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ABSTRACT

Grokking is a puzzling phenomenon in neural networks where full generaliza-
tion occurs only after a substantial delay following the complete memorization
of the training data. Previous research has linked this delayed generalization to
representation learning driven by weight decay, but the precise underlying dy-
namics remain elusive. In this paper, we argue that post-memorization learning
can be understood through the lens of constrained optimization: gradient descent
effectively minimizes the weight norm on the zero-loss manifold. We formally
prove this in the limit of infinitesimally small learning rates and weight decay
coefficients. To further dissect this regime, we introduce an approximation that
decouples the learning dynamics of a subset of parameters from the rest of the
network. Applying this framework, we derive a closed-form expression for the
post-memorization dynamics of the first layer in a two-layer network. Experi-
ments confirm that simulating the training process using our predicted gradients
reproduces both the delayed generalization and representation learning character-
istic of grokking.

1 INTRODUCTION

Neural networks have achieved great success, but their mechanisms remain far from being fully
understood. [Doshi-Velez & Kim| (2017) argue that understanding the inner workings of neural net-
works is crucial for the development of Al systems with increased safety and reliability. Moreover,
understanding the learning dynamics of neural networks could also help us improve their perfor-
mance and efficiency: it is easier to design better learning algorithms when we understand the lim-
itations of the existing ones. Furthermore, insights into artificial neural networks may also enhance
our understanding of biological neural networks due to their fundamental similarities (Sucholutsky
et al., [2023; [Kohoutova et al., [2020).

This work aims to clarify the learning dynamics underlying a particularly puzzling phenomenon
termed grokking. Under specific training conditions, neural networks achieve generalization on
the test data only after an extended period following the complete memorization of the training data.
This behavior was first observed in synthetic problems such as modular addition (Power et al.;,|2022),
but was later shown to also happen in real-world datasets (Liu et al., 2022b; [Humayun et al.| [2024).

In the specific problem of modular addition, interpretability research has revealed that neural net-
works achieve generalization by placing the embedding vectors on a circle (Gromov, 2023} [Zhong
et al.| [2024). The circular structure of the embedding layer enables the network to perform a sym-
metric algorithm that generalizes perfectly to unseen data. It is currently known that circular rep-
resentations emerge gradually during the post-memorization phase (Nanda et al., 2023) and that
weight decay is mainly responsible for driving the delayed generalization (Liu et al.|[2022b)), but the
precise dynamics remain unclear.

2 OUR CONTRIBUTIONS

In this work, we aim to answer the following questions:

Q1. What is the exact role of weight decay in the post-memorization learning dynamics?
Q2. Can we isolate the dynamics of the embedding layer from the rest of the network?
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We answer Q1 in Section ] by proving that, after memorization is achieved, the learning dynamics
approximately follow the minimization of the weight norm, constrained to the zero-loss level set.

We answer Q2 in Section [3] by proposing an approximation for the isolated learning dynamics of
any parameter subset as the minimization of a specific cost function.

We then combine these insights in Section [f] to study the post-memorization learning dynamics of
a two-layer network, deriving a closed-form expression for the cost function of the first layer (the
embedding layer).

Finally, in Section [7] we validate our theoretical insights on a modular addition task, showing that
our approximations reproduce the delayed generalization and circular representations characteristic
of grokking.

3 INTUITIONS FROM TOY MODELS

Before presenting our theoretical findings, we give an intuition for our results by discussing and
visualizing how they relate to a few highly simplified models.

a. Loss Curves during Training with Different Weight Decay Coefficients
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Figure 1: A two-parameter linear model § = wx1 + wez2 groks simple addition when trained with
just one sample: 1 = x5 = 1, y = 2 (corresponding to 1+ 1 = 2). We plot three training runs with
different weight decay coefficients . After quickly achieving zero loss, learning is entirely driven
by the minimization of the weight norm.

3.1 GROKKING ADDITION

We begin by discussing how a linear model can grok addition from just 1 + 1 = 2. We use a single-
layer linear model with two inputs and two weights: § = wix1 + waxe. We train this model with
mean-squared error loss using just one sample: 1 = x5 = 1, y = 2. We use three different values
of weight decay, A € {0.01,0.1,0.2 }. We initialize our model with w; = —1 and wy = 1.

We aim to show that our model can learn to perform standard addition, despite being trained with
a single sample. Test accuracy is measured on a set of 100 randomly generated samples, where x|
and x, are sampled from a normal distribution, and y = z1 + .

We show our results in Figure [l We can see that our model reproduces grokking: training loss
becomes very low after just a 10 steps, while test loss takes a few hundred steps. Additionally, the
model achieves lower loss with smaller A, but takes longer to generalize.

Interpretation. From Figure [T] (a, b), we can see that learning follows two phases. In the first
phase, driven by loss minimization, the model achieves a low loss by learning (wy, w2) =~ (0,2). In
the second phase, learning is entirely driven by weight decay. The model follows norm minimiza-
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tion, while maintaining zero loss, eventually reaching (wi,ws) =~ (1,1). Note that, for smaller A,
the model remains closer to the zero-loss line, but generalization also takes longer.

3.2 NORM MINIMIZATION

While the previous example illustrates our theoretical framework, it does not capture its full gen-
erality. It is unsurprising that applying weight decay encourages a reduction in norm. However,
the central claim of this paper is significantly stronger: we argue that the learning dynamics under
weight decay do not merely follow some norm-decreasing direction, but rather evolve along the
direction that optimally minimizes the norm, subject to remaining on the zero-loss manifold. An-
other way to view this is the following: once the model achieves perfect memorization, learning
effectively follows gradient descent on the weight norm, constrained to the zero-loss manifold.

To offer a better intuition, we show how a linear model can grok three-number addition. We train
a three-parameter linear model § = wix; + woxe + wsxsz with just one sample: x1 = xo =
r3 = 1, y = 3. As in the previous section, this model exhibits grokking: after quickly achieving
zero training loss, the model slowly reaches the generalizing solution (w1, we,ws) =~ (1,1,1). We
perform four training runs with different initializations and visualize the resulting trajectories in
Figure |2l We observe that, for all initializations, the model first converges to the zero-loss plane,
then moves directly towards the solution of minimum norm.

(3,4,4)

3 3
3 e ~
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Figure 2: A three-parameter linear model § = wyx1 + weZ2 + wsxs groks three-number addition
when trained with just one sample: x1 = x2 = x3 = 1, y = 3 (correspondingto 1 + 1 + 1 = 3).
The gray area shows the zero-loss plane, shaded according to the weight norm, where a lighter shade
denotes a lower norm.

3.3 A FEwW MATHEMATICAL NUANCES

So far, our examples have shown only flat zero-loss subspaces, but this is not necessarily the case.
The zero-loss subspace can more generally be thought of as a manifold: a subspace that locally
resembles Euclidean space near each point. For example, we show a curved zero-loss set in Figure[3]
(left), along with a few training trajectories.

An important caveat is that the zero-loss set is not necessarily a manifold everywhere: it might
contain singular points. Such a singular point is demonstrated in Figure [3| (center). However, such
singularities should not worry us too much. If the network is realized by a smooth function, then the
singularities will form a null set, i.e. the probability of encountering a singularity during standard
training is exactly zero.

Another nuance is that, in practice, neural networks are trained using the ReLLU activation function,
which is not smooth. This will partition the loss into a finite set of smooth regions with nonsmooth
boundaries. The nonsmooth points will also form a null set. We visualize a scenario of this type in
Figure 3| (right) with leaky ReLU activation: ReLU(z) =  if > 0 else z/10.
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Y = WaWiX Y = WaWix y = ReLU(wix;) + ReLU(wzx2)
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Figure 3: Training trajectories with different data, architectures and initializations. Left: a two-layer
linear network where the zero-loss set is curved. Center: a two-layer linear network where the
zero-loss set has a singularity at (wq,w2) = (0,0). Right: a single-layer network with leaky ReLU
activation groks simple addition.

4 POST-MEMORIZATION DYNAMICS

4.1 ARCHITECTURE

We consider a neural network trained with mean-squared error loss on k& samples:

k
L0) = |1£(0,2:) — yill* (1)
=1

where z; € R”, y; € R™, and 6§ € R? is the parameter vector. The network has d parameters, n
inputs, and m outputs. We use f : R¥*™ — R™ to denote the network realization function.

We apply a weight decay term (Krogh & Hertz, |[1991) with a coefficient A € R™ to obtain:
Lx(0) = L(8) + A|0]]*. )

We also denote the combined outputs of all samples as using F(6) € R*™, where

FO) = [ £6,207, f6,2)7, ...,f(e,xn)T}T, 3)

4.2 THEORETICAL SETUP

The following concepts are fundamental to our analysis:
Definition 4.1 (Zero-Loss Set). Let Z = {6 € R?| L(6) = 0} denote the zero-loss set.

Definition 4.2 (Singular Points). We say that § € R? is a singular poin if the Jacobian matrix of
F at 0 is not full rank, i.e. rank(VF(0)) < min(d, km).

We theoretically study the training dynamics under the following assumptions:

Assumption 4.3 (Over-Parametrization). We assume that d > km in order for the model to be able
to memorize the entire dataset without learning any representations.

Assumption 4.4 (Perfect Memorization). We study the training dynamics after perfect memorization
is achieved. This requires that the zero-loss set is not empty, i.e. Z # &.

Assumption 4.5 (Gradient Flow). We assume that F is smooth and we model the gradient descent
trajectory as a continuous-time gradient flow:

20(t)
ot

where 0 : R>¢ — R? is the parameter vector as a function of time.

=—VL(0(1)) )

"We define singular points in terms of J, though they correspond to singular points of Z. With respect to
F, they are more precisely critical points.
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Assumption 4.6 (Vanishing Weight Decay). We study the learning dynamics in the approximation
of a very small weight decay coefficient, i.e. N\ — 0, motivated by the small values of A typically
used by practitioners (Smith, | 2018)).

Assumption 4.7 (Well-Behaved Loss). We assume that our training trajectory does not pass through

singular points. This is motivated by the fact that singular points form a null set, i.e. a set of
Lebesgue measure zero (Morsel |1939; |Sard, |1942)).

4.3 CONSTRAINED TO THE ZERO-LOSS

We begin by establishing that the model remains constrained arbitrarily close to the zero-loss set
after reaching a memorizing solution.

Definition 4.8 (Distance). Let distz(0) = infyez |0 — ¢|| be the distance from 6 € R? to Z.

Theorem 4.9 (Stability of Z). For every trajectory starting at a zero-loss solution 6(0) € Z and
every € > 0, there exists A > 0 such that for all 0 < X\ < \; the trajectory under L satisfies

supdistz(0(t)) < e. (5
>0

Sketch of the Proof. Our proof is based on the fact that the gradient flow will never increase the
optimized quantity £ () = £(0)+ A||0||2. Since both terms are non-negative, we can establish any
desired bound on £(#) by an appropriate choice of A. We then use this to obtain the bound on the
distance. We give the full proof in Appendix O

4.4 Lo0SS GRADIENT ORTHOGONALITY

We will now provide our main theoretical result, which states that V£(#) around Z becomes or-
thogonal to any available direction.

Definition 4.10 (Available Direction). We say that v € R? is an available direction at § € Z if
there exists a smooth trajectory s : R — RY such that 5(0) = 0, s'(0) = v, and L(s(t)) = 0 for all
teR

Definition 4.11 (Tangent Space). We denote by Ty the set of all available directions at 0 € Z.
Definition 4.12 (Projection). Let projz(6) = arginfy.cz ||0 — 0’| be the projection of 8 onto Z.

Theorem 4.13 (Gradient Orthogonality). Let S C R? be a compact space with projz(S N Z) C S.
Assume that S contains no singular points. Then, there exist constants C > 0 and xo > 0 such that

vl VL(0) ‘ )
—_ C distz (0 6
Tl V@] < © stz ©

holds for all 0 € S\ Z with distz(0) < xo and v € Tyroj_ (0)-

Sketch of the Proof. We approximate the loss gradient at 6 using the Taylor expansion around
proj z(6) to obtain VL(0) = Hz + O(||x||?), where x = 6 — projz(#) and H = V2L(proj(0)).

Using v € Ty, (o) and the absence of singular points, we are able to show that Hv = 0 and
IVL()|| = ©(||x||). Therefore, the normalized dot product will be O(||z||). We give the full proof
in Appendix B} O

Remark 4.14. In other words, the loss gradient does not induce any movement near Z. After a
memorizing solution is reached, learning will be driven entirely by weight decay. The loss will only
serve to keep the model near Z, while weight decay will be free to push the model towards norm
minimization along any of the available directions.

5 ISOLATED DYNAMICS OF A NETWORK COMPONENT

5.1 MOTIVATION

It often happens that generalization in neural networks hinges on representation learning within
specific network components. A striking example is the role of the embedding layer in the modular
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addition task (Zhong et al., [2024). In such cases, it can be highly beneficial to simplify the complex
learning dynamics of a deep network by isolating and analyzing only the component of interest.

Specifically, we desire to approximate the learning dynamics of individual components, independent
from the rest of the network. Recent work has already begun to explore such approximations, also
referred to as effective theories (van Rossem & Saxe, [2024; [Liu et al., 2022a; Musat, 2024; Mehta
et al.). In this section, we establish the theoretical foundations for such approximations and introduce
a new one of our own.

5.2 ISOLATED DYNAMICS

The parameter vector can be decomposed into two orthogonal parameter subsets 6 = [0, 03], where
6, € R, 0, € R%, and d; + dy = d. We are interested in the learning dynamics of 6;:

6y = =V, Lx(01,02) @)

The gradient flow assumption means that the trajectory of #; is a one-dimensional curve in a d;-
dimensional space. This suggests that it is highly unlikely that our trajectory will pass through the
same 6, twice. If we assume that a training trajectory only goes through unique values of 61, then it
is possible to parametrize 6> as a function of 6;:

02 = ¢(61) ®)

where ¢ : R% — R? is a function specific to the loss function and the initial parameters. This
parametrization allows us to isolate the dynamics of #; by expressing them as a function of 6
alone:

61 = *v91£>\(91a¢<91)) (9)

While the function ¢ is generally intractable, working with reasonable approximations can provide
valuable insights into the learning dynamics of 6;.

5.3 APPROXIMATE COST FUNCTION

We propose approximating ¢ by assuming that parameters 62 are optimal for the current value of 6, :
(61) = argrginﬁx(@l,ez) (10)

This approximation can also be understood as treating 6, as the slow learning component, while 6
is the fast learning component that quickly adapts to the current value of 6.

Additionally, optimizing 6 under this approximation is equivalent to optimizing the following cost
function:
R(Ql) :I’%IH,C,\(Gl,gQ) (11)
2

Theorem 5.1. The learning dynamics of 61 under Equations () and (10) follow the gradient flow
of R when ¢ is differentiable:

01 = =V, R(61) 12)
Proof. Note that R(61) = Lx(01,¢(61)). By differentiating it with respect to ¢, we obtain that

Vo, R(61) = Vo, L2(01,9(01))+V o, Lx(01,0(61)) Vo, $(61). However, since ¢(6; ) is a minimum
of £, we have that Vg, £ (61, ¢(61)) = 0, giving us the desired result. O

6 TwO-LAYER NETWORKS

6.1 SETUP

We turn our attention to the learning dynamics of a two-layer neural network trained with mean
squared error loss and weight decay:

L=|c(XW)Wy—Y |% (13)
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where X € R™"*%in is the input data, Y € R"*%out is the target output, o : R — R is the activation
function, W, € R%n*xdn is the first layer weights, W5 € R% *dout ig the second layer weights, and
|| - || » denotes the Frobenius norm.

After applying a weight decay coefficient A > 0, we get:
Lx=LAN(WilE + [W]F) (14)

6.2 ISOLATED DYNAMICS OF THE FIRST LAYER

Using the approximation from Section[5.3] we can isolate the learning dynamics of the first layer by
assuming that the second layer weights are optimal for the current value of the first layer weights:

Wy = ¢(W7) :argnvlvinﬁ,\(Wl,Wg) (15)

Since the second layer is just a linear transformation of the hidden layer activations H = o (X W),
finding the optimal second layer weights is equivalent to the classic problem of ridge regression
(Hoerl & Kennard, |1970). The solution is given by:

¢(Wh)=(H H+ M) 'H'Y (16)
By combining Equations (13), (I4) and (I6), we can obtain the cost function for the isolated learning

dynamics of the first layer:
R(W1) = La(W1,¢(W1)) (17)

This cost function is not particuarly simple, but it is fully differentiable, allowing us to approximate
the learning dynamics of the first layer:

Wi ~ —VR(W)) (18)

6.3 ZERO-LOSS APPROXIMATION

Following the theoretical framework developed in Sectionfd] we can further simplify equation Equa-
tion by working in the limit of very small weight decay A — 0:

o(Wh) = (H"H) " H'Y (19)
The expression Ht = (HTH)~'H is also known as the Moore-Penrose pseudo-inverse of H. If

H has full column rank, then the pseudo-inverse is also given by H* = H" (HH ")~!. This allows
us to further simplify the cost function down to:

RWL) = A Wi |2+ ATe(YT(HH )™ 'Y) (20)

By differentiating this cost function, we can obtain a closed-form expression for the isolated learning
dynamics of the first layer in the overparameterized zero-loss approximation:

W~ XT((AYYTAH) 0.0’ (XW1) ) = W @1

where H = o(XW;), A = (HHT)™!, 5 is the activation function, and ® denotes the Hadamard
product. We provide a detailed derivation in Appendix [C]

7 SIMULATED DYNAMICS

In this section, we empirically validate our combined theoretical insights on isolated dynamics and
post-memorization dynamics. By applying equation Equation (21]) to a network trained on the modu-
lar addition task, we show that our approximations reproduce the delayed generalization and circular
representations characteristic of grokking.
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Figure 4: Simulated dynamics according to Equation (2I) reproduce the phenomena of delayed
generalization and representation learning. Top left: generalization emerges after about 1000 steps,
despite training loss being exactly zero throughout. 7op right: Fourier features norms equalize,
suggesting the presence of equally-sized circles. Bottom left: Fourier features become orthogonal,
suggesting that circles are located in orthogonal planes. Bottom right: Fourier features absolute val-
ues become dissimilar, suggesting that each circle leverages a different subset of hidden activations.

7.1 DATASET

We train the network to perform modular addition modulo a fixed number p. The dataset consists
of kK = p(p + 1)/2 unique input pairs and their sum, D = {(a,b,¢) | 0 < a < b < p, ¢ =
(a + b) mod p}. We construct the input data X € R**P and the target output Y € R**P as
X; = eq, +ep, and Y; = e, forall i = 1,... k, where e; is the ¢-th unit vector in R? and
(as, bi, ¢;) € D is the i-th sample in the dataset.

We split the dataset into (Xiin, Yirain) and (Xiest, Yiest), using a fraction f of the dataset for training
and the remaining 1 — f; for testing.

7.2 ARCHITECTURE

We train a two-layer neural network with input dimension p, hidden dimension dj,, output dimension
p, and a non-linear activation o : R — R.

Since the inputs are sums of one-hot vectors, we refer to the first layer weights as the embedding
matrix £ € RPX9"_ We refer to the second layer weights as simply the weights matrix W € R% *P.

The network output is given by Y = o(XE)W. To emphasize the role of the first layer as an
embedding, we can also write the output as Y; = o(E,, + Ep,)W.

We define the test accuracy as the percentage of correctly predicted test samples. We say that a test
sample is correctly predicted if the index of the maximum value in the predicted output Y; matches
Cj.

7.3 SIMULATED OPTIMIZATION

Our goal is not to train the network, but to validate that our approximate learning dynamics reproduce
the phenomena observed during standard training.

We simulate the evolution of the embedding matrix E under the isolated dynamics given by equation
Equation (21). We start from a random initialization £ ~ A/(0, p~/?) and update it for T steps as
E < E+nAE, where 1) > 0 is the step size and AE = XT ((AYYTAH) © 0/(XE)) — E.
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The isolated dynamics assume that W = (HTH)~*HTY is optimal for the current value of F,
which guarantees zero loss and perfect accuracy on the training data throughout training. This also
ensures that predicted outputs perfectly match the target outputs on the training data, which is less
principled for a classification task, but generally performs well in practice (Rifkin et al.,2003)).

7.4 DETAILS
We use p = 37, dj, = 512, o(z) = max(0, ), fs = 0.7, 7 = 1073, T = 5000.

7.4.1 DELAYED GENERALIZATION

We simulate 5 runs starting from different random initializations and plot the test accuracy in Fig-
ure fi] Despite the fact that the training loss is exactly zero throughout, the test accuracy is not
better than random guessing for the first 500 steps. However, the network eventually achieves per-
fect generalization on the test data after about 2000 steps, reproducing the delayed generalization
phenomena |Power et al.|(2022).

7.4.2 FOURIER FEATURES

Using a discrete Fourier transform, we decompose the embedding matrix F into a linear combination
of circles with different frequencies:

182 s
Fp=-Y e ?mkr g, VEe{l,...,(p—1)/2}
p =
7=0
Projecting the embeddings onto the plane spanned by Re(F},) and Im(F},) gives us a circle where the
embeddings appear in the order {0, k, 2k, 3k, ..., (p—1)k} mod p. Note that a circle of frequency
k is equivalent to a circle of frequency p— k, so we only need to consider frequencies up to (p—1)/2.

We visualize several comparisons of the Fourier features of the initial and final embedding matrices
for a single run Figure 4| First, the norms of the real and imaginary parts of the Fourier features
equalize, suggesting the presence of equally sized circles with perfect aspect ratios. Second, the real
and imaginary parts of the Fourier features become orthogonal, indicating that circles are located in
orthogonal planes. Third, by taking the absolute value of the real and imaginary parts of the Fourier
features, we obtain vectors very similar for the same frequency, but very different for different
frequencies. This suggests that each circle leverages a different subset of hidden units.

8 CONCLUSION

We have formally established that the learning dynamics of neural networks in the grokking regime
approximate as the minimization of the weight norm within the zero-loss set. Additionally, we
have established a theoretical basis for approximating the learning dynamics of individual network
components.

Limitations. This work does not cover cross-entropy loss, which is commonly used in practice.
With regard to isolated dynamics, our work is limited to the case of two-layer networks. Exciting
challenges lie ahead in understanding the grokking dynamics of more complex settings and archi-
tectures.

Impact Statement. We believe that understanding the learning dynamics of neural networks is
essential for the design of more efficient and accurate Al systems. However, the development and
deployment of such systems should be approached with caution.

LLM Usage. Large Language Models (LLMs) were used in standard ways throughout this work
to polish the writing, assist with coding, and support brainstorming of mathematical proofs.

Reproducibility. We provide the full code for training and plotting used for the experiments with
simulated dynamics from Section
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A PROOF OF THEOREM [4.9] (STABILITY OF Z)

We begin by establishing the following intermediate result:

Lemma A.1. For every initialization 6(0) € Z and every € > 0, there exists A\ > 0 such that for
all 0 < X\ < )\ the corresponding trajectory 0(t) under Ly satisfies

sup L(0(t)) < e. (22)
>0

Proof. From Equation (), we see that gradient flow will never increase the optimized quantity
L(0) = L(6)+)]|0]|*. By choosing A. < /||6(0)||?, we ensure that L(0(t)) < e forallt > 0. O

We recall Theorem 4.9

Theorem 4.9 (Stability of Z). For every trajectory starting at a zero-loss solution 0(0) € Z and
every € > 0, there exists A > 0 such that for all 0 < X\ < )\ the trajectory under L satisfies

supdistz(0(t)) < e. (%)
>0

Proof. Our training trajectory will not reach any 6 € R¢ with |6 > ||6(0)||. This is because any
such configuration is unreachable by gradient flow from 6(0) for any A > 0 since £ (6) > £ (6p).

We are left to show unreachability of the set ® = {§ € R% : D(0) > ¢ and ||]| < ||6(0)]|}. Since
® is compact, m = ming L£(f) exists and is positive. Applying Lemma [A.1] there exists A > 0
such that optimizing £ starting from 6(0) is guaranteed to maintain £(6(t)) < m, thus making ®
unreachable. O

11
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B PROOF OF THEOREM (GRADIENT ORTHOGONALITY)

We begin with a few intermediate results.
Lemma B.1. Az a non-singular point of the zero-loss set, the tangent space is exactly the null space
of the Hessian matrix, i.e. Tg = { v € R | V2L(0)v =0} for any non-singular § € Z.
Proof. PartI: V2L(0) v =0 = v € Tp.
We write the loss function as
L(0) = [I7(0) — yaull?
using yq;; € RF™ as the concatenation of all target outputs:
-
Yall = liy;rv y;7 BERE) yll—:l

Differentiating £(6#) with respect to 6, we obtain the gradient:
VL) =2VF@O) (FO) —y),
where V.F(0) € R¥™*4 is the Jacobian of the network output with respect to the parameters.

Differentiating again, we obtain the Hessian:
km
V2L(0) =2VF(0) 'VFO) + 2> (Fi(0) = (yau)s) V2Fi(6),
i=1

where V2 F;(6) € R is the Hessian of the i-th output component.

At € Z, where F(6) = yau, the second term vanishes, simplifying the Hessian to:

V2L(0) =2VF(0) VF(0).

For any direction v € R, this yields:
v VL0 = 2| VF(O)v|?>.

Therefore,
v VIL@)v=0 < VF(@)v=0.

Moreover, every § € Z is a local minimum where the Hessian matrix is symmetric and positive
semi-definite. This gives the us equivalence

VLO)v=0 < o' VLB v=0.

Therefore,
V2LO)v=0 < VF(@)v=0.

Because km > d and V.F(0) has full rank, the inverse function theorem implies that the preimage
of F locally has the structure of a smooth manifold whose tangent space is exactly the null space of
VF(0). To simplify our analysis, we directly restate the inverse function theorem below in a form
that is slightly non-standard, but perfectly equivalent:

Theorem B.2 (Inverse Function Theorem). Assume that F : R® — R*™ is a smooth function with
d > km and rank(VF(0)) = km for some 6 € R%. Then, for all v € R? such that VF(0)v = 0,
there exists a smooth trajectory s : R — R such that s(0) = 0, s'(0) = v, and F(s(t)) = F(6)
forallt € R.

Note that any such trajectory will also have £(s(t)) = 0 since F(s(t)) = F(0) = yqu. This implies
the desired result.

12
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Partll: ve Ty = V2L(0)v=0.
Using the equation £(f(¢)) = 0 from Definition and differentiating it twice with respect to ¢,

we obtain:
F'O)TVELF@)) () + VLS ()T () = 0. (23)

Since any point # € Z is a local minimum, we have that V.£(#) = 0 and V2£(6) is symmetric and
positive semi-definite (PSD).

By evaluating Equation att = 0, we obtain that v V2£(#) v = 0. Since V2L(#) is symmetric
and PSD, this implies the desired result.

O
Definition B.3 (Normal Space). Let Ny = {a € R? | aTv = 0, Yo € T, } denote the normal
space at a point ¢ € Z.

Proposition B.4. The displacement of a point from the zero-loss set belongs to the normal space at
the point’s projection, i.e. § — projz(0) € Npyoj_ (o) for all § € R%.

Proof. We give a proof by contradiction. Assume that there exists v € 7Tp0j,(p) such that

v" (6 — projz(#)) # 0. Then, by Definition [4.10| there must exist a smooth trajectory f : R — R?
with f(0) = projz(0), f(0) = v, and f(t) € Z for all t € R. By moving proj () along
this trajectory, we can get closer to §. However, this should not be possible according to Defini-

tion 4121 O

‘We now establish our main result:

Theorem 4.13 (Gradient Orthogonality). Let S C R? be a compact space with projz(S N Z) C S.
Assume that S contains no singular points. Then, there exist constants C' > 0 and xo > 0 such that

T VL) ‘ .
M vy < ¢ dstz) (©)

holds for all 0 € S\ Z with distz(0) < x¢ and v € Tyro5 (9)-
Proof. By parameterizing 6 as

. ) 0 — proj z(0)
0 = projz(0) + || — projz(6)|| m
we can denote the quantity of interest as

vl — proj
VL(0) g(pr0j2(9)7 6 — projz(0)

YRV ——== ||0 — projz(0 71;)

where

v VL(p+ )
96,0 3,) = LL(6 + za)]

withgp € Z, o € Ny, z € R, and v € Ty
To obtain the desired result, it suffices to show that there exists C' > 0 such that
9(p,a,z,v) < Cx
forallp e SNZ, ac UNy), z>0,ve Ty, where UNy) ={ve Ny ||v]|=1}
We write the gradient of the loss function around ¢ € Z using the Taylor expansion:
VL(p+za) =2V L(P) o+ T hy o)

where hg () is a remainder term that vanishes as  — 0. In other words, there exist constants
Mg, o, a0 > 0such that

[hg.a(@)| < Moz Vi, 2 < aga-
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Since S is closed and L is continuous, S N Z will also be closed. The set of normal vectors with unit
norm at any point is also closed. This implies that the following quantities exist and are positive:

M., = su M, aing = Inf a
sup be SI?TZ [oNe inf 6e8nz e
acUNy) a€U(WNy)

We express g(0, a, x,v) as:

=z v V2L(p)a+zv" hyolz) _ v V2L(P) a+ 0T hy o)
[oll |l V2L(¢) a+ zhga(x)]  [VI[VZL(D) o + hg.a()]]

g(¢7 Qa, T, ’U)

Since v € Ty, from Lemma|B.1} we have that v" V2L(¢) a = 0. This gives
v he o)
[0l IV2L(¢) @ + hg.a ()]l

S ]
= IV2L@) @+ hoalo)]

g(d)? a? ‘r’ v) =

Since V2L(¢) a # 0, the following also exists and is positive:

. — ] 2
Mot = inf_ I9£(6)o
a€U(Ny)

Assuming that z < Aing/Msyp guarantees that |[V2L(¢) || > [|hg,q(2)||, which gives

1hg,0()ll
g(¢’ a, x,”) S ’
V2L(¢) el = [[hg,a ()|l
< Mgup
= Ainf — Msupx

for any x < a;n¢. An appropriate choice of C' and x gives the desired bound, for example:

)\inf C = 2 Msup
2 Msup )\inf

Zo = min <ainf7
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C CoST FUNCTION GRADIENT IN TWO-LAYER NETWORKS

We want to derive the gradient of the following cost function:

RWL) = AMWil% + o)
where

oW)=H (HH")"'Y  H=0(XW;) XecR™ W cRInxd y ¢ R¥dow

The activation function o : R — R is applied is applied elementwise. Note that, since we work in
the zero-loss approximation, there is no explicit error term.

We decompose R(W7) into two terms:

RW1) = MIWillE + Mle(W)l
—— ————

Term 1 Term 2
Since the first term is a standard Frobenius norm squared, its gradient is:
Vi MIWllE] = 22w,
To find the gradient of the second term, we analyze:
FOV) = lleWo)ll% = |HT (HHT) ™'Y ||
Since the Frobenius norm squared satisfies | M |3, = Tr(M " M), we write:

V) =Te(HT(HHET)'Y) H (HHT)'Y)
=T(Y'(HH")'HH"(HH")™'Y)
=Tr(YY"(HH")™)

Using the following known result from matrix calculus:

aTr(MP_l)
- J—_plpyp!
oP
with M =YY T and P= HH", we obtain:
% = 2HH")Y 'YY'(HH")'H

Propagating the gradient using the chain rule, we get:

aiwi — _9xT [((HHT)lYYT(HHT)lH) ®0/(XW1)}

where ® denotes the Hadamard product.

Finally, multiplying by A, we obtain the gradient of the second term:
Ve, MIOOTIE] = 20X |(avy T am) @ o' (x|

where A = (HH")~L.

Thus, the final expression is:

VR(WY) = —20W; + 22X 7 [(AYYTAH)@U’(XWQ]
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