methods introduce the vertical-slash pattern (Jiang et al., 2024). Lai et al. (2025) propose a
fine-grained mask prediction method based on the divergence between the predicted distribution of
attention scores and the true attention score distribution for sampled queries. The core idea is to
support irregular masks through the block sparse pattern rather than relying solely on vertical-slash
pattern, thereby further reducing computational cost while maintaining performance. More recent
method tends to rely on a block sparse patterns, being more accelerator friendly. Sahni et al. (2025)
propose to find attention blocks by estimating attention on the anti-diagonal which intersects both
slashes and verticals. Alternatively, Ji et al. (2025) utilize quantisation as estimation method for
blocks of attention.

6 DISCUSSION

Although we demonstrated that our method could significantly reduce the number of floating-point
operations during the sparse attention computation, further implementation efforts are still needed to
achieve end-to-end speedups. Especially, we need to develop high-efficiency parallel computation
kernels for all the steps of the sparse pattern decomposition depicted in Section 3. Fortunately,
there remains quite a bit of potential speed-up, which future work could address, possibly by also
exploiting NPU technology like ASCEND coupled with VLLM-MINDSPORE (MindSpore (2025)).

7 CONCLUSION

This work decomposes an approximate attention matrix A in three matrices: one with constant
diagonals, one with constant columns, and one with constant rows. This decomposition captures
most relevant emergent sparsity patterns in A, while it also readily provides a selection method that
only relies on element or block-wise operations.

Using the LLAMA-3-8B-INSTRUCT-1048K model from Grattafiori et al. (2024), we observe more
than 99.5% sparsity on average for inputs of one million tokens. In smaller context, 128K tokens, we
obtain 97% sparsity ; and 89% sparsity for 10K tokens. Although, frontier LLMs seem to move away
from MHA or GQA by using linear-attention methods (Qwen Team, 2025), our method provides an
easy on-line way to accelerate the majority of LLMs that still use quadratic attention methods.

This exploratory work allows better sparsity. Even though, the number of FLOP used to compute the
decomposition is dwarfed by the number of FLOP in the final block-sparse attention. Despite having
developed GPU kernels for most time-critical parts, the time required by the decomposition is still
considerable. Future work can exploit the absence of any input in the RoPE term in Equation 3. This
absence suggests that the slash pattern is independent from the input. Future work could therefore
attempt to extend the slash and vertical components during the inference’s decode stage by using the
α and κ obtained during prefill.
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A APPENDIX

A.1 ABLATION STUDY

Table 2: Accuracy comparison on tested models and methods for different task of Infinite Bench

MODEL METHOD En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find Retr.PassKey Retr.Number Retr.KV
LLama3-8B-1024k Ours (ϵ = 0.8) 19.99 12.21 60.70 4.50 12.44 28.93 20.00 100 99.15 1.40

Ours (Budget limit) 21.20 10.03 52.84 3.00 11.04 27.16 19.43 96.78 98.64 1.00
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Algorithm 1: Find decomposition
Data: The (RoPEd) query and key states Q and K
Result: The decomposition s, v, h ∈ RN and Λ-shape sink, diags
/* Uniform random sample of the interior of QKt

*/
1 Sample I = {(I1, J1), . . . , (I80d, J80d)} where Ii = S + T +max(Xi, Yi) and

Ji = S +min(Xi, Yi) with Xi, Yi uniformly randomly sampled from [1..N − S − T ]
// Undo position encoding of K

2 xjWk ← kjRj for all S < j ≤ N − T
// QK row statistics

3 µi ← 1√
di
qi
∑i

j=1 k
t
j for all 1 ≤ i ≤ N

4 σ2
i ← 1

diqi

(∑i
j=1 k

t
jkj

)
qti − µ2

i

// Λ-shape and last row of QK

5 sinki,j ← qik
t
j/
√
d for all i, j s.t. S + T < i ≤ N and 1 ≤ j ≤ S

6 lastrowj ← qNktj/
√
d for all j s.t. S < j ≤ N − T

7 diagsi,j ← qik
t
j+i−S−T /

√
d for all i, j s.t. S + T < i ≤ N and 1 ≤ j ≤ T

8 lambdai ←
∑S

j=1 exp (sinki,j − µi) +
∑T

j=1 exp (diagsi,j − µi)

// Vertical and slash patterns

9 ri ← 1
i−S−T

∑i−T
j=S+1 rj−i for all i s.t. S + T < i ≤ N

10 XWki ← 1
i−S−T

∑i−T
j=S+1 xjWk for all i s.t. S + T < i ≤ N

11 A←
(
(rJ−I − rI)

(
xJWk −XWkI

))
12 bi ← qik

t
j/
√
d− µi for all (i, j) ∈ I

13 Apply normal-equations to solve argminα,κ∈Rd ||
(

A
λI

)
( ακ )− ( b

0 ) ||2 for λ = ε||A||F /2
14 sj ← (rj−N − rN )α

15 vj ←
(
xjWk −XWkN

)
κ

// Horizontal pattern

16 ζ ← µN + σ2
N/2− log

∑N−T
j=S+1 exp (lastrowj)

17 νi ← log (lambdai + (i− S − T ) exp (σ2
i /2− ζ)

18 δi ← 1
i−S−T

∑i−T
j=S sN−j+1

19 hi ← −δi − νi
20 return s, v, h,sink,diags

Algorithm 2: Find mask

Data: The decomposition s, v, h ∈ RN and threshold value τ
Result: An index list I = {(i1, j1), . . . , (in, jn)}

1 I ← {};
2 foreach j in order of decreasing argsort(vj) do
3 S← {(i, j) | vj + sj−i + hi > τ};
4 if 3|S| < N − S − T − j + 1 then break;
5 I ← I ∪ S;
6 end
7 foreach j in order of decreasing argsort(sj) do
8 S← {(i, j) | vj + sj−i + hi > τ};
9 if 3|S| < j then break;

10 I ← I ∪ S;
11 end
12 foreach i in order of decreasing argsort(hi) do
13 S← {(i, j) | vj + sj−i + hi > τ};
14 if 3|S| < i then break;
15 I ← I ∪ S;
16 end
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