
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE GEOMETRY OF GROKKING:
NORM MINIMIZATION ON THE ZERO-LOSS MANIFOLD

Anonymous authors
Paper under double-blind review

ABSTRACT

Grokking is a puzzling phenomenon in neural networks where full generaliza-
tion occurs only after a substantial delay following the complete memorization
of the training data. Previous research has linked this delayed generalization to
representation learning driven by weight decay, but the precise underlying dy-
namics remain elusive. In this paper, we argue that post-memorization learning
can be understood through the lens of constrained optimization: gradient descent
effectively minimizes the weight norm on the zero-loss manifold. We formally
prove this in the limit of infinitesimally small learning rates and weight decay
coefficients. To further dissect this regime, we introduce an approximation that
decouples the learning dynamics of a subset of parameters from the rest of the
network. Applying this framework, we derive a closed-form expression for the
post-memorization dynamics of the first layer in a two-layer network. Experi-
ments confirm that simulating the training process using our predicted gradients
reproduces both the delayed generalization and representation learning character-
istic of grokking.

1 INTRODUCTION

Neural networks have achieved great success, but their mechanisms remain far from being fully
understood. Doshi-Velez & Kim (2017) argue that understanding the inner workings of neural net-
works is crucial for the development of AI systems with increased safety and reliability. Moreover,
understanding the learning dynamics of neural networks could also help us improve their perfor-
mance and efficiency: it is easier to design better learning algorithms when we understand the lim-
itations of the existing ones. Furthermore, insights into artificial neural networks may also enhance
our understanding of biological neural networks due to their fundamental similarities (Sucholutsky
et al., 2023; Kohoutová et al., 2020).

This work aims to clarify the learning dynamics underlying a particularly puzzling phenomenon
termed grokking. Under specific training conditions, neural networks achieve generalization on
the test data only after an extended period following the complete memorization of the training data.
This behavior was first observed in synthetic problems such as modular addition (Power et al., 2022),
but was later shown to also happen in real-world datasets (Liu et al., 2022b; Humayun et al., 2024).

In the specific problem of modular addition, interpretability research has revealed that neural net-
works achieve generalization by placing the embedding vectors on a circle (Gromov, 2023; Zhong
et al., 2024). The circular structure of the embedding layer enables the network to perform a sym-
metric algorithm that generalizes perfectly to unseen data. It is currently known that circular rep-
resentations emerge gradually during the post-memorization phase (Nanda et al., 2023) and that
weight decay is mainly responsible for driving the delayed generalization (Liu et al., 2022b), but the
precise dynamics remain unclear.

2 OUR CONTRIBUTIONS

In this work, we aim to answer the following questions:

Q1. What is the exact role of weight decay in the post-memorization learning dynamics?
Q2. Can we isolate the dynamics of the embedding layer from the rest of the network?

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We answer Q1 in Section 4 by proving that, after memorization is achieved, the learning dynamics
approximately follow the minimization of the weight norm, constrained to the zero-loss level set.

We answer Q2 in Section 5 by proposing an approximation for the isolated learning dynamics of
any parameter subset as the minimization of a specific cost function.

We then combine these insights in Section 6 to study the post-memorization learning dynamics of
a two-layer network, deriving a closed-form expression for the cost function of the first layer (the
embedding layer).

Finally, in Section 7, we validate our theoretical insights on a modular addition task, showing that
our approximations reproduce the delayed generalization and circular representations characteristic
of grokking.

3 INTUITIONS FROM TOY MODELS

Before presenting our theoretical findings, we give an intuition for our results by discussing and
visualizing how they relate to a few highly simplified models.

100 101 102 103 104

Steps (log)

10 4

10 3

10 2

10 1

100

Lo
ss

 (l
og

)

a. Loss Curves during Training with Different Weight Decay Coefficients

train = 0.01
train = 0.1
train = 0.2
test = 0.01
test = 0.1
test = 0.2

1 0 1
w1

1

2

3

w 2

b. Training Trajectories
= 0.01
= 0.1
= 0.2

Ltrain = 0
init
truth

1 0 1
w1

1

2

3

w 2

c. Training Loss

0

2

4

6

8

10

12

1 0 1
w1

1

2

3

w 2
d. Weight Norm

0

2

4

6

8

10

12

14

16

Figure 1: A two-parameter linear model ŷ = w1x1+w2x2 groks simple addition when trained with
just one sample: x1 = x2 = 1, y = 2 (corresponding to 1+1 = 2). We plot three training runs with
different weight decay coefficients λ. After quickly achieving zero loss, learning is entirely driven
by the minimization of the weight norm.

3.1 GROKKING ADDITION

We begin by discussing how a linear model can grok addition from just 1 + 1 = 2. We use a single-
layer linear model with two inputs and two weights: ŷ = w1x1 + w2x2. We train this model with
mean-squared error loss using just one sample: x1 = x2 = 1, y = 2. We use three different values
of weight decay, λ ∈ { 0.01, 0.1, 0.2 }. We initialize our model with w1 = −1 and w2 = 1.

We aim to show that our model can learn to perform standard addition, despite being trained with
a single sample. Test accuracy is measured on a set of 100 randomly generated samples, where x1

and x2 are sampled from a normal distribution, and y = x1 + x2.

We show our results in Figure 1. We can see that our model reproduces grokking: training loss
becomes very low after just a 10 steps, while test loss takes a few hundred steps. Additionally, the
model achieves lower loss with smaller λ, but takes longer to generalize.

Interpretation. From Figure 1 (a, b), we can see that learning follows two phases. In the first
phase, driven by loss minimization, the model achieves a low loss by learning (w1, w2) ≈ (0, 2). In
the second phase, learning is entirely driven by weight decay. The model follows norm minimiza-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tion, while maintaining zero loss, eventually reaching (w1, w2) ≈ (1, 1). Note that, for smaller λ,
the model remains closer to the zero-loss line, but generalization also takes longer.

3.2 NORM MINIMIZATION

While the previous example illustrates our theoretical framework, it does not capture its full gen-
erality. It is unsurprising that applying weight decay encourages a reduction in norm. However,
the central claim of this paper is significantly stronger: we argue that the learning dynamics under
weight decay do not merely follow some norm-decreasing direction, but rather evolve along the
direction that optimally minimizes the norm, subject to remaining on the zero-loss manifold. An-
other way to view this is the following: once the model achieves perfect memorization, learning
effectively follows gradient descent on the weight norm, constrained to the zero-loss manifold.

To offer a better intuition, we show how a linear model can grok three-number addition. We train
a three-parameter linear model ŷ = w1x1 + w2x2 + w3x3 with just one sample: x1 = x2 =
x3 = 1, y = 3. As in the previous section, this model exhibits grokking: after quickly achieving
zero training loss, the model slowly reaches the generalizing solution (w1, w2, w3) ≈ (1, 1, 1). We
perform four training runs with different initializations and visualize the resulting trajectories in
Figure 2. We observe that, for all initializations, the model first converges to the zero-loss plane,
then moves directly towards the solution of minimum norm.

w3

w1

w2

(1, 1, 3)

(1, 1, 1)

(3, 4, 4)

(3, 2, 3)

(2, 2, 1)

w3

w1 w2

Figure 2: A three-parameter linear model ŷ = w1x1 + w2x2 + w3x3 groks three-number addition
when trained with just one sample: x1 = x2 = x3 = 1, y = 3 (corresponding to 1 + 1 + 1 = 3).
The gray area shows the zero-loss plane, shaded according to the weight norm, where a lighter shade
denotes a lower norm.

3.3 A FEW MATHEMATICAL NUANCES

So far, our examples have shown only flat zero-loss subspaces, but this is not necessarily the case.
The zero-loss subspace can more generally be thought of as a manifold: a subspace that locally
resembles Euclidean space near each point. For example, we show a curved zero-loss set in Figure 3
(left), along with a few training trajectories.

An important caveat is that the zero-loss set is not necessarily a manifold everywhere: it might
contain singular points. Such a singular point is demonstrated in Figure 3 (center). However, such
singularities should not worry us too much. If the network is realized by a smooth function, then the
singularities will form a null set, i.e. the probability of encountering a singularity during standard
training is exactly zero.

Another nuance is that, in practice, neural networks are trained using the ReLU activation function,
which is not smooth. This will partition the loss into a finite set of smooth regions with nonsmooth
boundaries. The nonsmooth points will also form a null set. We visualize a scenario of this type in
Figure 3 (right) with leaky ReLU activation: ReLU(x) = x if x > 0 else x/10.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 2 1 0 1 2 3
w1

3

2

1

0

1

2

3

w 2

y = w2w1x
xtrain = 1, ytrain = 1

Ltrain = 0

3 2 1 0 1 2 3
w1

3

2

1

0

1

2

3

w 2

y = w2w1x
xtrain = 1, ytrain = 0

Ltrain = 0

3 2 1 0 1 2
w1

3

2

1

0

1

2

w 2

y = ReLU(w1x1) + ReLU(w2x2)
xtrain = [1, 1], ytrain = 2

Ltrain = 0

Figure 3: Training trajectories with different data, architectures and initializations. Left: a two-layer
linear network where the zero-loss set is curved. Center: a two-layer linear network where the
zero-loss set has a singularity at (w1, w2) = (0, 0). Right: a single-layer network with leaky ReLU
activation groks simple addition.

4 POST-MEMORIZATION DYNAMICS

4.1 ARCHITECTURE

We consider a neural network trained with mean-squared error loss on k samples:

L(θ) =
k∑

i=1

∥f(θ, xi)− yi∥2. (1)

where xi ∈ Rn, yi ∈ Rm, and θ ∈ Rd is the parameter vector. The network has d parameters, n
inputs, and m outputs. We use f : Rd×n → Rm to denote the network realization function.

We apply a weight decay term (Krogh & Hertz, 1991) with a coefficient λ ∈ R+ to obtain:

Lλ(θ) = L(θ) + λ∥θ∥2. (2)

We also denote the combined outputs of all samples as using F(θ) ∈ Rkm, where

F(θ) =
[
f(θ, x1)

⊤, f(θ, x2)
⊤, . . . , f(θ, xn)

⊤
]⊤

. (3)

4.2 THEORETICAL SETUP

The following concepts are fundamental to our analysis:
Definition 4.1 (Zero-Loss Set). Let Z = { θ ∈ Rd | L(θ) = 0 } denote the zero-loss set.
Definition 4.2 (Singular Points). We say that θ ∈ Rd is a singular point1 if the Jacobian matrix of
F at θ is not full rank, i.e. rank(∇F(θ)) < min(d, km).

We theoretically study the training dynamics under the following assumptions:
Assumption 4.3 (Over-Parametrization). We assume that d ≥ km in order for the model to be able
to memorize the entire dataset without learning any representations.
Assumption 4.4 (Perfect Memorization). We study the training dynamics after perfect memorization
is achieved. This requires that the zero-loss set is not empty, i.e. Z ̸= ∅.
Assumption 4.5 (Gradient Flow). We assume that F is smooth and we model the gradient descent
trajectory as a continuous-time gradient flow:

∂θ(t)

∂t
= −∇Lλ(θ(t)) (4)

where θ : R≥0 → Rd is the parameter vector as a function of time.
1We define singular points in terms of F , though they correspond to singular points of Z . With respect to

F , they are more precisely critical points.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Assumption 4.6 (Vanishing Weight Decay). We study the learning dynamics in the approximation
of a very small weight decay coefficient, i.e. λ → 0, motivated by the small values of λ typically
used by practitioners (Smith, 2018).
Assumption 4.7 (Well-Behaved Loss). We assume that our training trajectory does not pass through
singular points. This is motivated by the fact that singular points form a null set, i.e. a set of
Lebesgue measure zero (Morse, 1939; Sard, 1942).

4.3 CONSTRAINED TO THE ZERO-LOSS

We begin by establishing that the model remains constrained arbitrarily close to the zero-loss set
after reaching a memorizing solution.
Definition 4.8 (Distance). Let distZ(θ) = infϕ∈Z ∥θ − ϕ∥ be the distance from θ ∈ Rd to Z .

Theorem 4.9 (Stability of Z). For every trajectory starting at a zero-loss solution θ(0) ∈ Z and
every ε > 0, there exists λε > 0 such that for all 0 < λ < λε the trajectory under Lλ satisfies

sup
t≥0

distZ(θ(t)) < ε. (5)

Sketch of the Proof. Our proof is based on the fact that the gradient flow will never increase the
optimized quantity Lλ(θ) = L(θ)+λ∥θ∥2. Since both terms are non-negative, we can establish any
desired bound on L(θ) by an appropriate choice of λ. We then use this to obtain the bound on the
distance. We give the full proof in Appendix A.

4.4 LOSS GRADIENT ORTHOGONALITY

We will now provide our main theoretical result, which states that ∇L(θ) around Z becomes or-
thogonal to any available direction.
Definition 4.10 (Available Direction). We say that v ∈ Rd is an available direction at θ ∈ Z if
there exists a smooth trajectory s : R→ Rd such that s(0) = θ, s′(0) = v, and L(s(t)) = 0 for all
t ∈ R.
Definition 4.11 (Tangent Space). We denote by Tθ the set of all available directions at θ ∈ Z .
Definition 4.12 (Projection). Let projZ(θ) = arg infθ′∈Z ∥θ − θ′∥ be the projection of θ onto Z .

Theorem 4.13 (Gradient Orthogonality). Let S ⊆ Rd be a compact space with projZ(S ∩ Z) ⊆ S.
Assume that S contains no singular points. Then, there exist constants C > 0 and x0 > 0 such that∣∣∣∣ v⊤

∥v∥
∇L(θ)
∥∇L(θ)∥

∣∣∣∣ < C distZ(θ) (6)

holds for all θ ∈ S \ Z with distZ(θ) < x0 and v ∈ TprojZ(θ).

Sketch of the Proof. We approximate the loss gradient at θ using the Taylor expansion around
projZ(θ) to obtain∇L(θ) = Hx+O(∥x∥2), where x = θ − projZ(θ) and H = ∇2L(projZ(θ)).
Using v ∈ TprojZ(θ) and the absence of singular points, we are able to show that Hv = 0 and
∥∇L(θ)∥ = Θ(∥x∥). Therefore, the normalized dot product will be O(∥x∥). We give the full proof
in Appendix B.

Remark 4.14. In other words, the loss gradient does not induce any movement near Z . After a
memorizing solution is reached, learning will be driven entirely by weight decay. The loss will only
serve to keep the model near Z , while weight decay will be free to push the model towards norm
minimization along any of the available directions.

5 ISOLATED DYNAMICS OF A NETWORK COMPONENT

5.1 MOTIVATION

It often happens that generalization in neural networks hinges on representation learning within
specific network components. A striking example is the role of the embedding layer in the modular

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

addition task (Zhong et al., 2024). In such cases, it can be highly beneficial to simplify the complex
learning dynamics of a deep network by isolating and analyzing only the component of interest.

Specifically, we desire to approximate the learning dynamics of individual components, independent
from the rest of the network. Recent work has already begun to explore such approximations, also
referred to as effective theories (van Rossem & Saxe, 2024; Liu et al., 2022a; Musat, 2024; Mehta
et al.). In this section, we establish the theoretical foundations for such approximations and introduce
a new one of our own.

5.2 ISOLATED DYNAMICS

The parameter vector can be decomposed into two orthogonal parameter subsets θ = [θ1, θ2], where
θ1 ∈ Rd1 , θ2 ∈ Rd2 , and d1 + d2 = d. We are interested in the learning dynamics of θ1:

θ̇1 = −∇θ1Lλ(θ1, θ2) (7)

The gradient flow assumption means that the trajectory of θ1 is a one-dimensional curve in a d1-
dimensional space. This suggests that it is highly unlikely that our trajectory will pass through the
same θ1 twice. If we assume that a training trajectory only goes through unique values of θ1, then it
is possible to parametrize θ2 as a function of θ1:

θ2 = ϕ(θ1) (8)

where ϕ : Rd1 → Rd2 is a function specific to the loss function and the initial parameters. This
parametrization allows us to isolate the dynamics of θ1 by expressing them as a function of θ1
alone:

θ̇1 = −∇θ1Lλ(θ1, ϕ(θ1)) (9)

While the function ϕ is generally intractable, working with reasonable approximations can provide
valuable insights into the learning dynamics of θ1.

5.3 APPROXIMATE COST FUNCTION

We propose approximating ϕ by assuming that parameters θ2 are optimal for the current value of θ1:

ϕ(θ1) = argmin
θ2
Lλ(θ1, θ2) (10)

This approximation can also be understood as treating θ1 as the slow learning component, while θ2
is the fast learning component that quickly adapts to the current value of θ1.

Additionally, optimizing θ under this approximation is equivalent to optimizing the following cost
function:

R(θ1) = min
θ2
Lλ(θ1, θ2) (11)

Theorem 5.1. The learning dynamics of θ1 under Equations (9) and (10) follow the gradient flow
ofR when ϕ is differentiable:

θ̇1 = −∇θ1R(θ1) (12)

Proof. Note that R(θ1) = Lλ(θ1, ϕ(θ1)). By differentiating it with respect to θ1 we obtain that
∇θ1R(θ1) = ∇θ1Lλ(θ1, ϕ(θ1))+∇θ2Lλ(θ1, ϕ(θ1))∇θ1ϕ(θ1). However, since ϕ(θ1) is a minimum
of Lλ, we have that∇θ2Lλ(θ1, ϕ(θ1)) = 0, giving us the desired result.

6 TWO-LAYER NETWORKS

6.1 SETUP

We turn our attention to the learning dynamics of a two-layer neural network trained with mean
squared error loss and weight decay:

L = ∥σ(XW1)W2 − Y ∥2F (13)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where X ∈ Rn×din is the input data, Y ∈ Rn×dout is the target output, σ : R→ R is the activation
function, W1 ∈ Rdin×dh is the first layer weights, W2 ∈ Rdh×dout is the second layer weights, and
∥ · ∥F denotes the Frobenius norm.

After applying a weight decay coefficient λ > 0, we get:

Lλ = L+ λ
(
∥W1∥2F + ∥W2∥2F

)
(14)

6.2 ISOLATED DYNAMICS OF THE FIRST LAYER

Using the approximation from Section 5.3, we can isolate the learning dynamics of the first layer by
assuming that the second layer weights are optimal for the current value of the first layer weights:

W2 ≈ ϕ(W1) = argmin
W̃2

Lλ(W1, W̃2) (15)

Since the second layer is just a linear transformation of the hidden layer activations H = σ(XW1),
finding the optimal second layer weights is equivalent to the classic problem of ridge regression
(Hoerl & Kennard, 1970). The solution is given by:

ϕ(W1) = (H⊤H + λI)−1H⊤Y (16)

By combining Equations (13), (14) and (16), we can obtain the cost function for the isolated learning
dynamics of the first layer:

R(W1) = Lλ(W1, ϕ(W1)) (17)

This cost function is not particuarly simple, but it is fully differentiable, allowing us to approximate
the learning dynamics of the first layer:

Ẇ1 ≈ −∇R(W1) (18)

6.3 ZERO-LOSS APPROXIMATION

Following the theoretical framework developed in Section 4, we can further simplify equation Equa-
tion (16) by working in the limit of very small weight decay λ→ 0:

ϕ(W1) = (H⊤H)−1H⊤Y (19)

The expression H+ = (H⊤H)−1H⊤ is also known as the Moore-Penrose pseudo-inverse of H . If
H has full column rank, then the pseudo-inverse is also given by H+ = H⊤(HH⊤)−1. This allows
us to further simplify the cost function down to:

R(W1) = λ ∥W1∥2F + λTr
(
Y ⊤(HH⊤)−1Y

)
(20)

By differentiating this cost function, we can obtain a closed-form expression for the isolated learning
dynamics of the first layer in the overparameterized zero-loss approximation:

Ẇ1 ≈ XT
((

AY Y TAH
)
⊙ σ′(XW1

))
−W1 (21)

where H = σ(XW1), A = (HHT )−1, σ is the activation function, and ⊙ denotes the Hadamard
product. We provide a detailed derivation in Appendix C.

7 SIMULATED DYNAMICS

In this section, we empirically validate our combined theoretical insights on isolated dynamics and
post-memorization dynamics. By applying equation Equation (21) to a network trained on the modu-
lar addition task, we show that our approximations reproduce the delayed generalization and circular
representations characteristic of grokking.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500

Step

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Test Accuracy

Train Accuracy

1 4 7 10 13 16

Frequency (k)

0

100

200

S
q
u

ar
ed

N
or

m

Initial (t = 0)

Real(Fk)

Imag(Fk)

1 4 7 10 13 16

Frequency (k)

0

20

40

60

S
q
u

ar
ed

N
or

m

Final (t = 5000)

Real(Fk)

Imag(Fk)

1 3 5 7 9 11 13 15 17

Imag(Fj)

1

3

5

7

9

11

13

15

17

R
ea

l(
F
i)

Initial (t = 0)

1 3 5 7 9 11 13 15 17

Imag(Fj)

1

3

5

7

9

11

13

15

17

R
ea

l(
F
i)

Final (t = 5000)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

C
os

in
e

S
im

il
ar

it
y

1 3 5 7 9 11 13 15 17

abs(Imag(Fj))

1

3

5

7

9

11

13

15

17

ab
s(

R
ea

l(
F
i)

)

Initial (t = 0)

1 3 5 7 9 11 13 15 17

abs(Imag(Fj))

1

3

5

7

9

11

13

15

17

ab
s(

R
ea

l(
F
i)

)

Final (t = 5000)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
os

in
e

S
im

il
ar

it
y

Figure 4: Simulated dynamics according to Equation (21) reproduce the phenomena of delayed
generalization and representation learning. Top left: generalization emerges after about 1000 steps,
despite training loss being exactly zero throughout. Top right: Fourier features norms equalize,
suggesting the presence of equally-sized circles. Bottom left: Fourier features become orthogonal,
suggesting that circles are located in orthogonal planes. Bottom right: Fourier features absolute val-
ues become dissimilar, suggesting that each circle leverages a different subset of hidden activations.

7.1 DATASET

We train the network to perform modular addition modulo a fixed number p. The dataset consists
of k = p(p + 1)/2 unique input pairs and their sum, D = {(a, b, c) | 0 ≤ a ≤ b < p, c =
(a + b) mod p}. We construct the input data X ∈ Rk×p and the target output Y ∈ Rk×p as
Xi = eai + ebi and Yi = eci for all i = 1, . . . , k, where ei is the i-th unit vector in Rp and
(ai, bi, ci) ∈ D is the i-th sample in the dataset.

We split the dataset into (Xtrain, Ytrain) and (Xtest, Ytest), using a fraction fs of the dataset for training
and the remaining 1− fs for testing.

7.2 ARCHITECTURE

We train a two-layer neural network with input dimension p, hidden dimension dh, output dimension
p, and a non-linear activation σ : R→ R.

Since the inputs are sums of one-hot vectors, we refer to the first layer weights as the embedding
matrix E ∈ Rp×dh . We refer to the second layer weights as simply the weights matrix W ∈ Rdh×p.

The network output is given by Ŷ = σ(XE)W. To emphasize the role of the first layer as an
embedding, we can also write the output as Ŷi = σ(Eai + Ebi)W.

We define the test accuracy as the percentage of correctly predicted test samples. We say that a test
sample is correctly predicted if the index of the maximum value in the predicted output Ŷi matches
ci.

7.3 SIMULATED OPTIMIZATION

Our goal is not to train the network, but to validate that our approximate learning dynamics reproduce
the phenomena observed during standard training.

We simulate the evolution of the embedding matrix E under the isolated dynamics given by equation
Equation (21). We start from a random initialization E ∼ N (0, p−1/2) and update it for T steps as
E ← E + η∆E, where η > 0 is the step size and ∆E = XT

((
AY Y TAH

)
⊙ σ′(XE

))
− E.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The isolated dynamics assume that W = (HTH)−1HTY is optimal for the current value of E,
which guarantees zero loss and perfect accuracy on the training data throughout training. This also
ensures that predicted outputs perfectly match the target outputs on the training data, which is less
principled for a classification task, but generally performs well in practice (Rifkin et al., 2003).

7.4 DETAILS

We use p = 37, dh = 512, σ(x) = max(0, x), fs = 0.7, η = 10−3, T = 5000.

7.4.1 DELAYED GENERALIZATION

We simulate 5 runs starting from different random initializations and plot the test accuracy in Fig-
ure 4. Despite the fact that the training loss is exactly zero throughout, the test accuracy is not
better than random guessing for the first 500 steps. However, the network eventually achieves per-
fect generalization on the test data after about 2000 steps, reproducing the delayed generalization
phenomena Power et al. (2022).

7.4.2 FOURIER FEATURES

Using a discrete Fourier transform, we decompose the embedding matrix E into a linear combination
of circles with different frequencies:

Fk =
1

p

p−1∑
j=0

e−i2π jk/p Ej ∀k ∈ {1, . . . , (p− 1)/2}

Projecting the embeddings onto the plane spanned by Re(Fk) and Im(Fk) gives us a circle where the
embeddings appear in the order {0, k, 2k, 3k, . . . , (p−1)k}mod p. Note that a circle of frequency
k is equivalent to a circle of frequency p−k, so we only need to consider frequencies up to (p−1)/2.

We visualize several comparisons of the Fourier features of the initial and final embedding matrices
for a single run Figure 4. First, the norms of the real and imaginary parts of the Fourier features
equalize, suggesting the presence of equally sized circles with perfect aspect ratios. Second, the real
and imaginary parts of the Fourier features become orthogonal, indicating that circles are located in
orthogonal planes. Third, by taking the absolute value of the real and imaginary parts of the Fourier
features, we obtain vectors very similar for the same frequency, but very different for different
frequencies. This suggests that each circle leverages a different subset of hidden units.

8 CONCLUSION

We have formally established that the learning dynamics of neural networks in the grokking regime
approximate as the minimization of the weight norm within the zero-loss set. Additionally, we
have established a theoretical basis for approximating the learning dynamics of individual network
components.

Limitations. This work does not cover cross-entropy loss, which is commonly used in practice.
With regard to isolated dynamics, our work is limited to the case of two-layer networks. Exciting
challenges lie ahead in understanding the grokking dynamics of more complex settings and archi-
tectures.

Impact Statement. We believe that understanding the learning dynamics of neural networks is
essential for the design of more efficient and accurate AI systems. However, the development and
deployment of such systems should be approached with caution.

LLM Usage. Large Language Models (LLMs) were used in standard ways throughout this work
to polish the writing, assist with coding, and support brainstorming of mathematical proofs.

Reproducibility. We provide the full code for training and plotting used for the experiments with
simulated dynamics from Section 7.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608, 2017.

Andrey Gromov. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023.

Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Deep networks always grok
and here is why. arXiv preprint arXiv:2402.15555, 2024.

Lada Kohoutová, Juyeon Heo, Sungmin Cha, Sungwoo Lee, Taesup Moon, Tor D Wager, and
Choong-Wan Woo. Toward a unified framework for interpreting machine-learning models in
neuroimaging. Nature protocols, 15(4):1399–1435, 2020.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. Advances in
neural information processing systems, 4, 1991.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams. To-
wards understanding grokking: An effective theory of representation learning. Advances in Neu-
ral Information Processing Systems, 35:34651–34663, 2022a.

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data. In
The Eleventh International Conference on Learning Representations, 2022b.

Rohan Mehta, Ziming Liu, and Max Tegmark. Neural embeddings evolve as interacting particles.

Anthony P Morse. The behavior of a function on its critical set. Annals of Mathematics, 40(1):
62–70, 1939.

Tiberiu Musat. Clustering and alignment: Understanding the training dynamics in modular addition.
arXiv preprint arXiv:2408.09414, 2024.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Ryan Rifkin, Gene Yeo, Tomaso Poggio, et al. Regularized least-squares classification. Nato Science
Series Sub Series III Computer and Systems Sciences, 190:131–154, 2003.

Arthur Sard. The measure of the critical values of differentiable maps. 1942.

Leslie N Smith. A disciplined approach to neural network hyper-parameters: Part 1–learning rate,
batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820, 2018.

Ilia Sucholutsky, Lukas Muttenthaler, Adrian Weller, Andi Peng, Andreea Bobu, Been Kim,
Bradley C Love, Erin Grant, Iris Groen, Jascha Achterberg, et al. Getting aligned on repre-
sentational alignment. arXiv preprint arXiv:2310.13018, 2023.

Loek van Rossem and Andrew M Saxe. When representations align: Universality in representation
learning dynamics. arXiv preprint arXiv:2402.09142, 2024.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two
stories in mechanistic explanation of neural networks. Advances in Neural Information Processing
Systems, 36, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

A PROOF OF THEOREM 4.9 (STABILITY OF Z )

We begin by establishing the following intermediate result:
Lemma A.1. For every initialization θ(0) ∈ Z and every ε > 0, there exists λε > 0 such that for
all 0 < λ < λε the corresponding trajectory θ(t) under Lλ satisfies

sup
t≥0
L(θ(t)) < ε. (22)

Proof. From Equation (4), we see that gradient flow will never increase the optimized quantity
Lλ(θ) = L(θ)+λ∥θ∥2. By choosing λε < ε/∥θ(0)∥2, we ensure thatL(θ(t)) < ε for all t ≥ 0.

We recall Theorem 4.9:
Theorem 4.9 (Stability of Z). For every trajectory starting at a zero-loss solution θ(0) ∈ Z and
every ε > 0, there exists λε > 0 such that for all 0 < λ < λε the trajectory under Lλ satisfies

sup
t≥0

distZ(θ(t)) < ε. (5)

Proof. Our training trajectory will not reach any θ ∈ Rd with ∥θ∥ > ∥θ(0)∥. This is because any
such configuration is unreachable by gradient flow from θ(0) for any λ > 0 since Lλ(θ) > Lλ(θ0).

We are left to show unreachability of the set Φ = {θ ∈ Rd : D(θ) ≥ ε and ∥θ∥ ≤ ∥θ(0)∥}. Since
Φ is compact, m = minΦ L(θ) exists and is positive. Applying Lemma A.1, there exists λ > 0
such that optimizing Lλ starting from θ(0) is guaranteed to maintain L(θ(t)) < m, thus making Φ
unreachable.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

B PROOF OF THEOREM 4.13 (GRADIENT ORTHOGONALITY)

We begin with a few intermediate results.
Lemma B.1. At a non-singular point of the zero-loss set, the tangent space is exactly the null space
of the Hessian matrix, i.e. Tθ = { v ∈ Rd | ∇2L(θ) v = 0 } for any non-singular θ ∈ Z .

Proof. Part I:∇2L(θ) v = 0 ⇒ v ∈ Tθ.

We write the loss function as
L(θ) = ∥F(θ)− yall∥2

using yall ∈ Rkm as the concatenation of all target outputs:

yall =
[
y⊤1 , y

⊤
2 , . . . , y

⊤
k

]⊤
Differentiating L(θ) with respect to θ, we obtain the gradient:

∇L(θ) = 2∇F(θ)⊤
(
F(θ)− y

)
,

where∇F(θ) ∈ Rkm×d is the Jacobian of the network output with respect to the parameters.

Differentiating again, we obtain the Hessian:

∇2L(θ) = 2∇F(θ)⊤∇F(θ) + 2

km∑
i=1

(
Fi(θ)− (yall)i

)
∇2Fi(θ),

where∇2Fi(θ) ∈ Rd×d is the Hessian of the i-th output component.

At θ ∈ Z , where F(θ) = yall, the second term vanishes, simplifying the Hessian to:

∇2L(θ) = 2∇F(θ)⊤∇F(θ).

For any direction v ∈ Rd, this yields:

v⊤∇2L(θ)v = 2 ∥∇F(θ)v∥2.

Therefore,
v⊤∇2L(θ) v = 0 ⇔ ∇F(θ) v = 0.

Moreover, every θ ∈ Z is a local minimum where the Hessian matrix is symmetric and positive
semi-definite. This gives the us equivalence

∇2L(θ) v = 0 ⇔ v⊤ ∇2L(θ) v = 0.

Therefore,
∇2L(θ) v = 0 ⇔ ∇F(θ) v = 0.

Because km ≥ d and ∇F(θ) has full rank, the inverse function theorem implies that the preimage
of F locally has the structure of a smooth manifold whose tangent space is exactly the null space of
∇F(θ). To simplify our analysis, we directly restate the inverse function theorem below in a form
that is slightly non-standard, but perfectly equivalent:

Theorem B.2 (Inverse Function Theorem). Assume that F : Rd → Rkm is a smooth function with
d ≥ km and rank(∇F(θ)) = km for some θ ∈ Rd. Then, for all v ∈ Rd such that ∇F(θ) v = 0,
there exists a smooth trajectory s : R → Rd such that s(0) = θ, s′(0) = v, and F(s(t)) = F(θ)
for all t ∈ R.

Note that any such trajectory will also have L(s(t)) = 0 since F(s(t)) = F(θ) = yall. This implies
the desired result.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Part II: v ∈ Tθ ⇒ ∇2L(θ) v = 0.

Using the equation L(f(t)) = 0 from Definition 4.10 and differentiating it twice with respect to t,
we obtain:

f ′(t)⊤∇2L(f(t))f ′(t) +∇L(f(t))⊤f ′′(t) = 0. (23)

Since any point θ ∈ Z is a local minimum, we have that ∇L(θ) = 0 and ∇2L(θ) is symmetric and
positive semi-definite (PSD).

By evaluating Equation (23) at t = 0, we obtain that v⊤∇2L(θ) v = 0. Since∇2L(θ) is symmetric
and PSD, this implies the desired result.

Definition B.3 (Normal Space). Let Nϕ = {α ∈ Rd | α⊤v = 0, ∀v ∈ Tϕ } denote the normal
space at a point ϕ ∈ Z .

Proposition B.4. The displacement of a point from the zero-loss set belongs to the normal space at
the point’s projection, i.e. θ − projZ(θ) ∈ NprojZ(θ) for all θ ∈ Rd.

Proof. We give a proof by contradiction. Assume that there exists v ∈ TprojZ(θ) such that
v⊤ (θ − projZ(θ)) ̸= 0. Then, by Definition 4.10, there must exist a smooth trajectory f : R→ Rd

with f(0) = projZ(θ), f ′(0) = v, and f(t) ∈ Z for all t ∈ R. By moving projZ(θ) along
this trajectory, we can get closer to θ. However, this should not be possible according to Defini-
tion 4.12.

We now establish our main result:
Theorem 4.13 (Gradient Orthogonality). Let S ⊆ Rd be a compact space with projZ(S ∩ Z) ⊆ S.
Assume that S contains no singular points. Then, there exist constants C > 0 and x0 > 0 such that∣∣∣∣ v⊤

∥v∥
∇L(θ)
∥∇L(θ)∥

∣∣∣∣ < C distZ(θ) (6)

holds for all θ ∈ S \ Z with distZ(θ) < x0 and v ∈ TprojZ(θ).

Proof. By parameterizing θ as

θ = projZ(θ) + ∥θ − projZ(θ)∥
θ − projZ(θ)

∥θ − projZ(θ)∥

we can denote the quantity of interest as

v⊤∇L(θ)
∥v∥ ∥∇L(θ)∥

= g

(
projZ(θ),

θ − projZ(θ)

∥θ − projZ(θ)∥
, ∥θ − projZ(θ)∥, v

)
where

g(ϕ, α, x, v) =
v⊤∇L(ϕ+ xα)

∥v∥ ∥∇L(ϕ+ xα)∥
with ϕ ∈ Z, α ∈ Nϕ, x ∈ R+, and v ∈ Tϕ.

To obtain the desired result, it suffices to show that there exists C > 0 such that

g(ϕ, α, x, v) < Cx

for all ϕ ∈ S ∩ Z, α ∈ U(Nϕ), x > 0, v ∈ Tϕ , where U(Nϕ) = { v ∈ Nϕ | ∥v∥ = 1 }.
We write the gradient of the loss function around ϕ ∈ Z using the Taylor expansion:

∇L(ϕ+ xα) = x∇2L(ϕ)α+ xhϕ,α(x)

where hϕ,α(x) is a remainder term that vanishes as x → 0. In other words, there exist constants
Mϕ,α, aϕ,α > 0 such that

∥hϕ,α(x)∥ < Mϕ,α x ∀x, x < aϕ,α.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Since S is closed and L is continuous, S∩Z will also be closed. The set of normal vectors with unit
norm at any point is also closed. This implies that the following quantities exist and are positive:

Msup = sup
ϕ∈S∩Z

α∈U(Nψ)

Mϕ,α ainf = inf
ϕ∈S∩Z

α∈U(Nψ)

aϕ,α

We express g(θ, α, x, v) as:

g(ϕ, α, x, v) =
x v⊤∇2L(ϕ)α+ x v⊤ hϕ,α(x)

∥v∥ ∥x∇2L(ϕ)α+ xhϕ,α(x)∥
=

v⊤∇2L(ϕ)α+ v⊤ hϕ,α(x)

∥v∥ ∥∇2L(ϕ)α+ hϕ,α(x)∥

Since v ∈ Tϕ, from Lemma B.1, we have that v⊤∇2L(ϕ)α = 0. This gives

g(ϕ, α, x, v) =
v⊤ hϕ,α(x)

∥v∥ ∥∇2L(ϕ)α+ hϕ,α(x)∥

≤ ∥hϕ,α(x)∥
∥∇2L(ϕ)α+ hϕ,α(x)∥

Since∇2L(ϕ)α ̸= 0, the following also exists and is positive:

λinf = inf
ϕ∈S∩Z

α∈U(Nψ)

∥∇2L(ϕ)α∥

Assuming that x < λinf/Msup guarantees that ∥∇2L(ϕ)α∥ > ∥hϕ,α(x)∥, which gives

g(ϕ, α, x, v) ≤ ∥hϕ,α(x)∥
∥∇2L(ϕ)α∥ − ∥hϕ,α(x)∥

≤ Msup x

λinf −Msup x

for any x < ainf . An appropriate choice of C and x0 gives the desired bound, for example:

x0 = min

(
ainf ,

λinf

2Msup

)
C =

2Msup

λinf

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C COST FUNCTION GRADIENT IN TWO-LAYER NETWORKS

We want to derive the gradient of the following cost function:

R(W1) = λ ∥W1∥2F + λ
∥∥ϕ(W1)

∥∥2
F

where

ϕ(W1) = H⊤(HH⊤)−1Y H = σ(XW1) X ∈ Rn×din W1 ∈ Rdin×dh Y ∈ Rn×dout

The activation function σ : R → R is applied is applied elementwise. Note that, since we work in
the zero-loss approximation, there is no explicit error term.

We decomposeR(W1) into two terms:

R(W1) = λ ∥W1∥2F︸ ︷︷ ︸
Term 1

+ λ ∥ϕ(W1)∥2F︸ ︷︷ ︸
Term 2

Since the first term is a standard Frobenius norm squared, its gradient is:

∇W1

[
λ ∥W1∥2F

]
= 2λW1

To find the gradient of the second term, we analyze:

f(W1) = ∥ϕ(W1)∥2F = ∥H⊤(HH⊤)−1Y ∥2F

Since the Frobenius norm squared satisfies ∥M∥2F = Tr
(
M⊤M

)
, we write:

f(W1) = Tr
((
H⊤(HH⊤)−1Y

)⊤
H⊤(HH⊤)−1Y

)
= Tr

(
Y ⊤(HH⊤)−1HH⊤(HH⊤)−1Y

)
= Tr

(
Y Y ⊤(HH⊤)−1

)
Using the following known result from matrix calculus:

∂ Tr
(
MP−1

)
∂P

= −P−1MP−1

with M = Y Y ⊤ and P = HH⊤, we obtain:

∂f

∂H
= −2(HH⊤)−1Y Y ⊤(HH⊤)−1H

Propagating the gradient using the chain rule, we get:

∂f

∂W1
= −2X⊤

[(
(HH⊤)−1Y Y ⊤(HH⊤)−1H

)
⊙ σ′(XW1)

]
where ⊙ denotes the Hadamard product.

Finally, multiplying by λ, we obtain the gradient of the second term:

∇W1

[
λ ∥ϕ(W1)∥2F

]
= −2λX⊤

[
(AY Y ⊤AH)⊙ σ′(XW1)

]
where A = (HH⊤)−1.

Thus, the final expression is:

∇R(W1) = −2λW1 + 2λX⊤
[
(AY Y ⊤AH)⊙ σ′(XW1)

]

15


	Introduction
	Our Contributions
	Intuitions from Toy Models
	Grokking Addition
	Norm Minimization
	A Few Mathematical Nuances

	Post-Memorization Dynamics
	Architecture
	Theoretical Setup
	Constrained to the Zero-Loss
	Loss Gradient Orthogonality

	Isolated Dynamics of a Network Component
	Motivation
	Isolated Dynamics
	Approximate Cost Function

	Two-Layer Networks
	Setup
	Isolated Dynamics of the First Layer
	Zero-Loss Approximation

	Simulated Dynamics
	Dataset
	Architecture
	Simulated Optimization
	Details
	Delayed Generalization
	Fourier Features


	Conclusion
	Proof of thm:z-stability (Stability of Z)
	Proof of thm:weight-norm (Gradient Orthogonality)
	Cost Function Gradient in Two-Layer Networks

